LoopStrengthReduce.cpp revision 208599
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUsesMap;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115  void DropRegister(const SCEV *Reg, size_t LUIdx);
116  void DropUse(size_t LUIdx);
117
118  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
119
120  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
121
122  void clear();
123
124  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126  iterator begin() { return RegSequence.begin(); }
127  iterator end()   { return RegSequence.end(); }
128  const_iterator begin() const { return RegSequence.begin(); }
129  const_iterator end() const   { return RegSequence.end(); }
130};
131
132}
133
134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136  std::pair<RegUsesTy::iterator, bool> Pair =
137    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
138  RegSortData &RSD = Pair.first->second;
139  if (Pair.second)
140    RegSequence.push_back(Reg);
141  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142  RSD.UsedByIndices.set(LUIdx);
143}
144
145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147  RegUsesTy::iterator It = RegUsesMap.find(Reg);
148  assert(It != RegUsesMap.end());
149  RegSortData &RSD = It->second;
150  assert(RSD.UsedByIndices.size() > LUIdx);
151  RSD.UsedByIndices.reset(LUIdx);
152}
153
154void
155RegUseTracker::DropUse(size_t LUIdx) {
156  // Remove the use index from every register's use list.
157  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158       I != E; ++I)
159    I->second.UsedByIndices.reset(LUIdx);
160}
161
162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
164  if (!RegUsesMap.count(Reg)) return false;
165  const SmallBitVector &UsedByIndices =
166    RegUsesMap.find(Reg)->second.UsedByIndices;
167  int i = UsedByIndices.find_first();
168  if (i == -1) return false;
169  if ((size_t)i != LUIdx) return true;
170  return UsedByIndices.find_next(i) != -1;
171}
172
173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
174  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175  assert(I != RegUsesMap.end() && "Unknown register!");
176  return I->second.UsedByIndices;
177}
178
179void RegUseTracker::clear() {
180  RegUsesMap.clear();
181  RegSequence.clear();
182}
183
184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190  /// AM - This is used to represent complex addressing, as well as other kinds
191  /// of interesting uses.
192  TargetLowering::AddrMode AM;
193
194  /// BaseRegs - The list of "base" registers for this use. When this is
195  /// non-empty, AM.HasBaseReg should be set to true.
196  SmallVector<const SCEV *, 2> BaseRegs;
197
198  /// ScaledReg - The 'scaled' register for this use. This should be non-null
199  /// when AM.Scale is not zero.
200  const SCEV *ScaledReg;
201
202  Formula() : ScaledReg(0) {}
203
204  void InitialMatch(const SCEV *S, Loop *L,
205                    ScalarEvolution &SE, DominatorTree &DT);
206
207  unsigned getNumRegs() const;
208  const Type *getType() const;
209
210  void DeleteBaseReg(const SCEV *&S);
211
212  bool referencesReg(const SCEV *S) const;
213  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214                                  const RegUseTracker &RegUses) const;
215
216  void print(raw_ostream &OS) const;
217  void dump() const;
218};
219
220}
221
222/// DoInitialMatch - Recursion helper for InitialMatch.
223static void DoInitialMatch(const SCEV *S, Loop *L,
224                           SmallVectorImpl<const SCEV *> &Good,
225                           SmallVectorImpl<const SCEV *> &Bad,
226                           ScalarEvolution &SE, DominatorTree &DT) {
227  // Collect expressions which properly dominate the loop header.
228  if (S->properlyDominates(L->getHeader(), &DT)) {
229    Good.push_back(S);
230    return;
231  }
232
233  // Look at add operands.
234  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236         I != E; ++I)
237      DoInitialMatch(*I, L, Good, Bad, SE, DT);
238    return;
239  }
240
241  // Look at addrec operands.
242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243    if (!AR->getStart()->isZero()) {
244      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
245      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
246                                      AR->getStepRecurrence(SE),
247                                      AR->getLoop()),
248                     L, Good, Bad, SE, DT);
249      return;
250    }
251
252  // Handle a multiplication by -1 (negation) if it didn't fold.
253  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254    if (Mul->getOperand(0)->isAllOnesValue()) {
255      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256      const SCEV *NewMul = SE.getMulExpr(Ops);
257
258      SmallVector<const SCEV *, 4> MyGood;
259      SmallVector<const SCEV *, 4> MyBad;
260      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262        SE.getEffectiveSCEVType(NewMul->getType())));
263      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264           E = MyGood.end(); I != E; ++I)
265        Good.push_back(SE.getMulExpr(NegOne, *I));
266      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267           E = MyBad.end(); I != E; ++I)
268        Bad.push_back(SE.getMulExpr(NegOne, *I));
269      return;
270    }
271
272  // Ok, we can't do anything interesting. Just stuff the whole thing into a
273  // register and hope for the best.
274  Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281                           ScalarEvolution &SE, DominatorTree &DT) {
282  SmallVector<const SCEV *, 4> Good;
283  SmallVector<const SCEV *, 4> Bad;
284  DoInitialMatch(S, L, Good, Bad, SE, DT);
285  if (!Good.empty()) {
286    const SCEV *Sum = SE.getAddExpr(Good);
287    if (!Sum->isZero())
288      BaseRegs.push_back(Sum);
289    AM.HasBaseReg = true;
290  }
291  if (!Bad.empty()) {
292    const SCEV *Sum = SE.getAddExpr(Bad);
293    if (!Sum->isZero())
294      BaseRegs.push_back(Sum);
295    AM.HasBaseReg = true;
296  }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303  return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310         ScaledReg ? ScaledReg->getType() :
311         AM.BaseGV ? AM.BaseGV->getType() :
312         0;
313}
314
315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317  if (&S != &BaseRegs.back())
318    std::swap(S, BaseRegs.back());
319  BaseRegs.pop_back();
320}
321
322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324  return S == ScaledReg ||
325         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331                                         const RegUseTracker &RegUses) const {
332  if (ScaledReg)
333    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334      return true;
335  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336       E = BaseRegs.end(); I != E; ++I)
337    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338      return true;
339  return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343  bool First = true;
344  if (AM.BaseGV) {
345    if (!First) OS << " + "; else First = false;
346    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347  }
348  if (AM.BaseOffs != 0) {
349    if (!First) OS << " + "; else First = false;
350    OS << AM.BaseOffs;
351  }
352  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353       E = BaseRegs.end(); I != E; ++I) {
354    if (!First) OS << " + "; else First = false;
355    OS << "reg(" << **I << ')';
356  }
357  if (AM.HasBaseReg && BaseRegs.empty()) {
358    if (!First) OS << " + "; else First = false;
359    OS << "**error: HasBaseReg**";
360  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361    if (!First) OS << " + "; else First = false;
362    OS << "**error: !HasBaseReg**";
363  }
364  if (AM.Scale != 0) {
365    if (!First) OS << " + "; else First = false;
366    OS << AM.Scale << "*reg(";
367    if (ScaledReg)
368      OS << *ScaledReg;
369    else
370      OS << "<unknown>";
371    OS << ')';
372  }
373}
374
375void Formula::dump() const {
376  print(errs()); errs() << '\n';
377}
378
379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382  const Type *WideTy =
383    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
384  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390  const Type *WideTy =
391    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
392  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
398  const Type *WideTy =
399    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
400  return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
403/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
404/// and if the remainder is known to be zero,  or null otherwise. If
405/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
406/// to Y, ignoring that the multiplication may overflow, which is useful when
407/// the result will be used in a context where the most significant bits are
408/// ignored.
