Expr.cpp revision 239462
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36const CXXRecordDecl *Expr::getBestDynamicClassType() const {
37  const Expr *E = ignoreParenBaseCasts();
38
39  QualType DerivedType = E->getType();
40  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
41    DerivedType = PTy->getPointeeType();
42
43  if (DerivedType->isDependentType())
44    return NULL;
45
46  const RecordType *Ty = DerivedType->castAs<RecordType>();
47  Decl *D = Ty->getDecl();
48  return cast<CXXRecordDecl>(D);
49}
50
51/// isKnownToHaveBooleanValue - Return true if this is an integer expression
52/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
53/// but also int expressions which are produced by things like comparisons in
54/// C.
55bool Expr::isKnownToHaveBooleanValue() const {
56  const Expr *E = IgnoreParens();
57
58  // If this value has _Bool type, it is obvious 0/1.
59  if (E->getType()->isBooleanType()) return true;
60  // If this is a non-scalar-integer type, we don't care enough to try.
61  if (!E->getType()->isIntegralOrEnumerationType()) return false;
62
63  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
64    switch (UO->getOpcode()) {
65    case UO_Plus:
66      return UO->getSubExpr()->isKnownToHaveBooleanValue();
67    default:
68      return false;
69    }
70  }
71
72  // Only look through implicit casts.  If the user writes
73  // '(int) (a && b)' treat it as an arbitrary int.
74  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
75    return CE->getSubExpr()->isKnownToHaveBooleanValue();
76
77  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
78    switch (BO->getOpcode()) {
79    default: return false;
80    case BO_LT:   // Relational operators.
81    case BO_GT:
82    case BO_LE:
83    case BO_GE:
84    case BO_EQ:   // Equality operators.
85    case BO_NE:
86    case BO_LAnd: // AND operator.
87    case BO_LOr:  // Logical OR operator.
88      return true;
89
90    case BO_And:  // Bitwise AND operator.
91    case BO_Xor:  // Bitwise XOR operator.
92    case BO_Or:   // Bitwise OR operator.
93      // Handle things like (x==2)|(y==12).
94      return BO->getLHS()->isKnownToHaveBooleanValue() &&
95             BO->getRHS()->isKnownToHaveBooleanValue();
96
97    case BO_Comma:
98    case BO_Assign:
99      return BO->getRHS()->isKnownToHaveBooleanValue();
100    }
101  }
102
103  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
104    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
105           CO->getFalseExpr()->isKnownToHaveBooleanValue();
106
107  return false;
108}
109
110// Amusing macro metaprogramming hack: check whether a class provides
111// a more specific implementation of getExprLoc().
112//
113// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
114namespace {
115  /// This implementation is used when a class provides a custom
116  /// implementation of getExprLoc.
117  template <class E, class T>
118  SourceLocation getExprLocImpl(const Expr *expr,
119                                SourceLocation (T::*v)() const) {
120    return static_cast<const E*>(expr)->getExprLoc();
121  }
122
123  /// This implementation is used when a class doesn't provide
124  /// a custom implementation of getExprLoc.  Overload resolution
125  /// should pick it over the implementation above because it's
126  /// more specialized according to function template partial ordering.
127  template <class E>
128  SourceLocation getExprLocImpl(const Expr *expr,
129                                SourceLocation (Expr::*v)() const) {
130    return static_cast<const E*>(expr)->getLocStart();
131  }
132}
133
134SourceLocation Expr::getExprLoc() const {
135  switch (getStmtClass()) {
136  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
137#define ABSTRACT_STMT(type)
138#define STMT(type, base) \
139  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
140#define EXPR(type, base) \
141  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
142#include "clang/AST/StmtNodes.inc"
143  }
144  llvm_unreachable("unknown statement kind");
145}
146
147//===----------------------------------------------------------------------===//
148// Primary Expressions.
149//===----------------------------------------------------------------------===//
150
151/// \brief Compute the type-, value-, and instantiation-dependence of a
152/// declaration reference
153/// based on the declaration being referenced.
154static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
155                                     bool &TypeDependent,
156                                     bool &ValueDependent,
157                                     bool &InstantiationDependent) {
158  TypeDependent = false;
159  ValueDependent = false;
160  InstantiationDependent = false;
161
162  // (TD) C++ [temp.dep.expr]p3:
163  //   An id-expression is type-dependent if it contains:
164  //
165  // and
166  //
167  // (VD) C++ [temp.dep.constexpr]p2:
168  //  An identifier is value-dependent if it is:
169
170  //  (TD)  - an identifier that was declared with dependent type
171  //  (VD)  - a name declared with a dependent type,
172  if (T->isDependentType()) {
173    TypeDependent = true;
174    ValueDependent = true;
175    InstantiationDependent = true;
176    return;
177  } else if (T->isInstantiationDependentType()) {
178    InstantiationDependent = true;
179  }
180
181  //  (TD)  - a conversion-function-id that specifies a dependent type
182  if (D->getDeclName().getNameKind()
183                                == DeclarationName::CXXConversionFunctionName) {
184    QualType T = D->getDeclName().getCXXNameType();
185    if (T->isDependentType()) {
186      TypeDependent = true;
187      ValueDependent = true;
188      InstantiationDependent = true;
189      return;
190    }
191
192    if (T->isInstantiationDependentType())
193      InstantiationDependent = true;
194  }
195
196  //  (VD)  - the name of a non-type template parameter,
197  if (isa<NonTypeTemplateParmDecl>(D)) {
198    ValueDependent = true;
199    InstantiationDependent = true;
200    return;
201  }
202
203  //  (VD) - a constant with integral or enumeration type and is
204  //         initialized with an expression that is value-dependent.
205  //  (VD) - a constant with literal type and is initialized with an
206  //         expression that is value-dependent [C++11].
207  //  (VD) - FIXME: Missing from the standard:
208  //       -  an entity with reference type and is initialized with an
209  //          expression that is value-dependent [C++11]
210  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
211    if ((Ctx.getLangOpts().CPlusPlus0x ?
212           Var->getType()->isLiteralType() :
213           Var->getType()->isIntegralOrEnumerationType()) &&
214        (Var->getType().isConstQualified() ||
215         Var->getType()->isReferenceType())) {
216      if (const Expr *Init = Var->getAnyInitializer())
217        if (Init->isValueDependent()) {
218          ValueDependent = true;
219          InstantiationDependent = true;
220        }
221    }
222
223    // (VD) - FIXME: Missing from the standard:
224    //      -  a member function or a static data member of the current
225    //         instantiation
226    if (Var->isStaticDataMember() &&
227        Var->getDeclContext()->isDependentContext()) {
228      ValueDependent = true;
229      InstantiationDependent = true;
230    }
231
232    return;
233  }
234
235  // (VD) - FIXME: Missing from the standard:
236  //      -  a member function or a static data member of the current
237  //         instantiation
238  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
239    ValueDependent = true;
240    InstantiationDependent = true;
241  }
242}
243
244void DeclRefExpr::computeDependence(ASTContext &Ctx) {
245  bool TypeDependent = false;
246  bool ValueDependent = false;
247  bool InstantiationDependent = false;
248  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
249                           ValueDependent, InstantiationDependent);
250
251  // (TD) C++ [temp.dep.expr]p3:
252  //   An id-expression is type-dependent if it contains:
253  //
254  // and
255  //
256  // (VD) C++ [temp.dep.constexpr]p2:
257  //  An identifier is value-dependent if it is:
258  if (!TypeDependent && !ValueDependent &&
259      hasExplicitTemplateArgs() &&
260      TemplateSpecializationType::anyDependentTemplateArguments(
261                                                            getTemplateArgs(),
262                                                       getNumTemplateArgs(),
263                                                      InstantiationDependent)) {
264    TypeDependent = true;
265    ValueDependent = true;
266    InstantiationDependent = true;
267  }
268
269  ExprBits.TypeDependent = TypeDependent;
270  ExprBits.ValueDependent = ValueDependent;
271  ExprBits.InstantiationDependent = InstantiationDependent;
272
273  // Is the declaration a parameter pack?
274  if (getDecl()->isParameterPack())
275    ExprBits.ContainsUnexpandedParameterPack = true;
276}
277
278DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
279                         NestedNameSpecifierLoc QualifierLoc,
280                         SourceLocation TemplateKWLoc,
281                         ValueDecl *D, bool RefersToEnclosingLocal,
282                         const DeclarationNameInfo &NameInfo,
283                         NamedDecl *FoundD,
284                         const TemplateArgumentListInfo *TemplateArgs,
285                         QualType T, ExprValueKind VK)
286  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
287    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
288  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
289  if (QualifierLoc)
290    getInternalQualifierLoc() = QualifierLoc;
291  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
292  if (FoundD)
293    getInternalFoundDecl() = FoundD;
294  DeclRefExprBits.HasTemplateKWAndArgsInfo
295    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
296  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
297  if (TemplateArgs) {
298    bool Dependent = false;
299    bool InstantiationDependent = false;
300    bool ContainsUnexpandedParameterPack = false;
301    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
302                                               Dependent,
303                                               InstantiationDependent,
304                                               ContainsUnexpandedParameterPack);
305    if (InstantiationDependent)
306      setInstantiationDependent(true);
307  } else if (TemplateKWLoc.isValid()) {
308    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
309  }
310  DeclRefExprBits.HadMultipleCandidates = 0;
311
312  computeDependence(Ctx);
313}
314
315DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
316                                 NestedNameSpecifierLoc QualifierLoc,
317                                 SourceLocation TemplateKWLoc,
318                                 ValueDecl *D,
319                                 bool RefersToEnclosingLocal,
320                                 SourceLocation NameLoc,
321                                 QualType T,
322                                 ExprValueKind VK,
323                                 NamedDecl *FoundD,
324                                 const TemplateArgumentListInfo *TemplateArgs) {
325  return Create(Context, QualifierLoc, TemplateKWLoc, D,
326                RefersToEnclosingLocal,
327                DeclarationNameInfo(D->getDeclName(), NameLoc),
328                T, VK, FoundD, TemplateArgs);
329}
330
331DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
332                                 NestedNameSpecifierLoc QualifierLoc,
333                                 SourceLocation TemplateKWLoc,
334                                 ValueDecl *D,
335                                 bool RefersToEnclosingLocal,
336                                 const DeclarationNameInfo &NameInfo,
337                                 QualType T,
338                                 ExprValueKind VK,
339                                 NamedDecl *FoundD,
340                                 const TemplateArgumentListInfo *TemplateArgs) {
341  // Filter out cases where the found Decl is the same as the value refenenced.
342  if (D == FoundD)
343    FoundD = 0;
344
345  std::size_t Size = sizeof(DeclRefExpr);
346  if (QualifierLoc != 0)
347    Size += sizeof(NestedNameSpecifierLoc);
348  if (FoundD)
349    Size += sizeof(NamedDecl *);
350  if (TemplateArgs)
351    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
352  else if (TemplateKWLoc.isValid())
353    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
354
355  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
356  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
357                               RefersToEnclosingLocal,
358                               NameInfo, FoundD, TemplateArgs, T, VK);
359}
360
361DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
362                                      bool HasQualifier,
363                                      bool HasFoundDecl,
364                                      bool HasTemplateKWAndArgsInfo,
365                                      unsigned NumTemplateArgs) {
366  std::size_t Size = sizeof(DeclRefExpr);
367  if (HasQualifier)
368    Size += sizeof(NestedNameSpecifierLoc);
369  if (HasFoundDecl)
370    Size += sizeof(NamedDecl *);
371  if (HasTemplateKWAndArgsInfo)
372    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
373
374  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
375  return new (Mem) DeclRefExpr(EmptyShell());
376}
377
378SourceRange DeclRefExpr::getSourceRange() const {
379  SourceRange R = getNameInfo().getSourceRange();
380  if (hasQualifier())
381    R.setBegin(getQualifierLoc().getBeginLoc());
382  if (hasExplicitTemplateArgs())
383    R.setEnd(getRAngleLoc());
384  return R;
385}
386SourceLocation DeclRefExpr::getLocStart() const {
387  if (hasQualifier())
388    return getQualifierLoc().getBeginLoc();
389  return getNameInfo().getLocStart();
390}
391SourceLocation DeclRefExpr::getLocEnd() const {
392  if (hasExplicitTemplateArgs())
393    return getRAngleLoc();
394  return getNameInfo().getLocEnd();
395}
396
397// FIXME: Maybe this should use DeclPrinter with a special "print predefined
398// expr" policy instead.
399std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
400  ASTContext &Context = CurrentDecl->getASTContext();
401
402  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
403    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
404      return FD->getNameAsString();
405
406    SmallString<256> Name;
407    llvm::raw_svector_ostream Out(Name);
408
409    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
410      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
411        Out << "virtual ";
412      if (MD->isStatic())
413        Out << "static ";
414    }
415
416    PrintingPolicy Policy(Context.getLangOpts());
417    std::string Proto = FD->getQualifiedNameAsString(Policy);
418    llvm::raw_string_ostream POut(Proto);
419
420    const FunctionDecl *Decl = FD;
421    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
422      Decl = Pattern;
423    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
424    const FunctionProtoType *FT = 0;
425    if (FD->hasWrittenPrototype())
426      FT = dyn_cast<FunctionProtoType>(AFT);
427
428    POut << "(";
429    if (FT) {
430      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
431        if (i) POut << ", ";
432        POut << Decl->getParamDecl(i)->getType().stream(Policy);
433      }
434
435      if (FT->isVariadic()) {
436        if (FD->getNumParams()) POut << ", ";
437        POut << "...";
438      }
439    }
440    POut << ")";
441
442    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
443      const FunctionType *FT = cast<FunctionType>(MD->getType().getTypePtr());
444      if (FT->isConst())
445        POut << " const";
446      if (FT->isVolatile())
447        POut << " volatile";
448      RefQualifierKind Ref = MD->getRefQualifier();
449      if (Ref == RQ_LValue)
450        POut << " &";
451      else if (Ref == RQ_RValue)
452        POut << " &&";
453    }
454
455    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
456    SpecsTy Specs;
457    const DeclContext *Ctx = FD->getDeclContext();
458    while (Ctx && isa<NamedDecl>(Ctx)) {
459      const ClassTemplateSpecializationDecl *Spec
460                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
461      if (Spec && !Spec->isExplicitSpecialization())
462        Specs.push_back(Spec);
463      Ctx = Ctx->getParent();
464    }
465
466    std::string TemplateParams;
467    llvm::raw_string_ostream TOut(TemplateParams);
468    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
469         I != E; ++I) {
470      const TemplateParameterList *Params
471                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
472      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
473      assert(Params->size() == Args.size());
474      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
475        StringRef Param = Params->getParam(i)->getName();
476        if (Param.empty()) continue;
477        TOut << Param << " = ";
478        Args.get(i).print(Policy, TOut);
479        TOut << ", ";
480      }
481    }
482
483    FunctionTemplateSpecializationInfo *FSI
484                                          = FD->getTemplateSpecializationInfo();
485    if (FSI && !FSI->isExplicitSpecialization()) {
486      const TemplateParameterList* Params
487                                  = FSI->getTemplate()->getTemplateParameters();
488      const TemplateArgumentList* Args = FSI->TemplateArguments;
489      assert(Params->size() == Args->size());
490      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
491        StringRef Param = Params->getParam(i)->getName();
492        if (Param.empty()) continue;
493        TOut << Param << " = ";
494        Args->get(i).print(Policy, TOut);
495        TOut << ", ";
496      }
497    }
498
499    TOut.flush();
500    if (!TemplateParams.empty()) {
501      // remove the trailing comma and space
502      TemplateParams.resize(TemplateParams.size() - 2);
503      POut << " [" << TemplateParams << "]";
504    }
505
506    POut.flush();
507
508    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
509      AFT->getResultType().getAsStringInternal(Proto, Policy);
510
511    Out << Proto;
512
513    Out.flush();
514    return Name.str().str();
515  }
516  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
517    SmallString<256> Name;
518    llvm::raw_svector_ostream Out(Name);
519    Out << (MD->isInstanceMethod() ? '-' : '+');
520    Out << '[';
521
522    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
523    // a null check to avoid a crash.
