Expr.cpp revision 201361
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         ValueDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  if (Qualifier) {
122    NameQualifier *NQ = getNameQualifier();
123    NQ->NNS = Qualifier;
124    NQ->Range = QualifierRange;
125  }
126
127  if (TemplateArgs)
128    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
129
130  computeDependence();
131}
132
133DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
134                                 NestedNameSpecifier *Qualifier,
135                                 SourceRange QualifierRange,
136                                 ValueDecl *D,
137                                 SourceLocation NameLoc,
138                                 QualType T,
139                                 const TemplateArgumentListInfo *TemplateArgs) {
140  std::size_t Size = sizeof(DeclRefExpr);
141  if (Qualifier != 0)
142    Size += sizeof(NameQualifier);
143
144  if (TemplateArgs)
145    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
146
147  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
148  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
149                               TemplateArgs, T);
150}
151
152SourceRange DeclRefExpr::getSourceRange() const {
153  // FIXME: Does not handle multi-token names well, e.g., operator[].
154  SourceRange R(Loc);
155
156  if (hasQualifier())
157    R.setBegin(getQualifierRange().getBegin());
158  if (hasExplicitTemplateArgumentList())
159    R.setEnd(getRAngleLoc());
160  return R;
161}
162
163// FIXME: Maybe this should use DeclPrinter with a special "print predefined
164// expr" policy instead.
165std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
166                                        const Decl *CurrentDecl) {
167  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
168    if (IT != PrettyFunction)
169      return FD->getNameAsString();
170
171    llvm::SmallString<256> Name;
172    llvm::raw_svector_ostream Out(Name);
173
174    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
175      if (MD->isVirtual())
176        Out << "virtual ";
177      if (MD->isStatic())
178        Out << "static ";
179    }
180
181    PrintingPolicy Policy(Context.getLangOptions());
182    Policy.SuppressTagKind = true;
183
184    std::string Proto = FD->getQualifiedNameAsString(Policy);
185
186    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
187    const FunctionProtoType *FT = 0;
188    if (FD->hasWrittenPrototype())
189      FT = dyn_cast<FunctionProtoType>(AFT);
190
191    Proto += "(";
192    if (FT) {
193      llvm::raw_string_ostream POut(Proto);
194      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
195        if (i) POut << ", ";
196        std::string Param;
197        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
198        POut << Param;
199      }
200
201      if (FT->isVariadic()) {
202        if (FD->getNumParams()) POut << ", ";
203        POut << "...";
204      }
205    }
206    Proto += ")";
207
208    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
209      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
210      if (ThisQuals.hasConst())
211        Proto += " const";
212      if (ThisQuals.hasVolatile())
213        Proto += " volatile";
214    }
215
216    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
217      AFT->getResultType().getAsStringInternal(Proto, Policy);
218
219    Out << Proto;
220
221    Out.flush();
222    return Name.str().str();
223  }
224  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
225    llvm::SmallString<256> Name;
226    llvm::raw_svector_ostream Out(Name);
227    Out << (MD->isInstanceMethod() ? '-' : '+');
228    Out << '[';
229    Out << MD->getClassInterface()->getNameAsString();
230    if (const ObjCCategoryImplDecl *CID =
231        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
232      Out << '(';
233      Out <<  CID->getNameAsString();
234      Out <<  ')';
235    }
236    Out <<  ' ';
237    Out << MD->getSelector().getAsString();
238    Out <<  ']';
239
240    Out.flush();
241    return Name.str().str();
242  }
243  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
244    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
245    return "top level";
246  }
247  return "";
248}
249
250/// getValueAsApproximateDouble - This returns the value as an inaccurate
251/// double.  Note that this may cause loss of precision, but is useful for
252/// debugging dumps, etc.
253double FloatingLiteral::getValueAsApproximateDouble() const {
254  llvm::APFloat V = getValue();
255  bool ignored;
256  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
257            &ignored);
258  return V.convertToDouble();
259}
260
261StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
262                                     unsigned ByteLength, bool Wide,
263                                     QualType Ty,
264                                     const SourceLocation *Loc,
265                                     unsigned NumStrs) {
266  // Allocate enough space for the StringLiteral plus an array of locations for
267  // any concatenated string tokens.
268  void *Mem = C.Allocate(sizeof(StringLiteral)+
269                         sizeof(SourceLocation)*(NumStrs-1),
270                         llvm::alignof<StringLiteral>());
271  StringLiteral *SL = new (Mem) StringLiteral(Ty);
272
273  // OPTIMIZE: could allocate this appended to the StringLiteral.
274  char *AStrData = new (C, 1) char[ByteLength];
275  memcpy(AStrData, StrData, ByteLength);
276  SL->StrData = AStrData;
277  SL->ByteLength = ByteLength;
278  SL->IsWide = Wide;
279  SL->TokLocs[0] = Loc[0];
280  SL->NumConcatenated = NumStrs;
281
282  if (NumStrs != 1)
283    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
284  return SL;
285}
286
287StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
288  void *Mem = C.Allocate(sizeof(StringLiteral)+
289                         sizeof(SourceLocation)*(NumStrs-1),
290                         llvm::alignof<StringLiteral>());
291  StringLiteral *SL = new (Mem) StringLiteral(QualType());
292  SL->StrData = 0;
293  SL->ByteLength = 0;
294  SL->NumConcatenated = NumStrs;
295  return SL;
296}
297
298void StringLiteral::DoDestroy(ASTContext &C) {
299  C.Deallocate(const_cast<char*>(StrData));
300  Expr::DoDestroy(C);
301}
302
303void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
304  if (StrData)
305    C.Deallocate(const_cast<char*>(StrData));
306
307  char *AStrData = new (C, 1) char[Str.size()];
308  memcpy(AStrData, Str.data(), Str.size());
309  StrData = AStrData;
310  ByteLength = Str.size();
311}
312
313/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
314/// corresponds to, e.g. "sizeof" or "[pre]++".
315const char *UnaryOperator::getOpcodeStr(Opcode Op) {
316  switch (Op) {
317  default: assert(0 && "Unknown unary operator");
318  case PostInc: return "++";
319  case PostDec: return "--";
320  case PreInc:  return "++";
321  case PreDec:  return "--";
322  case AddrOf:  return "&";
323  case Deref:   return "*";
324  case Plus:    return "+";
325  case Minus:   return "-";
326  case Not:     return "~";
327  case LNot:    return "!";
328  case Real:    return "__real";
329  case Imag:    return "__imag";
330  case Extension: return "__extension__";
331  case OffsetOf: return "__builtin_offsetof";
332  }
333}
334
335UnaryOperator::Opcode
336UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
337  switch (OO) {
338  default: assert(false && "No unary operator for overloaded function");
339  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
340  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
341  case OO_Amp:        return AddrOf;
342  case OO_Star:       return Deref;
343  case OO_Plus:       return Plus;
344  case OO_Minus:      return Minus;
345  case OO_Tilde:      return Not;
346  case OO_Exclaim:    return LNot;
347  }
348}
349
350OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
351  switch (Opc) {
352  case PostInc: case PreInc: return OO_PlusPlus;
353  case PostDec: case PreDec: return OO_MinusMinus;
354  case AddrOf: return OO_Amp;
355  case Deref: return OO_Star;
356  case Plus: return OO_Plus;
357  case Minus: return OO_Minus;
358  case Not: return OO_Tilde;
359  case LNot: return OO_Exclaim;
360  default: return OO_None;
361  }
362}
363
364
365//===----------------------------------------------------------------------===//
366// Postfix Operators.
367//===----------------------------------------------------------------------===//
368
369CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
370                   unsigned numargs, QualType t, SourceLocation rparenloc)
371  : Expr(SC, t,
372         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
373         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
374    NumArgs(numargs) {
375
376  SubExprs = new (C) Stmt*[numargs+1];
377  SubExprs[FN] = fn;
378  for (unsigned i = 0; i != numargs; ++i)
379    SubExprs[i+ARGS_START] = args[i];
380
381  RParenLoc = rparenloc;
382}
383
384CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
385                   QualType t, SourceLocation rparenloc)
386  : Expr(CallExprClass, t,
387         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
388         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
389    NumArgs(numargs) {
390
391  SubExprs = new (C) Stmt*[numargs+1];
392  SubExprs[FN] = fn;
393  for (unsigned i = 0; i != numargs; ++i)
394    SubExprs[i+ARGS_START] = args[i];
395
396  RParenLoc = rparenloc;
397}
398
399CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
400  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
401  SubExprs = new (C) Stmt*[1];
402}
403
404void CallExpr::DoDestroy(ASTContext& C) {
405  DestroyChildren(C);
406  if (SubExprs) C.Deallocate(SubExprs);
407  this->~CallExpr();
408  C.Deallocate(this);
409}
410
411Decl *CallExpr::getCalleeDecl() {
412  Expr *CEE = getCallee()->IgnoreParenCasts();
413  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
414    return DRE->getDecl();
415  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
416    return ME->getMemberDecl();
417
418  return 0;
419}
420
421FunctionDecl *CallExpr::getDirectCallee() {
422  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
423}
424
425/// setNumArgs - This changes the number of arguments present in this call.
426/// Any orphaned expressions are deleted by this, and any new operands are set
427/// to null.
428void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
429  // No change, just return.
430  if (NumArgs == getNumArgs()) return;
431
432  // If shrinking # arguments, just delete the extras and forgot them.
433  if (NumArgs < getNumArgs()) {
434    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
435      getArg(i)->Destroy(C);
436    this->NumArgs = NumArgs;
437    return;
438  }
439
440  // Otherwise, we are growing the # arguments.  New an bigger argument array.