409static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
410                                ScalarEvolution &SE,
411                                bool IgnoreSignificantBits = false) {
412  // Handle the trivial case, which works for any SCEV type.
413  if (LHS == RHS)
414    return SE.getConstant(LHS->getType(), 1);
415
416  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
417  // folding.
418  if (RHS->isAllOnesValue())
419    return SE.getMulExpr(LHS, RHS);
420
421  // Check for a division of a constant by a constant.
422  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
423    const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
424    if (!RC)
425      return 0;
426    if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
427      return 0;
428    return SE.getConstant(C->getValue()->getValue()
429               .sdiv(RC->getValue()->getValue()));
430  }
431
432  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
433  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
434    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
435      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
436                                       IgnoreSignificantBits);
437      if (!Start) return 0;
438      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
439                                      IgnoreSignificantBits);
440      if (!Step) return 0;
441      return SE.getAddRecExpr(Start, Step, AR->getLoop());
442    }
443  }
444
445  // Distribute the sdiv over add operands, if the add doesn't overflow.
446  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
447    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
448      SmallVector<const SCEV *, 8> Ops;
449      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
450           I != E; ++I) {
451        const SCEV *Op = getExactSDiv(*I, RHS, SE,
452                                      IgnoreSignificantBits);
453        if (!Op) return 0;
454        Ops.push_back(Op);
455      }
456      return SE.getAddExpr(Ops);
457    }
458  }
459
460  // Check for a multiply operand that we can pull RHS out of.
461  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
462    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
463      SmallVector<const SCEV *, 4> Ops;
464      bool Found = false;
465      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
466           I != E; ++I) {
467        const SCEV *S = *I;
468        if (!Found)
469          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
470                                           IgnoreSignificantBits)) {
471            S = Q;
472            Found = true;
473          }
474        Ops.push_back(S);
475      }
476      return Found ? SE.getMulExpr(Ops) : 0;
477    }
478
479  // Otherwise we don't know.
480  return 0;
481}
482
483/// ExtractImmediate - If S involves the addition of a constant integer value,
484/// return that integer value, and mutate S to point to a new SCEV with that
485/// value excluded.
486static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
487  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
488    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
489      S = SE.getConstant(C->getType(), 0);
490      return C->getValue()->getSExtValue();
491    }
492  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
493    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
494    int64_t Result = ExtractImmediate(NewOps.front(), SE);
495    S = SE.getAddExpr(NewOps);
496    return Result;
497  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
498    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
499    int64_t Result = ExtractImmediate(NewOps.front(), SE);
500    S = SE.getAddRecExpr(NewOps, AR->getLoop());
501    return Result;
502  }
503  return 0;
504}
505
506/// ExtractSymbol - If S involves the addition of a GlobalValue address,
507/// return that symbol, and mutate S to point to a new SCEV with that
508/// value excluded.
509static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
510  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
511    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
512      S = SE.getConstant(GV->getType(), 0);
513      return GV;
514    }
515  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
516    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
517    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
518    S = SE.getAddExpr(NewOps);
519    return Result;
520  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
523    S = SE.getAddRecExpr(NewOps, AR->getLoop());
524    return Result;
525  }
526  return 0;
527}
528
529/// isAddressUse - Returns true if the specified instruction is using the
530/// specified value as an address.
531static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
532  bool isAddress = isa<LoadInst>(Inst);
533  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534    if (SI->getOperand(1) == OperandVal)
535      isAddress = true;
536  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
537    // Addressing modes can also be folded into prefetches and a variety
538    // of intrinsics.
539    switch (II->getIntrinsicID()) {
540      default: break;
541      case Intrinsic::prefetch:
542      case Intrinsic::x86_sse2_loadu_dq:
543      case Intrinsic::x86_sse2_loadu_pd:
544      case Intrinsic::x86_sse_loadu_ps:
545      case Intrinsic::x86_sse_storeu_ps:
546      case Intrinsic::x86_sse2_storeu_pd:
547      case Intrinsic::x86_sse2_storeu_dq:
548      case Intrinsic::x86_sse2_storel_dq:
549        if (II->getOperand(1) == OperandVal)
550          isAddress = true;
551        break;
552    }
553  }
554  return isAddress;
555}
556
557/// getAccessType - Return the type of the memory being accessed.
558static const Type *getAccessType(const Instruction *Inst) {
559  const Type *AccessTy = Inst->getType();
560  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
561    AccessTy = SI->getOperand(0)->getType();
562  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563    // Addressing modes can also be folded into prefetches and a variety
564    // of intrinsics.
565    switch (II->getIntrinsicID()) {
566    default: break;
567    case Intrinsic::x86_sse_storeu_ps:
568    case Intrinsic::x86_sse2_storeu_pd:
569    case Intrinsic::x86_sse2_storeu_dq:
570    case Intrinsic::x86_sse2_storel_dq:
571      AccessTy = II->getOperand(1)->getType();
572      break;
573    }
574  }
575
576  // All pointers have the same requirements, so canonicalize them to an
577  // arbitrary pointer type to minimize variation.