524    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
525      Out << *ID;
526
527    if (const ObjCCategoryImplDecl *CID =
528        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
529      Out << '(' << *CID << ')';
530
531    Out <<  ' ';
532    Out << MD->getSelector().getAsString();
533    Out <<  ']';
534
535    Out.flush();
536    return Name.str().str();
537  }
538  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
539    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
540    return "top level";
541  }
542  return "";
543}
544
545void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
546  if (hasAllocation())
547    C.Deallocate(pVal);
548
549  BitWidth = Val.getBitWidth();
550  unsigned NumWords = Val.getNumWords();
551  const uint64_t* Words = Val.getRawData();
552  if (NumWords > 1) {
553    pVal = new (C) uint64_t[NumWords];
554    std::copy(Words, Words + NumWords, pVal);
555  } else if (NumWords == 1)
556    VAL = Words[0];
557  else
558    VAL = 0;
559}
560
561IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
562                               QualType type, SourceLocation l)
563  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
564         false, false),
565    Loc(l) {
566  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
567  assert(V.getBitWidth() == C.getIntWidth(type) &&
568         "Integer type is not the correct size for constant.");
569  setValue(C, V);
570}
571
572IntegerLiteral *
573IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
574                       QualType type, SourceLocation l) {
575  return new (C) IntegerLiteral(C, V, type, l);
576}
577
578IntegerLiteral *
579IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
580  return new (C) IntegerLiteral(Empty);
581}
582
583FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
584                                 bool isexact, QualType Type, SourceLocation L)
585  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
586         false, false), Loc(L) {
587  FloatingLiteralBits.IsIEEE =
588    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
589  FloatingLiteralBits.IsExact = isexact;
590  setValue(C, V);
591}
592
593FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
594  : Expr(FloatingLiteralClass, Empty) {
595  FloatingLiteralBits.IsIEEE =
596    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
597  FloatingLiteralBits.IsExact = false;
598}
599
600FloatingLiteral *
601FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
602                        bool isexact, QualType Type, SourceLocation L) {
603  return new (C) FloatingLiteral(C, V, isexact, Type, L);
604}
605
606FloatingLiteral *
607FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
608  return new (C) FloatingLiteral(C, Empty);
609}
610
611/// getValueAsApproximateDouble - This returns the value as an inaccurate
612/// double.  Note that this may cause loss of precision, but is useful for
613/// debugging dumps, etc.
614double FloatingLiteral::getValueAsApproximateDouble() const {
615  llvm::APFloat V = getValue();
616  bool ignored;
617  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
618            &ignored);
619  return V.convertToDouble();
620}
621
622int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
623  int CharByteWidth = 0;
624  switch(k) {
625    case Ascii:
626    case UTF8:
627      CharByteWidth = target.getCharWidth();
628      break;
629    case Wide:
630      CharByteWidth = target.getWCharWidth();
631      break;
632    case UTF16:
633      CharByteWidth = target.getChar16Width();
634      break;
635    case UTF32:
636      CharByteWidth = target.getChar32Width();
637      break;
638  }
639  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
640  CharByteWidth /= 8;
641  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
642         && "character byte widths supported are 1, 2, and 4 only");
643  return CharByteWidth;
644}
645
646StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
647                                     StringKind Kind, bool Pascal, QualType Ty,
648                                     const SourceLocation *Loc,
649                                     unsigned NumStrs) {
650  // Allocate enough space for the StringLiteral plus an array of locations for
651  // any concatenated string tokens.
652  void *Mem = C.Allocate(sizeof(StringLiteral)+
653                         sizeof(SourceLocation)*(NumStrs-1),
654                         llvm::alignOf<StringLiteral>());
655  StringLiteral *SL = new (Mem) StringLiteral(Ty);
656
657  // OPTIMIZE: could allocate this appended to the StringLiteral.
658  SL->setString(C,Str,Kind,Pascal);
659
660  SL->TokLocs[0] = Loc[0];
661  SL->NumConcatenated = NumStrs;
662
663  if (NumStrs != 1)
664    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
665  return SL;
666}
667
668StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
669  void *Mem = C.Allocate(sizeof(StringLiteral)+
670                         sizeof(SourceLocation)*(NumStrs-1),
671                         llvm::alignOf<StringLiteral>());
672  StringLiteral *SL = new (Mem) StringLiteral(QualType());
673  SL->CharByteWidth = 0;
674  SL->Length = 0;
675  SL->NumConcatenated = NumStrs;
676  return SL;
677}
678
679void StringLiteral::outputString(raw_ostream &OS) {
680  switch (getKind()) {
681  case Ascii: break; // no prefix.
682  case Wide:  OS << 'L'; break;
683  case UTF8:  OS << "u8"; break;
684  case UTF16: OS << 'u'; break;
685  case UTF32: OS << 'U'; break;
686  }
687  OS << '"';
688  static const char Hex[] = "0123456789ABCDEF";
689
690  unsigned LastSlashX = getLength();
691  for (unsigned I = 0, N = getLength(); I != N; ++I) {
692    switch (uint32_t Char = getCodeUnit(I)) {
693    default:
694      // FIXME: Convert UTF-8 back to codepoints before rendering.
695
696      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
697      // Leave invalid surrogates alone; we'll use \x for those.
698      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
699          Char <= 0xdbff) {
700        uint32_t Trail = getCodeUnit(I + 1);
701        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
702          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
703          ++I;
704        }
705      }
706
707      if (Char > 0xff) {
708        // If this is a wide string, output characters over 0xff using \x
709        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
710        // codepoint: use \x escapes for invalid codepoints.
711        if (getKind() == Wide ||
712            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
713          // FIXME: Is this the best way to print wchar_t?
714          OS << "\\x";
715          int Shift = 28;
716          while ((Char >> Shift) == 0)
717            Shift -= 4;
718          for (/**/; Shift >= 0; Shift -= 4)
719            OS << Hex[(Char >> Shift) & 15];
720          LastSlashX = I;
721          break;
722        }
723
724        if (Char > 0xffff)
725          OS << "\\U00"
726             << Hex[(Char >> 20) & 15]
727             << Hex[(Char >> 16) & 15];
728        else
729          OS << "\\u";
730        OS << Hex[(Char >> 12) & 15]
731           << Hex[(Char >>  8) & 15]
732           << Hex[(Char >>  4) & 15]
733           << Hex[(Char >>  0) & 15];
734        break;
735      }
736
737      // If we used \x... for the previous character, and this character is a
738      // hexadecimal digit, prevent it being slurped as part of the \x.
739      if (LastSlashX + 1 == I) {
740        switch (Char) {
741          case '0': case '1': case '2': case '3': case '4':
742          case '5': case '6': case '7': case '8': case '9':
743          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
744          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
745            OS << "\"\"";
746        }
747      }
748
749      assert(Char <= 0xff &&
750             "Characters above 0xff should already have been handled.");
751
752      if (isprint(Char))
753        OS << (char)Char;
754      else  // Output anything hard as an octal escape.
755        OS << '\\'
756           << (char)('0' + ((Char >> 6) & 7))
757           << (char)('0' + ((Char >> 3) & 7))
758           << (char)('0' + ((Char >> 0) & 7));
759      break;
760    // Handle some common non-printable cases to make dumps prettier.
761    case '\\': OS << "\\\\"; break;
762    case '"': OS << "\\\""; break;
763    case '\n': OS << "\\n"; break;
764    case '\t': OS << "\\t"; break;
765    case '\a': OS << "\\a"; break;
766    case '\b': OS << "\\b"; break;
767    }
768  }
769  OS << '"';
770}
771
772void StringLiteral::setString(ASTContext &C, StringRef Str,
773                              StringKind Kind, bool IsPascal) {
774  //FIXME: we assume that the string data comes from a target that uses the same
775  // code unit size and endianess for the type of string.
776  this->Kind = Kind;
777  this->IsPascal = IsPascal;
778
779  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
780  assert((Str.size()%CharByteWidth == 0)
781         && "size of data must be multiple of CharByteWidth");
782  Length = Str.size()/CharByteWidth;
783
784  switch(CharByteWidth) {
785    case 1: {
786      char *AStrData = new (C) char[Length];
787      std::memcpy(AStrData,Str.data(),Str.size());
788      StrData.asChar = AStrData;
789      break;
790    }
791    case 2: {
792      uint16_t *AStrData = new (C) uint16_t[Length];
793      std::memcpy(AStrData,Str.data(),Str.size());
794      StrData.asUInt16 = AStrData;
795      break;
796    }
797    case 4: {
798      uint32_t *AStrData = new (C) uint32_t[Length];
799      std::memcpy(AStrData,Str.data(),Str.size());
800      StrData.asUInt32 = AStrData;
801      break;
802    }
803    default:
804      assert(false && "unsupported CharByteWidth");
805  }
806}
807
808/// getLocationOfByte - Return a source location that points to the specified
809/// byte of this string literal.
810///
811/// Strings are amazingly complex.  They can be formed from multiple tokens and
812/// can have escape sequences in them in addition to the usual trigraph and
813/// escaped newline business.  This routine handles this complexity.
814///
815SourceLocation StringLiteral::
816getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
817                  const LangOptions &Features, const TargetInfo &Target) const {
818  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
819         "Only narrow string literals are currently supported");
820
821  // Loop over all of the tokens in this string until we find the one that
822  // contains the byte we're looking for.
823  unsigned TokNo = 0;
824  while (1) {
825    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
826    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
827
828    // Get the spelling of the string so that we can get the data that makes up
829    // the string literal, not the identifier for the macro it is potentially
830    // expanded through.
831    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
832
833    // Re-lex the token to get its length and original spelling.
834    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
835    bool Invalid = false;
836    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
837    if (Invalid)
838      return StrTokSpellingLoc;
839
840    const char *StrData = Buffer.data()+LocInfo.second;
841
842    // Create a lexer starting at the beginning of this token.
843    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
844                   Buffer.begin(), StrData, Buffer.end());
845    Token TheTok;
846    TheLexer.LexFromRawLexer(TheTok);
847
848    // Use the StringLiteralParser to compute the length of the string in bytes.
849    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
850    unsigned TokNumBytes = SLP.GetStringLength();
851
852    // If the byte is in this token, return the location of the byte.
853    if (ByteNo < TokNumBytes ||
854        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
855      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
856
857      // Now that we know the offset of the token in the spelling, use the
858      // preprocessor to get the offset in the original source.
859      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
860    }
861
862    // Move to the next string token.
863    ++TokNo;
864    ByteNo -= TokNumBytes;
865  }
866}
867
868
869
870/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
871/// corresponds to, e.g. "sizeof" or "[pre]++".
872const char *UnaryOperator::getOpcodeStr(Opcode Op) {
873  switch (Op) {
874  case UO_PostInc: return "++";
875  case UO_PostDec: return "--";
876  case UO_PreInc:  return "++";
877  case UO_PreDec:  return "--";
878  case UO_AddrOf:  return "&";
879  case UO_Deref:   return "*";
880  case UO_Plus:    return "+";
881  case UO_Minus:   return "-";
882  case UO_Not:     return "~";
883  case UO_LNot:    return "!";
884  case UO_Real:    return "__real";
885  case UO_Imag:    return "__imag";
886  case UO_Extension: return "__extension__";
887  }
888  llvm_unreachable("Unknown unary operator");
889}
890
891UnaryOperatorKind
892UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
893  switch (OO) {
894  default: llvm_unreachable("No unary operator for overloaded function");
895  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
896  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
897  case OO_Amp:        return UO_AddrOf;
898  case OO_Star:       return UO_Deref;
899  case OO_Plus:       return UO_Plus;
900  case OO_Minus:      return UO_Minus;
901  case OO_Tilde:      return UO_Not;
902  case OO_Exclaim:    return UO_LNot;
903  }
904}
905
906OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
907  switch (Opc) {
908  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
909  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
910  case UO_AddrOf: return OO_Amp;
911  case UO_Deref: return OO_Star;
912  case UO_Plus: return OO_Plus;
913  case UO_Minus: return OO_Minus;
914  case UO_Not: return OO_Tilde;
915  case UO_LNot: return OO_Exclaim;
916  default: return OO_None;
917  }
918}
919
920
921//===----------------------------------------------------------------------===//
922// Postfix Operators.
923//===----------------------------------------------------------------------===//
924
925CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
926                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
927                   SourceLocation rparenloc)
928  : Expr(SC, t, VK, OK_Ordinary,
929         fn->isTypeDependent(),
930         fn->isValueDependent(),
931         fn->isInstantiationDependent(),
932         fn->containsUnexpandedParameterPack()),
933    NumArgs(numargs) {
934
935  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
936  SubExprs[FN] = fn;
937  for (unsigned i = 0; i != numargs; ++i) {
938    if (args[i]->isTypeDependent())
939      ExprBits.TypeDependent = true;
940    if (args[i]->isValueDependent())
941      ExprBits.ValueDependent = true;
942    if (args[i]->isInstantiationDependent())
943      ExprBits.InstantiationDependent = true;
944    if (args[i]->containsUnexpandedParameterPack())
945      ExprBits.ContainsUnexpandedParameterPack = true;
946
947    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
948  }
949
950  CallExprBits.NumPreArgs = NumPreArgs;
951  RParenLoc = rparenloc;
952}
953
954CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
955                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
956  : Expr(CallExprClass, t, VK, OK_Ordinary,
957         fn->isTypeDependent(),
958         fn->isValueDependent(),
959         fn->isInstantiationDependent(),
960         fn->containsUnexpandedParameterPack()),
961    NumArgs(numargs) {
962
963  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
964  SubExprs[FN] = fn;
965  for (unsigned i = 0; i != numargs; ++i) {
966    if (args[i]->isTypeDependent())
967      ExprBits.TypeDependent = true;
968    if (args[i]->isValueDependent())
969      ExprBits.ValueDependent = true;
970    if (args[i]->isInstantiationDependent())
971      ExprBits.InstantiationDependent = true;
972    if (args[i]->containsUnexpandedParameterPack())
973      ExprBits.ContainsUnexpandedParameterPack = true;
974
975    SubExprs[i+PREARGS_START] = args[i];
976  }
977
978  CallExprBits.NumPreArgs = 0;
979  RParenLoc = rparenloc;
980}
981
982CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
983  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
984  // FIXME: Why do we allocate this?
985  SubExprs = new (C) Stmt*[PREARGS_START];
986  CallExprBits.NumPreArgs = 0;
987}
988
989CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
990                   EmptyShell Empty)
991  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
992  // FIXME: Why do we allocate this?
993  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
994  CallExprBits.NumPreArgs = NumPreArgs;
995}
996
997Decl *CallExpr::getCalleeDecl() {
998  Expr *CEE = getCallee()->IgnoreParenImpCasts();
999
1000  while (SubstNonTypeTemplateParmExpr *NTTP
1001                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1002    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1003  }
1004
1005  // If we're calling a dereference, look at the pointer instead.
1006  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1007    if (BO->isPtrMemOp())
1008      CEE = BO->getRHS()->IgnoreParenCasts();
1009  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1010    if (UO->getOpcode() == UO_Deref)
1011      CEE = UO->getSubExpr()->IgnoreParenCasts();
1012  }
1013  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1014    return DRE->getDecl();
1015  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1016    return ME->getMemberDecl();
1017
1018  return 0;
1019}
1020
1021FunctionDecl *CallExpr::getDirectCallee() {
1022  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1023}
1024
1025/// setNumArgs - This changes the number of arguments present in this call.
1026/// Any orphaned expressions are deleted by this, and any new operands are set
1027/// to null.
1028void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1029  // No change, just return.
1030  if (NumArgs == getNumArgs()) return;
1031
1032  // If shrinking # arguments, just delete the extras and forgot them.
