Expr.cpp revision 218893
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31using namespace clang;
32
33/// isKnownToHaveBooleanValue - Return true if this is an integer expression
34/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
35/// but also int expressions which are produced by things like comparisons in
36/// C.
37bool Expr::isKnownToHaveBooleanValue() const {
38  // If this value has _Bool type, it is obvious 0/1.
39  if (getType()->isBooleanType()) return true;
40  // If this is a non-scalar-integer type, we don't care enough to try.
41  if (!getType()->isIntegralOrEnumerationType()) return false;
42
43  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
44    return PE->getSubExpr()->isKnownToHaveBooleanValue();
45
46  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
47    switch (UO->getOpcode()) {
48    case UO_Plus:
49    case UO_Extension:
50      return UO->getSubExpr()->isKnownToHaveBooleanValue();
51    default:
52      return false;
53    }
54  }
55
56  // Only look through implicit casts.  If the user writes
57  // '(int) (a && b)' treat it as an arbitrary int.
58  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
59    return CE->getSubExpr()->isKnownToHaveBooleanValue();
60
61  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
62    switch (BO->getOpcode()) {
63    default: return false;
64    case BO_LT:   // Relational operators.
65    case BO_GT:
66    case BO_LE:
67    case BO_GE:
68    case BO_EQ:   // Equality operators.
69    case BO_NE:
70    case BO_LAnd: // AND operator.
71    case BO_LOr:  // Logical OR operator.
72      return true;
73
74    case BO_And:  // Bitwise AND operator.
75    case BO_Xor:  // Bitwise XOR operator.
76    case BO_Or:   // Bitwise OR operator.
77      // Handle things like (x==2)|(y==12).
78      return BO->getLHS()->isKnownToHaveBooleanValue() &&
79             BO->getRHS()->isKnownToHaveBooleanValue();
80
81    case BO_Comma:
82    case BO_Assign:
83      return BO->getRHS()->isKnownToHaveBooleanValue();
84    }
85  }
86
87  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
88    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
89           CO->getFalseExpr()->isKnownToHaveBooleanValue();
90
91  return false;
92}
93
94// Amusing macro metaprogramming hack: check whether a class provides
95// a more specific implementation of getExprLoc().
96namespace {
97  /// This implementation is used when a class provides a custom
98  /// implementation of getExprLoc.
99  template <class E, class T>
100  SourceLocation getExprLocImpl(const Expr *expr,
101                                SourceLocation (T::*v)() const) {
102    return static_cast<const E*>(expr)->getExprLoc();
103  }
104
105  /// This implementation is used when a class doesn't provide
106  /// a custom implementation of getExprLoc.  Overload resolution
107  /// should pick it over the implementation above because it's
108  /// more specialized according to function template partial ordering.
109  template <class E>
110  SourceLocation getExprLocImpl(const Expr *expr,
111                                SourceLocation (Expr::*v)() const) {
112    return static_cast<const E*>(expr)->getSourceRange().getBegin();
113  }
114}
115
116SourceLocation Expr::getExprLoc() const {
117  switch (getStmtClass()) {
118  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
119#define ABSTRACT_STMT(type)
120#define STMT(type, base) \
121  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
122#define EXPR(type, base) \
123  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
124#include "clang/AST/StmtNodes.inc"
125  }
126  llvm_unreachable("unknown statement kind");
127  return SourceLocation();
128}
129
130//===----------------------------------------------------------------------===//
131// Primary Expressions.
132//===----------------------------------------------------------------------===//
133
134void ExplicitTemplateArgumentList::initializeFrom(
135                                      const TemplateArgumentListInfo &Info) {
136  LAngleLoc = Info.getLAngleLoc();
137  RAngleLoc = Info.getRAngleLoc();
138  NumTemplateArgs = Info.size();
139
140  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
141  for (unsigned i = 0; i != NumTemplateArgs; ++i)
142    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
143}
144
145void ExplicitTemplateArgumentList::initializeFrom(
146                                   const TemplateArgumentListInfo &Info,
147                                   bool &Dependent,
148                                   bool &ContainsUnexpandedParameterPack) {
149  LAngleLoc = Info.getLAngleLoc();
150  RAngleLoc = Info.getRAngleLoc();
151  NumTemplateArgs = Info.size();
152
153  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
154  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
155    Dependent = Dependent || Info[i].getArgument().isDependent();
156    ContainsUnexpandedParameterPack
157      = ContainsUnexpandedParameterPack ||
158        Info[i].getArgument().containsUnexpandedParameterPack();
159
160    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
161  }
162}
163
164void ExplicitTemplateArgumentList::copyInto(
165                                      TemplateArgumentListInfo &Info) const {
166  Info.setLAngleLoc(LAngleLoc);
167  Info.setRAngleLoc(RAngleLoc);
168  for (unsigned I = 0; I != NumTemplateArgs; ++I)
169    Info.addArgument(getTemplateArgs()[I]);
170}
171
172std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
173  return sizeof(ExplicitTemplateArgumentList) +
174         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
175}
176
177std::size_t ExplicitTemplateArgumentList::sizeFor(
178                                      const TemplateArgumentListInfo &Info) {
179  return sizeFor(Info.size());
180}
181
182/// \brief Compute the type- and value-dependence of a declaration reference
183/// based on the declaration being referenced.
184static void computeDeclRefDependence(NamedDecl *D, QualType T,
185                                     bool &TypeDependent,
186                                     bool &ValueDependent) {
187  TypeDependent = false;
188  ValueDependent = false;
189
190
191  // (TD) C++ [temp.dep.expr]p3:
192  //   An id-expression is type-dependent if it contains:
193  //
194  // and
195  //
196  // (VD) C++ [temp.dep.constexpr]p2:
197  //  An identifier is value-dependent if it is:
198
199  //  (TD)  - an identifier that was declared with dependent type
200  //  (VD)  - a name declared with a dependent type,
201  if (T->isDependentType()) {
202    TypeDependent = true;
203    ValueDependent = true;
204    return;
205  }
206
207  //  (TD)  - a conversion-function-id that specifies a dependent type
208  if (D->getDeclName().getNameKind()
209           == DeclarationName::CXXConversionFunctionName &&
210           D->getDeclName().getCXXNameType()->isDependentType()) {
211    TypeDependent = true;
212    ValueDependent = true;
213    return;
214  }
215  //  (VD)  - the name of a non-type template parameter,
216  if (isa<NonTypeTemplateParmDecl>(D)) {
217    ValueDependent = true;
218    return;
219  }
220
221  //  (VD) - a constant with integral or enumeration type and is
222  //         initialized with an expression that is value-dependent.
223  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
224    if (Var->getType()->isIntegralOrEnumerationType() &&
225        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
226      if (const Expr *Init = Var->getAnyInitializer())
227        if (Init->isValueDependent())
228          ValueDependent = true;
229    }
230
231    // (VD) - FIXME: Missing from the standard:
232    //      -  a member function or a static data member of the current
233    //         instantiation
234    else if (Var->isStaticDataMember() &&
235             Var->getDeclContext()->isDependentContext())
236      ValueDependent = true;
237
238    return;
239  }
240
241  // (VD) - FIXME: Missing from the standard:
242  //      -  a member function or a static data member of the current
243  //         instantiation
244  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
245    ValueDependent = true;
246    return;
247  }
248}
249
250void DeclRefExpr::computeDependence() {
251  bool TypeDependent = false;
252  bool ValueDependent = false;
253  computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
254
255  // (TD) C++ [temp.dep.expr]p3:
256  //   An id-expression is type-dependent if it contains:
257  //
258  // and
259  //
260  // (VD) C++ [temp.dep.constexpr]p2:
261  //  An identifier is value-dependent if it is:
262  if (!TypeDependent && !ValueDependent &&
263      hasExplicitTemplateArgs() &&
264      TemplateSpecializationType::anyDependentTemplateArguments(
265                                                            getTemplateArgs(),
266                                                       getNumTemplateArgs())) {
267    TypeDependent = true;
268    ValueDependent = true;
269  }
270
271  ExprBits.TypeDependent = TypeDependent;
272  ExprBits.ValueDependent = ValueDependent;
273
274  // Is the declaration a parameter pack?
275  if (getDecl()->isParameterPack())
276    ExprBits.ContainsUnexpandedParameterPack = true;
277}
278
279DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
280                         SourceRange QualifierRange,
281                         ValueDecl *D, SourceLocation NameLoc,
282                         const TemplateArgumentListInfo *TemplateArgs,
283                         QualType T, ExprValueKind VK)
284  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
285    DecoratedD(D,
286               (Qualifier? HasQualifierFlag : 0) |
287               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
288    Loc(NameLoc) {
289  if (Qualifier) {
290    NameQualifier *NQ = getNameQualifier();
291    NQ->NNS = Qualifier;
292    NQ->Range = QualifierRange;
293  }
294
295  if (TemplateArgs)
296    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
297
298  computeDependence();
299}
300
301DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
302                         SourceRange QualifierRange,
303                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
304                         const TemplateArgumentListInfo *TemplateArgs,
305                         QualType T, ExprValueKind VK)
306  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
307    DecoratedD(D,
308               (Qualifier? HasQualifierFlag : 0) |
309               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
310    Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
311  if (Qualifier) {
312    NameQualifier *NQ = getNameQualifier();
313    NQ->NNS = Qualifier;
314    NQ->Range = QualifierRange;
315  }
316
317  if (TemplateArgs)
318    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
319
320  computeDependence();
321}
322
323DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
324                                 NestedNameSpecifier *Qualifier,
325                                 SourceRange QualifierRange,
326                                 ValueDecl *D,
327                                 SourceLocation NameLoc,
328                                 QualType T,
329                                 ExprValueKind VK,
330                                 const TemplateArgumentListInfo *TemplateArgs) {
331  return Create(Context, Qualifier, QualifierRange, D,
332                DeclarationNameInfo(D->getDeclName(), NameLoc),
333                T, VK, TemplateArgs);
334}
335
336DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
337                                 NestedNameSpecifier *Qualifier,
338                                 SourceRange QualifierRange,
339                                 ValueDecl *D,
340                                 const DeclarationNameInfo &NameInfo,
341                                 QualType T,
342                                 ExprValueKind VK,
343                                 const TemplateArgumentListInfo *TemplateArgs) {
344  std::size_t Size = sizeof(DeclRefExpr);
345  if (Qualifier != 0)
346    Size += sizeof(NameQualifier);
347
348  if (TemplateArgs)
349    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
350
351  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
352  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
353                               TemplateArgs, T, VK);
354}
355
356DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
357                                      bool HasQualifier,
358                                      bool HasExplicitTemplateArgs,
359                                      unsigned NumTemplateArgs) {
360  std::size_t Size = sizeof(DeclRefExpr);
361  if (HasQualifier)
362    Size += sizeof(NameQualifier);
363
364  if (HasExplicitTemplateArgs)
365    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
366
367  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
368  return new (Mem) DeclRefExpr(EmptyShell());
369}
370
371SourceRange DeclRefExpr::getSourceRange() const {
372  SourceRange R = getNameInfo().getSourceRange();
373  if (hasQualifier())
374    R.setBegin(getQualifierRange().getBegin());
375  if (hasExplicitTemplateArgs())
376    R.setEnd(getRAngleLoc());
377  return R;
378}
379
380// FIXME: Maybe this should use DeclPrinter with a special "print predefined
381// expr" policy instead.