578  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
579    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
580                                PTy->getAddressSpace());
581
582  return AccessTy;
583}
584
585/// DeleteTriviallyDeadInstructions - If any of the instructions is the
586/// specified set are trivially dead, delete them and see if this makes any of
587/// their operands subsequently dead.
588static bool
589DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
590  bool Changed = false;
591
592  while (!DeadInsts.empty()) {
593    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
594
595    if (I == 0 || !isInstructionTriviallyDead(I))
596      continue;
597
598    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
599      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
600        *OI = 0;
601        if (U->use_empty())
602          DeadInsts.push_back(U);
603      }
604
605    I->eraseFromParent();
606    Changed = true;
607  }
608
609  return Changed;
610}
611
612namespace {
613
614/// Cost - This class is used to measure and compare candidate formulae.
615class Cost {
616  /// TODO: Some of these could be merged. Also, a lexical ordering
617  /// isn't always optimal.
618  unsigned NumRegs;
619  unsigned AddRecCost;
620  unsigned NumIVMuls;
621  unsigned NumBaseAdds;
622  unsigned ImmCost;
623  unsigned SetupCost;
624
625public:
626  Cost()
627    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
628      SetupCost(0) {}
629
630  unsigned getNumRegs() const { return NumRegs; }
631
632  bool operator<(const Cost &Other) const;
633
634  void Loose();
635
636  void RateFormula(const Formula &F,
637                   SmallPtrSet<const SCEV *, 16> &Regs,
638                   const DenseSet<const SCEV *> &VisitedRegs,
639                   const Loop *L,
640                   const SmallVectorImpl<int64_t> &Offsets,
641                   ScalarEvolution &SE, DominatorTree &DT);
642
643  void print(raw_ostream &OS) const;
644  void dump() const;
645
646private:
647  void RateRegister(const SCEV *Reg,
648                    SmallPtrSet<const SCEV *, 16> &Regs,
649                    const Loop *L,
650                    ScalarEvolution &SE, DominatorTree &DT);
651  void RatePrimaryRegister(const SCEV *Reg,
652                           SmallPtrSet<const SCEV *, 16> &Regs,
653                           const Loop *L,
654                           ScalarEvolution &SE, DominatorTree &DT);
655};
656
657}
658
659/// RateRegister - Tally up interesting quantities from the given register.
660void Cost::RateRegister(const SCEV *Reg,
661                        SmallPtrSet<const SCEV *, 16> &Regs,
662                        const Loop *L,
663                        ScalarEvolution &SE, DominatorTree &DT) {
664  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
665    if (AR->getLoop() == L)
666      AddRecCost += 1; /// TODO: This should be a function of the stride.
667
668    // If this is an addrec for a loop that's already been visited by LSR,
669    // don't second-guess its addrec phi nodes. LSR isn't currently smart
670    // enough to reason about more than one loop at a time. Consider these
671    // registers free and leave them alone.
672    else if (L->contains(AR->getLoop()) ||
673             (!AR->getLoop()->contains(L) &&
674              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
675      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
676           PHINode *PN = dyn_cast<PHINode>(I); ++I)
677        if (SE.isSCEVable(PN->getType()) &&
678            (SE.getEffectiveSCEVType(PN->getType()) ==
679             SE.getEffectiveSCEVType(AR->getType())) &&
680            SE.getSCEV(PN) == AR)
681          return;
682
683      // If this isn't one of the addrecs that the loop already has, it
684      // would require a costly new phi and add. TODO: This isn't
685      // precisely modeled right now.
686      ++NumBaseAdds;
687      if (!Regs.count(AR->getStart()))
688        RateRegister(AR->getStart(), Regs, L, SE, DT);
689    }
690
691    // Add the step value register, if it needs one.
692    // TODO: The non-affine case isn't precisely modeled here.
693    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
694      if (!Regs.count(AR->getStart()))
695        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
696  }
697  ++NumRegs;
698
699  // Rough heuristic; favor registers which don't require extra setup
700  // instructions in the preheader.
701  if (!isa<SCEVUnknown>(Reg) &&
702      !isa<SCEVConstant>(Reg) &&
703      !(isa<SCEVAddRecExpr>(Reg) &&
704        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
705         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
706    ++SetupCost;
707}
708
709/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
710/// before, rate it.
711void Cost::RatePrimaryRegister(const SCEV *Reg,
712                               SmallPtrSet<const SCEV *, 16> &Regs,
713                               const Loop *L,
714                               ScalarEvolution &SE, DominatorTree &DT) {
715  if (Regs.insert(Reg))
716    RateRegister(Reg, Regs, L, SE, DT);
717}
718
719void Cost::RateFormula(const Formula &F,
720                       SmallPtrSet<const SCEV *, 16> &Regs,
721                       const DenseSet<const SCEV *> &VisitedRegs,
722                       const Loop *L,
723                       const SmallVectorImpl<int64_t> &Offsets,
724                       ScalarEvolution &SE, DominatorTree &DT) {
725  // Tally up the registers.
726  if (const SCEV *ScaledReg = F.ScaledReg) {
727    if (VisitedRegs.count(ScaledReg)) {
728      Loose();
729      return;
730    }
731    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
732  }
733  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
734       E = F.BaseRegs.end(); I != E; ++I) {
735    const SCEV *BaseReg = *I;
736    if (VisitedRegs.count(BaseReg)) {
737      Loose();
738      return;
739    }
740    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
741
742    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
743                 BaseReg->hasComputableLoopEvolution(L);
744  }
745
746  if (F.BaseRegs.size() > 1)
747    NumBaseAdds += F.BaseRegs.size() - 1;
748
749  // Tally up the non-zero immediates.
750  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
751       E = Offsets.end(); I != E; ++I) {
752    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
753    if (F.AM.BaseGV)
754      ImmCost += 64; // Handle symbolic values conservatively.
755                     // TODO: This should probably be the pointer size.