1033  if (NumArgs < getNumArgs()) {
1034    this->NumArgs = NumArgs;
1035    return;
1036  }
1037
1038  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1039  unsigned NumPreArgs = getNumPreArgs();
1040  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1041  // Copy over args.
1042  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1043    NewSubExprs[i] = SubExprs[i];
1044  // Null out new args.
1045  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1046       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1047    NewSubExprs[i] = 0;
1048
1049  if (SubExprs) C.Deallocate(SubExprs);
1050  SubExprs = NewSubExprs;
1051  this->NumArgs = NumArgs;
1052}
1053
1054/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1055/// not, return 0.
1056unsigned CallExpr::isBuiltinCall() const {
1057  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1058  // function. As a result, we try and obtain the DeclRefExpr from the
1059  // ImplicitCastExpr.
1060  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1061  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1062    return 0;
1063
1064  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1065  if (!DRE)
1066    return 0;
1067
1068  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1069  if (!FDecl)
1070    return 0;
1071
1072  if (!FDecl->getIdentifier())
1073    return 0;
1074
1075  return FDecl->getBuiltinID();
1076}
1077
1078QualType CallExpr::getCallReturnType() const {
1079  QualType CalleeType = getCallee()->getType();
1080  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1081    CalleeType = FnTypePtr->getPointeeType();
1082  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1083    CalleeType = BPT->getPointeeType();
1084  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1085    // This should never be overloaded and so should never return null.
1086    CalleeType = Expr::findBoundMemberType(getCallee());
1087
1088  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1089  return FnType->getResultType();
1090}
1091
1092SourceRange CallExpr::getSourceRange() const {
1093  if (isa<CXXOperatorCallExpr>(this))
1094    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
1095
1096  SourceLocation begin = getCallee()->getLocStart();
1097  if (begin.isInvalid() && getNumArgs() > 0)
1098    begin = getArg(0)->getLocStart();
1099  SourceLocation end = getRParenLoc();
1100  if (end.isInvalid() && getNumArgs() > 0)
1101    end = getArg(getNumArgs() - 1)->getLocEnd();
1102  return SourceRange(begin, end);
1103}
1104SourceLocation CallExpr::getLocStart() const {
1105  if (isa<CXXOperatorCallExpr>(this))
1106    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
1107
1108  SourceLocation begin = getCallee()->getLocStart();
1109  if (begin.isInvalid() && getNumArgs() > 0)
1110    begin = getArg(0)->getLocStart();
1111  return begin;
1112}
1113SourceLocation CallExpr::getLocEnd() const {
1114  if (isa<CXXOperatorCallExpr>(this))
1115    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
1116
1117  SourceLocation end = getRParenLoc();
1118  if (end.isInvalid() && getNumArgs() > 0)
1119    end = getArg(getNumArgs() - 1)->getLocEnd();
1120  return end;
1121}
1122
1123OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1124                                   SourceLocation OperatorLoc,
1125                                   TypeSourceInfo *tsi,
1126                                   OffsetOfNode* compsPtr, unsigned numComps,
1127                                   Expr** exprsPtr, unsigned numExprs,
1128                                   SourceLocation RParenLoc) {
1129  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1130                         sizeof(OffsetOfNode) * numComps +
1131                         sizeof(Expr*) * numExprs);
1132
1133  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
1134                                exprsPtr, numExprs, RParenLoc);
1135}
1136
1137OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1138                                        unsigned numComps, unsigned numExprs) {
1139  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1140                         sizeof(OffsetOfNode) * numComps +
1141                         sizeof(Expr*) * numExprs);
1142  return new (Mem) OffsetOfExpr(numComps, numExprs);
1143}
1144
1145OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1146                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1147                           OffsetOfNode* compsPtr, unsigned numComps,
1148                           Expr** exprsPtr, unsigned numExprs,
1149                           SourceLocation RParenLoc)
1150  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1151         /*TypeDependent=*/false,
1152         /*ValueDependent=*/tsi->getType()->isDependentType(),
1153         tsi->getType()->isInstantiationDependentType(),
1154         tsi->getType()->containsUnexpandedParameterPack()),
1155    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1156    NumComps(numComps), NumExprs(numExprs)
1157{
1158  for(unsigned i = 0; i < numComps; ++i) {
1159    setComponent(i, compsPtr[i]);
1160  }
1161
1162  for(unsigned i = 0; i < numExprs; ++i) {
1163    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
1164      ExprBits.ValueDependent = true;
1165    if (exprsPtr[i]->containsUnexpandedParameterPack())
1166      ExprBits.ContainsUnexpandedParameterPack = true;
1167
1168    setIndexExpr(i, exprsPtr[i]);
1169  }
1170}
1171
1172IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1173  assert(getKind() == Field || getKind() == Identifier);
1174  if (getKind() == Field)
1175    return getField()->getIdentifier();
1176
1177  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1178}
1179
1180MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1181                               NestedNameSpecifierLoc QualifierLoc,
1182                               SourceLocation TemplateKWLoc,
1183                               ValueDecl *memberdecl,
1184                               DeclAccessPair founddecl,
1185                               DeclarationNameInfo nameinfo,
1186                               const TemplateArgumentListInfo *targs,
1187                               QualType ty,
1188                               ExprValueKind vk,
1189                               ExprObjectKind ok) {
1190  std::size_t Size = sizeof(MemberExpr);
1191
1192  bool hasQualOrFound = (QualifierLoc ||
1193                         founddecl.getDecl() != memberdecl ||
1194                         founddecl.getAccess() != memberdecl->getAccess());
1195  if (hasQualOrFound)
1196    Size += sizeof(MemberNameQualifier);
1197
1198  if (targs)
1199    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1200  else if (TemplateKWLoc.isValid())
1201    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1202
1203  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1204  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1205                                       ty, vk, ok);
1206
1207  if (hasQualOrFound) {
1208    // FIXME: Wrong. We should be looking at the member declaration we found.
1209    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1210      E->setValueDependent(true);
1211      E->setTypeDependent(true);
1212      E->setInstantiationDependent(true);
1213    }
1214    else if (QualifierLoc &&
1215             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1216      E->setInstantiationDependent(true);
1217
1218    E->HasQualifierOrFoundDecl = true;
1219
1220    MemberNameQualifier *NQ = E->getMemberQualifier();
1221    NQ->QualifierLoc = QualifierLoc;
1222    NQ->FoundDecl = founddecl;
1223  }
1224
1225  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1226
1227  if (targs) {
1228    bool Dependent = false;
1229    bool InstantiationDependent = false;
1230    bool ContainsUnexpandedParameterPack = false;
1231    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1232                                                  Dependent,
1233                                                  InstantiationDependent,
1234                                             ContainsUnexpandedParameterPack);
1235    if (InstantiationDependent)
1236      E->setInstantiationDependent(true);
1237  } else if (TemplateKWLoc.isValid()) {
1238    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1239  }
1240
1241  return E;
1242}
1243
1244SourceRange MemberExpr::getSourceRange() const {
1245  return SourceRange(getLocStart(), getLocEnd());
1246}
1247SourceLocation MemberExpr::getLocStart() const {
1248  if (isImplicitAccess()) {
1249    if (hasQualifier())
1250      return getQualifierLoc().getBeginLoc();
1251    return MemberLoc;
1252  }
1253
1254  // FIXME: We don't want this to happen. Rather, we should be able to
1255  // detect all kinds of implicit accesses more cleanly.
1256  SourceLocation BaseStartLoc = getBase()->getLocStart();
1257  if (BaseStartLoc.isValid())
1258    return BaseStartLoc;
1259  return MemberLoc;
1260}
1261SourceLocation MemberExpr::getLocEnd() const {
1262  if (hasExplicitTemplateArgs())
1263    return getRAngleLoc();
1264  return getMemberNameInfo().getEndLoc();
1265}
1266
1267void CastExpr::CheckCastConsistency() const {
1268  switch (getCastKind()) {
1269  case CK_DerivedToBase:
1270  case CK_UncheckedDerivedToBase:
1271  case CK_DerivedToBaseMemberPointer:
1272  case CK_BaseToDerived:
1273  case CK_BaseToDerivedMemberPointer:
1274    assert(!path_empty() && "Cast kind should have a base path!");
1275    break;
1276
1277  case CK_CPointerToObjCPointerCast:
1278    assert(getType()->isObjCObjectPointerType());
1279    assert(getSubExpr()->getType()->isPointerType());
1280    goto CheckNoBasePath;
1281
1282  case CK_BlockPointerToObjCPointerCast:
1283    assert(getType()->isObjCObjectPointerType());
1284    assert(getSubExpr()->getType()->isBlockPointerType());
1285    goto CheckNoBasePath;
1286
1287  case CK_ReinterpretMemberPointer:
1288    assert(getType()->isMemberPointerType());
1289    assert(getSubExpr()->getType()->isMemberPointerType());
1290    goto CheckNoBasePath;
1291
1292  case CK_BitCast:
1293    // Arbitrary casts to C pointer types count as bitcasts.
1294    // Otherwise, we should only have block and ObjC pointer casts
1295    // here if they stay within the type kind.
1296    if (!getType()->isPointerType()) {
1297      assert(getType()->isObjCObjectPointerType() ==
1298             getSubExpr()->getType()->isObjCObjectPointerType());
1299      assert(getType()->isBlockPointerType() ==
1300             getSubExpr()->getType()->isBlockPointerType());
1301    }
1302    goto CheckNoBasePath;
1303
1304  case CK_AnyPointerToBlockPointerCast:
1305    assert(getType()->isBlockPointerType());
1306    assert(getSubExpr()->getType()->isAnyPointerType() &&
1307           !getSubExpr()->getType()->isBlockPointerType());
1308    goto CheckNoBasePath;
1309
1310  case CK_CopyAndAutoreleaseBlockObject:
1311    assert(getType()->isBlockPointerType());
1312    assert(getSubExpr()->getType()->isBlockPointerType());
1313    goto CheckNoBasePath;
1314
1315  // These should not have an inheritance path.
1316  case CK_Dynamic:
1317  case CK_ToUnion:
1318  case CK_ArrayToPointerDecay:
1319  case CK_FunctionToPointerDecay:
1320  case CK_NullToMemberPointer:
1321  case CK_NullToPointer:
1322  case CK_ConstructorConversion:
1323  case CK_IntegralToPointer:
1324  case CK_PointerToIntegral:
1325  case CK_ToVoid:
1326  case CK_VectorSplat:
1327  case CK_IntegralCast:
1328  case CK_IntegralToFloating:
1329  case CK_FloatingToIntegral:
1330  case CK_FloatingCast:
1331  case CK_ObjCObjectLValueCast:
1332  case CK_FloatingRealToComplex:
1333  case CK_FloatingComplexToReal:
1334  case CK_FloatingComplexCast:
1335  case CK_FloatingComplexToIntegralComplex:
1336  case CK_IntegralRealToComplex:
1337  case CK_IntegralComplexToReal:
1338  case CK_IntegralComplexCast:
1339  case CK_IntegralComplexToFloatingComplex:
1340  case CK_ARCProduceObject:
1341  case CK_ARCConsumeObject:
1342  case CK_ARCReclaimReturnedObject:
1343  case CK_ARCExtendBlockObject:
1344    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1345    goto CheckNoBasePath;
1346
1347  case CK_Dependent:
1348  case CK_LValueToRValue:
1349  case CK_NoOp:
1350  case CK_AtomicToNonAtomic:
1351  case CK_NonAtomicToAtomic:
1352  case CK_PointerToBoolean:
1353  case CK_IntegralToBoolean:
1354  case CK_FloatingToBoolean:
1355  case CK_MemberPointerToBoolean:
1356  case CK_FloatingComplexToBoolean:
1357  case CK_IntegralComplexToBoolean:
1358  case CK_LValueBitCast:            // -> bool&
1359  case CK_UserDefinedConversion:    // operator bool()
1360  CheckNoBasePath:
1361    assert(path_empty() && "Cast kind should not have a base path!");
1362    break;
1363  }
1364}
1365
1366const char *CastExpr::getCastKindName() const {
1367  switch (getCastKind()) {
1368  case CK_Dependent:
1369    return "Dependent";
1370  case CK_BitCast:
1371    return "BitCast";
1372  case CK_LValueBitCast:
1373    return "LValueBitCast";
1374  case CK_LValueToRValue:
1375    return "LValueToRValue";
1376  case CK_NoOp:
1377    return "NoOp";
1378  case CK_BaseToDerived:
1379    return "BaseToDerived";
1380  case CK_DerivedToBase:
1381    return "DerivedToBase";
1382  case CK_UncheckedDerivedToBase:
1383    return "UncheckedDerivedToBase";
1384  case CK_Dynamic:
1385    return "Dynamic";
1386  case CK_ToUnion:
1387    return "ToUnion";
1388  case CK_ArrayToPointerDecay:
1389    return "ArrayToPointerDecay";
1390  case CK_FunctionToPointerDecay:
1391    return "FunctionToPointerDecay";
1392  case CK_NullToMemberPointer:
1393    return "NullToMemberPointer";
1394  case CK_NullToPointer:
1395    return "NullToPointer";
1396  case CK_BaseToDerivedMemberPointer:
1397    return "BaseToDerivedMemberPointer";
1398  case CK_DerivedToBaseMemberPointer:
1399    return "DerivedToBaseMemberPointer";
1400  case CK_ReinterpretMemberPointer:
1401    return "ReinterpretMemberPointer";
1402  case CK_UserDefinedConversion:
1403    return "UserDefinedConversion";
1404  case CK_ConstructorConversion:
1405    return "ConstructorConversion";
1406  case CK_IntegralToPointer:
1407    return "IntegralToPointer";
1408  case CK_PointerToIntegral:
1409    return "PointerToIntegral";
1410  case CK_PointerToBoolean:
1411    return "PointerToBoolean";
1412  case CK_ToVoid:
1413    return "ToVoid";
1414  case CK_VectorSplat:
1415    return "VectorSplat";
1416  case CK_IntegralCast:
1417    return "IntegralCast";
1418  case CK_IntegralToBoolean:
1419    return "IntegralToBoolean";
1420  case CK_IntegralToFloating:
1421    return "IntegralToFloating";
1422  case CK_FloatingToIntegral:
1423    return "FloatingToIntegral";
1424  case CK_FloatingCast:
1425    return "FloatingCast";
1426  case CK_FloatingToBoolean:
1427    return "FloatingToBoolean";
1428  case CK_MemberPointerToBoolean:
1429    return "MemberPointerToBoolean";
1430  case CK_CPointerToObjCPointerCast:
1431    return "CPointerToObjCPointerCast";
1432  case CK_BlockPointerToObjCPointerCast:
1433    return "BlockPointerToObjCPointerCast";
1434  case CK_AnyPointerToBlockPointerCast:
1435    return "AnyPointerToBlockPointerCast";
1436  case CK_ObjCObjectLValueCast:
1437    return "ObjCObjectLValueCast";
1438  case CK_FloatingRealToComplex:
1439    return "FloatingRealToComplex";
1440  case CK_FloatingComplexToReal:
1441    return "FloatingComplexToReal";
1442  case CK_FloatingComplexToBoolean:
1443    return "FloatingComplexToBoolean";
1444  case CK_FloatingComplexCast:
1445    return "FloatingComplexCast";
1446  case CK_FloatingComplexToIntegralComplex:
1447    return "FloatingComplexToIntegralComplex";
1448  case CK_IntegralRealToComplex:
1449    return "IntegralRealToComplex";
1450  case CK_IntegralComplexToReal:
1451    return "IntegralComplexToReal";
1452  case CK_IntegralComplexToBoolean:
1453    return "IntegralComplexToBoolean";
1454  case CK_IntegralComplexCast:
1455    return "IntegralComplexCast";
1456  case CK_IntegralComplexToFloatingComplex:
1457    return "IntegralComplexToFloatingComplex";
1458  case CK_ARCConsumeObject:
1459    return "ARCConsumeObject";
1460  case CK_ARCProduceObject:
1461    return "ARCProduceObject";
1462  case CK_ARCReclaimReturnedObject:
1463    return "ARCReclaimReturnedObject";
1464  case CK_ARCExtendBlockObject:
1465    return "ARCCExtendBlockObject";
1466  case CK_AtomicToNonAtomic:
1467    return "AtomicToNonAtomic";
1468  case CK_NonAtomicToAtomic:
1469    return "NonAtomicToAtomic";
1470  case CK_CopyAndAutoreleaseBlockObject:
1471    return "CopyAndAutoreleaseBlockObject";
1472  }
1473
1474  llvm_unreachable("Unhandled cast kind!");
1475}
1476
1477Expr *CastExpr::getSubExprAsWritten() {
1478  Expr *SubExpr = 0;
1479  CastExpr *E = this;
1480  do {
1481    SubExpr = E->getSubExpr();
1482
1483    // Skip through reference binding to temporary.
