CloneFunction.cpp revision 251662
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Transforms/Utils/ValueMapper.h"
33#include <map>
34using namespace llvm;
35
36// CloneBasicBlock - See comments in Cloning.h
37BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
38                                  ValueToValueMapTy &VMap,
39                                  const Twine &NameSuffix, Function *F,
40                                  ClonedCodeInfo *CodeInfo) {
41  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43
44  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45
46  // Loop over all instructions, and copy them over.
47  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48       II != IE; ++II) {
49    Instruction *NewInst = II->clone();
50    if (II->hasName())
51      NewInst->setName(II->getName()+NameSuffix);
52    NewBB->getInstList().push_back(NewInst);
53    VMap[II] = NewInst;                // Add instruction map to value.
54
55    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57      if (isa<ConstantInt>(AI->getArraySize()))
58        hasStaticAllocas = true;
59      else
60        hasDynamicAllocas = true;
61    }
62  }
63
64  if (CodeInfo) {
65    CodeInfo->ContainsCalls          |= hasCalls;
66    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
68                                        BB != &BB->getParent()->getEntryBlock();
69  }
70  return NewBB;
71}
72
73// Clone OldFunc into NewFunc, transforming the old arguments into references to
74// VMap values.
75//
76void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77                             ValueToValueMapTy &VMap,
78                             bool ModuleLevelChanges,
79                             SmallVectorImpl<ReturnInst*> &Returns,
80                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81                             ValueMapTypeRemapper *TypeMapper) {
82  assert(NameSuffix && "NameSuffix cannot be null!");
83
84#ifndef NDEBUG
85  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
86       E = OldFunc->arg_end(); I != E; ++I)
87    assert(VMap.count(I) && "No mapping from source argument specified!");
88#endif
89
90  AttributeSet OldAttrs = OldFunc->getAttributes();
91  // Clone any argument attributes that are present in the VMap.
92  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
93                                    E = OldFunc->arg_end();
94       I != E; ++I)
95    if (Argument *Anew = dyn_cast<Argument>(VMap[I])) {
96      AttributeSet attrs =
97          OldAttrs.getParamAttributes(I->getArgNo() + 1);
98      if (attrs.getNumSlots() > 0)
99        Anew->addAttr(attrs);
100    }
101
102  NewFunc->setAttributes(NewFunc->getAttributes()
103                         .addAttributes(NewFunc->getContext(),
104                                        AttributeSet::ReturnIndex,
105                                        OldAttrs.getRetAttributes()));
106  NewFunc->setAttributes(NewFunc->getAttributes()
107                         .addAttributes(NewFunc->getContext(),
108                                        AttributeSet::FunctionIndex,
109                                        OldAttrs.getFnAttributes()));
110
111  // Loop over all of the basic blocks in the function, cloning them as
112  // appropriate.  Note that we save BE this way in order to handle cloning of
113  // recursive functions into themselves.
114  //
115  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
116       BI != BE; ++BI) {
117    const BasicBlock &BB = *BI;
118
119    // Create a new basic block and copy instructions into it!
120    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
121
122    // Add basic block mapping.
123    VMap[&BB] = CBB;
124
125    // It is only legal to clone a function if a block address within that
126    // function is never referenced outside of the function.  Given that, we
127    // want to map block addresses from the old function to block addresses in
128    // the clone. (This is different from the generic ValueMapper
129    // implementation, which generates an invalid blockaddress when
130    // cloning a function.)
131    if (BB.hasAddressTaken()) {
132      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
133                                              const_cast<BasicBlock*>(&BB));
134      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
135    }
136
137    // Note return instructions for the caller.
138    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
139      Returns.push_back(RI);
140  }
141
142  // Loop over all of the instructions in the function, fixing up operand
143  // references as we go.  This uses VMap to do all the hard work.
144  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
145         BE = NewFunc->end(); BB != BE; ++BB)
146    // Loop over all instructions, fixing each one as we find it...
147    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
148      RemapInstruction(II, VMap,
149                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150                       TypeMapper);
151}
152
153/// CloneFunction - Return a copy of the specified function, but without
154/// embedding the function into another module.  Also, any references specified
155/// in the VMap are changed to refer to their mapped value instead of the
156/// original one.  If any of the arguments to the function are in the VMap,
157/// the arguments are deleted from the resultant function.  The VMap is
158/// updated to include mappings from all of the instructions and basicblocks in
159/// the function from their old to new values.
160///
161Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
162                              bool ModuleLevelChanges,
163                              ClonedCodeInfo *CodeInfo) {
164  std::vector<Type*> ArgTypes;
165
166  // The user might be deleting arguments to the function by specifying them in
167  // the VMap.  If so, we need to not add the arguments to the arg ty vector
168  //
169  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
170       I != E; ++I)
171    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
172      ArgTypes.push_back(I->getType());
173
174  // Create a new function type...