756    else if (Offset != 0)
757      ImmCost += APInt(64, Offset, true).getMinSignedBits();
758  }
759}
760
761/// Loose - Set this cost to a loosing value.
762void Cost::Loose() {
763  NumRegs = ~0u;
764  AddRecCost = ~0u;
765  NumIVMuls = ~0u;
766  NumBaseAdds = ~0u;
767  ImmCost = ~0u;
768  SetupCost = ~0u;
769}
770
771/// operator< - Choose the lower cost.
772bool Cost::operator<(const Cost &Other) const {
773  if (NumRegs != Other.NumRegs)
774    return NumRegs < Other.NumRegs;
775  if (AddRecCost != Other.AddRecCost)
776    return AddRecCost < Other.AddRecCost;
777  if (NumIVMuls != Other.NumIVMuls)
778    return NumIVMuls < Other.NumIVMuls;
779  if (NumBaseAdds != Other.NumBaseAdds)
780    return NumBaseAdds < Other.NumBaseAdds;
781  if (ImmCost != Other.ImmCost)
782    return ImmCost < Other.ImmCost;
783  if (SetupCost != Other.SetupCost)
784    return SetupCost < Other.SetupCost;
785  return false;
786}
787
788void Cost::print(raw_ostream &OS) const {
789  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
790  if (AddRecCost != 0)
791    OS << ", with addrec cost " << AddRecCost;
792  if (NumIVMuls != 0)
793    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
794  if (NumBaseAdds != 0)
795    OS << ", plus " << NumBaseAdds << " base add"
796       << (NumBaseAdds == 1 ? "" : "s");
797  if (ImmCost != 0)
798    OS << ", plus " << ImmCost << " imm cost";
799  if (SetupCost != 0)
800    OS << ", plus " << SetupCost << " setup cost";
801}
802
803void Cost::dump() const {
804  print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// LSRFixup - An operand value in an instruction which is to be replaced
810/// with some equivalent, possibly strength-reduced, replacement.
811struct LSRFixup {
812  /// UserInst - The instruction which will be updated.
813  Instruction *UserInst;
814
815  /// OperandValToReplace - The operand of the instruction which will
816  /// be replaced. The operand may be used more than once; every instance
817  /// will be replaced.
818  Value *OperandValToReplace;
819
820  /// PostIncLoops - If this user is to use the post-incremented value of an
821  /// induction variable, this variable is non-null and holds the loop
822  /// associated with the induction variable.
823  PostIncLoopSet PostIncLoops;
824
825  /// LUIdx - The index of the LSRUse describing the expression which
826  /// this fixup needs, minus an offset (below).
827  size_t LUIdx;
828
829  /// Offset - A constant offset to be added to the LSRUse expression.
830  /// This allows multiple fixups to share the same LSRUse with different
831  /// offsets, for example in an unrolled loop.
832  int64_t Offset;
833
834  bool isUseFullyOutsideLoop(const Loop *L) const;
835
836  LSRFixup();
837
838  void print(raw_ostream &OS) const;
839  void dump() const;
840};
841
842}
843
844LSRFixup::LSRFixup()
845  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
846
847/// isUseFullyOutsideLoop - Test whether this fixup always uses its
848/// value outside of the given loop.
849bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
850  // PHI nodes use their value in their incoming blocks.
851  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
852    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
853      if (PN->getIncomingValue(i) == OperandValToReplace &&
854          L->contains(PN->getIncomingBlock(i)))
855        return false;
856    return true;
857  }
858
859  return !L->contains(UserInst);
860}
861
862void LSRFixup::print(raw_ostream &OS) const {
863  OS << "UserInst=";
864  // Store is common and interesting enough to be worth special-casing.
865  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
866    OS << "store ";
867    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
868  } else if (UserInst->getType()->isVoidTy())
869    OS << UserInst->getOpcodeName();
870  else
871    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
872
873  OS << ", OperandValToReplace=";
874  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
875
876  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
877       E = PostIncLoops.end(); I != E; ++I) {
878    OS << ", PostIncLoop=";
879    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
880  }
881
882  if (LUIdx != ~size_t(0))
883    OS << ", LUIdx=" << LUIdx;
884
885  if (Offset != 0)
886    OS << ", Offset=" << Offset;
887}
888
889void LSRFixup::dump() const {
890  print(errs()); errs() << '\n';
891}
892
893namespace {
894
895/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
896/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
897struct UniquifierDenseMapInfo {
898  static SmallVector<const SCEV *, 2> getEmptyKey() {
899    SmallVector<const SCEV *, 2> V;
900    V.push_back(reinterpret_cast<const SCEV *>(-1));
901    return V;
902  }
903
904  static SmallVector<const SCEV *, 2> getTombstoneKey() {
905    SmallVector<const SCEV *, 2> V;
906    V.push_back(reinterpret_cast<const SCEV *>(-2));
907    return V;
908  }
909
910  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
911    unsigned Result = 0;
912    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
913         E = V.end(); I != E; ++I)
914      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
915    return Result;
916  }
917
918  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
919                      const SmallVector<const SCEV *, 2> &RHS) {
920    return LHS == RHS;
921  }
922};
923
924/// LSRUse - This class holds the state that LSR keeps for each use in
925/// IVUsers, as well as uses invented by LSR itself. It includes information
926/// about what kinds of things can be folded into the user, information about
927/// the user itself, and information about how the use may be satisfied.
928/// TODO: Represent multiple users of the same expression in common?
929class LSRUse {
930  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
931
932public:
933  /// KindType - An enum for a kind of use, indicating what types of
934  /// scaled and immediate operands it might support.
935  enum KindType {
936    Basic,   ///< A normal use, with no folding.
937    Special, ///< A special case of basic, allowing -1 scales.
938    Address, ///< An address use; folding according to TargetLowering
939    ICmpZero ///< An equality icmp with both operands folded into one.
940    // TODO: Add a generic icmp too?
941  };
942
943  KindType Kind;
944  const Type *AccessTy;
945
946  SmallVector<int64_t, 8> Offsets;
947  int64_t MinOffset;
948  int64_t MaxOffset;
949
950  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
951  /// LSRUse are outside of the loop, in which case some special-case heuristics
952  /// may be used.