441  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
442  // Copy over args.
443  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
444    NewSubExprs[i] = SubExprs[i];
445  // Null out new args.
446  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
447    NewSubExprs[i] = 0;
448
449  if (SubExprs) C.Deallocate(SubExprs);
450  SubExprs = NewSubExprs;
451  this->NumArgs = NumArgs;
452}
453
454/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
455/// not, return 0.
456unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
457  // All simple function calls (e.g. func()) are implicitly cast to pointer to
458  // function. As a result, we try and obtain the DeclRefExpr from the
459  // ImplicitCastExpr.
460  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
461  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
462    return 0;
463
464  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
465  if (!DRE)
466    return 0;
467
468  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
469  if (!FDecl)
470    return 0;
471
472  if (!FDecl->getIdentifier())
473    return 0;
474
475  return FDecl->getBuiltinID();
476}
477
478QualType CallExpr::getCallReturnType() const {
479  QualType CalleeType = getCallee()->getType();
480  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
481    CalleeType = FnTypePtr->getPointeeType();
482  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
483    CalleeType = BPT->getPointeeType();
484
485  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
486  return FnType->getResultType();
487}
488
489MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
490                       SourceRange qualrange, ValueDecl *memberdecl,
491                       SourceLocation l, const TemplateArgumentListInfo *targs,
492                       QualType ty)
493  : Expr(MemberExprClass, ty,
494         base->isTypeDependent() || (qual && qual->isDependent()),
495         base->isValueDependent() || (qual && qual->isDependent())),
496    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
497    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
498  // Initialize the qualifier, if any.
499  if (HasQualifier) {
500    NameQualifier *NQ = getMemberQualifier();
501    NQ->NNS = qual;
502    NQ->Range = qualrange;
503  }
504
505  // Initialize the explicit template argument list, if any.
506  if (targs)
507    getExplicitTemplateArgumentList()->initializeFrom(*targs);
508}
509
510MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
511                               NestedNameSpecifier *qual,
512                               SourceRange qualrange,
513                               ValueDecl *memberdecl,
514                               SourceLocation l,
515                               const TemplateArgumentListInfo *targs,
516                               QualType ty) {
517  std::size_t Size = sizeof(MemberExpr);
518  if (qual != 0)
519    Size += sizeof(NameQualifier);
520
521  if (targs)
522    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
523
524  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
525  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
526                              targs, ty);
527}
528
529const char *CastExpr::getCastKindName() const {
530  switch (getCastKind()) {
531  case CastExpr::CK_Unknown:
532    return "Unknown";
533  case CastExpr::CK_BitCast:
534    return "BitCast";
535  case CastExpr::CK_NoOp:
536    return "NoOp";
537  case CastExpr::CK_BaseToDerived:
538    return "BaseToDerived";
539  case CastExpr::CK_DerivedToBase:
540    return "DerivedToBase";
541  case CastExpr::CK_Dynamic:
542    return "Dynamic";
543  case CastExpr::CK_ToUnion:
544    return "ToUnion";
545  case CastExpr::CK_ArrayToPointerDecay:
546    return "ArrayToPointerDecay";
547  case CastExpr::CK_FunctionToPointerDecay:
548    return "FunctionToPointerDecay";
549  case CastExpr::CK_NullToMemberPointer:
550    return "NullToMemberPointer";
551  case CastExpr::CK_BaseToDerivedMemberPointer:
552    return "BaseToDerivedMemberPointer";
553  case CastExpr::CK_DerivedToBaseMemberPointer:
554    return "DerivedToBaseMemberPointer";
555  case CastExpr::CK_UserDefinedConversion:
556    return "UserDefinedConversion";
557  case CastExpr::CK_ConstructorConversion:
558    return "ConstructorConversion";
559  case CastExpr::CK_IntegralToPointer:
560    return "IntegralToPointer";
561  case CastExpr::CK_PointerToIntegral:
562    return "PointerToIntegral";
563  case CastExpr::CK_ToVoid:
564    return "ToVoid";
565  case CastExpr::CK_VectorSplat:
566    return "VectorSplat";
567  case CastExpr::CK_IntegralCast:
568    return "IntegralCast";
569  case CastExpr::CK_IntegralToFloating:
570    return "IntegralToFloating";
571  case CastExpr::CK_FloatingToIntegral:
572    return "FloatingToIntegral";
573  case CastExpr::CK_FloatingCast:
574    return "FloatingCast";
575  case CastExpr::CK_MemberPointerToBoolean:
576    return "MemberPointerToBoolean";
577  case CastExpr::CK_AnyPointerToObjCPointerCast:
578    return "AnyPointerToObjCPointerCast";
579  case CastExpr::CK_AnyPointerToBlockPointerCast:
580    return "AnyPointerToBlockPointerCast";
581  }
582
583  assert(0 && "Unhandled cast kind!");
584  return 0;
585}
586
587Expr *CastExpr::getSubExprAsWritten() {
588  Expr *SubExpr = 0;
589  CastExpr *E = this;
590  do {
591    SubExpr = E->getSubExpr();
592
593    // Skip any temporary bindings; they're implicit.
594    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
595      SubExpr = Binder->getSubExpr();
596
597    // Conversions by constructor and conversion functions have a
598    // subexpression describing the call; strip it off.
599    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
600      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
601    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
602      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
603
604    // If the subexpression we're left with is an implicit cast, look
605    // through that, too.
606  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
607
608  return SubExpr;
609}
610
611/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
612/// corresponds to, e.g. "<<=".
613const char *BinaryOperator::getOpcodeStr(Opcode Op) {
614  switch (Op) {
615  case PtrMemD:   return ".*";
616  case PtrMemI:   return "->*";
617  case Mul:       return "*";
618  case Div:       return "/";
619  case Rem:       return "%";
620  case Add:       return "+";
621  case Sub:       return "-";
622  case Shl:       return "<<";
623  case Shr:       return ">>";
624  case LT:        return "<";
625  case GT:        return ">";
626  case LE:        return "<=";
627  case GE:        return ">=";
628  case EQ:        return "==";
629  case NE:        return "!=";
630  case And:       return "&";
631  case Xor:       return "^";
632  case Or:        return "|";
633  case LAnd:      return "&&";
634  case LOr:       return "||";
635  case Assign:    return "=";
636  case MulAssign: return "*=";
637  case DivAssign: return "/=";
638  case RemAssign: return "%=";
639  case AddAssign: return "+=";
640  case SubAssign: return "-=";
641  case ShlAssign: return "<<=";
642  case ShrAssign: return ">>=";
643  case AndAssign: return "&=";
644  case XorAssign: return "^=";
645  case OrAssign:  return "|=";
646  case Comma:     return ",";
647  }
648
649  return "";
650}
651
652BinaryOperator::Opcode
653BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
654  switch (OO) {
655  default: assert(false && "Not an overloadable binary operator");
656  case OO_Plus: return Add;
657  case OO_Minus: return Sub;
658  case OO_Star: return Mul;
659  case OO_Slash: return Div;
660  case OO_Percent: return Rem;
661  case OO_Caret: return Xor;
662  case OO_Amp: return And;
663  case OO_Pipe: return Or;
664  case OO_Equal: return Assign;
665  case OO_Less: return LT;
666  case OO_Greater: return GT;
667  case OO_PlusEqual: return AddAssign;
668  case OO_MinusEqual: return SubAssign;
669  case OO_StarEqual: return MulAssign;
670  case OO_SlashEqual: return DivAssign;
671  case OO_PercentEqual: return RemAssign;
672  case OO_CaretEqual: return XorAssign;
673  case OO_AmpEqual: return AndAssign;
674  case OO_PipeEqual: return OrAssign;
675  case OO_LessLess: return Shl;
676  case OO_GreaterGreater: return Shr;
677  case OO_LessLessEqual: return ShlAssign;
678  case OO_GreaterGreaterEqual: return ShrAssign;
679  case OO_EqualEqual: return EQ;
680  case OO_ExclaimEqual: return NE;
681  case OO_LessEqual: return LE;
682  case OO_GreaterEqual: return GE;
683  case OO_AmpAmp: return LAnd;
684  case OO_PipePipe: return LOr;
685  case OO_Comma: return Comma;
686  case OO_ArrowStar: return PtrMemI;
687  }
688}
689
690OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
691  static const OverloadedOperatorKind OverOps[] = {
692    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
693    OO_Star, OO_Slash, OO_Percent,
694    OO_Plus, OO_Minus,
695    OO_LessLess, OO_GreaterGreater,
696    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
697    OO_EqualEqual, OO_ExclaimEqual,
698    OO_Amp,
699    OO_Caret,
700    OO_Pipe,
701    OO_AmpAmp,
702    OO_PipePipe,
703    OO_Equal, OO_StarEqual,
704    OO_SlashEqual, OO_PercentEqual,
705    OO_PlusEqual, OO_MinusEqual,
706    OO_LessLessEqual, OO_GreaterGreaterEqual,
707    OO_AmpEqual, OO_CaretEqual,
708    OO_PipeEqual,
709    OO_Comma
710  };
711  return OverOps[Opc];
712}
713
714InitListExpr::InitListExpr(SourceLocation lbraceloc,
715                           Expr **initExprs, unsigned numInits,
716                           SourceLocation rbraceloc)
717  : Expr(InitListExprClass, QualType(), false, false),
718    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
719    UnionFieldInit(0), HadArrayRangeDesignator(false)
720{
721  for (unsigned I = 0; I != numInits; ++I) {
722    if (initExprs[I]->isTypeDependent())
723      TypeDependent = true;
724    if (initExprs[I]->isValueDependent())
725      ValueDependent = true;
726  }
727
728  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
729}
730
731void InitListExpr::reserveInits(unsigned NumInits) {
732  if (NumInits > InitExprs.size())
733    InitExprs.reserve(NumInits);
734}
735
736void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
737  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
738       Idx < LastIdx; ++Idx)
739    InitExprs[Idx]->Destroy(Context);
740  InitExprs.resize(NumInits, 0);
741}
742
743Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
744  if (Init >= InitExprs.size()) {
745    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
746    InitExprs.back() = expr;
747    return 0;
748  }
749
750  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
751  InitExprs[Init] = expr;
752  return Result;
753}
754
755/// getFunctionType - Return the underlying function type for this block.