382std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
383  ASTContext &Context = CurrentDecl->getASTContext();
384
385  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
386    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
387      return FD->getNameAsString();
388
389    llvm::SmallString<256> Name;
390    llvm::raw_svector_ostream Out(Name);
391
392    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
393      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
394        Out << "virtual ";
395      if (MD->isStatic())
396        Out << "static ";
397    }
398
399    PrintingPolicy Policy(Context.getLangOptions());
400
401    std::string Proto = FD->getQualifiedNameAsString(Policy);
402
403    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
404    const FunctionProtoType *FT = 0;
405    if (FD->hasWrittenPrototype())
406      FT = dyn_cast<FunctionProtoType>(AFT);
407
408    Proto += "(";
409    if (FT) {
410      llvm::raw_string_ostream POut(Proto);
411      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
412        if (i) POut << ", ";
413        std::string Param;
414        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
415        POut << Param;
416      }
417
418      if (FT->isVariadic()) {
419        if (FD->getNumParams()) POut << ", ";
420        POut << "...";
421      }
422    }
423    Proto += ")";
424
425    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
426      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
427      if (ThisQuals.hasConst())
428        Proto += " const";
429      if (ThisQuals.hasVolatile())
430        Proto += " volatile";
431    }
432
433    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
434      AFT->getResultType().getAsStringInternal(Proto, Policy);
435
436    Out << Proto;
437
438    Out.flush();
439    return Name.str().str();
440  }
441  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
442    llvm::SmallString<256> Name;
443    llvm::raw_svector_ostream Out(Name);
444    Out << (MD->isInstanceMethod() ? '-' : '+');
445    Out << '[';
446
447    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
448    // a null check to avoid a crash.
449    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
450      Out << ID;
451
452    if (const ObjCCategoryImplDecl *CID =
453        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
454      Out << '(' << CID << ')';
455
456    Out <<  ' ';
457    Out << MD->getSelector().getAsString();
458    Out <<  ']';
459
460    Out.flush();
461    return Name.str().str();
462  }
463  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
464    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
465    return "top level";
466  }
467  return "";
468}
469
470void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
471  if (hasAllocation())
472    C.Deallocate(pVal);
473
474  BitWidth = Val.getBitWidth();
475  unsigned NumWords = Val.getNumWords();
476  const uint64_t* Words = Val.getRawData();
477  if (NumWords > 1) {
478    pVal = new (C) uint64_t[NumWords];
479    std::copy(Words, Words + NumWords, pVal);
480  } else if (NumWords == 1)
481    VAL = Words[0];
482  else
483    VAL = 0;
484}
485
486IntegerLiteral *
487IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
488                       QualType type, SourceLocation l) {
489  return new (C) IntegerLiteral(C, V, type, l);
490}
491
492IntegerLiteral *
493IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
494  return new (C) IntegerLiteral(Empty);
495}
496
497FloatingLiteral *
498FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
499                        bool isexact, QualType Type, SourceLocation L) {
500  return new (C) FloatingLiteral(C, V, isexact, Type, L);
501}
502
503FloatingLiteral *
504FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
505  return new (C) FloatingLiteral(Empty);
506}
507
508/// getValueAsApproximateDouble - This returns the value as an inaccurate
509/// double.  Note that this may cause loss of precision, but is useful for
510/// debugging dumps, etc.
511double FloatingLiteral::getValueAsApproximateDouble() const {
512  llvm::APFloat V = getValue();
513  bool ignored;
514  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
515            &ignored);
516  return V.convertToDouble();
517}
518
519StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
520                                     unsigned ByteLength, bool Wide,
521                                     QualType Ty,
522                                     const SourceLocation *Loc,
523                                     unsigned NumStrs) {
524  // Allocate enough space for the StringLiteral plus an array of locations for
525  // any concatenated string tokens.
526  void *Mem = C.Allocate(sizeof(StringLiteral)+
527                         sizeof(SourceLocation)*(NumStrs-1),
528                         llvm::alignOf<StringLiteral>());
529  StringLiteral *SL = new (Mem) StringLiteral(Ty);
530
531  // OPTIMIZE: could allocate this appended to the StringLiteral.
532  char *AStrData = new (C, 1) char[ByteLength];
533  memcpy(AStrData, StrData, ByteLength);
534  SL->StrData = AStrData;
535  SL->ByteLength = ByteLength;
536  SL->IsWide = Wide;
537  SL->TokLocs[0] = Loc[0];
538  SL->NumConcatenated = NumStrs;
539
540  if (NumStrs != 1)
541    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
542  return SL;
543}
544
545StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
546  void *Mem = C.Allocate(sizeof(StringLiteral)+
547                         sizeof(SourceLocation)*(NumStrs-1),
548                         llvm::alignOf<StringLiteral>());
549  StringLiteral *SL = new (Mem) StringLiteral(QualType());
550  SL->StrData = 0;
551  SL->ByteLength = 0;
552  SL->NumConcatenated = NumStrs;
553  return SL;
554}
555
556void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
557  char *AStrData = new (C, 1) char[Str.size()];
558  memcpy(AStrData, Str.data(), Str.size());
559  StrData = AStrData;
560  ByteLength = Str.size();
561}
562
563/// getLocationOfByte - Return a source location that points to the specified
564/// byte of this string literal.
565///
566/// Strings are amazingly complex.  They can be formed from multiple tokens and
567/// can have escape sequences in them in addition to the usual trigraph and
568/// escaped newline business.  This routine handles this complexity.
569///
570SourceLocation StringLiteral::
571getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
572                  const LangOptions &Features, const TargetInfo &Target) const {
573  assert(!isWide() && "This doesn't work for wide strings yet");
574
575  // Loop over all of the tokens in this string until we find the one that
576  // contains the byte we're looking for.
577  unsigned TokNo = 0;
578  while (1) {
579    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
580    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
581
582    // Get the spelling of the string so that we can get the data that makes up
583    // the string literal, not the identifier for the macro it is potentially
584    // expanded through.
585    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
586
587    // Re-lex the token to get its length and original spelling.
588    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
589    bool Invalid = false;
590    llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
591    if (Invalid)
592      return StrTokSpellingLoc;
593
594    const char *StrData = Buffer.data()+LocInfo.second;
595
596    // Create a langops struct and enable trigraphs.  This is sufficient for
597    // relexing tokens.
598    LangOptions LangOpts;
599    LangOpts.Trigraphs = true;
600
601    // Create a lexer starting at the beginning of this token.
602    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
603                   Buffer.end());
604    Token TheTok;
605    TheLexer.LexFromRawLexer(TheTok);
606
607    // Use the StringLiteralParser to compute the length of the string in bytes.
608    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
609    unsigned TokNumBytes = SLP.GetStringLength();
610
611    // If the byte is in this token, return the location of the byte.
612    if (ByteNo < TokNumBytes ||
613        (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
614      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
615
616      // Now that we know the offset of the token in the spelling, use the
617      // preprocessor to get the offset in the original source.
618      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
619    }
620
621    // Move to the next string token.
622    ++TokNo;
623    ByteNo -= TokNumBytes;
624  }
625}
626
627
628
629/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
630/// corresponds to, e.g. "sizeof" or "[pre]++".
631const char *UnaryOperator::getOpcodeStr(Opcode Op) {
632  switch (Op) {
633  default: assert(0 && "Unknown unary operator");
634  case UO_PostInc: return "++";
635  case UO_PostDec: return "--";
636  case UO_PreInc:  return "++";
637  case UO_PreDec:  return "--";
638  case UO_AddrOf:  return "&";
639  case UO_Deref:   return "*";
640  case UO_Plus:    return "+";
641  case UO_Minus:   return "-";
642  case UO_Not:     return "~";
643  case UO_LNot:    return "!";
644  case UO_Real:    return "__real";
645  case UO_Imag:    return "__imag";
646  case UO_Extension: return "__extension__";
647  }
648}
649
650UnaryOperatorKind
651UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
652  switch (OO) {
653  default: assert(false && "No unary operator for overloaded function");
654  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
655  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
656  case OO_Amp:        return UO_AddrOf;
657  case OO_Star:       return UO_Deref;
658  case OO_Plus:       return UO_Plus;
659  case OO_Minus:      return UO_Minus;
660  case OO_Tilde:      return UO_Not;
661  case OO_Exclaim:    return UO_LNot;
662  }
663}
664
665OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
666  switch (Opc) {
667  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
668  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
669  case UO_AddrOf: return OO_Amp;
670  case UO_Deref: return OO_Star;
671  case UO_Plus: return OO_Plus;
672  case UO_Minus: return OO_Minus;
673  case UO_Not: return OO_Tilde;
674  case UO_LNot: return OO_Exclaim;
675  default: return OO_None;
676  }
677}
678
679
680//===----------------------------------------------------------------------===//
681// Postfix Operators.
682//===----------------------------------------------------------------------===//
683
684CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
685                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
686                   SourceLocation rparenloc)
687  : Expr(SC, t, VK, OK_Ordinary,
688         fn->isTypeDependent(),
689         fn->isValueDependent(),
690         fn->containsUnexpandedParameterPack()),
691    NumArgs(numargs) {
692
693  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
694  SubExprs[FN] = fn;
695  for (unsigned i = 0; i != numargs; ++i) {
696    if (args[i]->isTypeDependent())
697      ExprBits.TypeDependent = true;
698    if (args[i]->isValueDependent())
699      ExprBits.ValueDependent = true;
700    if (args[i]->containsUnexpandedParameterPack())
701      ExprBits.ContainsUnexpandedParameterPack = true;
702
703    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
704  }
705
706  CallExprBits.NumPreArgs = NumPreArgs;
707  RParenLoc = rparenloc;
708}
709
710CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
711                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
712  : Expr(CallExprClass, t, VK, OK_Ordinary,
713         fn->isTypeDependent(),
714         fn->isValueDependent(),
715         fn->containsUnexpandedParameterPack()),
716    NumArgs(numargs) {
717
718  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
719  SubExprs[FN] = fn;
720  for (unsigned i = 0; i != numargs; ++i) {
721    if (args[i]->isTypeDependent())
722      ExprBits.TypeDependent = true;
723    if (args[i]->isValueDependent())
724      ExprBits.ValueDependent = true;
725    if (args[i]->containsUnexpandedParameterPack())
726      ExprBits.ContainsUnexpandedParameterPack = true;
727
728    SubExprs[i+PREARGS_START] = args[i];
729  }
730
731  CallExprBits.NumPreArgs = 0;
732  RParenLoc = rparenloc;
733}
734
735CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
736  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
737  // FIXME: Why do we allocate this?