953  bool AllFixupsOutsideLoop;
954
955  /// Formulae - A list of ways to build a value that can satisfy this user.
956  /// After the list is populated, one of these is selected heuristically and
957  /// used to formulate a replacement for OperandValToReplace in UserInst.
958  SmallVector<Formula, 12> Formulae;
959
960  /// Regs - The set of register candidates used by all formulae in this LSRUse.
961  SmallPtrSet<const SCEV *, 4> Regs;
962
963  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
964                                      MinOffset(INT64_MAX),
965                                      MaxOffset(INT64_MIN),
966                                      AllFixupsOutsideLoop(true) {}
967
968  bool HasFormulaWithSameRegs(const Formula &F) const;
969  bool InsertFormula(const Formula &F);
970  void DeleteFormula(Formula &F);
971  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
972
973  void check() const;
974
975  void print(raw_ostream &OS) const;
976  void dump() const;
977};
978
979/// HasFormula - Test whether this use as a formula which has the same
980/// registers as the given formula.
981bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
982  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
983  if (F.ScaledReg) Key.push_back(F.ScaledReg);
984  // Unstable sort by host order ok, because this is only used for uniquifying.
985  std::sort(Key.begin(), Key.end());
986  return Uniquifier.count(Key);
987}
988
989/// InsertFormula - If the given formula has not yet been inserted, add it to
990/// the list, and return true. Return false otherwise.
991bool LSRUse::InsertFormula(const Formula &F) {
992  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
993  if (F.ScaledReg) Key.push_back(F.ScaledReg);
994  // Unstable sort by host order ok, because this is only used for uniquifying.
995  std::sort(Key.begin(), Key.end());
996
997  if (!Uniquifier.insert(Key).second)
998    return false;
999
1000  // Using a register to hold the value of 0 is not profitable.
1001  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1002         "Zero allocated in a scaled register!");
1003#ifndef NDEBUG
1004  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1005       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1006    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1007#endif
1008
1009  // Add the formula to the list.
1010  Formulae.push_back(F);
1011
1012  // Record registers now being used by this use.
1013  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1014  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1015
1016  return true;
1017}
1018
1019/// DeleteFormula - Remove the given formula from this use's list.
1020void LSRUse::DeleteFormula(Formula &F) {
1021  if (&F != &Formulae.back())
1022    std::swap(F, Formulae.back());
1023  Formulae.pop_back();
1024  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1025}
1026
1027/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1028void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1029  // Now that we've filtered out some formulae, recompute the Regs set.
1030  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1031  Regs.clear();
1032  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1033       E = Formulae.end(); I != E; ++I) {
1034    const Formula &F = *I;
1035    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1036    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1037  }
1038
1039  // Update the RegTracker.
1040  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1041       E = OldRegs.end(); I != E; ++I)
1042    if (!Regs.count(*I))
1043      RegUses.DropRegister(*I, LUIdx);
1044}
1045
1046void LSRUse::print(raw_ostream &OS) const {
1047  OS << "LSR Use: Kind=";
1048  switch (Kind) {
1049  case Basic:    OS << "Basic"; break;
1050  case Special:  OS << "Special"; break;
1051  case ICmpZero: OS << "ICmpZero"; break;
1052  case Address:
1053    OS << "Address of ";
1054    if (AccessTy->isPointerTy())
1055      OS << "pointer"; // the full pointer type could be really verbose
1056    else
1057      OS << *AccessTy;
1058  }
1059
1060  OS << ", Offsets={";
1061  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1062       E = Offsets.end(); I != E; ++I) {
1063    OS << *I;
1064    if (next(I) != E)
1065      OS << ',';
1066  }
1067  OS << '}';
1068
1069  if (AllFixupsOutsideLoop)
1070    OS << ", all-fixups-outside-loop";
1071}
1072
1073void LSRUse::dump() const {
1074  print(errs()); errs() << '\n';
1075}
1076
1077/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1078/// be completely folded into the user instruction at isel time. This includes
1079/// address-mode folding and special icmp tricks.
1080static bool isLegalUse(const TargetLowering::AddrMode &AM,
1081                       LSRUse::KindType Kind, const Type *AccessTy,
1082                       const TargetLowering *TLI) {
1083  switch (Kind) {
1084  case LSRUse::Address:
1085    // If we have low-level target information, ask the target if it can
1086    // completely fold this address.
1087    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1088
1089    // Otherwise, just guess that reg+reg addressing is legal.
1090    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1091
1092  case LSRUse::ICmpZero:
1093    // There's not even a target hook for querying whether it would be legal to
1094    // fold a GV into an ICmp.
1095    if (AM.BaseGV)
1096      return false;
1097
1098    // ICmp only has two operands; don't allow more than two non-trivial parts.
1099    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1100      return false;
1101
1102    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1103    // putting the scaled register in the other operand of the icmp.
1104    if (AM.Scale != 0 && AM.Scale != -1)
1105      return false;
1106
1107    // If we have low-level target information, ask the target if it can fold an
1108    // integer immediate on an icmp.
1109    if (AM.BaseOffs != 0) {
1110      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1111      return false;
1112    }
1113
1114    return true;
1115
1116  case LSRUse::Basic:
1117    // Only handle single-register values.
1118    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1119
1120  case LSRUse::Special:
1121    // Only handle -1 scales, or no scale.
1122    return AM.Scale == 0 || AM.Scale == -1;
1123  }
1124
1125  return false;
1126}
1127
1128static bool isLegalUse(TargetLowering::AddrMode AM,
1129                       int64_t MinOffset, int64_t MaxOffset,
1130                       LSRUse::KindType Kind, const Type *AccessTy,
1131                       const TargetLowering *TLI) {
1132  // Check for overflow.
1133  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1134      (MinOffset > 0))
1135    return false;
1136  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1137  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1138    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1139    // Check for overflow.
1140    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1141        (MaxOffset > 0))
1142      return false;
1143    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1144    return isLegalUse(AM, Kind, AccessTy, TLI);
1145  }
1146  return false;
1147}
1148
1149static bool isAlwaysFoldable(int64_t BaseOffs,
1150                             GlobalValue *BaseGV,
1151                             bool HasBaseReg,
1152                             LSRUse::KindType Kind, const Type *AccessTy,
1153                             const TargetLowering *TLI) {
1154  // Fast-path: zero is always foldable.