756///
757const FunctionType *BlockExpr::getFunctionType() const {
758  return getType()->getAs<BlockPointerType>()->
759                    getPointeeType()->getAs<FunctionType>();
760}
761
762SourceLocation BlockExpr::getCaretLocation() const {
763  return TheBlock->getCaretLocation();
764}
765const Stmt *BlockExpr::getBody() const {
766  return TheBlock->getBody();
767}
768Stmt *BlockExpr::getBody() {
769  return TheBlock->getBody();
770}
771
772
773//===----------------------------------------------------------------------===//
774// Generic Expression Routines
775//===----------------------------------------------------------------------===//
776
777/// isUnusedResultAWarning - Return true if this immediate expression should
778/// be warned about if the result is unused.  If so, fill in Loc and Ranges
779/// with location to warn on and the source range[s] to report with the
780/// warning.
781bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
782                                  SourceRange &R2, ASTContext &Ctx) const {
783  // Don't warn if the expr is type dependent. The type could end up
784  // instantiating to void.
785  if (isTypeDependent())
786    return false;
787
788  switch (getStmtClass()) {
789  default:
790    Loc = getExprLoc();
791    R1 = getSourceRange();
792    return true;
793  case ParenExprClass:
794    return cast<ParenExpr>(this)->getSubExpr()->
795      isUnusedResultAWarning(Loc, R1, R2, Ctx);
796  case UnaryOperatorClass: {
797    const UnaryOperator *UO = cast<UnaryOperator>(this);
798
799    switch (UO->getOpcode()) {
800    default: break;
801    case UnaryOperator::PostInc:
802    case UnaryOperator::PostDec:
803    case UnaryOperator::PreInc:
804    case UnaryOperator::PreDec:                 // ++/--
805      return false;  // Not a warning.
806    case UnaryOperator::Deref:
807      // Dereferencing a volatile pointer is a side-effect.
808      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
809        return false;
810      break;
811    case UnaryOperator::Real:
812    case UnaryOperator::Imag:
813      // accessing a piece of a volatile complex is a side-effect.
814      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
815          .isVolatileQualified())
816        return false;
817      break;
818    case UnaryOperator::Extension:
819      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
820    }
821    Loc = UO->getOperatorLoc();
822    R1 = UO->getSubExpr()->getSourceRange();
823    return true;
824  }
825  case BinaryOperatorClass: {
826    const BinaryOperator *BO = cast<BinaryOperator>(this);
827    // Consider comma to have side effects if the LHS or RHS does.
828    if (BO->getOpcode() == BinaryOperator::Comma)
829      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
830              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
831
832    if (BO->isAssignmentOp())
833      return false;
834    Loc = BO->getOperatorLoc();
835    R1 = BO->getLHS()->getSourceRange();
836    R2 = BO->getRHS()->getSourceRange();
837    return true;
838  }
839  case CompoundAssignOperatorClass:
840    return false;
841
842  case ConditionalOperatorClass: {
843    // The condition must be evaluated, but if either the LHS or RHS is a
844    // warning, warn about them.
845    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
846    if (Exp->getLHS() &&
847        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
848      return true;
849    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
850  }
851
852  case MemberExprClass:
853    // If the base pointer or element is to a volatile pointer/field, accessing
854    // it is a side effect.
855    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
856      return false;
857    Loc = cast<MemberExpr>(this)->getMemberLoc();
858    R1 = SourceRange(Loc, Loc);
859    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
860    return true;
861
862  case ArraySubscriptExprClass:
863    // If the base pointer or element is to a volatile pointer/field, accessing
864    // it is a side effect.
865    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
866      return false;
867    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
868    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
869    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
870    return true;
871
872  case CallExprClass:
873  case CXXOperatorCallExprClass:
874  case CXXMemberCallExprClass: {
875    // If this is a direct call, get the callee.
876    const CallExpr *CE = cast<CallExpr>(this);
877    if (const Decl *FD = CE->getCalleeDecl()) {
878      // If the callee has attribute pure, const, or warn_unused_result, warn
879      // about it. void foo() { strlen("bar"); } should warn.
880      //
881      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
882      // updated to match for QoI.
883      if (FD->getAttr<WarnUnusedResultAttr>() ||
884          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
885        Loc = CE->getCallee()->getLocStart();
886        R1 = CE->getCallee()->getSourceRange();
887
888        if (unsigned NumArgs = CE->getNumArgs())
889          R2 = SourceRange(CE->getArg(0)->getLocStart(),
890                           CE->getArg(NumArgs-1)->getLocEnd());
891        return true;
892      }
893    }
894    return false;
895  }
896
897  case CXXTemporaryObjectExprClass:
898  case CXXConstructExprClass:
899    return false;
900
901  case ObjCMessageExprClass:
902    return false;
903
904  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
905#if 0
906    const ObjCImplicitSetterGetterRefExpr *Ref =
907      cast<ObjCImplicitSetterGetterRefExpr>(this);
908    // FIXME: We really want the location of the '.' here.
909    Loc = Ref->getLocation();
910    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
911    if (Ref->getBase())
912      R2 = Ref->getBase()->getSourceRange();
913#else
914    Loc = getExprLoc();
915    R1 = getSourceRange();
916#endif
917    return true;
918  }
919  case StmtExprClass: {
920    // Statement exprs don't logically have side effects themselves, but are
921    // sometimes used in macros in ways that give them a type that is unused.
922    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
923    // however, if the result of the stmt expr is dead, we don't want to emit a
924    // warning.
925    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
926    if (!CS->body_empty())
927      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
928        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
929
930    Loc = cast<StmtExpr>(this)->getLParenLoc();
931    R1 = getSourceRange();
932    return true;
933  }
934  case CStyleCastExprClass:
935    // If this is an explicit cast to void, allow it.  People do this when they
936    // think they know what they're doing :).
937    if (getType()->isVoidType())
938      return false;
939    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
940    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
941    return true;
942  case CXXFunctionalCastExprClass: {
943    const CastExpr *CE = cast<CastExpr>(this);
944
945    // If this is a cast to void or a constructor conversion, check the operand.
946    // Otherwise, the result of the cast is unused.
947    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
948        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
949      return (cast<CastExpr>(this)->getSubExpr()
950              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
951    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
952    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
953    return true;
954  }
955
956  case ImplicitCastExprClass:
957    // Check the operand, since implicit casts are inserted by Sema
958    return (cast<ImplicitCastExpr>(this)
959            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
960
961  case CXXDefaultArgExprClass:
962    return (cast<CXXDefaultArgExpr>(this)
963            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
964
965  case CXXNewExprClass:
966    // FIXME: In theory, there might be new expressions that don't have side
967    // effects (e.g. a placement new with an uninitialized POD).
968  case CXXDeleteExprClass:
969    return false;
970  case CXXBindTemporaryExprClass:
971    return (cast<CXXBindTemporaryExpr>(this)
972            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
973  case CXXExprWithTemporariesClass:
974    return (cast<CXXExprWithTemporaries>(this)
975            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
976  }
977}
978
979/// DeclCanBeLvalue - Determine whether the given declaration can be
980/// an lvalue. This is a helper routine for isLvalue.
981static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
982  // C++ [temp.param]p6:
983  //   A non-type non-reference template-parameter is not an lvalue.
984  if (const NonTypeTemplateParmDecl *NTTParm
985        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
986    return NTTParm->getType()->isReferenceType();
987
988  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
989    // C++ 3.10p2: An lvalue refers to an object or function.
990    (Ctx.getLangOptions().CPlusPlus &&
991     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
992}
993
994/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
995/// incomplete type other than void. Nonarray expressions that can be lvalues:
996///  - name, where name must be a variable
997///  - e[i]
998///  - (e), where e must be an lvalue
999///  - e.name, where e must be an lvalue
1000///  - e->name
1001///  - *e, the type of e cannot be a function type
1002///  - string-constant
1003///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1004///  - reference type [C++ [expr]]
1005///
1006Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1007  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1008
1009  isLvalueResult Res = isLvalueInternal(Ctx);
1010  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1011    return Res;
1012
1013  // first, check the type (C99 6.3.2.1). Expressions with function
1014  // type in C are not lvalues, but they can be lvalues in C++.
1015  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1016    return LV_NotObjectType;
1017
1018  // Allow qualified void which is an incomplete type other than void (yuck).
1019  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1020    return LV_IncompleteVoidType;
1021
1022  return LV_Valid;
1023}
1024
1025// Check whether the expression can be sanely treated like an l-value
1026Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1027  switch (getStmtClass()) {
1028  case ObjCIsaExprClass:
1029  case StringLiteralClass:  // C99 6.5.1p4
1030  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1031    return LV_Valid;
1032  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1033    // For vectors, make sure base is an lvalue (i.e. not a function call).