738  SubExprs = new (C) Stmt*[PREARGS_START];
739  CallExprBits.NumPreArgs = 0;
740}
741
742CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
743                   EmptyShell Empty)
744  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
745  // FIXME: Why do we allocate this?
746  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
747  CallExprBits.NumPreArgs = NumPreArgs;
748}
749
750Decl *CallExpr::getCalleeDecl() {
751  Expr *CEE = getCallee()->IgnoreParenCasts();
752  // If we're calling a dereference, look at the pointer instead.
753  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
754    if (BO->isPtrMemOp())
755      CEE = BO->getRHS()->IgnoreParenCasts();
756  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
757    if (UO->getOpcode() == UO_Deref)
758      CEE = UO->getSubExpr()->IgnoreParenCasts();
759  }
760  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
761    return DRE->getDecl();
762  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
763    return ME->getMemberDecl();
764
765  return 0;
766}
767
768FunctionDecl *CallExpr::getDirectCallee() {
769  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
770}
771
772/// setNumArgs - This changes the number of arguments present in this call.
773/// Any orphaned expressions are deleted by this, and any new operands are set
774/// to null.
775void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
776  // No change, just return.
777  if (NumArgs == getNumArgs()) return;
778
779  // If shrinking # arguments, just delete the extras and forgot them.
780  if (NumArgs < getNumArgs()) {
781    this->NumArgs = NumArgs;
782    return;
783  }
784
785  // Otherwise, we are growing the # arguments.  New an bigger argument array.
786  unsigned NumPreArgs = getNumPreArgs();
787  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
788  // Copy over args.
789  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
790    NewSubExprs[i] = SubExprs[i];
791  // Null out new args.
792  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
793       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
794    NewSubExprs[i] = 0;
795
796  if (SubExprs) C.Deallocate(SubExprs);
797  SubExprs = NewSubExprs;
798  this->NumArgs = NumArgs;
799}
800
801/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
802/// not, return 0.
803unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
804  // All simple function calls (e.g. func()) are implicitly cast to pointer to
805  // function. As a result, we try and obtain the DeclRefExpr from the
806  // ImplicitCastExpr.
807  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
808  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
809    return 0;
810
811  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
812  if (!DRE)
813    return 0;
814
815  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
816  if (!FDecl)
817    return 0;
818
819  if (!FDecl->getIdentifier())
820    return 0;
821
822  return FDecl->getBuiltinID();
823}
824
825QualType CallExpr::getCallReturnType() const {
826  QualType CalleeType = getCallee()->getType();
827  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
828    CalleeType = FnTypePtr->getPointeeType();
829  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
830    CalleeType = BPT->getPointeeType();
831  else if (const MemberPointerType *MPT
832                                      = CalleeType->getAs<MemberPointerType>())
833    CalleeType = MPT->getPointeeType();
834
835  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
836  return FnType->getResultType();
837}
838
839OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
840                                   SourceLocation OperatorLoc,
841                                   TypeSourceInfo *tsi,
842                                   OffsetOfNode* compsPtr, unsigned numComps,
843                                   Expr** exprsPtr, unsigned numExprs,
844                                   SourceLocation RParenLoc) {
845  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
846                         sizeof(OffsetOfNode) * numComps +
847                         sizeof(Expr*) * numExprs);
848
849  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
850                                exprsPtr, numExprs, RParenLoc);
851}
852
853OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
854                                        unsigned numComps, unsigned numExprs) {
855  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
856                         sizeof(OffsetOfNode) * numComps +
857                         sizeof(Expr*) * numExprs);
858  return new (Mem) OffsetOfExpr(numComps, numExprs);
859}
860
861OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
862                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
863                           OffsetOfNode* compsPtr, unsigned numComps,
864                           Expr** exprsPtr, unsigned numExprs,
865                           SourceLocation RParenLoc)
866  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
867         /*TypeDependent=*/false,
868         /*ValueDependent=*/tsi->getType()->isDependentType(),
869         tsi->getType()->containsUnexpandedParameterPack()),
870    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
871    NumComps(numComps), NumExprs(numExprs)
872{
873  for(unsigned i = 0; i < numComps; ++i) {
874    setComponent(i, compsPtr[i]);
875  }
876
877  for(unsigned i = 0; i < numExprs; ++i) {
878    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
879      ExprBits.ValueDependent = true;
880    if (exprsPtr[i]->containsUnexpandedParameterPack())
881      ExprBits.ContainsUnexpandedParameterPack = true;
882
883    setIndexExpr(i, exprsPtr[i]);
884  }
885}
886
887IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
888  assert(getKind() == Field || getKind() == Identifier);
889  if (getKind() == Field)
890    return getField()->getIdentifier();
891
892  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
893}
894
895MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
896                               NestedNameSpecifier *qual,
897                               SourceRange qualrange,
898                               ValueDecl *memberdecl,
899                               DeclAccessPair founddecl,
900                               DeclarationNameInfo nameinfo,
901                               const TemplateArgumentListInfo *targs,
902                               QualType ty,
903                               ExprValueKind vk,
904                               ExprObjectKind ok) {
905  std::size_t Size = sizeof(MemberExpr);
906
907  bool hasQualOrFound = (qual != 0 ||
908                         founddecl.getDecl() != memberdecl ||
909                         founddecl.getAccess() != memberdecl->getAccess());
910  if (hasQualOrFound)
911    Size += sizeof(MemberNameQualifier);
912
913  if (targs)
914    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
915
916  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
917  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
918                                       ty, vk, ok);
919
920  if (hasQualOrFound) {
921    if (qual && qual->isDependent()) {
922      E->setValueDependent(true);
923      E->setTypeDependent(true);
924    }
925    E->HasQualifierOrFoundDecl = true;
926
927    MemberNameQualifier *NQ = E->getMemberQualifier();
928    NQ->NNS = qual;
929    NQ->Range = qualrange;
930    NQ->FoundDecl = founddecl;
931  }
932
933  if (targs) {
934    E->HasExplicitTemplateArgumentList = true;
935    E->getExplicitTemplateArgs().initializeFrom(*targs);
936  }
937
938  return E;
939}
940
941const char *CastExpr::getCastKindName() const {
942  switch (getCastKind()) {
943  case CK_Dependent:
944    return "Dependent";
945  case CK_BitCast:
946    return "BitCast";
947  case CK_LValueBitCast:
948    return "LValueBitCast";
949  case CK_LValueToRValue:
950    return "LValueToRValue";
951  case CK_GetObjCProperty:
952    return "GetObjCProperty";
953  case CK_NoOp:
954    return "NoOp";
955  case CK_BaseToDerived:
956    return "BaseToDerived";
957  case CK_DerivedToBase:
958    return "DerivedToBase";
959  case CK_UncheckedDerivedToBase:
960    return "UncheckedDerivedToBase";
961  case CK_Dynamic:
962    return "Dynamic";
963  case CK_ToUnion:
964    return "ToUnion";
965  case CK_ArrayToPointerDecay:
966    return "ArrayToPointerDecay";
967  case CK_FunctionToPointerDecay:
968    return "FunctionToPointerDecay";
969  case CK_NullToMemberPointer:
970    return "NullToMemberPointer";
971  case CK_NullToPointer:
972    return "NullToPointer";
973  case CK_BaseToDerivedMemberPointer:
974    return "BaseToDerivedMemberPointer";
975  case CK_DerivedToBaseMemberPointer:
976    return "DerivedToBaseMemberPointer";
977  case CK_UserDefinedConversion:
978    return "UserDefinedConversion";
979  case CK_ConstructorConversion:
980    return "ConstructorConversion";
981  case CK_IntegralToPointer:
982    return "IntegralToPointer";
983  case CK_PointerToIntegral:
984    return "PointerToIntegral";
985  case CK_PointerToBoolean:
986    return "PointerToBoolean";
987  case CK_ToVoid:
988    return "ToVoid";
989  case CK_VectorSplat:
990    return "VectorSplat";
991  case CK_IntegralCast:
992    return "IntegralCast";
993  case CK_IntegralToBoolean:
994    return "IntegralToBoolean";
995  case CK_IntegralToFloating:
996    return "IntegralToFloating";
997  case CK_FloatingToIntegral:
998    return "FloatingToIntegral";
999  case CK_FloatingCast:
1000    return "FloatingCast";
1001  case CK_FloatingToBoolean:
1002    return "FloatingToBoolean";
1003  case CK_MemberPointerToBoolean:
1004    return "MemberPointerToBoolean";
1005  case CK_AnyPointerToObjCPointerCast:
1006    return "AnyPointerToObjCPointerCast";
1007  case CK_AnyPointerToBlockPointerCast:
1008    return "AnyPointerToBlockPointerCast";
1009  case CK_ObjCObjectLValueCast:
1010    return "ObjCObjectLValueCast";
1011  case CK_FloatingRealToComplex:
1012    return "FloatingRealToComplex";
1013  case CK_FloatingComplexToReal:
1014    return "FloatingComplexToReal";
1015  case CK_FloatingComplexToBoolean:
1016    return "FloatingComplexToBoolean";
1017  case CK_FloatingComplexCast:
1018    return "FloatingComplexCast";
1019  case CK_FloatingComplexToIntegralComplex:
1020    return "FloatingComplexToIntegralComplex";
1021  case CK_IntegralRealToComplex:
1022    return "IntegralRealToComplex";
1023  case CK_IntegralComplexToReal:
1024    return "IntegralComplexToReal";
1025  case CK_IntegralComplexToBoolean:
1026    return "IntegralComplexToBoolean";
1027  case CK_IntegralComplexCast:
1028    return "IntegralComplexCast";
1029  case CK_IntegralComplexToFloatingComplex:
1030    return "IntegralComplexToFloatingComplex";
1031  }
1032
1033  llvm_unreachable("Unhandled cast kind!");
1034  return 0;
1035}
1036
1037Expr *CastExpr::getSubExprAsWritten() {
1038  Expr *SubExpr = 0;
1039  CastExpr *E = this;
1040  do {
1041    SubExpr = E->getSubExpr();
1042
1043    // Skip any temporary bindings; they're implicit.
1044    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1045      SubExpr = Binder->getSubExpr();
1046
1047    // Conversions by constructor and conversion functions have a
1048    // subexpression describing the call; strip it off.
1049    if (E->getCastKind() == CK_ConstructorConversion)
1050      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1051    else if (E->getCastKind() == CK_UserDefinedConversion)
1052      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1053
1054    // If the subexpression we're left with is an implicit cast, look
1055    // through that, too.