1484    if (MaterializeTemporaryExpr *Materialize
1485                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1486      SubExpr = Materialize->GetTemporaryExpr();
1487
1488    // Skip any temporary bindings; they're implicit.
1489    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1490      SubExpr = Binder->getSubExpr();
1491
1492    // Conversions by constructor and conversion functions have a
1493    // subexpression describing the call; strip it off.
1494    if (E->getCastKind() == CK_ConstructorConversion)
1495      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1496    else if (E->getCastKind() == CK_UserDefinedConversion)
1497      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1498
1499    // If the subexpression we're left with is an implicit cast, look
1500    // through that, too.
1501  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1502
1503  return SubExpr;
1504}
1505
1506CXXBaseSpecifier **CastExpr::path_buffer() {
1507  switch (getStmtClass()) {
1508#define ABSTRACT_STMT(x)
1509#define CASTEXPR(Type, Base) \
1510  case Stmt::Type##Class: \
1511    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1512#define STMT(Type, Base)
1513#include "clang/AST/StmtNodes.inc"
1514  default:
1515    llvm_unreachable("non-cast expressions not possible here");
1516  }
1517}
1518
1519void CastExpr::setCastPath(const CXXCastPath &Path) {
1520  assert(Path.size() == path_size());
1521  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1522}
1523
1524ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1525                                           CastKind Kind, Expr *Operand,
1526                                           const CXXCastPath *BasePath,
1527                                           ExprValueKind VK) {
1528  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1529  void *Buffer =
1530    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1531  ImplicitCastExpr *E =
1532    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1533  if (PathSize) E->setCastPath(*BasePath);
1534  return E;
1535}
1536
1537ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1538                                                unsigned PathSize) {
1539  void *Buffer =
1540    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1541  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1542}
1543
1544
1545CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1546                                       ExprValueKind VK, CastKind K, Expr *Op,
1547                                       const CXXCastPath *BasePath,
1548                                       TypeSourceInfo *WrittenTy,
1549                                       SourceLocation L, SourceLocation R) {
1550  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1551  void *Buffer =
1552    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1553  CStyleCastExpr *E =
1554    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1555  if (PathSize) E->setCastPath(*BasePath);
1556  return E;
1557}
1558
1559CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1560  void *Buffer =
1561    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1562  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1563}
1564
1565/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1566/// corresponds to, e.g. "<<=".
1567const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1568  switch (Op) {
1569  case BO_PtrMemD:   return ".*";
1570  case BO_PtrMemI:   return "->*";
1571  case BO_Mul:       return "*";
1572  case BO_Div:       return "/";
1573  case BO_Rem:       return "%";
1574  case BO_Add:       return "+";
1575  case BO_Sub:       return "-";
1576  case BO_Shl:       return "<<";
1577  case BO_Shr:       return ">>";
1578  case BO_LT:        return "<";
1579  case BO_GT:        return ">";
1580  case BO_LE:        return "<=";
1581  case BO_GE:        return ">=";
1582  case BO_EQ:        return "==";
1583  case BO_NE:        return "!=";
1584  case BO_And:       return "&";
1585  case BO_Xor:       return "^";
1586  case BO_Or:        return "|";
1587  case BO_LAnd:      return "&&";
1588  case BO_LOr:       return "||";
1589  case BO_Assign:    return "=";
1590  case BO_MulAssign: return "*=";
1591  case BO_DivAssign: return "/=";
1592  case BO_RemAssign: return "%=";
1593  case BO_AddAssign: return "+=";
1594  case BO_SubAssign: return "-=";
1595  case BO_ShlAssign: return "<<=";
1596  case BO_ShrAssign: return ">>=";
1597  case BO_AndAssign: return "&=";
1598  case BO_XorAssign: return "^=";
1599  case BO_OrAssign:  return "|=";
1600  case BO_Comma:     return ",";
1601  }
1602
1603  llvm_unreachable("Invalid OpCode!");
1604}
1605
1606BinaryOperatorKind
1607BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1608  switch (OO) {
1609  default: llvm_unreachable("Not an overloadable binary operator");
1610  case OO_Plus: return BO_Add;
1611  case OO_Minus: return BO_Sub;
1612  case OO_Star: return BO_Mul;
1613  case OO_Slash: return BO_Div;
1614  case OO_Percent: return BO_Rem;
1615  case OO_Caret: return BO_Xor;
1616  case OO_Amp: return BO_And;
1617  case OO_Pipe: return BO_Or;
1618  case OO_Equal: return BO_Assign;
1619  case OO_Less: return BO_LT;
1620  case OO_Greater: return BO_GT;
1621  case OO_PlusEqual: return BO_AddAssign;
1622  case OO_MinusEqual: return BO_SubAssign;
1623  case OO_StarEqual: return BO_MulAssign;
1624  case OO_SlashEqual: return BO_DivAssign;
1625  case OO_PercentEqual: return BO_RemAssign;
1626  case OO_CaretEqual: return BO_XorAssign;
1627  case OO_AmpEqual: return BO_AndAssign;
1628  case OO_PipeEqual: return BO_OrAssign;
1629  case OO_LessLess: return BO_Shl;
1630  case OO_GreaterGreater: return BO_Shr;
1631  case OO_LessLessEqual: return BO_ShlAssign;
1632  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1633  case OO_EqualEqual: return BO_EQ;
1634  case OO_ExclaimEqual: return BO_NE;
1635  case OO_LessEqual: return BO_LE;
1636  case OO_GreaterEqual: return BO_GE;
1637  case OO_AmpAmp: return BO_LAnd;
1638  case OO_PipePipe: return BO_LOr;
1639  case OO_Comma: return BO_Comma;
1640  case OO_ArrowStar: return BO_PtrMemI;
1641  }
1642}
1643
1644OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1645  static const OverloadedOperatorKind OverOps[] = {
1646    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1647    OO_Star, OO_Slash, OO_Percent,
1648    OO_Plus, OO_Minus,
1649    OO_LessLess, OO_GreaterGreater,
1650    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1651    OO_EqualEqual, OO_ExclaimEqual,
1652    OO_Amp,
1653    OO_Caret,
1654    OO_Pipe,
1655    OO_AmpAmp,
1656    OO_PipePipe,
1657    OO_Equal, OO_StarEqual,
1658    OO_SlashEqual, OO_PercentEqual,
1659    OO_PlusEqual, OO_MinusEqual,
1660    OO_LessLessEqual, OO_GreaterGreaterEqual,
1661    OO_AmpEqual, OO_CaretEqual,
1662    OO_PipeEqual,
1663    OO_Comma
1664  };
1665  return OverOps[Opc];
1666}
1667
1668InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1669                           Expr **initExprs, unsigned numInits,
1670                           SourceLocation rbraceloc)
1671  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1672         false, false),
1673    InitExprs(C, numInits),
1674    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1675{
1676  sawArrayRangeDesignator(false);
1677  setInitializesStdInitializerList(false);
1678  for (unsigned I = 0; I != numInits; ++I) {
1679    if (initExprs[I]->isTypeDependent())
1680      ExprBits.TypeDependent = true;
1681    if (initExprs[I]->isValueDependent())
1682      ExprBits.ValueDependent = true;
1683    if (initExprs[I]->isInstantiationDependent())
1684      ExprBits.InstantiationDependent = true;
1685    if (initExprs[I]->containsUnexpandedParameterPack())
1686      ExprBits.ContainsUnexpandedParameterPack = true;
1687  }
1688
1689  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1690}
1691
1692void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1693  if (NumInits > InitExprs.size())
1694    InitExprs.reserve(C, NumInits);
1695}
1696
1697void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1698  InitExprs.resize(C, NumInits, 0);
1699}
1700
1701Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1702  if (Init >= InitExprs.size()) {
1703    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1704    InitExprs.back() = expr;
1705    return 0;
1706  }
1707
1708  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1709  InitExprs[Init] = expr;
1710  return Result;
1711}
1712
1713void InitListExpr::setArrayFiller(Expr *filler) {
1714  assert(!hasArrayFiller() && "Filler already set!");
1715  ArrayFillerOrUnionFieldInit = filler;
1716  // Fill out any "holes" in the array due to designated initializers.
1717  Expr **inits = getInits();
1718  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1719    if (inits[i] == 0)
1720      inits[i] = filler;
1721}
1722
1723bool InitListExpr::isStringLiteralInit() const {
1724  if (getNumInits() != 1)
1725    return false;
1726  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType());
1727  if (!CAT || !CAT->getElementType()->isIntegerType())
1728    return false;
1729  const Expr *Init = getInit(0)->IgnoreParenImpCasts();
1730  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1731}
1732
1733SourceRange InitListExpr::getSourceRange() const {
1734  if (SyntacticForm)
1735    return SyntacticForm->getSourceRange();
1736  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1737  if (Beg.isInvalid()) {
1738    // Find the first non-null initializer.
1739    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1740                                     E = InitExprs.end();
1741      I != E; ++I) {
1742      if (Stmt *S = *I) {
1743        Beg = S->getLocStart();
1744        break;
1745      }
1746    }
1747  }
1748  if (End.isInvalid()) {
1749    // Find the first non-null initializer from the end.
1750    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1751                                             E = InitExprs.rend();
1752      I != E; ++I) {
1753      if (Stmt *S = *I) {
1754        End = S->getSourceRange().getEnd();
1755        break;
1756      }
1757    }
1758  }
1759  return SourceRange(Beg, End);
1760}
1761
1762/// getFunctionType - Return the underlying function type for this block.
1763///
1764const FunctionProtoType *BlockExpr::getFunctionType() const {
1765  // The block pointer is never sugared, but the function type might be.
1766  return cast<BlockPointerType>(getType())
1767           ->getPointeeType()->castAs<FunctionProtoType>();
1768}
1769
1770SourceLocation BlockExpr::getCaretLocation() const {
1771  return TheBlock->getCaretLocation();
1772}
1773const Stmt *BlockExpr::getBody() const {
1774  return TheBlock->getBody();
1775}
1776Stmt *BlockExpr::getBody() {
1777  return TheBlock->getBody();
1778}
1779
1780
1781//===----------------------------------------------------------------------===//
1782// Generic Expression Routines
1783//===----------------------------------------------------------------------===//
1784
1785/// isUnusedResultAWarning - Return true if this immediate expression should
1786/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1787/// with location to warn on and the source range[s] to report with the
1788/// warning.
1789bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1790                                  SourceRange &R1, SourceRange &R2,
1791                                  ASTContext &Ctx) const {
1792  // Don't warn if the expr is type dependent. The type could end up
1793  // instantiating to void.
1794  if (isTypeDependent())
1795    return false;
1796
1797  switch (getStmtClass()) {
1798  default:
1799    if (getType()->isVoidType())
1800      return false;
1801    WarnE = this;
1802    Loc = getExprLoc();
1803    R1 = getSourceRange();
1804    return true;
1805  case ParenExprClass:
1806    return cast<ParenExpr>(this)->getSubExpr()->
1807      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1808  case GenericSelectionExprClass:
1809    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1810      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1811  case UnaryOperatorClass: {
1812    const UnaryOperator *UO = cast<UnaryOperator>(this);
1813
1814    switch (UO->getOpcode()) {
1815    case UO_Plus:
1816    case UO_Minus:
1817    case UO_AddrOf:
1818    case UO_Not:
1819    case UO_LNot:
1820    case UO_Deref:
1821      break;
1822    case UO_PostInc:
1823    case UO_PostDec:
1824    case UO_PreInc:
1825    case UO_PreDec:                 // ++/--
1826      return false;  // Not a warning.
1827    case UO_Real:
1828    case UO_Imag:
1829      // accessing a piece of a volatile complex is a side-effect.
1830      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1831          .isVolatileQualified())
1832        return false;
1833      break;
1834    case UO_Extension:
1835      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1836    }
1837    WarnE = this;
1838    Loc = UO->getOperatorLoc();
1839    R1 = UO->getSubExpr()->getSourceRange();
1840    return true;
1841  }
1842  case BinaryOperatorClass: {
1843    const BinaryOperator *BO = cast<BinaryOperator>(this);
1844    switch (BO->getOpcode()) {
1845      default:
1846        break;
1847      // Consider the RHS of comma for side effects. LHS was checked by
1848      // Sema::CheckCommaOperands.
1849      case BO_Comma:
1850        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1851        // lvalue-ness) of an assignment written in a macro.
1852        if (IntegerLiteral *IE =
1853              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1854          if (IE->getValue() == 0)
1855            return false;
1856        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1857      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1858      case BO_LAnd:
1859      case BO_LOr:
1860        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1861            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1862          return false;
1863        break;
1864    }
1865    if (BO->isAssignmentOp())
1866      return false;
1867    WarnE = this;
1868    Loc = BO->getOperatorLoc();
1869    R1 = BO->getLHS()->getSourceRange();
1870    R2 = BO->getRHS()->getSourceRange();
1871    return true;
1872  }
1873  case CompoundAssignOperatorClass:
1874  case VAArgExprClass:
1875  case AtomicExprClass:
1876    return false;
1877
1878  case ConditionalOperatorClass: {
1879    // If only one of the LHS or RHS is a warning, the operator might
1880    // be being used for control flow. Only warn if both the LHS and
1881    // RHS are warnings.
1882    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1883    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1884      return false;
1885    if (!Exp->getLHS())
1886      return true;
1887    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1888  }
1889
1890  case MemberExprClass:
1891    WarnE = this;
1892    Loc = cast<MemberExpr>(this)->getMemberLoc();
1893    R1 = SourceRange(Loc, Loc);
1894    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1895    return true;
1896
1897  case ArraySubscriptExprClass:
1898    WarnE = this;
1899    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1900    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1901    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1902    return true;
1903
1904  case CXXOperatorCallExprClass: {
1905    // We warn about operator== and operator!= even when user-defined operator
1906    // overloads as there is no reasonable way to define these such that they
1907    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1908    // warning: these operators are commonly typo'ed, and so warning on them
1909    // provides additional value as well. If this list is updated,
1910    // DiagnoseUnusedComparison should be as well.
1911    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1912    if (Op->getOperator() == OO_EqualEqual ||
1913        Op->getOperator() == OO_ExclaimEqual) {
1914      WarnE = this;
1915      Loc = Op->getOperatorLoc();
1916      R1 = Op->getSourceRange();
1917      return true;
1918    }
1919
1920    // Fallthrough for generic call handling.
1921  }
1922  case CallExprClass:
1923  case CXXMemberCallExprClass:
1924  case UserDefinedLiteralClass: {
1925    // If this is a direct call, get the callee.
1926    const CallExpr *CE = cast<CallExpr>(this);
1927    if (const Decl *FD = CE->getCalleeDecl()) {
1928      // If the callee has attribute pure, const, or warn_unused_result, warn
1929      // about it. void foo() { strlen("bar"); } should warn.
1930      //
1931      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1932      // updated to match for QoI.