1034    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1035      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1036    return LV_Valid;
1037  case DeclRefExprClass: { // C99 6.5.1p2
1038    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1039    if (DeclCanBeLvalue(RefdDecl, Ctx))
1040      return LV_Valid;
1041    break;
1042  }
1043  case BlockDeclRefExprClass: {
1044    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1045    if (isa<VarDecl>(BDR->getDecl()))
1046      return LV_Valid;
1047    break;
1048  }
1049  case MemberExprClass: {
1050    const MemberExpr *m = cast<MemberExpr>(this);
1051    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1052      NamedDecl *Member = m->getMemberDecl();
1053      // C++ [expr.ref]p4:
1054      //   If E2 is declared to have type "reference to T", then E1.E2
1055      //   is an lvalue.
1056      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1057        if (Value->getType()->isReferenceType())
1058          return LV_Valid;
1059
1060      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1061      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1062        return LV_Valid;
1063
1064      //   -- If E2 is a non-static data member [...]. If E1 is an
1065      //      lvalue, then E1.E2 is an lvalue.
1066      if (isa<FieldDecl>(Member)) {
1067        if (m->isArrow())
1068          return LV_Valid;
1069        Expr *BaseExp = m->getBase();
1070        return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1071                 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1072      }
1073
1074      //   -- If it refers to a static member function [...], then
1075      //      E1.E2 is an lvalue.
1076      //   -- Otherwise, if E1.E2 refers to a non-static member
1077      //      function [...], then E1.E2 is not an lvalue.
1078      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1079        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1080
1081      //   -- If E2 is a member enumerator [...], the expression E1.E2
1082      //      is not an lvalue.
1083      if (isa<EnumConstantDecl>(Member))
1084        return LV_InvalidExpression;
1085
1086        // Not an lvalue.
1087      return LV_InvalidExpression;
1088    }
1089
1090    // C99 6.5.2.3p4
1091    if (m->isArrow())
1092      return LV_Valid;
1093    Expr *BaseExp = m->getBase();
1094    return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1095             LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1096  }
1097  case UnaryOperatorClass:
1098    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1099      return LV_Valid; // C99 6.5.3p4
1100
1101    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1102        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1103        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1104      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1105
1106    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1107        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1108         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1109      return LV_Valid;
1110    break;
1111  case ImplicitCastExprClass:
1112    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1113                                                       : LV_InvalidExpression;
1114  case ParenExprClass: // C99 6.5.1p5
1115    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1116  case BinaryOperatorClass:
1117  case CompoundAssignOperatorClass: {
1118    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1119
1120    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1121        BinOp->getOpcode() == BinaryOperator::Comma)
1122      return BinOp->getRHS()->isLvalue(Ctx);
1123
1124    // C++ [expr.mptr.oper]p6
1125    // The result of a .* expression is an lvalue only if its first operand is
1126    // an lvalue and its second operand is a pointer to data member.
1127    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1128        !BinOp->getType()->isFunctionType())
1129      return BinOp->getLHS()->isLvalue(Ctx);
1130
1131    // The result of an ->* expression is an lvalue only if its second operand
1132    // is a pointer to data member.
1133    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1134        !BinOp->getType()->isFunctionType()) {
1135      QualType Ty = BinOp->getRHS()->getType();
1136      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1137        return LV_Valid;
1138    }
1139
1140    if (!BinOp->isAssignmentOp())
1141      return LV_InvalidExpression;
1142
1143    if (Ctx.getLangOptions().CPlusPlus)
1144      // C++ [expr.ass]p1:
1145      //   The result of an assignment operation [...] is an lvalue.
1146      return LV_Valid;
1147
1148
1149    // C99 6.5.16:
1150    //   An assignment expression [...] is not an lvalue.
1151    return LV_InvalidExpression;
1152  }
1153  case CallExprClass:
1154  case CXXOperatorCallExprClass:
1155  case CXXMemberCallExprClass: {
1156    // C++0x [expr.call]p10
1157    //   A function call is an lvalue if and only if the result type
1158    //   is an lvalue reference.
1159    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1160    if (ReturnType->isLValueReferenceType())
1161      return LV_Valid;
1162
1163    break;
1164  }
1165  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1166    return LV_Valid;
1167  case ChooseExprClass:
1168    // __builtin_choose_expr is an lvalue if the selected operand is.
1169    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1170  case ExtVectorElementExprClass:
1171    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1172      return LV_DuplicateVectorComponents;
1173    return LV_Valid;
1174  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1175    return LV_Valid;
1176  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1177    return LV_Valid;
1178  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1179    return LV_Valid;
1180  case PredefinedExprClass:
1181    return LV_Valid;
1182  case UnresolvedLookupExprClass:
1183    return LV_Valid;
1184  case CXXDefaultArgExprClass:
1185    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1186  case CStyleCastExprClass:
1187  case CXXFunctionalCastExprClass:
1188  case CXXStaticCastExprClass:
1189  case CXXDynamicCastExprClass:
1190  case CXXReinterpretCastExprClass:
1191  case CXXConstCastExprClass:
1192    // The result of an explicit cast is an lvalue if the type we are
1193    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1194    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1195    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1196    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1197          isLValueReferenceType())
1198      return LV_Valid;
1199    break;
1200  case CXXTypeidExprClass:
1201    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1202    return LV_Valid;
1203  case CXXBindTemporaryExprClass:
1204    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1205      isLvalueInternal(Ctx);
1206  case ConditionalOperatorClass: {
1207    // Complicated handling is only for C++.
1208    if (!Ctx.getLangOptions().CPlusPlus)
1209      return LV_InvalidExpression;
1210
1211    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1212    // everywhere there's an object converted to an rvalue. Also, any other
1213    // casts should be wrapped by ImplicitCastExprs. There's just the special
1214    // case involving throws to work out.
1215    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1216    Expr *True = Cond->getTrueExpr();
1217    Expr *False = Cond->getFalseExpr();
1218    // C++0x 5.16p2
1219    //   If either the second or the third operand has type (cv) void, [...]
1220    //   the result [...] is an rvalue.
1221    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1222      return LV_InvalidExpression;
1223
1224    // Both sides must be lvalues for the result to be an lvalue.
1225    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1226      return LV_InvalidExpression;
1227
1228    // That's it.
1229    return LV_Valid;
1230  }
1231
1232  case Expr::CXXExprWithTemporariesClass:
1233    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1234
1235  case Expr::ObjCMessageExprClass:
1236    if (const ObjCMethodDecl *Method
1237          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1238      if (Method->getResultType()->isLValueReferenceType())
1239        return LV_Valid;
1240    break;
1241
1242  default:
1243    break;
1244  }
1245  return LV_InvalidExpression;
1246}
1247
1248/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1249/// does not have an incomplete type, does not have a const-qualified type, and
1250/// if it is a structure or union, does not have any member (including,
1251/// recursively, any member or element of all contained aggregates or unions)
1252/// with a const-qualified type.
1253Expr::isModifiableLvalueResult
1254Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1255  isLvalueResult lvalResult = isLvalue(Ctx);
1256
1257  switch (lvalResult) {
1258  case LV_Valid:
1259    // C++ 3.10p11: Functions cannot be modified, but pointers to
1260    // functions can be modifiable.
1261    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1262      return MLV_NotObjectType;
1263    break;
1264
1265  case LV_NotObjectType: return MLV_NotObjectType;
1266  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1267  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1268  case LV_InvalidExpression:
1269    // If the top level is a C-style cast, and the subexpression is a valid
1270    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1271    // GCC extension.  We don't support it, but we want to produce good
1272    // diagnostics when it happens so that the user knows why.
1273    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1274      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1275        if (Loc)
1276          *Loc = CE->getLParenLoc();
1277        return MLV_LValueCast;
1278      }
1279    }
1280    return MLV_InvalidExpression;
1281  case LV_MemberFunction: return MLV_MemberFunction;
1282    case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1283  }
1284
1285  // The following is illegal:
1286  //   void takeclosure(void (^C)(void));
1287  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1288  //
1289  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1290    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1291      return MLV_NotBlockQualified;
1292  }
1293
1294  // Assigning to an 'implicit' property?
1295  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1296        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1297    if (Expr->getSetterMethod() == 0)
1298      return MLV_NoSetterProperty;
1299  }
1300
1301  QualType CT = Ctx.getCanonicalType(getType());
1302
1303  if (CT.isConstQualified())
1304    return MLV_ConstQualified;
1305  if (CT->isArrayType())
1306    return MLV_ArrayType;
1307  if (CT->isIncompleteType())
1308    return MLV_IncompleteType;
1309
1310  if (const RecordType *r = CT->getAs<RecordType>()) {
1311    if (r->hasConstFields())
1312      return MLV_ConstQualified;
1313  }
1314
1315  return MLV_Valid;
1316}
1317
1318/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1319/// returns true, if it is; false otherwise.
1320bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1321  switch (getStmtClass()) {
1322  default:
1323    return false;
1324  case ObjCIvarRefExprClass:
1325    return true;
1326  case Expr::UnaryOperatorClass:
1327    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1328  case ParenExprClass:
1329    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1330  case ImplicitCastExprClass:
1331    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1332  case CStyleCastExprClass:
1333    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1334  case DeclRefExprClass: {
1335    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1336    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1337      if (VD->hasGlobalStorage())
1338        return true;
1339      QualType T = VD->getType();
1340      // dereferencing to a  pointer is always a gc'able candidate,
1341      // unless it is __weak.