175  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
176                                    ArgTypes, F->getFunctionType()->isVarArg());
177
178  // Create the new function...
179  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
180
181  // Loop over the arguments, copying the names of the mapped arguments over...
182  Function::arg_iterator DestI = NewF->arg_begin();
183  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
184       I != E; ++I)
185    if (VMap.count(I) == 0) {   // Is this argument preserved?
186      DestI->setName(I->getName()); // Copy the name over...
187      VMap[I] = DestI++;        // Add mapping to VMap
188    }
189
190  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
191  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
192  return NewF;
193}
194
195
196
197namespace {
198  /// PruningFunctionCloner - This class is a private class used to implement
199  /// the CloneAndPruneFunctionInto method.
200  struct PruningFunctionCloner {
201    Function *NewFunc;
202    const Function *OldFunc;
203    ValueToValueMapTy &VMap;
204    bool ModuleLevelChanges;
205    const char *NameSuffix;
206    ClonedCodeInfo *CodeInfo;
207    const DataLayout *TD;
208  public:
209    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
210                          ValueToValueMapTy &valueMap,
211                          bool moduleLevelChanges,
212                          const char *nameSuffix,
213                          ClonedCodeInfo *codeInfo,
214                          const DataLayout *td)
215    : NewFunc(newFunc), OldFunc(oldFunc),
216      VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
217      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
218    }
219
220    /// CloneBlock - The specified block is found to be reachable, clone it and
221    /// anything that it can reach.
222    void CloneBlock(const BasicBlock *BB,
223                    std::vector<const BasicBlock*> &ToClone);
224  };
225}
226
227/// CloneBlock - The specified block is found to be reachable, clone it and
228/// anything that it can reach.
229void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
230                                       std::vector<const BasicBlock*> &ToClone){
231  WeakVH &BBEntry = VMap[BB];
232
233  // Have we already cloned this block?
234  if (BBEntry) return;
235
236  // Nope, clone it now.
237  BasicBlock *NewBB;
238  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
239  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
240
241  // It is only legal to clone a function if a block address within that
242  // function is never referenced outside of the function.  Given that, we
243  // want to map block addresses from the old function to block addresses in
244  // the clone. (This is different from the generic ValueMapper
245  // implementation, which generates an invalid blockaddress when
246  // cloning a function.)
247  //
248  // Note that we don't need to fix the mapping for unreachable blocks;
249  // the default mapping there is safe.
250  if (BB->hasAddressTaken()) {
251    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
252                                            const_cast<BasicBlock*>(BB));
253    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
254  }
255
256
257  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
258
259  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
260  // loop doesn't include the terminator.
261  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
262       II != IE; ++II) {
263    Instruction *NewInst = II->clone();
264
265    // Eagerly remap operands to the newly cloned instruction, except for PHI
266    // nodes for which we defer processing until we update the CFG.
267    if (!isa<PHINode>(NewInst)) {
268      RemapInstruction(NewInst, VMap,
269                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
270
271      // If we can simplify this instruction to some other value, simply add
272      // a mapping to that value rather than inserting a new instruction into
273      // the basic block.
274      if (Value *V = SimplifyInstruction(NewInst, TD)) {
275        // On the off-chance that this simplifies to an instruction in the old
276        // function, map it back into the new function.
277        if (Value *MappedV = VMap.lookup(V))
278          V = MappedV;
279
280        VMap[II] = V;
281        delete NewInst;
282        continue;
283      }
284    }
285
286    if (II->hasName())
287      NewInst->setName(II->getName()+NameSuffix);
288    VMap[II] = NewInst;                // Add instruction map to value.
289    NewBB->getInstList().push_back(NewInst);
290    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
291    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
292      if (isa<ConstantInt>(AI->getArraySize()))
293        hasStaticAllocas = true;
294      else
295        hasDynamicAllocas = true;
296    }
297  }
298
299  // Finally, clone over the terminator.
300  const TerminatorInst *OldTI = BB->getTerminator();
301  bool TerminatorDone = false;
302  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
303    if (BI->isConditional()) {
304      // If the condition was a known constant in the callee...
305      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
306      // Or is a known constant in the caller...
307      if (Cond == 0) {
308        Value *V = VMap[BI->getCondition()];
309        Cond = dyn_cast_or_null<ConstantInt>(V);
310      }
311
312      // Constant fold to uncond branch!
313      if (Cond) {
314        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
315        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
316        ToClone.push_back(Dest);
317        TerminatorDone = true;
318      }
319    }
320  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
321    // If switching on a value known constant in the caller.