1155  if (BaseOffs == 0 && !BaseGV) return true;
1156
1157  // Conservatively, create an address with an immediate and a
1158  // base and a scale.
1159  TargetLowering::AddrMode AM;
1160  AM.BaseOffs = BaseOffs;
1161  AM.BaseGV = BaseGV;
1162  AM.HasBaseReg = HasBaseReg;
1163  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1164
1165  // Canonicalize a scale of 1 to a base register if the formula doesn't
1166  // already have a base register.
1167  if (!AM.HasBaseReg && AM.Scale == 1) {
1168    AM.Scale = 0;
1169    AM.HasBaseReg = true;
1170  }
1171
1172  return isLegalUse(AM, Kind, AccessTy, TLI);
1173}
1174
1175static bool isAlwaysFoldable(const SCEV *S,
1176                             int64_t MinOffset, int64_t MaxOffset,
1177                             bool HasBaseReg,
1178                             LSRUse::KindType Kind, const Type *AccessTy,
1179                             const TargetLowering *TLI,
1180                             ScalarEvolution &SE) {
1181  // Fast-path: zero is always foldable.
1182  if (S->isZero()) return true;
1183
1184  // Conservatively, create an address with an immediate and a
1185  // base and a scale.
1186  int64_t BaseOffs = ExtractImmediate(S, SE);
1187  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1188
1189  // If there's anything else involved, it's not foldable.
1190  if (!S->isZero()) return false;
1191
1192  // Fast-path: zero is always foldable.
1193  if (BaseOffs == 0 && !BaseGV) return true;
1194
1195  // Conservatively, create an address with an immediate and a
1196  // base and a scale.
1197  TargetLowering::AddrMode AM;
1198  AM.BaseOffs = BaseOffs;
1199  AM.BaseGV = BaseGV;
1200  AM.HasBaseReg = HasBaseReg;
1201  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1202
1203  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1204}
1205
1206/// FormulaSorter - This class implements an ordering for formulae which sorts
1207/// the by their standalone cost.
1208class FormulaSorter {
1209  /// These two sets are kept empty, so that we compute standalone costs.
1210  DenseSet<const SCEV *> VisitedRegs;
1211  SmallPtrSet<const SCEV *, 16> Regs;
1212  Loop *L;
1213  LSRUse *LU;
1214  ScalarEvolution &SE;
1215  DominatorTree &DT;
1216
1217public:
1218  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1219    : L(l), LU(&lu), SE(se), DT(dt) {}
1220
1221  bool operator()(const Formula &A, const Formula &B) {
1222    Cost CostA;
1223    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1224    Regs.clear();
1225    Cost CostB;
1226    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1227    Regs.clear();
1228    return CostA < CostB;
1229  }
1230};
1231
1232/// LSRInstance - This class holds state for the main loop strength reduction
1233/// logic.
1234class LSRInstance {
1235  IVUsers &IU;
1236  ScalarEvolution &SE;
1237  DominatorTree &DT;
1238  LoopInfo &LI;
1239  const TargetLowering *const TLI;
1240  Loop *const L;
1241  bool Changed;
1242
1243  /// IVIncInsertPos - This is the insert position that the current loop's
1244  /// induction variable increment should be placed. In simple loops, this is
1245  /// the latch block's terminator. But in more complicated cases, this is a
1246  /// position which will dominate all the in-loop post-increment users.
1247  Instruction *IVIncInsertPos;
1248
1249  /// Factors - Interesting factors between use strides.
1250  SmallSetVector<int64_t, 8> Factors;
1251
1252  /// Types - Interesting use types, to facilitate truncation reuse.
1253  SmallSetVector<const Type *, 4> Types;
1254
1255  /// Fixups - The list of operands which are to be replaced.
1256  SmallVector<LSRFixup, 16> Fixups;
1257
1258  /// Uses - The list of interesting uses.
1259  SmallVector<LSRUse, 16> Uses;
1260
1261  /// RegUses - Track which uses use which register candidates.
1262  RegUseTracker RegUses;
1263
1264  void OptimizeShadowIV();
1265  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1266  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1267  void OptimizeLoopTermCond();
1268
1269  void CollectInterestingTypesAndFactors();
1270  void CollectFixupsAndInitialFormulae();
1271
1272  LSRFixup &getNewFixup() {
1273    Fixups.push_back(LSRFixup());
1274    return Fixups.back();
1275  }
1276
1277  // Support for sharing of LSRUses between LSRFixups.
1278  typedef DenseMap<const SCEV *, size_t> UseMapTy;
1279  UseMapTy UseMap;
1280
1281  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1282                          LSRUse::KindType Kind, const Type *AccessTy);
1283
1284  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1285                                    LSRUse::KindType Kind,
1286                                    const Type *AccessTy);
1287
1288  void DeleteUse(LSRUse &LU);
1289
1290  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1291
1292public:
1293  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1294  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1295  void CountRegisters(const Formula &F, size_t LUIdx);
1296  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1297
1298  void CollectLoopInvariantFixupsAndFormulae();
1299
1300  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1301                              unsigned Depth = 0);
1302  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1303  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1304  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1305  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1306  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1307  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1308  void GenerateCrossUseConstantOffsets();
1309  void GenerateAllReuseFormulae();
1310
1311  void FilterOutUndesirableDedicatedRegisters();
1312
1313  size_t EstimateSearchSpaceComplexity() const;
1314  void NarrowSearchSpaceUsingHeuristics();
1315
1316  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1317                    Cost &SolutionCost,
1318                    SmallVectorImpl<const Formula *> &Workspace,
1319                    const Cost &CurCost,
1320                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1321                    DenseSet<const SCEV *> &VisitedRegs) const;
1322  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1323
1324  BasicBlock::iterator
1325    HoistInsertPosition(BasicBlock::iterator IP,
1326                        const SmallVectorImpl<Instruction *> &Inputs) const;
1327  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1328                                                     const LSRFixup &LF,
1329                                                     const LSRUse &LU) const;
1330
1331  Value *Expand(const LSRFixup &LF,
1332                const Formula &F,
1333                BasicBlock::iterator IP,
1334                SCEVExpander &Rewriter,
1335                SmallVectorImpl<WeakVH> &DeadInsts) const;
1336  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1337                     const Formula &F,
1338                     SCEVExpander &Rewriter,
1339                     SmallVectorImpl<WeakVH> &DeadInsts,
1340                     Pass *P) const;
1341  void Rewrite(const LSRFixup &LF,
1342               const Formula &F,
1343               SCEVExpander &Rewriter,
1344               SmallVectorImpl<WeakVH> &DeadInsts,
1345               Pass *P) const;
1346  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1347                         Pass *P);
1348
1349  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1350
1351  bool getChanged() const { return Changed; }
1352
1353  void print_factors_and_types(raw_ostream &OS) const;
1354  void print_fixups(raw_ostream &OS) const;
1355  void print_uses(raw_ostream &OS) const;
1356  void print(raw_ostream &OS) const;
1357  void dump() const;
1358};
1359
1360}
1361
1362/// OptimizeShadowIV - If IV is used in a int-to-float cast
1363/// inside the loop then try to eliminate the cast operation.