1342      return T->isPointerType() &&
1343             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1344    }
1345    return false;
1346  }
1347  case MemberExprClass: {
1348    const MemberExpr *M = cast<MemberExpr>(this);
1349    return M->getBase()->isOBJCGCCandidate(Ctx);
1350  }
1351  case ArraySubscriptExprClass:
1352    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1353  }
1354}
1355Expr* Expr::IgnoreParens() {
1356  Expr* E = this;
1357  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1358    E = P->getSubExpr();
1359
1360  return E;
1361}
1362
1363/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1364/// or CastExprs or ImplicitCastExprs, returning their operand.
1365Expr *Expr::IgnoreParenCasts() {
1366  Expr *E = this;
1367  while (true) {
1368    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1369      E = P->getSubExpr();
1370    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1371      E = P->getSubExpr();
1372    else
1373      return E;
1374  }
1375}
1376
1377/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1378/// value (including ptr->int casts of the same size).  Strip off any
1379/// ParenExpr or CastExprs, returning their operand.
1380Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1381  Expr *E = this;
1382  while (true) {
1383    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1384      E = P->getSubExpr();
1385      continue;
1386    }
1387
1388    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1389      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1390      // ptr<->int casts of the same width.  We also ignore all identify casts.
1391      Expr *SE = P->getSubExpr();
1392
1393      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1394        E = SE;
1395        continue;
1396      }
1397
1398      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1399          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1400          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1401        E = SE;
1402        continue;
1403      }
1404    }
1405
1406    return E;
1407  }
1408}
1409
1410bool Expr::isDefaultArgument() const {
1411  const Expr *E = this;
1412  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1413    E = ICE->getSubExprAsWritten();
1414
1415  return isa<CXXDefaultArgExpr>(E);
1416}
1417
1418/// hasAnyTypeDependentArguments - Determines if any of the expressions
1419/// in Exprs is type-dependent.
1420bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1421  for (unsigned I = 0; I < NumExprs; ++I)
1422    if (Exprs[I]->isTypeDependent())
1423      return true;
1424
1425  return false;
1426}
1427
1428/// hasAnyValueDependentArguments - Determines if any of the expressions
1429/// in Exprs is value-dependent.
1430bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1431  for (unsigned I = 0; I < NumExprs; ++I)
1432    if (Exprs[I]->isValueDependent())
1433      return true;
1434
1435  return false;
1436}
1437
1438bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1439  // This function is attempting whether an expression is an initializer
1440  // which can be evaluated at compile-time.  isEvaluatable handles most
1441  // of the cases, but it can't deal with some initializer-specific
1442  // expressions, and it can't deal with aggregates; we deal with those here,
1443  // and fall back to isEvaluatable for the other cases.
1444
1445  // FIXME: This function assumes the variable being assigned to
1446  // isn't a reference type!
1447
1448  switch (getStmtClass()) {
1449  default: break;
1450  case StringLiteralClass:
1451  case ObjCStringLiteralClass:
1452  case ObjCEncodeExprClass:
1453    return true;
1454  case CompoundLiteralExprClass: {
1455    // This handles gcc's extension that allows global initializers like
1456    // "struct x {int x;} x = (struct x) {};".
1457    // FIXME: This accepts other cases it shouldn't!
1458    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1459    return Exp->isConstantInitializer(Ctx);
1460  }
1461  case InitListExprClass: {
1462    // FIXME: This doesn't deal with fields with reference types correctly.
1463    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1464    // to bitfields.
1465    const InitListExpr *Exp = cast<InitListExpr>(this);
1466    unsigned numInits = Exp->getNumInits();
1467    for (unsigned i = 0; i < numInits; i++) {
1468      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1469        return false;
1470    }
1471    return true;
1472  }
1473  case ImplicitValueInitExprClass:
1474    return true;
1475  case ParenExprClass:
1476    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1477  case UnaryOperatorClass: {
1478    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1479    if (Exp->getOpcode() == UnaryOperator::Extension)
1480      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1481    break;
1482  }
1483  case BinaryOperatorClass: {
1484    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1485    // but this handles the common case.
1486    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1487    if (Exp->getOpcode() == BinaryOperator::Sub &&
1488        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1489        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1490      return true;
1491    break;
1492  }
1493  case ImplicitCastExprClass:
1494  case CStyleCastExprClass:
1495    // Handle casts with a destination that's a struct or union; this
1496    // deals with both the gcc no-op struct cast extension and the
1497    // cast-to-union extension.
1498    if (getType()->isRecordType())
1499      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1500
1501    // Integer->integer casts can be handled here, which is important for
1502    // things like (int)(&&x-&&y).  Scary but true.
1503    if (getType()->isIntegerType() &&
1504        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1505      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1506
1507    break;
1508  }
1509  return isEvaluatable(Ctx);
1510}
1511
1512/// isIntegerConstantExpr - this recursive routine will test if an expression is
1513/// an integer constant expression.
1514
1515/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1516/// comma, etc
1517///
1518/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1519/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1520/// cast+dereference.
1521
1522// CheckICE - This function does the fundamental ICE checking: the returned
1523// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1524// Note that to reduce code duplication, this helper does no evaluation
1525// itself; the caller checks whether the expression is evaluatable, and
1526// in the rare cases where CheckICE actually cares about the evaluated
1527// value, it calls into Evalute.
1528//
1529// Meanings of Val:
1530// 0: This expression is an ICE if it can be evaluated by Evaluate.
1531// 1: This expression is not an ICE, but if it isn't evaluated, it's
1532//    a legal subexpression for an ICE. This return value is used to handle
1533//    the comma operator in C99 mode.
1534// 2: This expression is not an ICE, and is not a legal subexpression for one.
1535
1536struct ICEDiag {
1537  unsigned Val;
1538  SourceLocation Loc;
1539
1540  public:
1541  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1542  ICEDiag() : Val(0) {}
1543};
1544
1545ICEDiag NoDiag() { return ICEDiag(); }
1546
1547static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1548  Expr::EvalResult EVResult;
1549  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1550      !EVResult.Val.isInt()) {
1551    return ICEDiag(2, E->getLocStart());
1552  }
1553  return NoDiag();
1554}
1555
1556static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1557  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1558  if (!E->getType()->isIntegralType()) {
1559    return ICEDiag(2, E->getLocStart());
1560  }
1561
1562  switch (E->getStmtClass()) {
1563#define STMT(Node, Base) case Expr::Node##Class:
1564#define EXPR(Node, Base)
1565#include "clang/AST/StmtNodes.def"
1566  case Expr::PredefinedExprClass:
1567  case Expr::FloatingLiteralClass:
1568  case Expr::ImaginaryLiteralClass:
1569  case Expr::StringLiteralClass:
1570  case Expr::ArraySubscriptExprClass:
1571  case Expr::MemberExprClass:
1572  case Expr::CompoundAssignOperatorClass:
1573  case Expr::CompoundLiteralExprClass:
1574  case Expr::ExtVectorElementExprClass:
1575  case Expr::InitListExprClass:
1576  case Expr::DesignatedInitExprClass:
1577  case Expr::ImplicitValueInitExprClass:
1578  case Expr::ParenListExprClass:
1579  case Expr::VAArgExprClass:
1580  case Expr::AddrLabelExprClass:
1581  case Expr::StmtExprClass:
1582  case Expr::CXXMemberCallExprClass:
1583  case Expr::CXXDynamicCastExprClass:
1584  case Expr::CXXTypeidExprClass:
1585  case Expr::CXXNullPtrLiteralExprClass:
1586  case Expr::CXXThisExprClass:
1587  case Expr::CXXThrowExprClass:
1588  case Expr::CXXNewExprClass:
1589  case Expr::CXXDeleteExprClass:
1590  case Expr::CXXPseudoDestructorExprClass:
1591  case Expr::UnresolvedLookupExprClass:
1592  case Expr::DependentScopeDeclRefExprClass:
1593  case Expr::CXXConstructExprClass:
1594  case Expr::CXXBindTemporaryExprClass:
1595  case Expr::CXXExprWithTemporariesClass:
1596  case Expr::CXXTemporaryObjectExprClass:
1597  case Expr::CXXUnresolvedConstructExprClass:
1598  case Expr::CXXDependentScopeMemberExprClass:
1599  case Expr::UnresolvedMemberExprClass:
1600  case Expr::ObjCStringLiteralClass:
1601  case Expr::ObjCEncodeExprClass:
1602  case Expr::ObjCMessageExprClass:
1603  case Expr::ObjCSelectorExprClass:
1604  case Expr::ObjCProtocolExprClass:
1605  case Expr::ObjCIvarRefExprClass:
1606  case Expr::ObjCPropertyRefExprClass:
1607  case Expr::ObjCImplicitSetterGetterRefExprClass:
1608  case Expr::ObjCSuperExprClass:
1609  case Expr::ObjCIsaExprClass:
1610  case Expr::ShuffleVectorExprClass:
1611  case Expr::BlockExprClass:
1612  case Expr::BlockDeclRefExprClass:
1613  case Expr::NoStmtClass:
1614  case Expr::ExprClass:
1615    return ICEDiag(2, E->getLocStart());
1616
1617  case Expr::GNUNullExprClass:
1618    // GCC considers the GNU __null value to be an integral constant expression.
1619    return NoDiag();
1620
1621  case Expr::ParenExprClass:
1622    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1623  case Expr::IntegerLiteralClass:
1624  case Expr::CharacterLiteralClass:
1625  case Expr::CXXBoolLiteralExprClass:
1626  case Expr::CXXZeroInitValueExprClass:
1627  case Expr::TypesCompatibleExprClass:
1628  case Expr::UnaryTypeTraitExprClass:
1629    return NoDiag();
1630  case Expr::CallExprClass:
1631  case Expr::CXXOperatorCallExprClass: {
1632    const CallExpr *CE = cast<CallExpr>(E);
1633    if (CE->isBuiltinCall(Ctx))
1634      return CheckEvalInICE(E, Ctx);
1635    return ICEDiag(2, E->getLocStart());
1636  }
1637  case Expr::DeclRefExprClass:
1638    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1639      return NoDiag();
1640    if (Ctx.getLangOptions().CPlusPlus &&
1641        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1642      // C++ 7.1.5.1p2
1643      //   A variable of non-volatile const-qualified integral or enumeration
1644      //   type initialized by an ICE can be used in ICEs.