322    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
323    if (Cond == 0) { // Or known constant after constant prop in the callee...
324      Value *V = VMap[SI->getCondition()];
325      Cond = dyn_cast_or_null<ConstantInt>(V);
326    }
327    if (Cond) {     // Constant fold to uncond branch!
328      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
329      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
330      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
331      ToClone.push_back(Dest);
332      TerminatorDone = true;
333    }
334  }
335
336  if (!TerminatorDone) {
337    Instruction *NewInst = OldTI->clone();
338    if (OldTI->hasName())
339      NewInst->setName(OldTI->getName()+NameSuffix);
340    NewBB->getInstList().push_back(NewInst);
341    VMap[OldTI] = NewInst;             // Add instruction map to value.
342
343    // Recursively clone any reachable successor blocks.
344    const TerminatorInst *TI = BB->getTerminator();
345    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
346      ToClone.push_back(TI->getSuccessor(i));
347  }
348
349  if (CodeInfo) {
350    CodeInfo->ContainsCalls          |= hasCalls;
351    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
352    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
353      BB != &BB->getParent()->front();
354  }
355}
356
357/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
358/// except that it does some simple constant prop and DCE on the fly.  The
359/// effect of this is to copy significantly less code in cases where (for
360/// example) a function call with constant arguments is inlined, and those
361/// constant arguments cause a significant amount of code in the callee to be
362/// dead.  Since this doesn't produce an exact copy of the input, it can't be
363/// used for things like CloneFunction or CloneModule.
364void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
365                                     ValueToValueMapTy &VMap,
366                                     bool ModuleLevelChanges,
367                                     SmallVectorImpl<ReturnInst*> &Returns,
368                                     const char *NameSuffix,
369                                     ClonedCodeInfo *CodeInfo,
370                                     const DataLayout *TD,
371                                     Instruction *TheCall) {
372  assert(NameSuffix && "NameSuffix cannot be null!");
373
374#ifndef NDEBUG
375  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
376       E = OldFunc->arg_end(); II != E; ++II)
377    assert(VMap.count(II) && "No mapping from source argument specified!");
378#endif
379
380  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
381                            NameSuffix, CodeInfo, TD);
382
383  // Clone the entry block, and anything recursively reachable from it.
384  std::vector<const BasicBlock*> CloneWorklist;
385  CloneWorklist.push_back(&OldFunc->getEntryBlock());
386  while (!CloneWorklist.empty()) {
387    const BasicBlock *BB = CloneWorklist.back();
388    CloneWorklist.pop_back();
389    PFC.CloneBlock(BB, CloneWorklist);
390  }
391
392  // Loop over all of the basic blocks in the old function.  If the block was
393  // reachable, we have cloned it and the old block is now in the value map:
394  // insert it into the new function in the right order.  If not, ignore it.
395  //
396  // Defer PHI resolution until rest of function is resolved.
397  SmallVector<const PHINode*, 16> PHIToResolve;
398  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
399       BI != BE; ++BI) {
400    Value *V = VMap[BI];
401    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
402    if (NewBB == 0) continue;  // Dead block.
403
404    // Add the new block to the new function.
405    NewFunc->getBasicBlockList().push_back(NewBB);
406
407    // Handle PHI nodes specially, as we have to remove references to dead
408    // blocks.
409    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
410      if (const PHINode *PN = dyn_cast<PHINode>(I))
411        PHIToResolve.push_back(PN);
412      else
413        break;
414
415    // Finally, remap the terminator instructions, as those can't be remapped
416    // until all BBs are mapped.
417    RemapInstruction(NewBB->getTerminator(), VMap,
418                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
419  }
420
421  // Defer PHI resolution until rest of function is resolved, PHI resolution
422  // requires the CFG to be up-to-date.
423  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
424    const PHINode *OPN = PHIToResolve[phino];
425    unsigned NumPreds = OPN->getNumIncomingValues();
426    const BasicBlock *OldBB = OPN->getParent();
427    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
428
429    // Map operands for blocks that are live and remove operands for blocks
430    // that are dead.
431    for (; phino != PHIToResolve.size() &&
432         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
433      OPN = PHIToResolve[phino];
434      PHINode *PN = cast<PHINode>(VMap[OPN]);
435      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
436        Value *V = VMap[PN->getIncomingBlock(pred)];
437        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
438          Value *InVal = MapValue(PN->getIncomingValue(pred),
439                                  VMap,
440                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
441          assert(InVal && "Unknown input value?");
442          PN->setIncomingValue(pred, InVal);
443          PN->setIncomingBlock(pred, MappedBlock);
444        } else {
445          PN->removeIncomingValue(pred, false);
446          --pred, --e;  // Revisit the next entry.