1056  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1057
1058  return SubExpr;
1059}
1060
1061CXXBaseSpecifier **CastExpr::path_buffer() {
1062  switch (getStmtClass()) {
1063#define ABSTRACT_STMT(x)
1064#define CASTEXPR(Type, Base) \
1065  case Stmt::Type##Class: \
1066    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1067#define STMT(Type, Base)
1068#include "clang/AST/StmtNodes.inc"
1069  default:
1070    llvm_unreachable("non-cast expressions not possible here");
1071    return 0;
1072  }
1073}
1074
1075void CastExpr::setCastPath(const CXXCastPath &Path) {
1076  assert(Path.size() == path_size());
1077  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1078}
1079
1080ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1081                                           CastKind Kind, Expr *Operand,
1082                                           const CXXCastPath *BasePath,
1083                                           ExprValueKind VK) {
1084  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1085  void *Buffer =
1086    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1087  ImplicitCastExpr *E =
1088    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1089  if (PathSize) E->setCastPath(*BasePath);
1090  return E;
1091}
1092
1093ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1094                                                unsigned PathSize) {
1095  void *Buffer =
1096    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1097  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1098}
1099
1100
1101CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1102                                       ExprValueKind VK, CastKind K, Expr *Op,
1103                                       const CXXCastPath *BasePath,
1104                                       TypeSourceInfo *WrittenTy,
1105                                       SourceLocation L, SourceLocation R) {
1106  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1107  void *Buffer =
1108    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1109  CStyleCastExpr *E =
1110    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1111  if (PathSize) E->setCastPath(*BasePath);
1112  return E;
1113}
1114
1115CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1116  void *Buffer =
1117    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1118  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1119}
1120
1121/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1122/// corresponds to, e.g. "<<=".
1123const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1124  switch (Op) {
1125  case BO_PtrMemD:   return ".*";
1126  case BO_PtrMemI:   return "->*";
1127  case BO_Mul:       return "*";
1128  case BO_Div:       return "/";
1129  case BO_Rem:       return "%";
1130  case BO_Add:       return "+";
1131  case BO_Sub:       return "-";
1132  case BO_Shl:       return "<<";
1133  case BO_Shr:       return ">>";
1134  case BO_LT:        return "<";
1135  case BO_GT:        return ">";
1136  case BO_LE:        return "<=";
1137  case BO_GE:        return ">=";
1138  case BO_EQ:        return "==";
1139  case BO_NE:        return "!=";
1140  case BO_And:       return "&";
1141  case BO_Xor:       return "^";
1142  case BO_Or:        return "|";
1143  case BO_LAnd:      return "&&";
1144  case BO_LOr:       return "||";
1145  case BO_Assign:    return "=";
1146  case BO_MulAssign: return "*=";
1147  case BO_DivAssign: return "/=";
1148  case BO_RemAssign: return "%=";
1149  case BO_AddAssign: return "+=";
1150  case BO_SubAssign: return "-=";
1151  case BO_ShlAssign: return "<<=";
1152  case BO_ShrAssign: return ">>=";
1153  case BO_AndAssign: return "&=";
1154  case BO_XorAssign: return "^=";
1155  case BO_OrAssign:  return "|=";
1156  case BO_Comma:     return ",";
1157  }
1158
1159  return "";
1160}
1161
1162BinaryOperatorKind
1163BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1164  switch (OO) {
1165  default: assert(false && "Not an overloadable binary operator");
1166  case OO_Plus: return BO_Add;
1167  case OO_Minus: return BO_Sub;
1168  case OO_Star: return BO_Mul;
1169  case OO_Slash: return BO_Div;
1170  case OO_Percent: return BO_Rem;
1171  case OO_Caret: return BO_Xor;
1172  case OO_Amp: return BO_And;
1173  case OO_Pipe: return BO_Or;
1174  case OO_Equal: return BO_Assign;
1175  case OO_Less: return BO_LT;
1176  case OO_Greater: return BO_GT;
1177  case OO_PlusEqual: return BO_AddAssign;
1178  case OO_MinusEqual: return BO_SubAssign;
1179  case OO_StarEqual: return BO_MulAssign;
1180  case OO_SlashEqual: return BO_DivAssign;
1181  case OO_PercentEqual: return BO_RemAssign;
1182  case OO_CaretEqual: return BO_XorAssign;
1183  case OO_AmpEqual: return BO_AndAssign;
1184  case OO_PipeEqual: return BO_OrAssign;
1185  case OO_LessLess: return BO_Shl;
1186  case OO_GreaterGreater: return BO_Shr;
1187  case OO_LessLessEqual: return BO_ShlAssign;
1188  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1189  case OO_EqualEqual: return BO_EQ;
1190  case OO_ExclaimEqual: return BO_NE;
1191  case OO_LessEqual: return BO_LE;
1192  case OO_GreaterEqual: return BO_GE;
1193  case OO_AmpAmp: return BO_LAnd;
1194  case OO_PipePipe: return BO_LOr;
1195  case OO_Comma: return BO_Comma;
1196  case OO_ArrowStar: return BO_PtrMemI;
1197  }
1198}
1199
1200OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1201  static const OverloadedOperatorKind OverOps[] = {
1202    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1203    OO_Star, OO_Slash, OO_Percent,
1204    OO_Plus, OO_Minus,
1205    OO_LessLess, OO_GreaterGreater,
1206    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1207    OO_EqualEqual, OO_ExclaimEqual,
1208    OO_Amp,
1209    OO_Caret,
1210    OO_Pipe,
1211    OO_AmpAmp,
1212    OO_PipePipe,
1213    OO_Equal, OO_StarEqual,
1214    OO_SlashEqual, OO_PercentEqual,
1215    OO_PlusEqual, OO_MinusEqual,
1216    OO_LessLessEqual, OO_GreaterGreaterEqual,
1217    OO_AmpEqual, OO_CaretEqual,
1218    OO_PipeEqual,
1219    OO_Comma
1220  };
1221  return OverOps[Opc];
1222}
1223
1224InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1225                           Expr **initExprs, unsigned numInits,
1226                           SourceLocation rbraceloc)
1227  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1228         false),
1229    InitExprs(C, numInits),
1230    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1231    UnionFieldInit(0), HadArrayRangeDesignator(false)
1232{
1233  for (unsigned I = 0; I != numInits; ++I) {
1234    if (initExprs[I]->isTypeDependent())
1235      ExprBits.TypeDependent = true;
1236    if (initExprs[I]->isValueDependent())
1237      ExprBits.ValueDependent = true;
1238    if (initExprs[I]->containsUnexpandedParameterPack())
1239      ExprBits.ContainsUnexpandedParameterPack = true;
1240  }
1241
1242  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1243}
1244
1245void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1246  if (NumInits > InitExprs.size())
1247    InitExprs.reserve(C, NumInits);
1248}
1249
1250void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1251  InitExprs.resize(C, NumInits, 0);
1252}
1253
1254Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1255  if (Init >= InitExprs.size()) {
1256    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1257    InitExprs.back() = expr;
1258    return 0;
1259  }
1260
1261  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1262  InitExprs[Init] = expr;
1263  return Result;
1264}
1265
1266SourceRange InitListExpr::getSourceRange() const {
1267  if (SyntacticForm)
1268    return SyntacticForm->getSourceRange();
1269  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1270  if (Beg.isInvalid()) {
1271    // Find the first non-null initializer.
1272    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1273                                     E = InitExprs.end();
1274      I != E; ++I) {
1275      if (Stmt *S = *I) {
1276        Beg = S->getLocStart();
1277        break;
1278      }
1279    }
1280  }
1281  if (End.isInvalid()) {
1282    // Find the first non-null initializer from the end.
1283    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1284                                             E = InitExprs.rend();
1285      I != E; ++I) {
1286      if (Stmt *S = *I) {
1287        End = S->getSourceRange().getEnd();
1288        break;
1289      }
1290    }
1291  }
1292  return SourceRange(Beg, End);
1293}
1294
1295/// getFunctionType - Return the underlying function type for this block.
1296///
1297const FunctionType *BlockExpr::getFunctionType() const {
1298  return getType()->getAs<BlockPointerType>()->
1299                    getPointeeType()->getAs<FunctionType>();
1300}
1301
1302SourceLocation BlockExpr::getCaretLocation() const {
1303  return TheBlock->getCaretLocation();
1304}
1305const Stmt *BlockExpr::getBody() const {
1306  return TheBlock->getBody();
1307}
1308Stmt *BlockExpr::getBody() {
1309  return TheBlock->getBody();
1310}
1311
1312
1313//===----------------------------------------------------------------------===//
1314// Generic Expression Routines
1315//===----------------------------------------------------------------------===//
1316
1317/// isUnusedResultAWarning - Return true if this immediate expression should
1318/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1319/// with location to warn on and the source range[s] to report with the
1320/// warning.
1321bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1322                                  SourceRange &R2, ASTContext &Ctx) const {
1323  // Don't warn if the expr is type dependent. The type could end up
1324  // instantiating to void.
1325  if (isTypeDependent())
1326    return false;
1327
1328  switch (getStmtClass()) {
1329  default:
1330    if (getType()->isVoidType())
1331      return false;
1332    Loc = getExprLoc();
1333    R1 = getSourceRange();
1334    return true;
1335  case ParenExprClass:
1336    return cast<ParenExpr>(this)->getSubExpr()->
1337      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1338  case UnaryOperatorClass: {
1339    const UnaryOperator *UO = cast<UnaryOperator>(this);
1340
1341    switch (UO->getOpcode()) {
1342    default: break;
1343    case UO_PostInc:
1344    case UO_PostDec:
1345    case UO_PreInc:
1346    case UO_PreDec:                 // ++/--
1347      return false;  // Not a warning.
1348    case UO_Deref:
1349      // Dereferencing a volatile pointer is a side-effect.
1350      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1351        return false;
1352      break;
1353    case UO_Real:
1354    case UO_Imag:
1355      // accessing a piece of a volatile complex is a side-effect.
1356      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1357          .isVolatileQualified())
1358        return false;
1359      break;
1360    case UO_Extension:
1361      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1362    }
1363    Loc = UO->getOperatorLoc();
1364    R1 = UO->getSubExpr()->getSourceRange();
1365    return true;
1366  }
1367  case BinaryOperatorClass: {
1368    const BinaryOperator *BO = cast<BinaryOperator>(this);
1369    switch (BO->getOpcode()) {
1370      default:
1371        break;
1372      // Consider the RHS of comma for side effects. LHS was checked by
1373      // Sema::CheckCommaOperands.
1374      case BO_Comma:
1375        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1376        // lvalue-ness) of an assignment written in a macro.
1377        if (IntegerLiteral *IE =
1378              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1379          if (IE->getValue() == 0)
1380            return false;
1381        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1382      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1383      case BO_LAnd:
1384      case BO_LOr:
1385        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1386            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1387          return false;
1388        break;
1389    }
1390    if (BO->isAssignmentOp())
1391      return false;
1392    Loc = BO->getOperatorLoc();
1393    R1 = BO->getLHS()->getSourceRange();
1394    R2 = BO->getRHS()->getSourceRange();
1395    return true;
1396  }
1397  case CompoundAssignOperatorClass:
1398  case VAArgExprClass:
1399    return false;
1400
1401  case ConditionalOperatorClass: {
1402    // The condition must be evaluated, but if either the LHS or RHS is a
1403    // warning, warn about them.