1645      if (const VarDecl *Dcl =
1646              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1647        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1648        if (Quals.hasVolatile() || !Quals.hasConst())
1649          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1650
1651        // Look for the definition of this variable, which will actually have
1652        // an initializer.
1653        const VarDecl *Def = 0;
1654        const Expr *Init = Dcl->getDefinition(Def);
1655        if (Init) {
1656          if (Def->isInitKnownICE()) {
1657            // We have already checked whether this subexpression is an
1658            // integral constant expression.
1659            if (Def->isInitICE())
1660              return NoDiag();
1661            else
1662              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1663          }
1664
1665          // C++ [class.static.data]p4:
1666          //   If a static data member is of const integral or const
1667          //   enumeration type, its declaration in the class definition can
1668          //   specify a constant-initializer which shall be an integral
1669          //   constant expression (5.19). In that case, the member can appear
1670          //   in integral constant expressions.
1671          if (Def->isOutOfLine()) {
1672            Dcl->setInitKnownICE(false);
1673            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1674          }
1675
1676          if (Dcl->isCheckingICE()) {
1677            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1678          }
1679
1680          Dcl->setCheckingICE();
1681          ICEDiag Result = CheckICE(Init, Ctx);
1682          // Cache the result of the ICE test.
1683          Dcl->setInitKnownICE(Result.Val == 0);
1684          return Result;
1685        }
1686      }
1687    }
1688    return ICEDiag(2, E->getLocStart());
1689  case Expr::UnaryOperatorClass: {
1690    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1691    switch (Exp->getOpcode()) {
1692    case UnaryOperator::PostInc:
1693    case UnaryOperator::PostDec:
1694    case UnaryOperator::PreInc:
1695    case UnaryOperator::PreDec:
1696    case UnaryOperator::AddrOf:
1697    case UnaryOperator::Deref:
1698      return ICEDiag(2, E->getLocStart());
1699
1700    case UnaryOperator::Extension:
1701    case UnaryOperator::LNot:
1702    case UnaryOperator::Plus:
1703    case UnaryOperator::Minus:
1704    case UnaryOperator::Not:
1705    case UnaryOperator::Real:
1706    case UnaryOperator::Imag:
1707      return CheckICE(Exp->getSubExpr(), Ctx);
1708    case UnaryOperator::OffsetOf:
1709      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1710      // Evaluate matches the proposed gcc behavior for cases like
1711      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1712      // compliance: we should warn earlier for offsetof expressions with
1713      // array subscripts that aren't ICEs, and if the array subscripts
1714      // are ICEs, the value of the offsetof must be an integer constant.
1715      return CheckEvalInICE(E, Ctx);
1716    }
1717  }
1718  case Expr::SizeOfAlignOfExprClass: {
1719    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1720    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1721      return ICEDiag(2, E->getLocStart());
1722    return NoDiag();
1723  }
1724  case Expr::BinaryOperatorClass: {
1725    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1726    switch (Exp->getOpcode()) {
1727    case BinaryOperator::PtrMemD:
1728    case BinaryOperator::PtrMemI:
1729    case BinaryOperator::Assign:
1730    case BinaryOperator::MulAssign:
1731    case BinaryOperator::DivAssign:
1732    case BinaryOperator::RemAssign:
1733    case BinaryOperator::AddAssign:
1734    case BinaryOperator::SubAssign:
1735    case BinaryOperator::ShlAssign:
1736    case BinaryOperator::ShrAssign:
1737    case BinaryOperator::AndAssign:
1738    case BinaryOperator::XorAssign:
1739    case BinaryOperator::OrAssign:
1740      return ICEDiag(2, E->getLocStart());
1741
1742    case BinaryOperator::Mul:
1743    case BinaryOperator::Div:
1744    case BinaryOperator::Rem:
1745    case BinaryOperator::Add:
1746    case BinaryOperator::Sub:
1747    case BinaryOperator::Shl:
1748    case BinaryOperator::Shr:
1749    case BinaryOperator::LT:
1750    case BinaryOperator::GT:
1751    case BinaryOperator::LE:
1752    case BinaryOperator::GE:
1753    case BinaryOperator::EQ:
1754    case BinaryOperator::NE:
1755    case BinaryOperator::And:
1756    case BinaryOperator::Xor:
1757    case BinaryOperator::Or:
1758    case BinaryOperator::Comma: {
1759      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1760      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1761      if (Exp->getOpcode() == BinaryOperator::Div ||
1762          Exp->getOpcode() == BinaryOperator::Rem) {
1763        // Evaluate gives an error for undefined Div/Rem, so make sure
1764        // we don't evaluate one.
1765        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1766          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1767          if (REval == 0)
1768            return ICEDiag(1, E->getLocStart());
1769          if (REval.isSigned() && REval.isAllOnesValue()) {
1770            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1771            if (LEval.isMinSignedValue())
1772              return ICEDiag(1, E->getLocStart());
1773          }
1774        }
1775      }
1776      if (Exp->getOpcode() == BinaryOperator::Comma) {
1777        if (Ctx.getLangOptions().C99) {
1778          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1779          // if it isn't evaluated.
1780          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1781            return ICEDiag(1, E->getLocStart());
1782        } else {
1783          // In both C89 and C++, commas in ICEs are illegal.
1784          return ICEDiag(2, E->getLocStart());
1785        }
1786      }
1787      if (LHSResult.Val >= RHSResult.Val)
1788        return LHSResult;
1789      return RHSResult;
1790    }
1791    case BinaryOperator::LAnd:
1792    case BinaryOperator::LOr: {
1793      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1794      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1795      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1796        // Rare case where the RHS has a comma "side-effect"; we need
1797        // to actually check the condition to see whether the side
1798        // with the comma is evaluated.
1799        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1800            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1801          return RHSResult;
1802        return NoDiag();
1803      }
1804
1805      if (LHSResult.Val >= RHSResult.Val)
1806        return LHSResult;
1807      return RHSResult;
1808    }
1809    }
1810  }
1811  case Expr::CastExprClass:
1812  case Expr::ImplicitCastExprClass:
1813  case Expr::ExplicitCastExprClass:
1814  case Expr::CStyleCastExprClass:
1815  case Expr::CXXFunctionalCastExprClass:
1816  case Expr::CXXNamedCastExprClass:
1817  case Expr::CXXStaticCastExprClass:
1818  case Expr::CXXReinterpretCastExprClass:
1819  case Expr::CXXConstCastExprClass: {
1820    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1821    if (SubExpr->getType()->isIntegralType())
1822      return CheckICE(SubExpr, Ctx);
1823    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1824      return NoDiag();
1825    return ICEDiag(2, E->getLocStart());
1826  }
1827  case Expr::ConditionalOperatorClass: {
1828    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1829    // If the condition (ignoring parens) is a __builtin_constant_p call,
1830    // then only the true side is actually considered in an integer constant
1831    // expression, and it is fully evaluated.  This is an important GNU
1832    // extension.  See GCC PR38377 for discussion.
1833    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1834      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1835        Expr::EvalResult EVResult;
1836        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1837            !EVResult.Val.isInt()) {
1838          return ICEDiag(2, E->getLocStart());
1839        }
1840        return NoDiag();
1841      }
1842    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1843    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1844    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1845    if (CondResult.Val == 2)
1846      return CondResult;
1847    if (TrueResult.Val == 2)
1848      return TrueResult;
1849    if (FalseResult.Val == 2)
1850      return FalseResult;
1851    if (CondResult.Val == 1)
1852      return CondResult;
1853    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1854      return NoDiag();
1855    // Rare case where the diagnostics depend on which side is evaluated
1856    // Note that if we get here, CondResult is 0, and at least one of
1857    // TrueResult and FalseResult is non-zero.
1858    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1859      return FalseResult;
1860    }
1861    return TrueResult;
1862  }
1863  case Expr::CXXDefaultArgExprClass:
1864    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1865  case Expr::ChooseExprClass: {
1866    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1867  }
1868  }
1869
1870  // Silence a GCC warning
1871  return ICEDiag(2, E->getLocStart());
1872}
1873
1874bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1875                                 SourceLocation *Loc, bool isEvaluated) const {
1876  ICEDiag d = CheckICE(this, Ctx);
1877  if (d.Val != 0) {
1878    if (Loc) *Loc = d.Loc;
1879    return false;
1880  }
1881  EvalResult EvalResult;
1882  if (!Evaluate(EvalResult, Ctx))
1883    llvm_unreachable("ICE cannot be evaluated!");
1884  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1885  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1886  Result = EvalResult.Val.getInt();
1887  return true;
1888}
1889
1890/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1891/// integer constant expression with the value zero, or if this is one that is
1892/// cast to void*.
1893bool Expr::isNullPointerConstant(ASTContext &Ctx,
1894                                 NullPointerConstantValueDependence NPC) const {
1895  if (isValueDependent()) {
1896    switch (NPC) {
1897    case NPC_NeverValueDependent:
1898      assert(false && "Unexpected value dependent expression!");
1899      // If the unthinkable happens, fall through to the safest alternative.