447        }
448      }
449    }
450
451    // The loop above has removed PHI entries for those blocks that are dead
452    // and has updated others.  However, if a block is live (i.e. copied over)
453    // but its terminator has been changed to not go to this block, then our
454    // phi nodes will have invalid entries.  Update the PHI nodes in this
455    // case.
456    PHINode *PN = cast<PHINode>(NewBB->begin());
457    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
458    if (NumPreds != PN->getNumIncomingValues()) {
459      assert(NumPreds < PN->getNumIncomingValues());
460      // Count how many times each predecessor comes to this block.
461      std::map<BasicBlock*, unsigned> PredCount;
462      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
463           PI != E; ++PI)
464        --PredCount[*PI];
465
466      // Figure out how many entries to remove from each PHI.
467      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
468        ++PredCount[PN->getIncomingBlock(i)];
469
470      // At this point, the excess predecessor entries are positive in the
471      // map.  Loop over all of the PHIs and remove excess predecessor
472      // entries.
473      BasicBlock::iterator I = NewBB->begin();
474      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
475        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
476             E = PredCount.end(); PCI != E; ++PCI) {
477          BasicBlock *Pred     = PCI->first;
478          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
479            PN->removeIncomingValue(Pred, false);
480        }
481      }
482    }
483
484    // If the loops above have made these phi nodes have 0 or 1 operand,
485    // replace them with undef or the input value.  We must do this for
486    // correctness, because 0-operand phis are not valid.
487    PN = cast<PHINode>(NewBB->begin());
488    if (PN->getNumIncomingValues() == 0) {
489      BasicBlock::iterator I = NewBB->begin();
490      BasicBlock::const_iterator OldI = OldBB->begin();
491      while ((PN = dyn_cast<PHINode>(I++))) {
492        Value *NV = UndefValue::get(PN->getType());
493        PN->replaceAllUsesWith(NV);
494        assert(VMap[OldI] == PN && "VMap mismatch");
495        VMap[OldI] = NV;
496        PN->eraseFromParent();
497        ++OldI;
498      }
499    }
500  }
501
502  // Make a second pass over the PHINodes now that all of them have been
503  // remapped into the new function, simplifying the PHINode and performing any
504  // recursive simplifications exposed. This will transparently update the
505  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
506  // two PHINodes, the iteration over the old PHIs remains valid, and the
507  // mapping will just map us to the new node (which may not even be a PHI
508  // node).
509  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
510    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
511      recursivelySimplifyInstruction(PN, TD);
512
513  // Now that the inlined function body has been fully constructed, go through
514  // and zap unconditional fall-through branches.  This happen all the time when
515  // specializing code: code specialization turns conditional branches into
516  // uncond branches, and this code folds them.
517  Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
518  Function::iterator I = Begin;
519  while (I != NewFunc->end()) {
520    // Check if this block has become dead during inlining or other
521    // simplifications. Note that the first block will appear dead, as it has
522    // not yet been wired up properly.
523    if (I != Begin && (pred_begin(I) == pred_end(I) ||
524                       I->getSinglePredecessor() == I)) {
525      BasicBlock *DeadBB = I++;
526      DeleteDeadBlock(DeadBB);
527      continue;
528    }
529
530    // We need to simplify conditional branches and switches with a constant
531    // operand. We try to prune these out when cloning, but if the
532    // simplification required looking through PHI nodes, those are only
533    // available after forming the full basic block. That may leave some here,
534    // and we still want to prune the dead code as early as possible.
535    ConstantFoldTerminator(I);
536
537    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
538    if (!BI || BI->isConditional()) { ++I; continue; }
539
540    BasicBlock *Dest = BI->getSuccessor(0);
541    if (!Dest->getSinglePredecessor()) {
542      ++I; continue;
543    }
544
545    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
546    // above should have zapped all of them..
547    assert(!isa<PHINode>(Dest->begin()));
548
549    // We know all single-entry PHI nodes in the inlined function have been
550    // removed, so we just need to splice the blocks.
551    BI->eraseFromParent();
552
553    // Make all PHI nodes that referred to Dest now refer to I as their source.
554    Dest->replaceAllUsesWith(I);
555
556    // Move all the instructions in the succ to the pred.
557    I->getInstList().splice(I->end(), Dest->getInstList());
558
559    // Remove the dest block.
560    Dest->eraseFromParent();
561
562    // Do not increment I, iteratively merge all things this block branches to.
563  }
564
565  // Make a final pass over the basic blocks from theh old function to gather
566  // any return instructions which survived folding. We have to do this here
567  // because we can iteratively remove and merge returns above.
568  for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
569                          E = NewFunc->end();
570       I != E; ++I)
571    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
572      Returns.push_back(RI);
573}
574