1404    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1405    if (Exp->getLHS() &&
1406        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1407      return true;
1408    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1409  }
1410
1411  case MemberExprClass:
1412    // If the base pointer or element is to a volatile pointer/field, accessing
1413    // it is a side effect.
1414    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1415      return false;
1416    Loc = cast<MemberExpr>(this)->getMemberLoc();
1417    R1 = SourceRange(Loc, Loc);
1418    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1419    return true;
1420
1421  case ArraySubscriptExprClass:
1422    // If the base pointer or element is to a volatile pointer/field, accessing
1423    // it is a side effect.
1424    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1425      return false;
1426    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1427    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1428    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1429    return true;
1430
1431  case CallExprClass:
1432  case CXXOperatorCallExprClass:
1433  case CXXMemberCallExprClass: {
1434    // If this is a direct call, get the callee.
1435    const CallExpr *CE = cast<CallExpr>(this);
1436    if (const Decl *FD = CE->getCalleeDecl()) {
1437      // If the callee has attribute pure, const, or warn_unused_result, warn
1438      // about it. void foo() { strlen("bar"); } should warn.
1439      //
1440      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1441      // updated to match for QoI.
1442      if (FD->getAttr<WarnUnusedResultAttr>() ||
1443          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1444        Loc = CE->getCallee()->getLocStart();
1445        R1 = CE->getCallee()->getSourceRange();
1446
1447        if (unsigned NumArgs = CE->getNumArgs())
1448          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1449                           CE->getArg(NumArgs-1)->getLocEnd());
1450        return true;
1451      }
1452    }
1453    return false;
1454  }
1455
1456  case CXXTemporaryObjectExprClass:
1457  case CXXConstructExprClass:
1458    return false;
1459
1460  case ObjCMessageExprClass: {
1461    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1462    const ObjCMethodDecl *MD = ME->getMethodDecl();
1463    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1464      Loc = getExprLoc();
1465      return true;
1466    }
1467    return false;
1468  }
1469
1470  case ObjCPropertyRefExprClass:
1471    Loc = getExprLoc();
1472    R1 = getSourceRange();
1473    return true;
1474
1475  case StmtExprClass: {
1476    // Statement exprs don't logically have side effects themselves, but are
1477    // sometimes used in macros in ways that give them a type that is unused.
1478    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1479    // however, if the result of the stmt expr is dead, we don't want to emit a
1480    // warning.
1481    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1482    if (!CS->body_empty()) {
1483      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1484        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1485      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1486        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1487          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1488    }
1489
1490    if (getType()->isVoidType())
1491      return false;
1492    Loc = cast<StmtExpr>(this)->getLParenLoc();
1493    R1 = getSourceRange();
1494    return true;
1495  }
1496  case CStyleCastExprClass:
1497    // If this is an explicit cast to void, allow it.  People do this when they
1498    // think they know what they're doing :).
1499    if (getType()->isVoidType())
1500      return false;
1501    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1502    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1503    return true;
1504  case CXXFunctionalCastExprClass: {
1505    if (getType()->isVoidType())
1506      return false;
1507    const CastExpr *CE = cast<CastExpr>(this);
1508
1509    // If this is a cast to void or a constructor conversion, check the operand.
1510    // Otherwise, the result of the cast is unused.
1511    if (CE->getCastKind() == CK_ToVoid ||
1512        CE->getCastKind() == CK_ConstructorConversion)
1513      return (cast<CastExpr>(this)->getSubExpr()
1514              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1515    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1516    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1517    return true;
1518  }
1519
1520  case ImplicitCastExprClass:
1521    // Check the operand, since implicit casts are inserted by Sema
1522    return (cast<ImplicitCastExpr>(this)
1523            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1524
1525  case CXXDefaultArgExprClass:
1526    return (cast<CXXDefaultArgExpr>(this)
1527            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1528
1529  case CXXNewExprClass:
1530    // FIXME: In theory, there might be new expressions that don't have side
1531    // effects (e.g. a placement new with an uninitialized POD).
1532  case CXXDeleteExprClass:
1533    return false;
1534  case CXXBindTemporaryExprClass:
1535    return (cast<CXXBindTemporaryExpr>(this)
1536            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1537  case ExprWithCleanupsClass:
1538    return (cast<ExprWithCleanups>(this)
1539            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1540  }
1541}
1542
1543/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1544/// returns true, if it is; false otherwise.
1545bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1546  switch (getStmtClass()) {
1547  default:
1548    return false;
1549  case ObjCIvarRefExprClass:
1550    return true;
1551  case Expr::UnaryOperatorClass:
1552    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1553  case ParenExprClass:
1554    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1555  case ImplicitCastExprClass:
1556    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1557  case CStyleCastExprClass:
1558    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1559  case DeclRefExprClass: {
1560    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1561    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1562      if (VD->hasGlobalStorage())
1563        return true;
1564      QualType T = VD->getType();
1565      // dereferencing to a  pointer is always a gc'able candidate,
1566      // unless it is __weak.
1567      return T->isPointerType() &&
1568             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1569    }
1570    return false;
1571  }
1572  case MemberExprClass: {
1573    const MemberExpr *M = cast<MemberExpr>(this);
1574    return M->getBase()->isOBJCGCCandidate(Ctx);
1575  }
1576  case ArraySubscriptExprClass:
1577    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1578  }
1579}
1580
1581bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1582  if (isTypeDependent())
1583    return false;
1584  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1585}
1586
1587static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1588                                          Expr::CanThrowResult CT2) {
1589  // CanThrowResult constants are ordered so that the maximum is the correct
1590  // merge result.
1591  return CT1 > CT2 ? CT1 : CT2;
1592}
1593
1594static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1595  Expr *E = const_cast<Expr*>(CE);
1596  Expr::CanThrowResult R = Expr::CT_Cannot;
1597  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1598    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1599  }
1600  return R;
1601}
1602
1603static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1604                                           bool NullThrows = true) {
1605  if (!D)
1606    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1607
1608  // See if we can get a function type from the decl somehow.
1609  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1610  if (!VD) // If we have no clue what we're calling, assume the worst.
1611    return Expr::CT_Can;
1612
1613  // As an extension, we assume that __attribute__((nothrow)) functions don't
1614  // throw.
1615  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1616    return Expr::CT_Cannot;
1617
1618  QualType T = VD->getType();
1619  const FunctionProtoType *FT;
1620  if ((FT = T->getAs<FunctionProtoType>())) {
1621  } else if (const PointerType *PT = T->getAs<PointerType>())
1622    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1623  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1624    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1625  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1626    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1627  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1628    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1629
1630  if (!FT)
1631    return Expr::CT_Can;
1632
1633  return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1634}
1635
1636static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1637  if (DC->isTypeDependent())
1638    return Expr::CT_Dependent;
1639
1640  if (!DC->getTypeAsWritten()->isReferenceType())
1641    return Expr::CT_Cannot;
1642
1643  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1644}
1645
1646static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1647                                           const CXXTypeidExpr *DC) {
1648  if (DC->isTypeOperand())
1649    return Expr::CT_Cannot;
1650
1651  Expr *Op = DC->getExprOperand();
1652  if (Op->isTypeDependent())
1653    return Expr::CT_Dependent;
1654
1655  const RecordType *RT = Op->getType()->getAs<RecordType>();
1656  if (!RT)
1657    return Expr::CT_Cannot;
1658
1659  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1660    return Expr::CT_Cannot;
1661
1662  if (Op->Classify(C).isPRValue())
1663    return Expr::CT_Cannot;
1664
1665  return Expr::CT_Can;
1666}
1667
1668Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1669  // C++ [expr.unary.noexcept]p3:
1670  //   [Can throw] if in a potentially-evaluated context the expression would
1671  //   contain:
1672  switch (getStmtClass()) {
1673  case CXXThrowExprClass:
1674    //   - a potentially evaluated throw-expression
1675    return CT_Can;
1676
1677  case CXXDynamicCastExprClass: {
1678    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1679    //     where T is a reference type, that requires a run-time check
1680    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1681    if (CT == CT_Can)
1682      return CT;
1683    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1684  }
1685
1686  case CXXTypeidExprClass:
1687    //   - a potentially evaluated typeid expression applied to a glvalue
1688    //     expression whose type is a polymorphic class type
1689    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1690
1691    //   - a potentially evaluated call to a function, member function, function
1692    //     pointer, or member function pointer that does not have a non-throwing
1693    //     exception-specification
1694  case CallExprClass:
1695  case CXXOperatorCallExprClass:
1696  case CXXMemberCallExprClass: {
1697    CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1698    if (CT == CT_Can)
1699      return CT;
1700    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1701  }
1702
1703  case CXXConstructExprClass:
1704  case CXXTemporaryObjectExprClass: {
1705    CanThrowResult CT = CanCalleeThrow(
1706        cast<CXXConstructExpr>(this)->getConstructor());
1707    if (CT == CT_Can)
1708      return CT;
1709    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1710  }
1711
1712  case CXXNewExprClass: {
1713    CanThrowResult CT = MergeCanThrow(
1714        CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1715        CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1716                       /*NullThrows*/false));
1717    if (CT == CT_Can)
1718      return CT;
1719    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1720  }
1721
1722  case CXXDeleteExprClass: {
1723    CanThrowResult CT = CanCalleeThrow(
1724        cast<CXXDeleteExpr>(this)->getOperatorDelete());
1725    if (CT == CT_Can)
1726      return CT;
1727    const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1728    // Unwrap exactly one implicit cast, which converts all pointers to void*.
1729    if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1730      Arg = Cast->getSubExpr();
1731    if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1732      if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1733        CanThrowResult CT2 = CanCalleeThrow(
1734            cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1735        if (CT2 == CT_Can)
1736          return CT2;
1737        CT = MergeCanThrow(CT, CT2);
1738      }
1739    }
1740    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1741  }
1742
1743  case CXXBindTemporaryExprClass: {
1744    // The bound temporary has to be destroyed again, which might throw.
1745    CanThrowResult CT = CanCalleeThrow(
1746      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1747    if (CT == CT_Can)
1748      return CT;
1749    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1750  }
1751
1752    // ObjC message sends are like function calls, but never have exception
1753    // specs.
1754  case ObjCMessageExprClass:
1755  case ObjCPropertyRefExprClass:
1756    return CT_Can;
1757
1758    // Many other things have subexpressions, so we have to test those.
1759    // Some are simple:
1760  case ParenExprClass:
1761  case MemberExprClass:
1762  case CXXReinterpretCastExprClass:
1763  case CXXConstCastExprClass:
1764  case ConditionalOperatorClass:
1765  case CompoundLiteralExprClass:
1766  case ExtVectorElementExprClass:
1767  case InitListExprClass:
1768  case DesignatedInitExprClass:
1769  case ParenListExprClass:
1770  case VAArgExprClass:
1771  case CXXDefaultArgExprClass:
1772  case ExprWithCleanupsClass:
1773  case ObjCIvarRefExprClass:
1774  case ObjCIsaExprClass:
1775  case ShuffleVectorExprClass:
1776    return CanSubExprsThrow(C, this);
1777
1778    // Some might be dependent for other reasons.