1933      if (FD->getAttr<WarnUnusedResultAttr>() ||
1934          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1935        WarnE = this;
1936        Loc = CE->getCallee()->getLocStart();
1937        R1 = CE->getCallee()->getSourceRange();
1938
1939        if (unsigned NumArgs = CE->getNumArgs())
1940          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1941                           CE->getArg(NumArgs-1)->getLocEnd());
1942        return true;
1943      }
1944    }
1945    return false;
1946  }
1947
1948  case CXXTemporaryObjectExprClass:
1949  case CXXConstructExprClass:
1950    return false;
1951
1952  case ObjCMessageExprClass: {
1953    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1954    if (Ctx.getLangOpts().ObjCAutoRefCount &&
1955        ME->isInstanceMessage() &&
1956        !ME->getType()->isVoidType() &&
1957        ME->getSelector().getIdentifierInfoForSlot(0) &&
1958        ME->getSelector().getIdentifierInfoForSlot(0)
1959                                               ->getName().startswith("init")) {
1960      WarnE = this;
1961      Loc = getExprLoc();
1962      R1 = ME->getSourceRange();
1963      return true;
1964    }
1965
1966    const ObjCMethodDecl *MD = ME->getMethodDecl();
1967    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1968      WarnE = this;
1969      Loc = getExprLoc();
1970      return true;
1971    }
1972    return false;
1973  }
1974
1975  case ObjCPropertyRefExprClass:
1976    WarnE = this;
1977    Loc = getExprLoc();
1978    R1 = getSourceRange();
1979    return true;
1980
1981  case PseudoObjectExprClass: {
1982    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1983
1984    // Only complain about things that have the form of a getter.
1985    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1986        isa<BinaryOperator>(PO->getSyntacticForm()))
1987      return false;
1988
1989    WarnE = this;
1990    Loc = getExprLoc();
1991    R1 = getSourceRange();
1992    return true;
1993  }
1994
1995  case StmtExprClass: {
1996    // Statement exprs don't logically have side effects themselves, but are
1997    // sometimes used in macros in ways that give them a type that is unused.
1998    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1999    // however, if the result of the stmt expr is dead, we don't want to emit a
2000    // warning.
2001    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2002    if (!CS->body_empty()) {
2003      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2004        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2005      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2006        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2007          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2008    }
2009
2010    if (getType()->isVoidType())
2011      return false;
2012    WarnE = this;
2013    Loc = cast<StmtExpr>(this)->getLParenLoc();
2014    R1 = getSourceRange();
2015    return true;
2016  }
2017  case CStyleCastExprClass: {
2018    // Ignore an explicit cast to void unless the operand is a non-trivial
2019    // volatile lvalue.
2020    const CastExpr *CE = cast<CastExpr>(this);
2021    if (CE->getCastKind() == CK_ToVoid) {
2022      if (CE->getSubExpr()->isGLValue() &&
2023          CE->getSubExpr()->getType().isVolatileQualified()) {
2024        const DeclRefExpr *DRE =
2025            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2026        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2027              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2028          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2029                                                          R1, R2, Ctx);
2030        }
2031      }
2032      return false;
2033    }
2034
2035    // If this is a cast to a constructor conversion, check the operand.
2036    // Otherwise, the result of the cast is unused.
2037    if (CE->getCastKind() == CK_ConstructorConversion)
2038      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2039
2040    WarnE = this;
2041    if (const CXXFunctionalCastExpr *CXXCE =
2042            dyn_cast<CXXFunctionalCastExpr>(this)) {
2043      Loc = CXXCE->getTypeBeginLoc();
2044      R1 = CXXCE->getSubExpr()->getSourceRange();
2045    } else {
2046      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2047      Loc = CStyleCE->getLParenLoc();
2048      R1 = CStyleCE->getSubExpr()->getSourceRange();
2049    }
2050    return true;
2051  }
2052  case ImplicitCastExprClass: {
2053    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2054
2055    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2056    if (ICE->getCastKind() == CK_LValueToRValue &&
2057        ICE->getSubExpr()->getType().isVolatileQualified())
2058      return false;
2059
2060    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2061  }
2062  case CXXDefaultArgExprClass:
2063    return (cast<CXXDefaultArgExpr>(this)
2064            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2065
2066  case CXXNewExprClass:
2067    // FIXME: In theory, there might be new expressions that don't have side
2068    // effects (e.g. a placement new with an uninitialized POD).
2069  case CXXDeleteExprClass:
2070    return false;
2071  case CXXBindTemporaryExprClass:
2072    return (cast<CXXBindTemporaryExpr>(this)
2073            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2074  case ExprWithCleanupsClass:
2075    return (cast<ExprWithCleanups>(this)
2076            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2077  }
2078}
2079
2080/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2081/// returns true, if it is; false otherwise.
2082bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2083  const Expr *E = IgnoreParens();
2084  switch (E->getStmtClass()) {
2085  default:
2086    return false;
2087  case ObjCIvarRefExprClass:
2088    return true;
2089  case Expr::UnaryOperatorClass:
2090    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2091  case ImplicitCastExprClass:
2092    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2093  case MaterializeTemporaryExprClass:
2094    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2095                                                      ->isOBJCGCCandidate(Ctx);
2096  case CStyleCastExprClass:
2097    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2098  case DeclRefExprClass: {
2099    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2100
2101    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2102      if (VD->hasGlobalStorage())
2103        return true;
2104      QualType T = VD->getType();
2105      // dereferencing to a  pointer is always a gc'able candidate,
2106      // unless it is __weak.
2107      return T->isPointerType() &&
2108             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2109    }
2110    return false;
2111  }
2112  case MemberExprClass: {
2113    const MemberExpr *M = cast<MemberExpr>(E);
2114    return M->getBase()->isOBJCGCCandidate(Ctx);
2115  }
2116  case ArraySubscriptExprClass:
2117    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2118  }
2119}
2120
2121bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2122  if (isTypeDependent())
2123    return false;
2124  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2125}
2126
2127QualType Expr::findBoundMemberType(const Expr *expr) {
2128  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2129
2130  // Bound member expressions are always one of these possibilities:
2131  //   x->m      x.m      x->*y      x.*y
2132  // (possibly parenthesized)
2133
2134  expr = expr->IgnoreParens();
2135  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2136    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2137    return mem->getMemberDecl()->getType();
2138  }
2139
2140  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2141    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2142                      ->getPointeeType();
2143    assert(type->isFunctionType());
2144    return type;
2145  }
2146
2147  assert(isa<UnresolvedMemberExpr>(expr));
2148  return QualType();
2149}
2150
2151Expr* Expr::IgnoreParens() {
2152  Expr* E = this;
2153  while (true) {
2154    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2155      E = P->getSubExpr();
2156      continue;
2157    }
2158    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2159      if (P->getOpcode() == UO_Extension) {
2160        E = P->getSubExpr();
2161        continue;
2162      }
2163    }
2164    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2165      if (!P->isResultDependent()) {
2166        E = P->getResultExpr();
2167        continue;
2168      }
2169    }
2170    return E;
2171  }
2172}
2173
2174/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2175/// or CastExprs or ImplicitCastExprs, returning their operand.
2176Expr *Expr::IgnoreParenCasts() {
2177  Expr *E = this;
2178  while (true) {
2179    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2180      E = P->getSubExpr();
2181      continue;
2182    }
2183    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2184      E = P->getSubExpr();
2185      continue;
2186    }
2187    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2188      if (P->getOpcode() == UO_Extension) {
2189        E = P->getSubExpr();
2190        continue;
2191      }
2192    }
2193    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2194      if (!P->isResultDependent()) {
2195        E = P->getResultExpr();
2196        continue;
2197      }
2198    }
2199    if (MaterializeTemporaryExpr *Materialize
2200                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2201      E = Materialize->GetTemporaryExpr();
2202      continue;
2203    }
2204    if (SubstNonTypeTemplateParmExpr *NTTP
2205                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2206      E = NTTP->getReplacement();
2207      continue;
2208    }
2209    return E;
2210  }
2211}
2212
2213/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2214/// casts.  This is intended purely as a temporary workaround for code
2215/// that hasn't yet been rewritten to do the right thing about those
2216/// casts, and may disappear along with the last internal use.
2217Expr *Expr::IgnoreParenLValueCasts() {
2218  Expr *E = this;
2219  while (true) {
2220    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2221      E = P->getSubExpr();
2222      continue;
2223    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2224      if (P->getCastKind() == CK_LValueToRValue) {
2225        E = P->getSubExpr();
2226        continue;
2227      }
2228    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2229      if (P->getOpcode() == UO_Extension) {
2230        E = P->getSubExpr();
2231        continue;
2232      }
2233    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2234      if (!P->isResultDependent()) {
2235        E = P->getResultExpr();
2236        continue;
2237      }
2238    } else if (MaterializeTemporaryExpr *Materialize
2239                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2240      E = Materialize->GetTemporaryExpr();
2241      continue;
2242    } else if (SubstNonTypeTemplateParmExpr *NTTP
2243                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2244      E = NTTP->getReplacement();
2245      continue;
2246    }
2247    break;
2248  }
2249  return E;
2250}
2251
2252Expr *Expr::ignoreParenBaseCasts() {
2253  Expr *E = this;
2254  while (true) {
2255    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2256      E = P->getSubExpr();
2257      continue;
2258    }
2259    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2260      if (CE->getCastKind() == CK_DerivedToBase ||
2261          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2262          CE->getCastKind() == CK_NoOp) {
2263        E = CE->getSubExpr();
2264        continue;
2265      }
2266    }
2267
2268    return E;
2269  }
2270}
2271
2272Expr *Expr::IgnoreParenImpCasts() {
2273  Expr *E = this;
2274  while (true) {
2275    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2276      E = P->getSubExpr();
2277      continue;
2278    }
2279    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2280      E = P->getSubExpr();
2281      continue;
2282    }
2283    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2284      if (P->getOpcode() == UO_Extension) {
2285        E = P->getSubExpr();
2286        continue;
2287      }
2288    }
2289    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2290      if (!P->isResultDependent()) {
2291        E = P->getResultExpr();
2292        continue;
2293      }
2294    }
2295    if (MaterializeTemporaryExpr *Materialize
2296                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2297      E = Materialize->GetTemporaryExpr();
2298      continue;
2299    }
2300    if (SubstNonTypeTemplateParmExpr *NTTP
2301                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2302      E = NTTP->getReplacement();
2303      continue;
2304    }
2305    return E;
2306  }
2307}
2308
2309Expr *Expr::IgnoreConversionOperator() {
2310  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2311    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2312      return MCE->getImplicitObjectArgument();
2313  }
2314  return this;
2315}
2316
2317/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2318/// value (including ptr->int casts of the same size).  Strip off any
2319/// ParenExpr or CastExprs, returning their operand.
2320Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2321  Expr *E = this;
2322  while (true) {
2323    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2324      E = P->getSubExpr();
2325      continue;
2326    }
2327
2328    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2329      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2330      // ptr<->int casts of the same width.  We also ignore all identity casts.
2331      Expr *SE = P->getSubExpr();
2332
2333      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2334        E = SE;
2335        continue;
2336      }
2337
2338      if ((E->getType()->isPointerType() ||
2339           E->getType()->isIntegralType(Ctx)) &&
2340          (SE->getType()->isPointerType() ||
2341           SE->getType()->isIntegralType(Ctx)) &&
2342          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2343        E = SE;
2344        continue;
2345      }
2346    }
2347
2348    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2349      if (P->getOpcode() == UO_Extension) {
2350        E = P->getSubExpr();
2351        continue;
2352      }
2353    }
2354
2355    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2356      if (!P->isResultDependent()) {
2357        E = P->getResultExpr();
2358        continue;
2359      }
2360    }
2361
2362    if (SubstNonTypeTemplateParmExpr *NTTP
2363                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2364      E = NTTP->getReplacement();
2365      continue;
2366    }
2367
2368    return E;
2369  }
2370}
2371
2372bool Expr::isDefaultArgument() const {
2373  const Expr *E = this;
2374  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2375    E = M->GetTemporaryExpr();
2376
2377  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2378    E = ICE->getSubExprAsWritten();
2379
2380  return isa<CXXDefaultArgExpr>(E);
2381}
2382
2383/// \brief Skip over any no-op casts and any temporary-binding
2384/// expressions.
2385static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2386  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2387    E = M->GetTemporaryExpr();
2388
2389  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2390    if (ICE->getCastKind() == CK_NoOp)
2391      E = ICE->getSubExpr();
2392    else
2393      break;
2394  }
2395
2396  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2397    E = BE->getSubExpr();
2398
2399  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2400    if (ICE->getCastKind() == CK_NoOp)
2401      E = ICE->getSubExpr();
2402    else
2403      break;
2404  }
2405
2406  return E->IgnoreParens();
2407}
2408
2409/// isTemporaryObject - Determines if this expression produces a
2410/// temporary of the given class type.
2411bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2412  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2413    return false;
2414
2415  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2416
2417  // Temporaries are by definition pr-values of class type.
2418  if (!E->Classify(C).isPRValue()) {
2419    // In this context, property reference is a message call and is pr-value.
2420    if (!isa<ObjCPropertyRefExpr>(E))
2421      return false;
2422  }
2423
2424  // Black-list a few cases which yield pr-values of class type that don't
2425  // refer to temporaries of that type:
2426
2427  // - implicit derived-to-base conversions
2428  if (isa<ImplicitCastExpr>(E)) {
2429    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2430    case CK_DerivedToBase:
2431    case CK_UncheckedDerivedToBase:
2432      return false;
2433    default:
2434      break;
2435    }
2436  }
2437
2438  // - member expressions (all)
2439  if (isa<MemberExpr>(E))
2440    return false;
2441
2442  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2443    if (BO->isPtrMemOp())
2444      return false;
2445
2446  // - opaque values (all)
2447  if (isa<OpaqueValueExpr>(E))
2448    return false;
2449
2450  return true;
2451}
2452
2453bool Expr::isImplicitCXXThis() const {
2454  const Expr *E = this;
2455
2456  // Strip away parentheses and casts we don't care about.
2457  while (true) {
2458    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2459      E = Paren->getSubExpr();
2460      continue;
2461    }
2462
2463    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2464      if (ICE->getCastKind() == CK_NoOp ||
2465          ICE->getCastKind() == CK_LValueToRValue ||
2466          ICE->getCastKind() == CK_DerivedToBase ||
2467          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2468        E = ICE->getSubExpr();
2469        continue;
2470      }
2471    }
2472
2473    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2474      if (UnOp->getOpcode() == UO_Extension) {
2475        E = UnOp->getSubExpr();
2476        continue;
2477      }
2478    }
2479
2480    if (const MaterializeTemporaryExpr *M
2481                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2482      E = M->GetTemporaryExpr();
2483      continue;
2484    }
2485
2486    break;
2487  }
2488
2489  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2490    return This->isImplicit();
2491
2492  return false;
2493}
2494
2495/// hasAnyTypeDependentArguments - Determines if any of the expressions
2496/// in Exprs is type-dependent.
2497bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2498  for (unsigned I = 0; I < Exprs.size(); ++I)
2499    if (Exprs[I]->isTypeDependent())
2500      return true;
2501
2502  return false;
2503}
2504
2505bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2506  // This function is attempting whether an expression is an initializer
2507  // which can be evaluated at compile-time.  isEvaluatable handles most
2508  // of the cases, but it can't deal with some initializer-specific
2509  // expressions, and it can't deal with aggregates; we deal with those here,
2510  // and fall back to isEvaluatable for the other cases.
2511
2512  // If we ever capture reference-binding directly in the AST, we can
2513  // kill the second parameter.