1364void LSRInstance::OptimizeShadowIV() {
1365  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1366  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1367    return;
1368
1369  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1370       UI != E; /* empty */) {
1371    IVUsers::const_iterator CandidateUI = UI;
1372    ++UI;
1373    Instruction *ShadowUse = CandidateUI->getUser();
1374    const Type *DestTy = NULL;
1375
1376    /* If shadow use is a int->float cast then insert a second IV
1377       to eliminate this cast.
1378
1379         for (unsigned i = 0; i < n; ++i)
1380           foo((double)i);
1381
1382       is transformed into
1383
1384         double d = 0.0;
1385         for (unsigned i = 0; i < n; ++i, ++d)
1386           foo(d);
1387    */
1388    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1389      DestTy = UCast->getDestTy();
1390    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1391      DestTy = SCast->getDestTy();
1392    if (!DestTy) continue;
1393
1394    if (TLI) {
1395      // If target does not support DestTy natively then do not apply
1396      // this transformation.
1397      EVT DVT = TLI->getValueType(DestTy);
1398      if (!TLI->isTypeLegal(DVT)) continue;
1399    }
1400
1401    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1402    if (!PH) continue;
1403    if (PH->getNumIncomingValues() != 2) continue;
1404
1405    const Type *SrcTy = PH->getType();
1406    int Mantissa = DestTy->getFPMantissaWidth();
1407    if (Mantissa == -1) continue;
1408    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1409      continue;
1410
1411    unsigned Entry, Latch;
1412    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1413      Entry = 0;
1414      Latch = 1;
1415    } else {
1416      Entry = 1;
1417      Latch = 0;
1418    }
1419
1420    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1421    if (!Init) continue;
1422    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1423
1424    BinaryOperator *Incr =
1425      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1426    if (!Incr) continue;
1427    if (Incr->getOpcode() != Instruction::Add
1428        && Incr->getOpcode() != Instruction::Sub)
1429      continue;
1430
1431    /* Initialize new IV, double d = 0.0 in above example. */
1432    ConstantInt *C = NULL;
1433    if (Incr->getOperand(0) == PH)
1434      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1435    else if (Incr->getOperand(1) == PH)
1436      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1437    else
1438      continue;
1439
1440    if (!C) continue;
1441
1442    // Ignore negative constants, as the code below doesn't handle them
1443    // correctly. TODO: Remove this restriction.
1444    if (!C->getValue().isStrictlyPositive()) continue;
1445
1446    /* Add new PHINode. */
1447    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1448
1449    /* create new increment. '++d' in above example. */
1450    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1451    BinaryOperator *NewIncr =
1452      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1453                               Instruction::FAdd : Instruction::FSub,
1454                             NewPH, CFP, "IV.S.next.", Incr);
1455
1456    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1457    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1458
1459    /* Remove cast operation */
1460    ShadowUse->replaceAllUsesWith(NewPH);
1461    ShadowUse->eraseFromParent();
1462    Changed = true;
1463    break;
1464  }
1465}
1466
1467/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1468/// set the IV user and stride information and return true, otherwise return
1469/// false.
1470bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1471  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1472    if (UI->getUser() == Cond) {
1473      // NOTE: we could handle setcc instructions with multiple uses here, but
1474      // InstCombine does it as well for simple uses, it's not clear that it
1475      // occurs enough in real life to handle.
1476      CondUse = UI;
1477      return true;
1478    }
1479  return false;
1480}
1481
1482/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1483/// a max computation.
1484///
1485/// This is a narrow solution to a specific, but acute, problem. For loops
1486/// like this:
1487///
1488///   i = 0;
1489///   do {
1490///     p[i] = 0.0;
1491///   } while (++i < n);
1492///
1493/// the trip count isn't just 'n', because 'n' might not be positive. And
1494/// unfortunately this can come up even for loops where the user didn't use
1495/// a C do-while loop. For example, seemingly well-behaved top-test loops
1496/// will commonly be lowered like this:
1497//
1498///   if (n > 0) {
1499///     i = 0;
1500///     do {
1501///       p[i] = 0.0;
1502///     } while (++i < n);
1503///   }
1504///
1505/// and then it's possible for subsequent optimization to obscure the if
1506/// test in such a way that indvars can't find it.
1507///
1508/// When indvars can't find the if test in loops like this, it creates a
1509/// max expression, which allows it to give the loop a canonical
1510/// induction variable:
1511///
1512///   i = 0;
1513///   max = n < 1 ? 1 : n;
1514///   do {
1515///     p[i] = 0.0;
1516///   } while (++i != max);
1517///
1518/// Canonical induction variables are necessary because the loop passes
1519/// are designed around them. The most obvious example of this is the
1520/// LoopInfo analysis, which doesn't remember trip count values. It
1521/// expects to be able to rediscover the trip count each time it is
1522/// needed, and it does this using a simple analysis that only succeeds if
1523/// the loop has a canonical induction variable.
1524///
1525/// However, when it comes time to generate code, the maximum operation
1526/// can be quite costly, especially if it's inside of an outer loop.