1779  case UnaryOperatorClass:
1780  case ArraySubscriptExprClass:
1781  case ImplicitCastExprClass:
1782  case CStyleCastExprClass:
1783  case CXXStaticCastExprClass:
1784  case CXXFunctionalCastExprClass:
1785  case BinaryOperatorClass:
1786  case CompoundAssignOperatorClass: {
1787    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1788    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1789  }
1790
1791    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1792  case StmtExprClass:
1793    return CT_Can;
1794
1795  case ChooseExprClass:
1796    if (isTypeDependent() || isValueDependent())
1797      return CT_Dependent;
1798    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1799
1800    // Some expressions are always dependent.
1801  case DependentScopeDeclRefExprClass:
1802  case CXXUnresolvedConstructExprClass:
1803  case CXXDependentScopeMemberExprClass:
1804    return CT_Dependent;
1805
1806  default:
1807    // All other expressions don't have subexpressions, or else they are
1808    // unevaluated.
1809    return CT_Cannot;
1810  }
1811}
1812
1813Expr* Expr::IgnoreParens() {
1814  Expr* E = this;
1815  while (true) {
1816    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1817      E = P->getSubExpr();
1818      continue;
1819    }
1820    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1821      if (P->getOpcode() == UO_Extension) {
1822        E = P->getSubExpr();
1823        continue;
1824      }
1825    }
1826    return E;
1827  }
1828}
1829
1830/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1831/// or CastExprs or ImplicitCastExprs, returning their operand.
1832Expr *Expr::IgnoreParenCasts() {
1833  Expr *E = this;
1834  while (true) {
1835    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1836      E = P->getSubExpr();
1837      continue;
1838    }
1839    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1840      E = P->getSubExpr();
1841      continue;
1842    }
1843    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1844      if (P->getOpcode() == UO_Extension) {
1845        E = P->getSubExpr();
1846        continue;
1847      }
1848    }
1849    return E;
1850  }
1851}
1852
1853/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
1854/// casts.  This is intended purely as a temporary workaround for code
1855/// that hasn't yet been rewritten to do the right thing about those
1856/// casts, and may disappear along with the last internal use.
1857Expr *Expr::IgnoreParenLValueCasts() {
1858  Expr *E = this;
1859  while (true) {
1860    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1861      E = P->getSubExpr();
1862      continue;
1863    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1864      if (P->getCastKind() == CK_LValueToRValue) {
1865        E = P->getSubExpr();
1866        continue;
1867      }
1868    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1869      if (P->getOpcode() == UO_Extension) {
1870        E = P->getSubExpr();
1871        continue;
1872      }
1873    }
1874    break;
1875  }
1876  return E;
1877}
1878
1879Expr *Expr::IgnoreParenImpCasts() {
1880  Expr *E = this;
1881  while (true) {
1882    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1883      E = P->getSubExpr();
1884      continue;
1885    }
1886    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1887      E = P->getSubExpr();
1888      continue;
1889    }
1890    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1891      if (P->getOpcode() == UO_Extension) {
1892        E = P->getSubExpr();
1893        continue;
1894      }
1895    }
1896    return E;
1897  }
1898}
1899
1900/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1901/// value (including ptr->int casts of the same size).  Strip off any
1902/// ParenExpr or CastExprs, returning their operand.
1903Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1904  Expr *E = this;
1905  while (true) {
1906    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1907      E = P->getSubExpr();
1908      continue;
1909    }
1910
1911    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1912      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1913      // ptr<->int casts of the same width.  We also ignore all identity casts.
1914      Expr *SE = P->getSubExpr();
1915
1916      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1917        E = SE;
1918        continue;
1919      }
1920
1921      if ((E->getType()->isPointerType() ||
1922           E->getType()->isIntegralType(Ctx)) &&
1923          (SE->getType()->isPointerType() ||
1924           SE->getType()->isIntegralType(Ctx)) &&
1925          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1926        E = SE;
1927        continue;
1928      }
1929    }
1930
1931    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1932      if (P->getOpcode() == UO_Extension) {
1933        E = P->getSubExpr();
1934        continue;
1935      }
1936    }
1937
1938    return E;
1939  }
1940}
1941
1942bool Expr::isDefaultArgument() const {
1943  const Expr *E = this;
1944  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1945    E = ICE->getSubExprAsWritten();
1946
1947  return isa<CXXDefaultArgExpr>(E);
1948}
1949
1950/// \brief Skip over any no-op casts and any temporary-binding
1951/// expressions.
1952static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
1953  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1954    if (ICE->getCastKind() == CK_NoOp)
1955      E = ICE->getSubExpr();
1956    else
1957      break;
1958  }
1959
1960  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1961    E = BE->getSubExpr();
1962
1963  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1964    if (ICE->getCastKind() == CK_NoOp)
1965      E = ICE->getSubExpr();
1966    else
1967      break;
1968  }
1969
1970  return E->IgnoreParens();
1971}
1972
1973/// isTemporaryObject - Determines if this expression produces a
1974/// temporary of the given class type.
1975bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1976  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1977    return false;
1978
1979  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
1980
1981  // Temporaries are by definition pr-values of class type.
1982  if (!E->Classify(C).isPRValue()) {
1983    // In this context, property reference is a message call and is pr-value.
1984    if (!isa<ObjCPropertyRefExpr>(E))
1985      return false;
1986  }
1987
1988  // Black-list a few cases which yield pr-values of class type that don't
1989  // refer to temporaries of that type:
1990
1991  // - implicit derived-to-base conversions
1992  if (isa<ImplicitCastExpr>(E)) {
1993    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
1994    case CK_DerivedToBase:
1995    case CK_UncheckedDerivedToBase:
1996      return false;
1997    default:
1998      break;
1999    }
2000  }
2001
2002  // - member expressions (all)
2003  if (isa<MemberExpr>(E))
2004    return false;
2005
2006  // - opaque values (all)
2007  if (isa<OpaqueValueExpr>(E))
2008    return false;
2009
2010  return true;
2011}
2012
2013/// hasAnyTypeDependentArguments - Determines if any of the expressions
2014/// in Exprs is type-dependent.
2015bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
2016  for (unsigned I = 0; I < NumExprs; ++I)
2017    if (Exprs[I]->isTypeDependent())
2018      return true;
2019
2020  return false;
2021}
2022
2023/// hasAnyValueDependentArguments - Determines if any of the expressions
2024/// in Exprs is value-dependent.
2025bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
2026  for (unsigned I = 0; I < NumExprs; ++I)
2027    if (Exprs[I]->isValueDependent())
2028      return true;
2029
2030  return false;
2031}
2032
2033bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2034  // This function is attempting whether an expression is an initializer
2035  // which can be evaluated at compile-time.  isEvaluatable handles most
2036  // of the cases, but it can't deal with some initializer-specific
2037  // expressions, and it can't deal with aggregates; we deal with those here,
2038  // and fall back to isEvaluatable for the other cases.
2039
2040  // If we ever capture reference-binding directly in the AST, we can
2041  // kill the second parameter.
2042
2043  if (IsForRef) {
2044    EvalResult Result;
2045    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2046  }
2047
2048  switch (getStmtClass()) {
2049  default: break;
2050  case StringLiteralClass:
2051  case ObjCStringLiteralClass:
2052  case ObjCEncodeExprClass:
2053    return true;
2054  case CXXTemporaryObjectExprClass:
2055  case CXXConstructExprClass: {
2056    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2057
2058    // Only if it's
2059    // 1) an application of the trivial default constructor or
2060    if (!CE->getConstructor()->isTrivial()) return false;
2061    if (!CE->getNumArgs()) return true;
2062
2063    // 2) an elidable trivial copy construction of an operand which is
2064    //    itself a constant initializer.  Note that we consider the
2065    //    operand on its own, *not* as a reference binding.
2066    return CE->isElidable() &&
2067           CE->getArg(0)->isConstantInitializer(Ctx, false);
2068  }
2069  case CompoundLiteralExprClass: {
2070    // This handles gcc's extension that allows global initializers like
2071    // "struct x {int x;} x = (struct x) {};".
2072    // FIXME: This accepts other cases it shouldn't!
2073    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2074    return Exp->isConstantInitializer(Ctx, false);
2075  }
2076  case InitListExprClass: {
2077    // FIXME: This doesn't deal with fields with reference types correctly.
2078    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2079    // to bitfields.
2080    const InitListExpr *Exp = cast<InitListExpr>(this);
2081    unsigned numInits = Exp->getNumInits();
2082    for (unsigned i = 0; i < numInits; i++) {
2083      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2084        return false;
2085    }
2086    return true;
2087  }
2088  case ImplicitValueInitExprClass:
2089    return true;
2090  case ParenExprClass:
2091    return cast<ParenExpr>(this)->getSubExpr()
2092      ->isConstantInitializer(Ctx, IsForRef);
2093  case ChooseExprClass:
2094    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2095      ->isConstantInitializer(Ctx, IsForRef);
2096  case UnaryOperatorClass: {
2097    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2098    if (Exp->getOpcode() == UO_Extension)
2099      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2100    break;
2101  }
2102  case BinaryOperatorClass: {
2103    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
2104    // but this handles the common case.
2105    const BinaryOperator *Exp = cast<BinaryOperator>(this);
2106    if (Exp->getOpcode() == BO_Sub &&
2107        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
2108        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
2109      return true;
2110    break;
2111  }
2112  case CXXFunctionalCastExprClass:
2113  case CXXStaticCastExprClass:
2114  case ImplicitCastExprClass:
2115  case CStyleCastExprClass:
2116    // Handle casts with a destination that's a struct or union; this
2117    // deals with both the gcc no-op struct cast extension and the
2118    // cast-to-union extension.
2119    if (getType()->isRecordType())
2120      return cast<CastExpr>(this)->getSubExpr()
2121        ->isConstantInitializer(Ctx, false);
2122
2123    // Integer->integer casts can be handled here, which is important for
2124    // things like (int)(&&x-&&y).  Scary but true.
2125    if (getType()->isIntegerType() &&
2126        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
2127      return cast<CastExpr>(this)->getSubExpr()
2128        ->isConstantInitializer(Ctx, false);
2129
2130    break;
2131  }
2132  return isEvaluatable(Ctx);
2133}
2134
2135/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2136/// pointer constant or not, as well as the specific kind of constant detected.
2137/// Null pointer constants can be integer constant expressions with the
2138/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2139/// (a GNU extension).
2140Expr::NullPointerConstantKind
2141Expr::isNullPointerConstant(ASTContext &Ctx,
2142                            NullPointerConstantValueDependence NPC) const {
2143  if (isValueDependent()) {
2144    switch (NPC) {
2145    case NPC_NeverValueDependent:
2146      assert(false && "Unexpected value dependent expression!");
2147      // If the unthinkable happens, fall through to the safest alternative.