2514
2515  if (IsForRef) {
2516    EvalResult Result;
2517    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2518  }
2519
2520  switch (getStmtClass()) {
2521  default: break;
2522  case IntegerLiteralClass:
2523  case FloatingLiteralClass:
2524  case StringLiteralClass:
2525  case ObjCStringLiteralClass:
2526  case ObjCEncodeExprClass:
2527    return true;
2528  case CXXTemporaryObjectExprClass:
2529  case CXXConstructExprClass: {
2530    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2531
2532    // Only if it's
2533    if (CE->getConstructor()->isTrivial()) {
2534      // 1) an application of the trivial default constructor or
2535      if (!CE->getNumArgs()) return true;
2536
2537      // 2) an elidable trivial copy construction of an operand which is
2538      //    itself a constant initializer.  Note that we consider the
2539      //    operand on its own, *not* as a reference binding.
2540      if (CE->isElidable() &&
2541          CE->getArg(0)->isConstantInitializer(Ctx, false))
2542        return true;
2543    }
2544
2545    // 3) a foldable constexpr constructor.
2546    break;
2547  }
2548  case CompoundLiteralExprClass: {
2549    // This handles gcc's extension that allows global initializers like
2550    // "struct x {int x;} x = (struct x) {};".
2551    // FIXME: This accepts other cases it shouldn't!
2552    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2553    return Exp->isConstantInitializer(Ctx, false);
2554  }
2555  case InitListExprClass: {
2556    // FIXME: This doesn't deal with fields with reference types correctly.
2557    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2558    // to bitfields.
2559    const InitListExpr *Exp = cast<InitListExpr>(this);
2560    unsigned numInits = Exp->getNumInits();
2561    for (unsigned i = 0; i < numInits; i++) {
2562      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2563        return false;
2564    }
2565    return true;
2566  }
2567  case ImplicitValueInitExprClass:
2568    return true;
2569  case ParenExprClass:
2570    return cast<ParenExpr>(this)->getSubExpr()
2571      ->isConstantInitializer(Ctx, IsForRef);
2572  case GenericSelectionExprClass:
2573    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2574      return false;
2575    return cast<GenericSelectionExpr>(this)->getResultExpr()
2576      ->isConstantInitializer(Ctx, IsForRef);
2577  case ChooseExprClass:
2578    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2579      ->isConstantInitializer(Ctx, IsForRef);
2580  case UnaryOperatorClass: {
2581    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2582    if (Exp->getOpcode() == UO_Extension)
2583      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2584    break;
2585  }
2586  case CXXFunctionalCastExprClass:
2587  case CXXStaticCastExprClass:
2588  case ImplicitCastExprClass:
2589  case CStyleCastExprClass: {
2590    const CastExpr *CE = cast<CastExpr>(this);
2591
2592    // If we're promoting an integer to an _Atomic type then this is constant
2593    // if the integer is constant.  We also need to check the converse in case
2594    // someone does something like:
2595    //
2596    // int a = (_Atomic(int))42;
2597    //
2598    // I doubt anyone would write code like this directly, but it's quite
2599    // possible as the result of macro expansions.
2600    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2601        CE->getCastKind() == CK_AtomicToNonAtomic)
2602      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2603
2604    // Handle bitcasts of vector constants.
2605    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2606      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2607
2608    // Handle misc casts we want to ignore.
2609    // FIXME: Is it really safe to ignore all these?
2610    if (CE->getCastKind() == CK_NoOp ||
2611        CE->getCastKind() == CK_LValueToRValue ||
2612        CE->getCastKind() == CK_ToUnion ||
2613        CE->getCastKind() == CK_ConstructorConversion)
2614      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2615
2616    break;
2617  }
2618  case MaterializeTemporaryExprClass:
2619    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2620                                            ->isConstantInitializer(Ctx, false);
2621  }
2622  return isEvaluatable(Ctx);
2623}
2624
2625bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2626  if (isInstantiationDependent())
2627    return true;
2628
2629  switch (getStmtClass()) {
2630  case NoStmtClass:
2631  #define ABSTRACT_STMT(Type)
2632  #define STMT(Type, Base) case Type##Class:
2633  #define EXPR(Type, Base)
2634  #include "clang/AST/StmtNodes.inc"
2635    llvm_unreachable("unexpected Expr kind");
2636
2637  case DependentScopeDeclRefExprClass:
2638  case CXXUnresolvedConstructExprClass:
2639  case CXXDependentScopeMemberExprClass:
2640  case UnresolvedLookupExprClass:
2641  case UnresolvedMemberExprClass:
2642  case PackExpansionExprClass:
2643  case SubstNonTypeTemplateParmPackExprClass:
2644    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2645
2646  case DeclRefExprClass:
2647  case ObjCIvarRefExprClass:
2648  case PredefinedExprClass:
2649  case IntegerLiteralClass:
2650  case FloatingLiteralClass:
2651  case ImaginaryLiteralClass:
2652  case StringLiteralClass:
2653  case CharacterLiteralClass:
2654  case OffsetOfExprClass:
2655  case ImplicitValueInitExprClass:
2656  case UnaryExprOrTypeTraitExprClass:
2657  case AddrLabelExprClass:
2658  case GNUNullExprClass:
2659  case CXXBoolLiteralExprClass:
2660  case CXXNullPtrLiteralExprClass:
2661  case CXXThisExprClass:
2662  case CXXScalarValueInitExprClass:
2663  case TypeTraitExprClass:
2664  case UnaryTypeTraitExprClass:
2665  case BinaryTypeTraitExprClass:
2666  case ArrayTypeTraitExprClass:
2667  case ExpressionTraitExprClass:
2668  case CXXNoexceptExprClass:
2669  case SizeOfPackExprClass:
2670  case ObjCStringLiteralClass:
2671  case ObjCEncodeExprClass:
2672  case ObjCBoolLiteralExprClass:
2673  case CXXUuidofExprClass:
2674  case OpaqueValueExprClass:
2675    // These never have a side-effect.
2676    return false;
2677
2678  case CallExprClass:
2679  case CompoundAssignOperatorClass:
2680  case VAArgExprClass:
2681  case AtomicExprClass:
2682  case StmtExprClass:
2683  case CXXOperatorCallExprClass:
2684  case CXXMemberCallExprClass:
2685  case UserDefinedLiteralClass:
2686  case CXXThrowExprClass:
2687  case CXXNewExprClass:
2688  case CXXDeleteExprClass:
2689  case ExprWithCleanupsClass:
2690  case CXXBindTemporaryExprClass:
2691  case BlockExprClass:
2692  case CUDAKernelCallExprClass:
2693    // These always have a side-effect.
2694    return true;
2695
2696  case ParenExprClass:
2697  case ArraySubscriptExprClass:
2698  case MemberExprClass:
2699  case ConditionalOperatorClass:
2700  case BinaryConditionalOperatorClass:
2701  case CompoundLiteralExprClass:
2702  case ExtVectorElementExprClass:
2703  case DesignatedInitExprClass:
2704  case ParenListExprClass:
2705  case CXXPseudoDestructorExprClass:
2706  case SubstNonTypeTemplateParmExprClass:
2707  case MaterializeTemporaryExprClass:
2708  case ShuffleVectorExprClass:
2709  case AsTypeExprClass:
2710    // These have a side-effect if any subexpression does.
2711    break;
2712
2713  case UnaryOperatorClass:
2714    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2715      return true;
2716    break;
2717
2718  case BinaryOperatorClass:
2719    if (cast<BinaryOperator>(this)->isAssignmentOp())
2720      return true;
2721    break;
2722
2723  case InitListExprClass:
2724    // FIXME: The children for an InitListExpr doesn't include the array filler.
2725    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2726      if (E->HasSideEffects(Ctx))
2727        return true;
2728    break;
2729
2730  case GenericSelectionExprClass:
2731    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2732        HasSideEffects(Ctx);
2733
2734  case ChooseExprClass:
2735    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2736
2737  case CXXDefaultArgExprClass:
2738    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2739
2740  case CXXDynamicCastExprClass: {
2741    // A dynamic_cast expression has side-effects if it can throw.
2742    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2743    if (DCE->getTypeAsWritten()->isReferenceType() &&
2744        DCE->getCastKind() == CK_Dynamic)
2745      return true;
2746  } // Fall through.
2747  case ImplicitCastExprClass:
2748  case CStyleCastExprClass:
2749  case CXXStaticCastExprClass:
2750  case CXXReinterpretCastExprClass:
2751  case CXXConstCastExprClass:
2752  case CXXFunctionalCastExprClass: {
2753    const CastExpr *CE = cast<CastExpr>(this);
2754    if (CE->getCastKind() == CK_LValueToRValue &&
2755        CE->getSubExpr()->getType().isVolatileQualified())
2756      return true;
2757    break;
2758  }
2759
2760  case CXXTypeidExprClass:
2761    // typeid might throw if its subexpression is potentially-evaluated, so has
2762    // side-effects in that case whether or not its subexpression does.
2763    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2764
2765  case CXXConstructExprClass:
2766  case CXXTemporaryObjectExprClass: {
2767    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2768    if (!CE->getConstructor()->isTrivial())
2769      return true;
2770    // A trivial constructor does not add any side-effects of its own. Just look
2771    // at its arguments.
2772    break;
2773  }
2774
2775  case LambdaExprClass: {
2776    const LambdaExpr *LE = cast<LambdaExpr>(this);
2777    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2778                                      E = LE->capture_end(); I != E; ++I)
2779      if (I->getCaptureKind() == LCK_ByCopy)
2780        // FIXME: Only has a side-effect if the variable is volatile or if
2781        // the copy would invoke a non-trivial copy constructor.
2782        return true;
2783    return false;
2784  }
2785
2786  case PseudoObjectExprClass: {
2787    // Only look for side-effects in the semantic form, and look past
2788    // OpaqueValueExpr bindings in that form.
2789    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2790    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2791                                                    E = PO->semantics_end();
2792         I != E; ++I) {
2793      const Expr *Subexpr = *I;
2794      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2795        Subexpr = OVE->getSourceExpr();
2796      if (Subexpr->HasSideEffects(Ctx))
2797        return true;
2798    }
2799    return false;
2800  }
2801
2802  case ObjCBoxedExprClass:
2803  case ObjCArrayLiteralClass:
2804  case ObjCDictionaryLiteralClass:
2805  case ObjCMessageExprClass:
2806  case ObjCSelectorExprClass:
2807  case ObjCProtocolExprClass:
2808  case ObjCPropertyRefExprClass:
2809  case ObjCIsaExprClass:
2810  case ObjCIndirectCopyRestoreExprClass:
2811  case ObjCSubscriptRefExprClass:
2812  case ObjCBridgedCastExprClass:
2813    // FIXME: Classify these cases better.
2814    return true;
2815  }
2816
2817  // Recurse to children.
2818  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2819    if (const Stmt *S = *SubStmts)
2820      if (cast<Expr>(S)->HasSideEffects(Ctx))
2821        return true;
2822
2823  return false;
2824}
2825
2826namespace {
2827  /// \brief Look for a call to a non-trivial function within an expression.
2828  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2829  {
2830    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2831
2832    bool NonTrivial;
2833
2834  public:
2835    explicit NonTrivialCallFinder(ASTContext &Context)
2836      : Inherited(Context), NonTrivial(false) { }
2837
2838    bool hasNonTrivialCall() const { return NonTrivial; }
2839
2840    void VisitCallExpr(CallExpr *E) {
2841      if (CXXMethodDecl *Method
2842          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2843        if (Method->isTrivial()) {
2844          // Recurse to children of the call.
2845          Inherited::VisitStmt(E);
2846          return;
2847        }
2848      }
2849
2850      NonTrivial = true;
2851    }
2852
2853    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2854      if (E->getConstructor()->isTrivial()) {
2855        // Recurse to children of the call.
2856        Inherited::VisitStmt(E);
2857        return;
2858      }
2859
2860      NonTrivial = true;
2861    }
2862
2863    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2864      if (E->getTemporary()->getDestructor()->isTrivial()) {
2865        Inherited::VisitStmt(E);
2866        return;
2867      }
2868
2869      NonTrivial = true;
2870    }
2871  };
2872}
2873
2874bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2875  NonTrivialCallFinder Finder(Ctx);
2876  Finder.Visit(this);
2877  return Finder.hasNonTrivialCall();
2878}
2879
2880/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2881/// pointer constant or not, as well as the specific kind of constant detected.
2882/// Null pointer constants can be integer constant expressions with the
2883/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2884/// (a GNU extension).
2885Expr::NullPointerConstantKind
2886Expr::isNullPointerConstant(ASTContext &Ctx,
2887                            NullPointerConstantValueDependence NPC) const {
2888  if (isValueDependent()) {
2889    switch (NPC) {
2890    case NPC_NeverValueDependent:
2891      llvm_unreachable("Unexpected value dependent expression!");
2892    case NPC_ValueDependentIsNull:
2893      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2894        return NPCK_ZeroExpression;
2895      else
2896        return NPCK_NotNull;
2897
2898    case NPC_ValueDependentIsNotNull:
2899      return NPCK_NotNull;
2900    }
2901  }
2902
2903  // Strip off a cast to void*, if it exists. Except in C++.
2904  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2905    if (!Ctx.getLangOpts().CPlusPlus) {
2906      // Check that it is a cast to void*.
2907      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2908        QualType Pointee = PT->getPointeeType();
2909        if (!Pointee.hasQualifiers() &&
2910            Pointee->isVoidType() &&                              // to void*
2911            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2912          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2913      }
2914    }
2915  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2916    // Ignore the ImplicitCastExpr type entirely.
2917    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2918  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2919    // Accept ((void*)0) as a null pointer constant, as many other
2920    // implementations do.
2921    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2922  } else if (const GenericSelectionExpr *GE =
2923               dyn_cast<GenericSelectionExpr>(this)) {
2924    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2925  } else if (const CXXDefaultArgExpr *DefaultArg
2926               = dyn_cast<CXXDefaultArgExpr>(this)) {
2927    // See through default argument expressions
2928    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2929  } else if (isa<GNUNullExpr>(this)) {
2930    // The GNU __null extension is always a null pointer constant.
2931    return NPCK_GNUNull;
2932  } else if (const MaterializeTemporaryExpr *M
2933                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2934    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2935  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2936    if (const Expr *Source = OVE->getSourceExpr())
2937      return Source->isNullPointerConstant(Ctx, NPC);
2938  }
2939
2940  // C++0x nullptr_t is always a null pointer constant.
2941  if (getType()->isNullPtrType())
2942    return NPCK_CXX0X_nullptr;
2943
2944  if (const RecordType *UT = getType()->getAsUnionType())
2945    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2946      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2947        const Expr *InitExpr = CLE->getInitializer();
2948        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2949          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2950      }
2951  // This expression must be an integer type.
2952  if (!getType()->isIntegerType() ||
2953      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2954    return NPCK_NotNull;
2955
2956  // If we have an integer constant expression, we need to *evaluate* it and
2957  // test for the value 0. Don't use the C++11 constant expression semantics
2958  // for this, for now; once the dust settles on core issue 903, we might only
2959  // allow a literal 0 here in C++11 mode.
2960  if (Ctx.getLangOpts().CPlusPlus0x) {
2961    if (!isCXX98IntegralConstantExpr(Ctx))
2962      return NPCK_NotNull;
2963  } else {
2964    if (!isIntegerConstantExpr(Ctx))
2965      return NPCK_NotNull;
2966  }
2967
2968  if (EvaluateKnownConstInt(Ctx) != 0)
2969    return NPCK_NotNull;
2970
2971  if (isa<IntegerLiteral>(this))
2972    return NPCK_ZeroLiteral;
2973  return NPCK_ZeroExpression;
2974}
2975
2976/// \brief If this expression is an l-value for an Objective C
2977/// property, find the underlying property reference expression.