1900
1901    case NPC_ValueDependentIsNull:
1902      return isTypeDependent() || getType()->isIntegralType();
1903
1904    case NPC_ValueDependentIsNotNull:
1905      return false;
1906    }
1907  }
1908
1909  // Strip off a cast to void*, if it exists. Except in C++.
1910  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1911    if (!Ctx.getLangOptions().CPlusPlus) {
1912      // Check that it is a cast to void*.
1913      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1914        QualType Pointee = PT->getPointeeType();
1915        if (!Pointee.hasQualifiers() &&
1916            Pointee->isVoidType() &&                              // to void*
1917            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1918          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1919      }
1920    }
1921  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1922    // Ignore the ImplicitCastExpr type entirely.
1923    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1924  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1925    // Accept ((void*)0) as a null pointer constant, as many other
1926    // implementations do.
1927    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1928  } else if (const CXXDefaultArgExpr *DefaultArg
1929               = dyn_cast<CXXDefaultArgExpr>(this)) {
1930    // See through default argument expressions
1931    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1932  } else if (isa<GNUNullExpr>(this)) {
1933    // The GNU __null extension is always a null pointer constant.
1934    return true;
1935  }
1936
1937  // C++0x nullptr_t is always a null pointer constant.
1938  if (getType()->isNullPtrType())
1939    return true;
1940
1941  // This expression must be an integer type.
1942  if (!getType()->isIntegerType() ||
1943      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1944    return false;
1945
1946  // If we have an integer constant expression, we need to *evaluate* it and
1947  // test for the value 0.
1948  llvm::APSInt Result;
1949  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1950}
1951
1952FieldDecl *Expr::getBitField() {
1953  Expr *E = this->IgnoreParens();
1954
1955  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1956    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1957      if (Field->isBitField())
1958        return Field;
1959
1960  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1961    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1962      return BinOp->getLHS()->getBitField();
1963
1964  return 0;
1965}
1966
1967/// isArrow - Return true if the base expression is a pointer to vector,
1968/// return false if the base expression is a vector.
1969bool ExtVectorElementExpr::isArrow() const {
1970  return getBase()->getType()->isPointerType();
1971}
1972
1973unsigned ExtVectorElementExpr::getNumElements() const {
1974  if (const VectorType *VT = getType()->getAs<VectorType>())
1975    return VT->getNumElements();
1976  return 1;
1977}
1978
1979/// containsDuplicateElements - Return true if any element access is repeated.
1980bool ExtVectorElementExpr::containsDuplicateElements() const {
1981  // FIXME: Refactor this code to an accessor on the AST node which returns the
1982  // "type" of component access, and share with code below and in Sema.
1983  llvm::StringRef Comp = Accessor->getName();
1984
1985  // Halving swizzles do not contain duplicate elements.
1986  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1987    return false;
1988
1989  // Advance past s-char prefix on hex swizzles.
1990  if (Comp[0] == 's' || Comp[0] == 'S')
1991    Comp = Comp.substr(1);
1992
1993  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1994    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1995        return true;
1996
1997  return false;
1998}
1999
2000/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2001void ExtVectorElementExpr::getEncodedElementAccess(
2002                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2003  llvm::StringRef Comp = Accessor->getName();
2004  if (Comp[0] == 's' || Comp[0] == 'S')
2005    Comp = Comp.substr(1);
2006
2007  bool isHi =   Comp == "hi";
2008  bool isLo =   Comp == "lo";
2009  bool isEven = Comp == "even";
2010  bool isOdd  = Comp == "odd";
2011
2012  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2013    uint64_t Index;
2014
2015    if (isHi)
2016      Index = e + i;
2017    else if (isLo)
2018      Index = i;
2019    else if (isEven)
2020      Index = 2 * i;
2021    else if (isOdd)
2022      Index = 2 * i + 1;
2023    else
2024      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2025
2026    Elts.push_back(Index);
2027  }
2028}
2029
2030// constructor for instance messages.
2031ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2032                QualType retType, ObjCMethodDecl *mproto,
2033                SourceLocation LBrac, SourceLocation RBrac,
2034                Expr **ArgExprs, unsigned nargs)
2035  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2036    MethodProto(mproto) {
2037  NumArgs = nargs;
2038  SubExprs = new Stmt*[NumArgs+1];
2039  SubExprs[RECEIVER] = receiver;
2040  if (NumArgs) {
2041    for (unsigned i = 0; i != NumArgs; ++i)
2042      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2043  }
2044  LBracloc = LBrac;
2045  RBracloc = RBrac;
2046}
2047
2048// constructor for class messages.
2049// FIXME: clsName should be typed to ObjCInterfaceType
2050ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2051                QualType retType, ObjCMethodDecl *mproto,
2052                SourceLocation LBrac, SourceLocation RBrac,
2053                Expr **ArgExprs, unsigned nargs)
2054  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2055    MethodProto(mproto) {
2056  NumArgs = nargs;
2057  SubExprs = new Stmt*[NumArgs+1];
2058  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2059  if (NumArgs) {
2060    for (unsigned i = 0; i != NumArgs; ++i)
2061      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2062  }
2063  LBracloc = LBrac;
2064  RBracloc = RBrac;
2065}
2066
2067// constructor for class messages.
2068ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2069                                 QualType retType, ObjCMethodDecl *mproto,
2070                                 SourceLocation LBrac, SourceLocation RBrac,
2071                                 Expr **ArgExprs, unsigned nargs)
2072: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2073MethodProto(mproto) {
2074  NumArgs = nargs;
2075  SubExprs = new Stmt*[NumArgs+1];
2076  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2077  if (NumArgs) {
2078    for (unsigned i = 0; i != NumArgs; ++i)
2079      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2080  }
2081  LBracloc = LBrac;
2082  RBracloc = RBrac;
2083}
2084
2085ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2086  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2087  switch (x & Flags) {
2088    default:
2089      assert(false && "Invalid ObjCMessageExpr.");
2090    case IsInstMeth:
2091      return ClassInfo(0, 0);
2092    case IsClsMethDeclUnknown:
2093      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2094    case IsClsMethDeclKnown: {
2095      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2096      return ClassInfo(D, D->getIdentifier());
2097    }
2098  }
2099}
2100
2101void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2102  if (CI.first == 0 && CI.second == 0)
2103    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2104  else if (CI.first == 0)
2105    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2106  else
2107    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2108}
2109
2110
2111bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2112  return getCond()->EvaluateAsInt(C) != 0;
2113}
2114
2115void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2116                                 unsigned NumExprs) {
2117  if (SubExprs) C.Deallocate(SubExprs);
2118
2119  SubExprs = new (C) Stmt* [NumExprs];
2120  this->NumExprs = NumExprs;
2121  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2122}
2123
2124void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2125  DestroyChildren(C);
2126  if (SubExprs) C.Deallocate(SubExprs);
2127  this->~ShuffleVectorExpr();
2128  C.Deallocate(this);
2129}
2130
2131void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2132  // Override default behavior of traversing children. If this has a type
2133  // operand and the type is a variable-length array, the child iteration
2134  // will iterate over the size expression. However, this expression belongs
2135  // to the type, not to this, so we don't want to delete it.
2136  // We still want to delete this expression.
2137  if (isArgumentType()) {
2138    this->~SizeOfAlignOfExpr();
2139    C.Deallocate(this);
2140  }
2141  else
2142    Expr::DoDestroy(C);
2143}
2144
2145//===----------------------------------------------------------------------===//
2146//  DesignatedInitExpr
2147//===----------------------------------------------------------------------===//
2148
2149IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2150  assert(Kind == FieldDesignator && "Only valid on a field designator");
2151  if (Field.NameOrField & 0x01)
2152    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2153  else
2154    return getField()->getIdentifier();
2155}
2156
2157DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2158                                       const Designator *Designators,
2159                                       SourceLocation EqualOrColonLoc,
2160                                       bool GNUSyntax,
2161                                       Expr **IndexExprs,
2162                                       unsigned NumIndexExprs,
2163                                       Expr *Init)
2164  : Expr(DesignatedInitExprClass, Ty,
2165         Init->isTypeDependent(), Init->isValueDependent()),
2166    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2167    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2168  this->Designators = new Designator[NumDesignators];
2169
2170  // Record the initializer itself.
2171  child_iterator Child = child_begin();
2172  *Child++ = Init;
2173
2174  // Copy the designators and their subexpressions, computing
2175  // value-dependence along the way.
2176  unsigned IndexIdx = 0;
2177  for (unsigned I = 0; I != NumDesignators; ++I) {
2178    this->Designators[I] = Designators[I];
2179
2180    if (this->Designators[I].isArrayDesignator()) {
2181      // Compute type- and value-dependence.
2182      Expr *Index = IndexExprs[IndexIdx];
2183      ValueDependent = ValueDependent ||
2184        Index->isTypeDependent() || Index->isValueDependent();
2185
2186      // Copy the index expressions into permanent storage.
2187      *Child++ = IndexExprs[IndexIdx++];
2188    } else if (this->Designators[I].isArrayRangeDesignator()) {
2189      // Compute type- and value-dependence.
2190      Expr *Start = IndexExprs[IndexIdx];
2191      Expr *End = IndexExprs[IndexIdx + 1];
2192      ValueDependent = ValueDependent ||
2193        Start->isTypeDependent() || Start->isValueDependent() ||
2194        End->isTypeDependent() || End->isValueDependent();
2195
2196      // Copy the start/end expressions into permanent storage.