2148
2149    case NPC_ValueDependentIsNull:
2150      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2151        return NPCK_ZeroInteger;
2152      else
2153        return NPCK_NotNull;
2154
2155    case NPC_ValueDependentIsNotNull:
2156      return NPCK_NotNull;
2157    }
2158  }
2159
2160  // Strip off a cast to void*, if it exists. Except in C++.
2161  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2162    if (!Ctx.getLangOptions().CPlusPlus) {
2163      // Check that it is a cast to void*.
2164      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2165        QualType Pointee = PT->getPointeeType();
2166        if (!Pointee.hasQualifiers() &&
2167            Pointee->isVoidType() &&                              // to void*
2168            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2169          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2170      }
2171    }
2172  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2173    // Ignore the ImplicitCastExpr type entirely.
2174    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2175  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2176    // Accept ((void*)0) as a null pointer constant, as many other
2177    // implementations do.
2178    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2179  } else if (const CXXDefaultArgExpr *DefaultArg
2180               = dyn_cast<CXXDefaultArgExpr>(this)) {
2181    // See through default argument expressions
2182    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2183  } else if (isa<GNUNullExpr>(this)) {
2184    // The GNU __null extension is always a null pointer constant.
2185    return NPCK_GNUNull;
2186  }
2187
2188  // C++0x nullptr_t is always a null pointer constant.
2189  if (getType()->isNullPtrType())
2190    return NPCK_CXX0X_nullptr;
2191
2192  if (const RecordType *UT = getType()->getAsUnionType())
2193    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2194      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2195        const Expr *InitExpr = CLE->getInitializer();
2196        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2197          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2198      }
2199  // This expression must be an integer type.
2200  if (!getType()->isIntegerType() ||
2201      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2202    return NPCK_NotNull;
2203
2204  // If we have an integer constant expression, we need to *evaluate* it and
2205  // test for the value 0.
2206  llvm::APSInt Result;
2207  bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
2208
2209  return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
2210}
2211
2212/// \brief If this expression is an l-value for an Objective C
2213/// property, find the underlying property reference expression.
2214const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2215  const Expr *E = this;
2216  while (true) {
2217    assert((E->getValueKind() == VK_LValue &&
2218            E->getObjectKind() == OK_ObjCProperty) &&
2219           "expression is not a property reference");
2220    E = E->IgnoreParenCasts();
2221    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2222      if (BO->getOpcode() == BO_Comma) {
2223        E = BO->getRHS();
2224        continue;
2225      }
2226    }
2227
2228    break;
2229  }
2230
2231  return cast<ObjCPropertyRefExpr>(E);
2232}
2233
2234FieldDecl *Expr::getBitField() {
2235  Expr *E = this->IgnoreParens();
2236
2237  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2238    if (ICE->getCastKind() == CK_LValueToRValue ||
2239        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2240      E = ICE->getSubExpr()->IgnoreParens();
2241    else
2242      break;
2243  }
2244
2245  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2246    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2247      if (Field->isBitField())
2248        return Field;
2249
2250  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2251    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2252      if (Field->isBitField())
2253        return Field;
2254
2255  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2256    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2257      return BinOp->getLHS()->getBitField();
2258
2259  return 0;
2260}
2261
2262bool Expr::refersToVectorElement() const {
2263  const Expr *E = this->IgnoreParens();
2264
2265  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2266    if (ICE->getValueKind() != VK_RValue &&
2267        ICE->getCastKind() == CK_NoOp)
2268      E = ICE->getSubExpr()->IgnoreParens();
2269    else
2270      break;
2271  }
2272
2273  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2274    return ASE->getBase()->getType()->isVectorType();
2275
2276  if (isa<ExtVectorElementExpr>(E))
2277    return true;
2278
2279  return false;
2280}
2281
2282/// isArrow - Return true if the base expression is a pointer to vector,
2283/// return false if the base expression is a vector.
2284bool ExtVectorElementExpr::isArrow() const {
2285  return getBase()->getType()->isPointerType();
2286}
2287
2288unsigned ExtVectorElementExpr::getNumElements() const {
2289  if (const VectorType *VT = getType()->getAs<VectorType>())
2290    return VT->getNumElements();
2291  return 1;
2292}
2293
2294/// containsDuplicateElements - Return true if any element access is repeated.
2295bool ExtVectorElementExpr::containsDuplicateElements() const {
2296  // FIXME: Refactor this code to an accessor on the AST node which returns the
2297  // "type" of component access, and share with code below and in Sema.
2298  llvm::StringRef Comp = Accessor->getName();
2299
2300  // Halving swizzles do not contain duplicate elements.
2301  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2302    return false;
2303
2304  // Advance past s-char prefix on hex swizzles.
2305  if (Comp[0] == 's' || Comp[0] == 'S')
2306    Comp = Comp.substr(1);
2307
2308  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2309    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2310        return true;
2311
2312  return false;
2313}
2314
2315/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2316void ExtVectorElementExpr::getEncodedElementAccess(
2317                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2318  llvm::StringRef Comp = Accessor->getName();
2319  if (Comp[0] == 's' || Comp[0] == 'S')
2320    Comp = Comp.substr(1);
2321
2322  bool isHi =   Comp == "hi";
2323  bool isLo =   Comp == "lo";
2324  bool isEven = Comp == "even";
2325  bool isOdd  = Comp == "odd";
2326
2327  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2328    uint64_t Index;
2329
2330    if (isHi)
2331      Index = e + i;
2332    else if (isLo)
2333      Index = i;
2334    else if (isEven)
2335      Index = 2 * i;
2336    else if (isOdd)
2337      Index = 2 * i + 1;
2338    else
2339      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2340
2341    Elts.push_back(Index);
2342  }
2343}
2344
2345ObjCMessageExpr::ObjCMessageExpr(QualType T,
2346                                 ExprValueKind VK,
2347                                 SourceLocation LBracLoc,
2348                                 SourceLocation SuperLoc,
2349                                 bool IsInstanceSuper,
2350                                 QualType SuperType,
2351                                 Selector Sel,
2352                                 SourceLocation SelLoc,
2353                                 ObjCMethodDecl *Method,
2354                                 Expr **Args, unsigned NumArgs,
2355                                 SourceLocation RBracLoc)
2356  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2357         /*TypeDependent=*/false, /*ValueDependent=*/false,
2358         /*ContainsUnexpandedParameterPack=*/false),
2359    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2360    HasMethod(Method != 0), SuperLoc(SuperLoc),
2361    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2362                                                       : Sel.getAsOpaquePtr())),
2363    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2364{
2365  setReceiverPointer(SuperType.getAsOpaquePtr());
2366  if (NumArgs)
2367    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2368}
2369
2370ObjCMessageExpr::ObjCMessageExpr(QualType T,
2371                                 ExprValueKind VK,
2372                                 SourceLocation LBracLoc,
2373                                 TypeSourceInfo *Receiver,
2374                                 Selector Sel,
2375                                 SourceLocation SelLoc,
2376                                 ObjCMethodDecl *Method,
2377                                 Expr **Args, unsigned NumArgs,
2378                                 SourceLocation RBracLoc)
2379  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2380         T->isDependentType(), T->containsUnexpandedParameterPack()),
2381    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2382    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2383                                                       : Sel.getAsOpaquePtr())),
2384    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2385{
2386  setReceiverPointer(Receiver);
2387  Expr **MyArgs = getArgs();
2388  for (unsigned I = 0; I != NumArgs; ++I) {
2389    if (Args[I]->isTypeDependent())
2390      ExprBits.TypeDependent = true;
2391    if (Args[I]->isValueDependent())
2392      ExprBits.ValueDependent = true;
2393    if (Args[I]->containsUnexpandedParameterPack())
2394      ExprBits.ContainsUnexpandedParameterPack = true;
2395
2396    MyArgs[I] = Args[I];
2397  }
2398}
2399
2400ObjCMessageExpr::ObjCMessageExpr(QualType T,
2401                                 ExprValueKind VK,
2402                                 SourceLocation LBracLoc,
2403                                 Expr *Receiver,
2404                                 Selector Sel,
2405                                 SourceLocation SelLoc,
2406                                 ObjCMethodDecl *Method,
2407                                 Expr **Args, unsigned NumArgs,
2408                                 SourceLocation RBracLoc)
2409  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2410         Receiver->isTypeDependent(),
2411         Receiver->containsUnexpandedParameterPack()),
2412    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2413    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2414                                                       : Sel.getAsOpaquePtr())),
2415    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2416{
2417  setReceiverPointer(Receiver);
2418  Expr **MyArgs = getArgs();
2419  for (unsigned I = 0; I != NumArgs; ++I) {
2420    if (Args[I]->isTypeDependent())
2421      ExprBits.TypeDependent = true;
2422    if (Args[I]->isValueDependent())
2423      ExprBits.ValueDependent = true;
2424    if (Args[I]->containsUnexpandedParameterPack())
2425      ExprBits.ContainsUnexpandedParameterPack = true;
2426
2427    MyArgs[I] = Args[I];
2428  }
2429}
2430
2431ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2432                                         ExprValueKind VK,
2433                                         SourceLocation LBracLoc,
2434                                         SourceLocation SuperLoc,
2435                                         bool IsInstanceSuper,
2436                                         QualType SuperType,
2437                                         Selector Sel,
2438                                         SourceLocation SelLoc,
2439                                         ObjCMethodDecl *Method,
2440                                         Expr **Args, unsigned NumArgs,
2441                                         SourceLocation RBracLoc) {
2442  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2443    NumArgs * sizeof(Expr *);
2444  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2445  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2446                                   SuperType, Sel, SelLoc, Method, Args,NumArgs,
2447                                   RBracLoc);
2448}
2449
2450ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2451                                         ExprValueKind VK,
2452                                         SourceLocation LBracLoc,
2453                                         TypeSourceInfo *Receiver,
2454                                         Selector Sel,
2455                                         SourceLocation SelLoc,
2456                                         ObjCMethodDecl *Method,
2457                                         Expr **Args, unsigned NumArgs,
2458                                         SourceLocation RBracLoc) {
2459  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2460    NumArgs * sizeof(Expr *);
2461  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2462  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2463                                   Method, Args, NumArgs, RBracLoc);
2464}
2465
2466ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2467                                         ExprValueKind VK,
2468                                         SourceLocation LBracLoc,
2469                                         Expr *Receiver,
2470                                         Selector Sel,
2471                                         SourceLocation SelLoc,
2472                                         ObjCMethodDecl *Method,
2473                                         Expr **Args, unsigned NumArgs,
2474                                         SourceLocation RBracLoc) {
2475  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2476    NumArgs * sizeof(Expr *);
2477  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2478  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2479                                   Method, Args, NumArgs, RBracLoc);
2480}
2481
2482ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2483                                              unsigned NumArgs) {