2978const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2979  const Expr *E = this;
2980  while (true) {
2981    assert((E->getValueKind() == VK_LValue &&
2982            E->getObjectKind() == OK_ObjCProperty) &&
2983           "expression is not a property reference");
2984    E = E->IgnoreParenCasts();
2985    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2986      if (BO->getOpcode() == BO_Comma) {
2987        E = BO->getRHS();
2988        continue;
2989      }
2990    }
2991
2992    break;
2993  }
2994
2995  return cast<ObjCPropertyRefExpr>(E);
2996}
2997
2998FieldDecl *Expr::getBitField() {
2999  Expr *E = this->IgnoreParens();
3000
3001  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3002    if (ICE->getCastKind() == CK_LValueToRValue ||
3003        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3004      E = ICE->getSubExpr()->IgnoreParens();
3005    else
3006      break;
3007  }
3008
3009  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3010    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3011      if (Field->isBitField())
3012        return Field;
3013
3014  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3015    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3016      if (Field->isBitField())
3017        return Field;
3018
3019  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3020    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3021      return BinOp->getLHS()->getBitField();
3022
3023    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3024      return BinOp->getRHS()->getBitField();
3025  }
3026
3027  return 0;
3028}
3029
3030bool Expr::refersToVectorElement() const {
3031  const Expr *E = this->IgnoreParens();
3032
3033  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3034    if (ICE->getValueKind() != VK_RValue &&
3035        ICE->getCastKind() == CK_NoOp)
3036      E = ICE->getSubExpr()->IgnoreParens();
3037    else
3038      break;
3039  }
3040
3041  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3042    return ASE->getBase()->getType()->isVectorType();
3043
3044  if (isa<ExtVectorElementExpr>(E))
3045    return true;
3046
3047  return false;
3048}
3049
3050/// isArrow - Return true if the base expression is a pointer to vector,
3051/// return false if the base expression is a vector.
3052bool ExtVectorElementExpr::isArrow() const {
3053  return getBase()->getType()->isPointerType();
3054}
3055
3056unsigned ExtVectorElementExpr::getNumElements() const {
3057  if (const VectorType *VT = getType()->getAs<VectorType>())
3058    return VT->getNumElements();
3059  return 1;
3060}
3061
3062/// containsDuplicateElements - Return true if any element access is repeated.
3063bool ExtVectorElementExpr::containsDuplicateElements() const {
3064  // FIXME: Refactor this code to an accessor on the AST node which returns the
3065  // "type" of component access, and share with code below and in Sema.
3066  StringRef Comp = Accessor->getName();
3067
3068  // Halving swizzles do not contain duplicate elements.
3069  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3070    return false;
3071
3072  // Advance past s-char prefix on hex swizzles.
3073  if (Comp[0] == 's' || Comp[0] == 'S')
3074    Comp = Comp.substr(1);
3075
3076  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3077    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3078        return true;
3079
3080  return false;
3081}
3082
3083/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3084void ExtVectorElementExpr::getEncodedElementAccess(
3085                                  SmallVectorImpl<unsigned> &Elts) const {
3086  StringRef Comp = Accessor->getName();
3087  if (Comp[0] == 's' || Comp[0] == 'S')
3088    Comp = Comp.substr(1);
3089
3090  bool isHi =   Comp == "hi";
3091  bool isLo =   Comp == "lo";
3092  bool isEven = Comp == "even";
3093  bool isOdd  = Comp == "odd";
3094
3095  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3096    uint64_t Index;
3097
3098    if (isHi)
3099      Index = e + i;
3100    else if (isLo)
3101      Index = i;
3102    else if (isEven)
3103      Index = 2 * i;
3104    else if (isOdd)
3105      Index = 2 * i + 1;
3106    else
3107      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3108
3109    Elts.push_back(Index);
3110  }
3111}
3112
3113ObjCMessageExpr::ObjCMessageExpr(QualType T,
3114                                 ExprValueKind VK,
3115                                 SourceLocation LBracLoc,
3116                                 SourceLocation SuperLoc,
3117                                 bool IsInstanceSuper,
3118                                 QualType SuperType,
3119                                 Selector Sel,
3120                                 ArrayRef<SourceLocation> SelLocs,
3121                                 SelectorLocationsKind SelLocsK,
3122                                 ObjCMethodDecl *Method,
3123                                 ArrayRef<Expr *> Args,
3124                                 SourceLocation RBracLoc,
3125                                 bool isImplicit)
3126  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3127         /*TypeDependent=*/false, /*ValueDependent=*/false,
3128         /*InstantiationDependent=*/false,
3129         /*ContainsUnexpandedParameterPack=*/false),
3130    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3131                                                       : Sel.getAsOpaquePtr())),
3132    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3133    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3134    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3135{
3136  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3137  setReceiverPointer(SuperType.getAsOpaquePtr());
3138}
3139
3140ObjCMessageExpr::ObjCMessageExpr(QualType T,
3141                                 ExprValueKind VK,
3142                                 SourceLocation LBracLoc,
3143                                 TypeSourceInfo *Receiver,
3144                                 Selector Sel,
3145                                 ArrayRef<SourceLocation> SelLocs,
3146                                 SelectorLocationsKind SelLocsK,
3147                                 ObjCMethodDecl *Method,
3148                                 ArrayRef<Expr *> Args,
3149                                 SourceLocation RBracLoc,
3150                                 bool isImplicit)
3151  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3152         T->isDependentType(), T->isInstantiationDependentType(),
3153         T->containsUnexpandedParameterPack()),
3154    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3155                                                       : Sel.getAsOpaquePtr())),
3156    Kind(Class),
3157    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3158    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3159{
3160  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3161  setReceiverPointer(Receiver);
3162}
3163
3164ObjCMessageExpr::ObjCMessageExpr(QualType T,
3165                                 ExprValueKind VK,
3166                                 SourceLocation LBracLoc,
3167                                 Expr *Receiver,
3168                                 Selector Sel,
3169                                 ArrayRef<SourceLocation> SelLocs,
3170                                 SelectorLocationsKind SelLocsK,
3171                                 ObjCMethodDecl *Method,
3172                                 ArrayRef<Expr *> Args,
3173                                 SourceLocation RBracLoc,
3174                                 bool isImplicit)
3175  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3176         Receiver->isTypeDependent(),
3177         Receiver->isInstantiationDependent(),
3178         Receiver->containsUnexpandedParameterPack()),
3179    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3180                                                       : Sel.getAsOpaquePtr())),
3181    Kind(Instance),
3182    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3183    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3184{
3185  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3186  setReceiverPointer(Receiver);
3187}
3188
3189void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3190                                         ArrayRef<SourceLocation> SelLocs,
3191                                         SelectorLocationsKind SelLocsK) {
3192  setNumArgs(Args.size());
3193  Expr **MyArgs = getArgs();
3194  for (unsigned I = 0; I != Args.size(); ++I) {
3195    if (Args[I]->isTypeDependent())
3196      ExprBits.TypeDependent = true;
3197    if (Args[I]->isValueDependent())
3198      ExprBits.ValueDependent = true;
3199    if (Args[I]->isInstantiationDependent())
3200      ExprBits.InstantiationDependent = true;
3201    if (Args[I]->containsUnexpandedParameterPack())
3202      ExprBits.ContainsUnexpandedParameterPack = true;
3203
3204    MyArgs[I] = Args[I];
3205  }
3206
3207  SelLocsKind = SelLocsK;
3208  if (!isImplicit()) {
3209    if (SelLocsK == SelLoc_NonStandard)
3210      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3211  }
3212}
3213
3214ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3215                                         ExprValueKind VK,
3216                                         SourceLocation LBracLoc,
3217                                         SourceLocation SuperLoc,
3218                                         bool IsInstanceSuper,
3219                                         QualType SuperType,
3220                                         Selector Sel,
3221                                         ArrayRef<SourceLocation> SelLocs,
3222                                         ObjCMethodDecl *Method,
3223                                         ArrayRef<Expr *> Args,
3224                                         SourceLocation RBracLoc,
3225                                         bool isImplicit) {
3226  assert((!SelLocs.empty() || isImplicit) &&
3227         "No selector locs for non-implicit message");
3228  ObjCMessageExpr *Mem;
3229  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3230  if (isImplicit)
3231    Mem = alloc(Context, Args.size(), 0);
3232  else
3233    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3234  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3235                                   SuperType, Sel, SelLocs, SelLocsK,
3236                                   Method, Args, RBracLoc, isImplicit);
3237}
3238
3239ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3240                                         ExprValueKind VK,
3241                                         SourceLocation LBracLoc,
3242                                         TypeSourceInfo *Receiver,
3243                                         Selector Sel,
3244                                         ArrayRef<SourceLocation> SelLocs,
3245                                         ObjCMethodDecl *Method,
3246                                         ArrayRef<Expr *> Args,
3247                                         SourceLocation RBracLoc,
3248                                         bool isImplicit) {
3249  assert((!SelLocs.empty() || isImplicit) &&
3250         "No selector locs for non-implicit message");
3251  ObjCMessageExpr *Mem;
3252  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3253  if (isImplicit)
3254    Mem = alloc(Context, Args.size(), 0);
3255  else
3256    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3257  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3258                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3259                                   isImplicit);
3260}
3261
3262ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3263                                         ExprValueKind VK,
3264                                         SourceLocation LBracLoc,
3265                                         Expr *Receiver,
3266                                         Selector Sel,
3267                                         ArrayRef<SourceLocation> SelLocs,
3268                                         ObjCMethodDecl *Method,
3269                                         ArrayRef<Expr *> Args,
3270                                         SourceLocation RBracLoc,
3271                                         bool isImplicit) {
3272  assert((!SelLocs.empty() || isImplicit) &&
3273         "No selector locs for non-implicit message");
3274  ObjCMessageExpr *Mem;
3275  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3276  if (isImplicit)
3277    Mem = alloc(Context, Args.size(), 0);
3278  else
3279    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3280  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3281                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3282                                   isImplicit);
3283}
3284
3285ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3286                                              unsigned NumArgs,
3287                                              unsigned NumStoredSelLocs) {
3288  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3289  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3290}
3291
3292ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3293                                        ArrayRef<Expr *> Args,
3294                                        SourceLocation RBraceLoc,
3295                                        ArrayRef<SourceLocation> SelLocs,
3296                                        Selector Sel,
3297                                        SelectorLocationsKind &SelLocsK) {
3298  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3299  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3300                                                               : 0;
3301  return alloc(C, Args.size(), NumStoredSelLocs);
3302}
3303
3304ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3305                                        unsigned NumArgs,
3306                                        unsigned NumStoredSelLocs) {
3307  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3308    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3309  return (ObjCMessageExpr *)C.Allocate(Size,
3310                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3311}
3312
3313void ObjCMessageExpr::getSelectorLocs(
3314                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3315  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3316    SelLocs.push_back(getSelectorLoc(i));
3317}
3318
3319SourceRange ObjCMessageExpr::getReceiverRange() const {
3320  switch (getReceiverKind()) {
3321  case Instance:
3322    return getInstanceReceiver()->getSourceRange();
3323
3324  case Class:
3325    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3326
3327  case SuperInstance:
3328  case SuperClass:
3329    return getSuperLoc();
3330  }
3331
3332  llvm_unreachable("Invalid ReceiverKind!");
3333}
3334
3335Selector ObjCMessageExpr::getSelector() const {
3336  if (HasMethod)
3337    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3338                                                               ->getSelector();
3339  return Selector(SelectorOrMethod);
3340}
3341
3342ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3343  switch (getReceiverKind()) {
3344  case Instance:
3345    if (const ObjCObjectPointerType *Ptr
3346          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3347      return Ptr->getInterfaceDecl();
3348    break;
3349
3350  case Class:
3351    if (const ObjCObjectType *Ty
3352          = getClassReceiver()->getAs<ObjCObjectType>())
3353      return Ty->getInterface();
3354    break;
3355
3356  case SuperInstance:
3357    if (const ObjCObjectPointerType *Ptr
3358          = getSuperType()->getAs<ObjCObjectPointerType>())
3359      return Ptr->getInterfaceDecl();
3360    break;
3361
3362  case SuperClass:
3363    if (const ObjCObjectType *Iface
3364          = getSuperType()->getAs<ObjCObjectType>())
3365      return Iface->getInterface();
3366    break;
3367  }
3368
3369  return 0;
3370}
3371
3372StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3373  switch (getBridgeKind()) {
3374  case OBC_Bridge:
3375    return "__bridge";
3376  case OBC_BridgeTransfer:
3377    return "__bridge_transfer";
3378  case OBC_BridgeRetained:
3379    return "__bridge_retained";
3380  }
3381
3382  llvm_unreachable("Invalid BridgeKind!");
3383}
3384
3385bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3386  return getCond()->EvaluateKnownConstInt(C) != 0;
3387}
3388
3389ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3390                                     QualType Type, SourceLocation BLoc,
3391                                     SourceLocation RP)
3392   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3393          Type->isDependentType(), Type->isDependentType(),
3394          Type->isInstantiationDependentType(),
3395          Type->containsUnexpandedParameterPack()),
3396     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3397{
3398  SubExprs = new (C) Stmt*[nexpr];
3399  for (unsigned i = 0; i < nexpr; i++) {
3400    if (args[i]->isTypeDependent())
3401      ExprBits.TypeDependent = true;
3402    if (args[i]->isValueDependent())
3403      ExprBits.ValueDependent = true;
3404    if (args[i]->isInstantiationDependent())
3405      ExprBits.InstantiationDependent = true;
3406    if (args[i]->containsUnexpandedParameterPack())
3407      ExprBits.ContainsUnexpandedParameterPack = true;
3408
3409    SubExprs[i] = args[i];
3410  }
3411}
3412
3413void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3414                                 unsigned NumExprs) {
3415  if (SubExprs) C.Deallocate(SubExprs);
3416
3417  SubExprs = new (C) Stmt* [NumExprs];
3418  this->NumExprs = NumExprs;
3419  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3420}
3421
3422GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3423                               SourceLocation GenericLoc, Expr *ControllingExpr,
3424                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3425                               unsigned NumAssocs, SourceLocation DefaultLoc,
3426                               SourceLocation RParenLoc,
3427                               bool ContainsUnexpandedParameterPack,
3428                               unsigned ResultIndex)
3429  : Expr(GenericSelectionExprClass,
3430         AssocExprs[ResultIndex]->getType(),
3431         AssocExprs[ResultIndex]->getValueKind(),
3432         AssocExprs[ResultIndex]->getObjectKind(),
3433         AssocExprs[ResultIndex]->isTypeDependent(),
3434         AssocExprs[ResultIndex]->isValueDependent(),
3435         AssocExprs[ResultIndex]->isInstantiationDependent(),
3436         ContainsUnexpandedParameterPack),
3437    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3438    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3439    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3440    RParenLoc(RParenLoc) {
3441  SubExprs[CONTROLLING] = ControllingExpr;
3442  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3443  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3444}
3445
3446GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3447                               SourceLocation GenericLoc, Expr *ControllingExpr,
3448                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3449                               unsigned NumAssocs, SourceLocation DefaultLoc,
3450                               SourceLocation RParenLoc,
3451                               bool ContainsUnexpandedParameterPack)
3452  : Expr(GenericSelectionExprClass,
3453         Context.DependentTy,
3454         VK_RValue,
3455         OK_Ordinary,
3456         /*isTypeDependent=*/true,
3457         /*isValueDependent=*/true,
3458         /*isInstantiationDependent=*/true,
3459         ContainsUnexpandedParameterPack),
3460    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3461    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3462    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3463    RParenLoc(RParenLoc) {
3464  SubExprs[CONTROLLING] = ControllingExpr;
3465  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3466  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3467}
3468
3469//===----------------------------------------------------------------------===//
3470//  DesignatedInitExpr
3471//===----------------------------------------------------------------------===//
3472
3473IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3474  assert(Kind == FieldDesignator && "Only valid on a field designator");
3475  if (Field.NameOrField & 0x01)
3476    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3477  else
3478    return getField()->getIdentifier();
3479}
3480
3481DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3482                                       unsigned NumDesignators,
3483                                       const Designator *Designators,
3484                                       SourceLocation EqualOrColonLoc,
3485                                       bool GNUSyntax,
3486                                       Expr **IndexExprs,
3487                                       unsigned NumIndexExprs,
3488                                       Expr *Init)
3489  : Expr(DesignatedInitExprClass, Ty,
3490         Init->getValueKind(), Init->getObjectKind(),
3491         Init->isTypeDependent(), Init->isValueDependent(),
3492         Init->isInstantiationDependent(),
3493         Init->containsUnexpandedParameterPack()),
3494    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3495    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3496  this->Designators = new (C) Designator[NumDesignators];
3497
3498  // Record the initializer itself.