2197      *Child++ = IndexExprs[IndexIdx++];
2198      *Child++ = IndexExprs[IndexIdx++];
2199    }
2200  }
2201
2202  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2203}
2204
2205DesignatedInitExpr *
2206DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2207                           unsigned NumDesignators,
2208                           Expr **IndexExprs, unsigned NumIndexExprs,
2209                           SourceLocation ColonOrEqualLoc,
2210                           bool UsesColonSyntax, Expr *Init) {
2211  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2212                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2213  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2214                                      ColonOrEqualLoc, UsesColonSyntax,
2215                                      IndexExprs, NumIndexExprs, Init);
2216}
2217
2218DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2219                                                    unsigned NumIndexExprs) {
2220  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2221                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2222  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2223}
2224
2225void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2226                                        unsigned NumDesigs) {
2227  if (Designators)
2228    delete [] Designators;
2229
2230  Designators = new Designator[NumDesigs];
2231  NumDesignators = NumDesigs;
2232  for (unsigned I = 0; I != NumDesigs; ++I)
2233    Designators[I] = Desigs[I];
2234}
2235
2236SourceRange DesignatedInitExpr::getSourceRange() const {
2237  SourceLocation StartLoc;
2238  Designator &First =
2239    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2240  if (First.isFieldDesignator()) {
2241    if (GNUSyntax)
2242      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2243    else
2244      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2245  } else
2246    StartLoc =
2247      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2248  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2249}
2250
2251Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2252  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2253  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2254  Ptr += sizeof(DesignatedInitExpr);
2255  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2256  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2257}
2258
2259Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2260  assert(D.Kind == Designator::ArrayRangeDesignator &&
2261         "Requires array range designator");
2262  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2263  Ptr += sizeof(DesignatedInitExpr);
2264  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2265  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2266}
2267
2268Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2269  assert(D.Kind == Designator::ArrayRangeDesignator &&
2270         "Requires array range designator");
2271  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2272  Ptr += sizeof(DesignatedInitExpr);
2273  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2274  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2275}
2276
2277/// \brief Replaces the designator at index @p Idx with the series
2278/// of designators in [First, Last).
2279void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2280                                          const Designator *First,
2281                                          const Designator *Last) {
2282  unsigned NumNewDesignators = Last - First;
2283  if (NumNewDesignators == 0) {
2284    std::copy_backward(Designators + Idx + 1,
2285                       Designators + NumDesignators,
2286                       Designators + Idx);
2287    --NumNewDesignators;
2288    return;
2289  } else if (NumNewDesignators == 1) {
2290    Designators[Idx] = *First;
2291    return;
2292  }
2293
2294  Designator *NewDesignators
2295    = new Designator[NumDesignators - 1 + NumNewDesignators];
2296  std::copy(Designators, Designators + Idx, NewDesignators);
2297  std::copy(First, Last, NewDesignators + Idx);
2298  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2299            NewDesignators + Idx + NumNewDesignators);
2300  delete [] Designators;
2301  Designators = NewDesignators;
2302  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2303}
2304
2305void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2306  delete [] Designators;
2307  Expr::DoDestroy(C);
2308}
2309
2310ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2311                             Expr **exprs, unsigned nexprs,
2312                             SourceLocation rparenloc)
2313: Expr(ParenListExprClass, QualType(),
2314       hasAnyTypeDependentArguments(exprs, nexprs),
2315       hasAnyValueDependentArguments(exprs, nexprs)),
2316  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2317
2318  Exprs = new (C) Stmt*[nexprs];
2319  for (unsigned i = 0; i != nexprs; ++i)
2320    Exprs[i] = exprs[i];
2321}
2322
2323void ParenListExpr::DoDestroy(ASTContext& C) {
2324  DestroyChildren(C);
2325  if (Exprs) C.Deallocate(Exprs);
2326  this->~ParenListExpr();
2327  C.Deallocate(this);
2328}
2329
2330//===----------------------------------------------------------------------===//
2331//  ExprIterator.
2332//===----------------------------------------------------------------------===//
2333
2334Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2335Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2336Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2337const Expr* ConstExprIterator::operator[](size_t idx) const {
2338  return cast<Expr>(I[idx]);
2339}
2340const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2341const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2342
2343//===----------------------------------------------------------------------===//
2344//  Child Iterators for iterating over subexpressions/substatements
2345//===----------------------------------------------------------------------===//
2346
2347// DeclRefExpr
2348Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2349Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2350
2351// ObjCIvarRefExpr
2352Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2353Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2354
2355// ObjCPropertyRefExpr
2356Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2357Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2358
2359// ObjCImplicitSetterGetterRefExpr
2360Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2361  return &Base;
2362}
2363Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2364  return &Base+1;
2365}
2366
2367// ObjCSuperExpr
2368Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2369Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2370
2371// ObjCIsaExpr
2372Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2373Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2374
2375// PredefinedExpr
2376Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2377Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2378
2379// IntegerLiteral
2380Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2381Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2382
2383// CharacterLiteral
2384Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2385Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2386
2387// FloatingLiteral
2388Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2389Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2390
2391// ImaginaryLiteral
2392Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2393Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2394
2395// StringLiteral
2396Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2397Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2398
2399// ParenExpr
2400Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2401Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2402
2403// UnaryOperator
2404Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2405Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2406
2407// SizeOfAlignOfExpr
2408Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2409  // If this is of a type and the type is a VLA type (and not a typedef), the
2410  // size expression of the VLA needs to be treated as an executable expression.
2411  // Why isn't this weirdness documented better in StmtIterator?
2412  if (isArgumentType()) {
2413    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2414                                   getArgumentType().getTypePtr()))
2415      return child_iterator(T);
2416    return child_iterator();
2417  }
2418  return child_iterator(&Argument.Ex);
2419}
2420Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2421  if (isArgumentType())
2422    return child_iterator();
2423  return child_iterator(&Argument.Ex + 1);
2424}
2425
2426// ArraySubscriptExpr
2427Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2428  return &SubExprs[0];
2429}
2430Stmt::child_iterator ArraySubscriptExpr::child_end() {
2431  return &SubExprs[0]+END_EXPR;
2432}
2433
2434// CallExpr
2435Stmt::child_iterator CallExpr::child_begin() {
2436  return &SubExprs[0];
2437}
2438Stmt::child_iterator CallExpr::child_end() {
2439  return &SubExprs[0]+NumArgs+ARGS_START;
2440}
2441
2442// MemberExpr
2443Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2444Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2445
2446// ExtVectorElementExpr
2447Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2448Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2449
2450// CompoundLiteralExpr
2451Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2452Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2453
2454// CastExpr
2455Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2456Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2457
2458// BinaryOperator
2459Stmt::child_iterator BinaryOperator::child_begin() {
2460  return &SubExprs[0];
2461}
2462Stmt::child_iterator BinaryOperator::child_end() {
2463  return &SubExprs[0]+END_EXPR;
2464}
2465
2466// ConditionalOperator
2467Stmt::child_iterator ConditionalOperator::child_begin() {
2468  return &SubExprs[0];
2469}
2470Stmt::child_iterator ConditionalOperator::child_end() {
2471  return &SubExprs[0]+END_EXPR;
2472}
2473
2474// AddrLabelExpr
2475Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2476Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2477
2478// StmtExpr
2479Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2480Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2481
2482// TypesCompatibleExpr
2483Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2484  return child_iterator();
2485}
2486
2487Stmt::child_iterator TypesCompatibleExpr::child_end() {
2488  return child_iterator();
2489}
2490
2491// ChooseExpr
2492Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2493Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2494
2495// GNUNullExpr
2496Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2497Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2498
2499// ShuffleVectorExpr
2500Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2501  return &SubExprs[0];
2502}
2503Stmt::child_iterator ShuffleVectorExpr::child_end() {
2504  return &SubExprs[0]+NumExprs;
2505}
2506
2507// VAArgExpr
2508Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2509Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2510
2511// InitListExpr
2512Stmt::child_iterator InitListExpr::child_begin() {
2513  return InitExprs.size() ? &InitExprs[0] : 0;
2514}
2515Stmt::child_iterator InitListExpr::child_end() {
2516  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2517}
2518
2519// DesignatedInitExpr
2520Stmt::child_iterator DesignatedInitExpr::child_begin() {
2521  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2522  Ptr += sizeof(DesignatedInitExpr);
2523  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2524}
2525Stmt::child_iterator DesignatedInitExpr::child_end() {
2526  return child_iterator(&*child_begin() + NumSubExprs);
2527}
2528
2529// ImplicitValueInitExpr
2530Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2531  return child_iterator();
2532}
2533
2534Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2535  return child_iterator();
2536}
2537
2538// ParenListExpr
2539Stmt::child_iterator ParenListExpr::child_begin() {
2540  return &Exprs[0];
2541}
2542Stmt::child_iterator ParenListExpr::child_end() {
2543  return &Exprs[0]+NumExprs;
2544}
2545
2546// ObjCStringLiteral
2547Stmt::child_iterator ObjCStringLiteral::child_begin() {
2548  return &String;
2549}
2550Stmt::child_iterator ObjCStringLiteral::child_end() {
2551  return &String+1;
2552}
2553
2554// ObjCEncodeExpr
2555Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2556Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2557
2558// ObjCSelectorExpr
2559Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2560  return child_iterator();
2561}
2562Stmt::child_iterator ObjCSelectorExpr::child_end() {
2563  return child_iterator();
2564}
2565
2566// ObjCProtocolExpr
2567Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2568  return child_iterator();
2569}
2570Stmt::child_iterator ObjCProtocolExpr::child_end() {
2571  return child_iterator();
2572}
2573
2574// ObjCMessageExpr
2575Stmt::child_iterator ObjCMessageExpr::child_begin() {
2576  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2577}
2578Stmt::child_iterator ObjCMessageExpr::child_end() {
2579  return &SubExprs[0]+ARGS_START+getNumArgs();
2580}
2581
2582// Blocks
2583Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2584Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2585
2586Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2587Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2588