2484  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2485    NumArgs * sizeof(Expr *);
2486  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2487  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2488}
2489
2490SourceRange ObjCMessageExpr::getReceiverRange() const {
2491  switch (getReceiverKind()) {
2492  case Instance:
2493    return getInstanceReceiver()->getSourceRange();
2494
2495  case Class:
2496    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2497
2498  case SuperInstance:
2499  case SuperClass:
2500    return getSuperLoc();
2501  }
2502
2503  return SourceLocation();
2504}
2505
2506Selector ObjCMessageExpr::getSelector() const {
2507  if (HasMethod)
2508    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2509                                                               ->getSelector();
2510  return Selector(SelectorOrMethod);
2511}
2512
2513ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2514  switch (getReceiverKind()) {
2515  case Instance:
2516    if (const ObjCObjectPointerType *Ptr
2517          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2518      return Ptr->getInterfaceDecl();
2519    break;
2520
2521  case Class:
2522    if (const ObjCObjectType *Ty
2523          = getClassReceiver()->getAs<ObjCObjectType>())
2524      return Ty->getInterface();
2525    break;
2526
2527  case SuperInstance:
2528    if (const ObjCObjectPointerType *Ptr
2529          = getSuperType()->getAs<ObjCObjectPointerType>())
2530      return Ptr->getInterfaceDecl();
2531    break;
2532
2533  case SuperClass:
2534    if (const ObjCObjectType *Iface
2535          = getSuperType()->getAs<ObjCObjectType>())
2536      return Iface->getInterface();
2537    break;
2538  }
2539
2540  return 0;
2541}
2542
2543bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
2544  return getCond()->EvaluateAsInt(C) != 0;
2545}
2546
2547ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2548                                     QualType Type, SourceLocation BLoc,
2549                                     SourceLocation RP)
2550   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2551          Type->isDependentType(), Type->isDependentType(),
2552          Type->containsUnexpandedParameterPack()),
2553     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
2554{
2555  SubExprs = new (C) Stmt*[nexpr];
2556  for (unsigned i = 0; i < nexpr; i++) {
2557    if (args[i]->isTypeDependent())
2558      ExprBits.TypeDependent = true;
2559    if (args[i]->isValueDependent())
2560      ExprBits.ValueDependent = true;
2561    if (args[i]->containsUnexpandedParameterPack())
2562      ExprBits.ContainsUnexpandedParameterPack = true;
2563
2564    SubExprs[i] = args[i];
2565  }
2566}
2567
2568void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2569                                 unsigned NumExprs) {
2570  if (SubExprs) C.Deallocate(SubExprs);
2571
2572  SubExprs = new (C) Stmt* [NumExprs];
2573  this->NumExprs = NumExprs;
2574  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2575}
2576
2577//===----------------------------------------------------------------------===//
2578//  DesignatedInitExpr
2579//===----------------------------------------------------------------------===//
2580
2581IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2582  assert(Kind == FieldDesignator && "Only valid on a field designator");
2583  if (Field.NameOrField & 0x01)
2584    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2585  else
2586    return getField()->getIdentifier();
2587}
2588
2589DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2590                                       unsigned NumDesignators,
2591                                       const Designator *Designators,
2592                                       SourceLocation EqualOrColonLoc,
2593                                       bool GNUSyntax,
2594                                       Expr **IndexExprs,
2595                                       unsigned NumIndexExprs,
2596                                       Expr *Init)
2597  : Expr(DesignatedInitExprClass, Ty,
2598         Init->getValueKind(), Init->getObjectKind(),
2599         Init->isTypeDependent(), Init->isValueDependent(),
2600         Init->containsUnexpandedParameterPack()),
2601    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2602    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2603  this->Designators = new (C) Designator[NumDesignators];
2604
2605  // Record the initializer itself.
2606  child_range Child = children();
2607  *Child++ = Init;
2608
2609  // Copy the designators and their subexpressions, computing
2610  // value-dependence along the way.
2611  unsigned IndexIdx = 0;
2612  for (unsigned I = 0; I != NumDesignators; ++I) {
2613    this->Designators[I] = Designators[I];
2614
2615    if (this->Designators[I].isArrayDesignator()) {
2616      // Compute type- and value-dependence.
2617      Expr *Index = IndexExprs[IndexIdx];
2618      if (Index->isTypeDependent() || Index->isValueDependent())
2619        ExprBits.ValueDependent = true;
2620
2621      // Propagate unexpanded parameter packs.
2622      if (Index->containsUnexpandedParameterPack())
2623        ExprBits.ContainsUnexpandedParameterPack = true;
2624
2625      // Copy the index expressions into permanent storage.
2626      *Child++ = IndexExprs[IndexIdx++];
2627    } else if (this->Designators[I].isArrayRangeDesignator()) {
2628      // Compute type- and value-dependence.
2629      Expr *Start = IndexExprs[IndexIdx];
2630      Expr *End = IndexExprs[IndexIdx + 1];
2631      if (Start->isTypeDependent() || Start->isValueDependent() ||
2632          End->isTypeDependent() || End->isValueDependent())
2633        ExprBits.ValueDependent = true;
2634
2635      // Propagate unexpanded parameter packs.
2636      if (Start->containsUnexpandedParameterPack() ||
2637          End->containsUnexpandedParameterPack())
2638        ExprBits.ContainsUnexpandedParameterPack = true;
2639
2640      // Copy the start/end expressions into permanent storage.
2641      *Child++ = IndexExprs[IndexIdx++];
2642      *Child++ = IndexExprs[IndexIdx++];
2643    }
2644  }
2645
2646  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2647}
2648
2649DesignatedInitExpr *
2650DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2651                           unsigned NumDesignators,
2652                           Expr **IndexExprs, unsigned NumIndexExprs,
2653                           SourceLocation ColonOrEqualLoc,
2654                           bool UsesColonSyntax, Expr *Init) {
2655  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2656                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2657  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2658                                      ColonOrEqualLoc, UsesColonSyntax,
2659                                      IndexExprs, NumIndexExprs, Init);
2660}
2661
2662DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2663                                                    unsigned NumIndexExprs) {
2664  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2665                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2666  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2667}
2668
2669void DesignatedInitExpr::setDesignators(ASTContext &C,
2670                                        const Designator *Desigs,
2671                                        unsigned NumDesigs) {
2672  Designators = new (C) Designator[NumDesigs];
2673  NumDesignators = NumDesigs;
2674  for (unsigned I = 0; I != NumDesigs; ++I)
2675    Designators[I] = Desigs[I];
2676}
2677
2678SourceRange DesignatedInitExpr::getSourceRange() const {
2679  SourceLocation StartLoc;
2680  Designator &First =
2681    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2682  if (First.isFieldDesignator()) {
2683    if (GNUSyntax)
2684      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2685    else
2686      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2687  } else
2688    StartLoc =
2689      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2690  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2691}
2692
2693Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2694  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2695  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2696  Ptr += sizeof(DesignatedInitExpr);
2697  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2698  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2699}
2700
2701Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2702  assert(D.Kind == Designator::ArrayRangeDesignator &&
2703         "Requires array range designator");
2704  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2705  Ptr += sizeof(DesignatedInitExpr);
2706  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2707  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2708}
2709
2710Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2711  assert(D.Kind == Designator::ArrayRangeDesignator &&
2712         "Requires array range designator");
2713  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2714  Ptr += sizeof(DesignatedInitExpr);
2715  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2716  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2717}
2718
2719/// \brief Replaces the designator at index @p Idx with the series
2720/// of designators in [First, Last).
2721void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2722                                          const Designator *First,
2723                                          const Designator *Last) {
2724  unsigned NumNewDesignators = Last - First;
2725  if (NumNewDesignators == 0) {
2726    std::copy_backward(Designators + Idx + 1,
2727                       Designators + NumDesignators,
2728                       Designators + Idx);
2729    --NumNewDesignators;
2730    return;
2731  } else if (NumNewDesignators == 1) {
2732    Designators[Idx] = *First;
2733    return;
2734  }
2735
2736  Designator *NewDesignators
2737    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2738  std::copy(Designators, Designators + Idx, NewDesignators);
2739  std::copy(First, Last, NewDesignators + Idx);
2740  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2741            NewDesignators + Idx + NumNewDesignators);
2742  Designators = NewDesignators;
2743  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2744}
2745
2746ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2747                             Expr **exprs, unsigned nexprs,
2748                             SourceLocation rparenloc)
2749  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
2750         false, false, false),
2751    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2752
2753  Exprs = new (C) Stmt*[nexprs];
2754  for (unsigned i = 0; i != nexprs; ++i) {
2755    if (exprs[i]->isTypeDependent())
2756      ExprBits.TypeDependent = true;
2757    if (exprs[i]->isValueDependent())
2758      ExprBits.ValueDependent = true;
2759    if (exprs[i]->containsUnexpandedParameterPack())
2760      ExprBits.ContainsUnexpandedParameterPack = true;
2761
2762    Exprs[i] = exprs[i];
2763  }
2764}
2765
2766const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
2767  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
2768    e = ewc->getSubExpr();
2769  e = cast<CXXConstructExpr>(e)->getArg(0);
2770  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2771    e = ice->getSubExpr();
2772  return cast<OpaqueValueExpr>(e);
2773}
2774
2775//===----------------------------------------------------------------------===//
2776//  ExprIterator.
2777//===----------------------------------------------------------------------===//
2778
2779Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2780Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2781Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2782const Expr* ConstExprIterator::operator[](size_t idx) const {
2783  return cast<Expr>(I[idx]);
2784}
2785const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2786const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2787
2788//===----------------------------------------------------------------------===//
2789//  Child Iterators for iterating over subexpressions/substatements
2790//===----------------------------------------------------------------------===//
2791
2792// SizeOfAlignOfExpr
2793Stmt::child_range SizeOfAlignOfExpr::children() {
2794  // If this is of a type and the type is a VLA type (and not a typedef), the
2795  // size expression of the VLA needs to be treated as an executable expression.
2796  // Why isn't this weirdness documented better in StmtIterator?
2797  if (isArgumentType()) {
2798    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
2799                                   getArgumentType().getTypePtr()))
2800      return child_range(child_iterator(T), child_iterator());
2801    return child_range();
2802  }
2803  return child_range(&Argument.Ex, &Argument.Ex + 1);
2804}
2805
2806// ObjCMessageExpr
2807Stmt::child_range ObjCMessageExpr::children() {
2808  Stmt **begin;
2809  if (getReceiverKind() == Instance)
2810    begin = reinterpret_cast<Stmt **>(this + 1);
2811  else
2812    begin = reinterpret_cast<Stmt **>(getArgs());
2813  return child_range(begin,
2814                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
2815}
2816
2817// Blocks
2818BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
2819                                   SourceLocation l, bool ByRef,
2820                                   bool constAdded)
2821  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
2822         d->isParameterPack()),
2823    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
2824{
2825  bool TypeDependent = false;
2826  bool ValueDependent = false;
2827  computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
2828  ExprBits.TypeDependent = TypeDependent;
2829  ExprBits.ValueDependent = ValueDependent;
2830}
2831
2832