3499  child_range Child = children();
3500  *Child++ = Init;
3501
3502  // Copy the designators and their subexpressions, computing
3503  // value-dependence along the way.
3504  unsigned IndexIdx = 0;
3505  for (unsigned I = 0; I != NumDesignators; ++I) {
3506    this->Designators[I] = Designators[I];
3507
3508    if (this->Designators[I].isArrayDesignator()) {
3509      // Compute type- and value-dependence.
3510      Expr *Index = IndexExprs[IndexIdx];
3511      if (Index->isTypeDependent() || Index->isValueDependent())
3512        ExprBits.ValueDependent = true;
3513      if (Index->isInstantiationDependent())
3514        ExprBits.InstantiationDependent = true;
3515      // Propagate unexpanded parameter packs.
3516      if (Index->containsUnexpandedParameterPack())
3517        ExprBits.ContainsUnexpandedParameterPack = true;
3518
3519      // Copy the index expressions into permanent storage.
3520      *Child++ = IndexExprs[IndexIdx++];
3521    } else if (this->Designators[I].isArrayRangeDesignator()) {
3522      // Compute type- and value-dependence.
3523      Expr *Start = IndexExprs[IndexIdx];
3524      Expr *End = IndexExprs[IndexIdx + 1];
3525      if (Start->isTypeDependent() || Start->isValueDependent() ||
3526          End->isTypeDependent() || End->isValueDependent()) {
3527        ExprBits.ValueDependent = true;
3528        ExprBits.InstantiationDependent = true;
3529      } else if (Start->isInstantiationDependent() ||
3530                 End->isInstantiationDependent()) {
3531        ExprBits.InstantiationDependent = true;
3532      }
3533
3534      // Propagate unexpanded parameter packs.
3535      if (Start->containsUnexpandedParameterPack() ||
3536          End->containsUnexpandedParameterPack())
3537        ExprBits.ContainsUnexpandedParameterPack = true;
3538
3539      // Copy the start/end expressions into permanent storage.
3540      *Child++ = IndexExprs[IndexIdx++];
3541      *Child++ = IndexExprs[IndexIdx++];
3542    }
3543  }
3544
3545  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3546}
3547
3548DesignatedInitExpr *
3549DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3550                           unsigned NumDesignators,
3551                           Expr **IndexExprs, unsigned NumIndexExprs,
3552                           SourceLocation ColonOrEqualLoc,
3553                           bool UsesColonSyntax, Expr *Init) {
3554  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3555                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3556  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3557                                      ColonOrEqualLoc, UsesColonSyntax,
3558                                      IndexExprs, NumIndexExprs, Init);
3559}
3560
3561DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3562                                                    unsigned NumIndexExprs) {
3563  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3564                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3565  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3566}
3567
3568void DesignatedInitExpr::setDesignators(ASTContext &C,
3569                                        const Designator *Desigs,
3570                                        unsigned NumDesigs) {
3571  Designators = new (C) Designator[NumDesigs];
3572  NumDesignators = NumDesigs;
3573  for (unsigned I = 0; I != NumDesigs; ++I)
3574    Designators[I] = Desigs[I];
3575}
3576
3577SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3578  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3579  if (size() == 1)
3580    return DIE->getDesignator(0)->getSourceRange();
3581  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3582                     DIE->getDesignator(size()-1)->getEndLocation());
3583}
3584
3585SourceRange DesignatedInitExpr::getSourceRange() const {
3586  SourceLocation StartLoc;
3587  Designator &First =
3588    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3589  if (First.isFieldDesignator()) {
3590    if (GNUSyntax)
3591      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3592    else
3593      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3594  } else
3595    StartLoc =
3596      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3597  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3598}
3599
3600Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3601  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3602  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3603  Ptr += sizeof(DesignatedInitExpr);
3604  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3605  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3606}
3607
3608Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3609  assert(D.Kind == Designator::ArrayRangeDesignator &&
3610         "Requires array range designator");
3611  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3612  Ptr += sizeof(DesignatedInitExpr);
3613  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3614  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3615}
3616
3617Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3618  assert(D.Kind == Designator::ArrayRangeDesignator &&
3619         "Requires array range designator");
3620  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3621  Ptr += sizeof(DesignatedInitExpr);
3622  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3623  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3624}
3625
3626/// \brief Replaces the designator at index @p Idx with the series
3627/// of designators in [First, Last).
3628void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3629                                          const Designator *First,
3630                                          const Designator *Last) {
3631  unsigned NumNewDesignators = Last - First;
3632  if (NumNewDesignators == 0) {
3633    std::copy_backward(Designators + Idx + 1,
3634                       Designators + NumDesignators,
3635                       Designators + Idx);
3636    --NumNewDesignators;
3637    return;
3638  } else if (NumNewDesignators == 1) {
3639    Designators[Idx] = *First;
3640    return;
3641  }
3642
3643  Designator *NewDesignators
3644    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3645  std::copy(Designators, Designators + Idx, NewDesignators);
3646  std::copy(First, Last, NewDesignators + Idx);
3647  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3648            NewDesignators + Idx + NumNewDesignators);
3649  Designators = NewDesignators;
3650  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3651}
3652
3653ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3654                             Expr **exprs, unsigned nexprs,
3655                             SourceLocation rparenloc)
3656  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3657         false, false, false, false),
3658    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3659  Exprs = new (C) Stmt*[nexprs];
3660  for (unsigned i = 0; i != nexprs; ++i) {
3661    if (exprs[i]->isTypeDependent())
3662      ExprBits.TypeDependent = true;
3663    if (exprs[i]->isValueDependent())
3664      ExprBits.ValueDependent = true;
3665    if (exprs[i]->isInstantiationDependent())
3666      ExprBits.InstantiationDependent = true;
3667    if (exprs[i]->containsUnexpandedParameterPack())
3668      ExprBits.ContainsUnexpandedParameterPack = true;
3669
3670    Exprs[i] = exprs[i];
3671  }
3672}
3673
3674const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3675  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3676    e = ewc->getSubExpr();
3677  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3678    e = m->GetTemporaryExpr();
3679  e = cast<CXXConstructExpr>(e)->getArg(0);
3680  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3681    e = ice->getSubExpr();
3682  return cast<OpaqueValueExpr>(e);
3683}
3684
3685PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3686                                           unsigned numSemanticExprs) {
3687  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3688                                    (1 + numSemanticExprs) * sizeof(Expr*),
3689                                  llvm::alignOf<PseudoObjectExpr>());
3690  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3691}
3692
3693PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3694  : Expr(PseudoObjectExprClass, shell) {
3695  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3696}
3697
3698PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3699                                           ArrayRef<Expr*> semantics,
3700                                           unsigned resultIndex) {
3701  assert(syntax && "no syntactic expression!");
3702  assert(semantics.size() && "no semantic expressions!");
3703
3704  QualType type;
3705  ExprValueKind VK;
3706  if (resultIndex == NoResult) {
3707    type = C.VoidTy;
3708    VK = VK_RValue;
3709  } else {
3710    assert(resultIndex < semantics.size());
3711    type = semantics[resultIndex]->getType();
3712    VK = semantics[resultIndex]->getValueKind();
3713    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3714  }
3715
3716  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3717                              (1 + semantics.size()) * sizeof(Expr*),
3718                            llvm::alignOf<PseudoObjectExpr>());
3719  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3720                                      resultIndex);
3721}
3722
3723PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3724                                   Expr *syntax, ArrayRef<Expr*> semantics,
3725                                   unsigned resultIndex)
3726  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3727         /*filled in at end of ctor*/ false, false, false, false) {
3728  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3729  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3730
3731  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3732    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3733    getSubExprsBuffer()[i] = E;
3734
3735    if (E->isTypeDependent())
3736      ExprBits.TypeDependent = true;
3737    if (E->isValueDependent())
3738      ExprBits.ValueDependent = true;
3739    if (E->isInstantiationDependent())
3740      ExprBits.InstantiationDependent = true;
3741    if (E->containsUnexpandedParameterPack())
3742      ExprBits.ContainsUnexpandedParameterPack = true;
3743
3744    if (isa<OpaqueValueExpr>(E))
3745      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3746             "opaque-value semantic expressions for pseudo-object "
3747             "operations must have sources");
3748  }
3749}
3750
3751//===----------------------------------------------------------------------===//
3752//  ExprIterator.
3753//===----------------------------------------------------------------------===//
3754
3755Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3756Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3757Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3758const Expr* ConstExprIterator::operator[](size_t idx) const {
3759  return cast<Expr>(I[idx]);
3760}
3761const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3762const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3763
3764//===----------------------------------------------------------------------===//
3765//  Child Iterators for iterating over subexpressions/substatements
3766//===----------------------------------------------------------------------===//
3767
3768// UnaryExprOrTypeTraitExpr
3769Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3770  // If this is of a type and the type is a VLA type (and not a typedef), the
3771  // size expression of the VLA needs to be treated as an executable expression.
3772  // Why isn't this weirdness documented better in StmtIterator?
3773  if (isArgumentType()) {
3774    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3775                                   getArgumentType().getTypePtr()))
3776      return child_range(child_iterator(T), child_iterator());
3777    return child_range();
3778  }
3779  return child_range(&Argument.Ex, &Argument.Ex + 1);
3780}
3781
3782// ObjCMessageExpr
3783Stmt::child_range ObjCMessageExpr::children() {
3784  Stmt **begin;
3785  if (getReceiverKind() == Instance)
3786    begin = reinterpret_cast<Stmt **>(this + 1);
3787  else
3788    begin = reinterpret_cast<Stmt **>(getArgs());
3789  return child_range(begin,
3790                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3791}
3792
3793ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3794                                   QualType T, ObjCMethodDecl *Method,
3795                                   SourceRange SR)
3796  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3797         false, false, false, false),
3798    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3799{
3800  Expr **SaveElements = getElements();
3801  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3802    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3803      ExprBits.ValueDependent = true;
3804    if (Elements[I]->isInstantiationDependent())
3805      ExprBits.InstantiationDependent = true;
3806    if (Elements[I]->containsUnexpandedParameterPack())
3807      ExprBits.ContainsUnexpandedParameterPack = true;
3808
3809    SaveElements[I] = Elements[I];
3810  }
3811}
3812
3813ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3814                                           llvm::ArrayRef<Expr *> Elements,
3815                                           QualType T, ObjCMethodDecl * Method,
3816                                           SourceRange SR) {
3817  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3818                         + Elements.size() * sizeof(Expr *));
3819  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3820}
3821
3822ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3823                                                unsigned NumElements) {
3824
3825  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3826                         + NumElements * sizeof(Expr *));
3827  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3828}
3829
3830ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3831                                             ArrayRef<ObjCDictionaryElement> VK,
3832                                             bool HasPackExpansions,
3833                                             QualType T, ObjCMethodDecl *method,
3834                                             SourceRange SR)
3835  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3836         false, false),
3837    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3838    DictWithObjectsMethod(method)
3839{
3840  KeyValuePair *KeyValues = getKeyValues();
3841  ExpansionData *Expansions = getExpansionData();
3842  for (unsigned I = 0; I < NumElements; I++) {
3843    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3844        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3845      ExprBits.ValueDependent = true;
3846    if (VK[I].Key->isInstantiationDependent() ||
3847        VK[I].Value->isInstantiationDependent())
3848      ExprBits.InstantiationDependent = true;
3849    if (VK[I].EllipsisLoc.isInvalid() &&
3850        (VK[I].Key->containsUnexpandedParameterPack() ||
3851         VK[I].Value->containsUnexpandedParameterPack()))
3852      ExprBits.ContainsUnexpandedParameterPack = true;
3853
3854    KeyValues[I].Key = VK[I].Key;
3855    KeyValues[I].Value = VK[I].Value;
3856    if (Expansions) {
3857      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3858      if (VK[I].NumExpansions)
3859        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3860      else
3861        Expansions[I].NumExpansionsPlusOne = 0;
3862    }
3863  }
3864}
3865
3866ObjCDictionaryLiteral *
3867ObjCDictionaryLiteral::Create(ASTContext &C,
3868                              ArrayRef<ObjCDictionaryElement> VK,
3869                              bool HasPackExpansions,
3870                              QualType T, ObjCMethodDecl *method,
3871                              SourceRange SR) {
3872  unsigned ExpansionsSize = 0;
3873  if (HasPackExpansions)
3874    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3875
3876  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3877                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3878  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3879}
3880
3881ObjCDictionaryLiteral *
3882ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3883                                   bool HasPackExpansions) {
3884  unsigned ExpansionsSize = 0;
3885  if (HasPackExpansions)
3886    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3887  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3888                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3889  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3890                                         HasPackExpansions);
3891}
3892
3893ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3894                                                   Expr *base,
3895                                                   Expr *key, QualType T,
3896                                                   ObjCMethodDecl *getMethod,
3897                                                   ObjCMethodDecl *setMethod,
3898                                                   SourceLocation RB) {
3899  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3900  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3901                                        OK_ObjCSubscript,
3902                                        getMethod, setMethod, RB);
3903}
3904
3905AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3906                       QualType t, AtomicOp op, SourceLocation RP)
3907  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3908         false, false, false, false),
3909    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3910{
3911  assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions");
3912  for (unsigned i = 0; i < nexpr; i++) {
3913    if (args[i]->isTypeDependent())
3914      ExprBits.TypeDependent = true;
3915    if (args[i]->isValueDependent())
3916      ExprBits.ValueDependent = true;
3917    if (args[i]->isInstantiationDependent())
3918      ExprBits.InstantiationDependent = true;
3919    if (args[i]->containsUnexpandedParameterPack())
3920      ExprBits.ContainsUnexpandedParameterPack = true;
3921
3922    SubExprs[i] = args[i];
3923  }
3924}
3925
3926unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3927  switch (Op) {
3928  case AO__c11_atomic_init:
3929  case AO__c11_atomic_load:
3930  case AO__atomic_load_n:
3931    return 2;
3932
3933  case AO__c11_atomic_store:
3934  case AO__c11_atomic_exchange:
3935  case AO__atomic_load:
3936  case AO__atomic_store:
3937  case AO__atomic_store_n:
3938  case AO__atomic_exchange_n:
3939  case AO__c11_atomic_fetch_add:
3940  case AO__c11_atomic_fetch_sub:
3941  case AO__c11_atomic_fetch_and:
3942  case AO__c11_atomic_fetch_or:
3943  case AO__c11_atomic_fetch_xor:
3944  case AO__atomic_fetch_add:
3945  case AO__atomic_fetch_sub:
3946  case AO__atomic_fetch_and:
3947  case AO__atomic_fetch_or:
3948  case AO__atomic_fetch_xor:
3949  case AO__atomic_fetch_nand:
3950  case AO__atomic_add_fetch:
3951  case AO__atomic_sub_fetch:
3952  case AO__atomic_and_fetch:
3953  case AO__atomic_or_fetch:
3954  case AO__atomic_xor_fetch:
3955  case AO__atomic_nand_fetch:
3956    return 3;
3957
3958  case AO__atomic_exchange:
3959    return 4;
3960
3961  case AO__c11_atomic_compare_exchange_strong:
3962  case AO__c11_atomic_compare_exchange_weak:
3963    return 5;
3964
3965  case AO__atomic_compare_exchange:
3966  case AO__atomic_compare_exchange_n:
3967    return 6;
3968  }
3969  llvm_unreachable("unknown atomic op");
3970}
3971