1527///
1528/// This function solves this problem by detecting this type of loop and
1529/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1530/// the instructions for the maximum computation.
1531///
1532ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1533  // Check that the loop matches the pattern we're looking for.
1534  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1535      Cond->getPredicate() != CmpInst::ICMP_NE)
1536    return Cond;
1537
1538  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1539  if (!Sel || !Sel->hasOneUse()) return Cond;
1540
1541  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1542  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1543    return Cond;
1544  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1545
1546  // Add one to the backedge-taken count to get the trip count.
1547  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1548  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1549
1550  // Check for a max calculation that matches the pattern. There's no check
1551  // for ICMP_ULE here because the comparison would be with zero, which
1552  // isn't interesting.
1553  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1554  const SCEVNAryExpr *Max = 0;
1555  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1556    Pred = ICmpInst::ICMP_SLE;
1557    Max = S;
1558  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1559    Pred = ICmpInst::ICMP_SLT;
1560    Max = S;
1561  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1562    Pred = ICmpInst::ICMP_ULT;
1563    Max = U;
1564  } else {
1565    // No match; bail.
1566    return Cond;
1567  }
1568
1569  // To handle a max with more than two operands, this optimization would
1570  // require additional checking and setup.
1571  if (Max->getNumOperands() != 2)
1572    return Cond;
1573
1574  const SCEV *MaxLHS = Max->getOperand(0);
1575  const SCEV *MaxRHS = Max->getOperand(1);
1576
1577  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1578  // for a comparison with 1. For <= and >=, a comparison with zero.
1579  if (!MaxLHS ||
1580      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1581    return Cond;
1582
1583  // Check the relevant induction variable for conformance to
1584  // the pattern.
1585  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1586  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1587  if (!AR || !AR->isAffine() ||
1588      AR->getStart() != One ||
1589      AR->getStepRecurrence(SE) != One)
1590    return Cond;
1591
1592  assert(AR->getLoop() == L &&
1593         "Loop condition operand is an addrec in a different loop!");
1594
1595  // Check the right operand of the select, and remember it, as it will
1596  // be used in the new comparison instruction.
1597  Value *NewRHS = 0;
1598  if (ICmpInst::isTrueWhenEqual(Pred)) {
1599    // Look for n+1, and grab n.
1600    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1601      if (isa<ConstantInt>(BO->getOperand(1)) &&
1602          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1603          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1604        NewRHS = BO->getOperand(0);
1605    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1606      if (isa<ConstantInt>(BO->getOperand(1)) &&
1607          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1608          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1609        NewRHS = BO->getOperand(0);
1610    if (!NewRHS)
1611      return Cond;
1612  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1613    NewRHS = Sel->getOperand(1);
1614  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1615    NewRHS = Sel->getOperand(2);
1616  else
1617    llvm_unreachable("Max doesn't match expected pattern!");
1618
1619  // Determine the new comparison opcode. It may be signed or unsigned,
1620  // and the original comparison may be either equality or inequality.
1621  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1622    Pred = CmpInst::getInversePredicate(Pred);
1623
1624  // Ok, everything looks ok to change the condition into an SLT or SGE and
1625  // delete the max calculation.
1626  ICmpInst *NewCond =
1627    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1628
1629  // Delete the max calculation instructions.
1630  Cond->replaceAllUsesWith(NewCond);
1631  CondUse->setUser(NewCond);
1632  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1633  Cond->eraseFromParent();
1634  Sel->eraseFromParent();
1635  if (Cmp->use_empty())
1636    Cmp->eraseFromParent();
1637  return NewCond;
1638}
1639
1640/// OptimizeLoopTermCond - Change loop terminating condition to use the
1641/// postinc iv when possible.
1642void
1643LSRInstance::OptimizeLoopTermCond() {
1644  SmallPtrSet<Instruction *, 4> PostIncs;
1645
1646  BasicBlock *LatchBlock = L->getLoopLatch();
1647  SmallVector<BasicBlock*, 8> ExitingBlocks;
1648  L->getExitingBlocks(ExitingBlocks);
1649
1650  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1651    BasicBlock *ExitingBlock = ExitingBlocks[i];
1652
1653    // Get the terminating condition for the loop if possible.  If we
1654    // can, we want to change it to use a post-incremented version of its
1655    // induction variable, to allow coalescing the live ranges for the IV into
1656    // one register value.
1657
1658    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1659    if (!TermBr)
1660      continue;
1661    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1662    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1663      continue;
1664
1665    // Search IVUsesByStride to find Cond's IVUse if there is one.
1666    IVStrideUse *CondUse = 0;
1667    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1668    if (!FindIVUserForCond(Cond, CondUse))
1669      continue;
1670
1671    // If the trip count is computed in terms of a max (due to ScalarEvolution
1672    // being unable to find a sufficient guard, for example), change the loop
1673    // comparison to use SLT or ULT instead of NE.
1674    // One consequence of doing this now is that it disrupts the count-down
1675    // optimization. That's not always a bad thing though, because in such
1676    // cases it may still be worthwhile to avoid a max.
1677    Cond = OptimizeMax(Cond, CondUse);
1678
1679    // If this exiting block dominates the latch block, it may also use
1680    // the post-inc value if it won't be shared with other uses.
1681    // Check for dominance.
1682    if (!DT.dominates(ExitingBlock, LatchBlock))
1683      continue;
1684
1685    // Conservatively avoid trying to use the post-inc value in non-latch
1686    // exits if there may be pre-inc users in intervening blocks.
1687    if (LatchBlock != ExitingBlock)
1688      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1689        // Test if the use is reachable from the exiting block. This dominator
1690        // query is a conservative approximation of reachability.
1691        if (&*UI != CondUse &&
1692            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1693          // Conservatively assume there may be reuse if the quotient of their
1694          // strides could be a legal scale.
1695          const SCEV *A = IU.getStride(*CondUse, L);
1696          const SCEV *B = IU.getStride(*UI, L);
1697          if (!A || !B) continue;
1698          if (SE.getTypeSizeInBits(A->getType()) !=
1699              SE.getTypeSizeInBits(B->getType())) {
1700            if (SE.getTypeSizeInBits(A->getType()) >
1701                SE.getTypeSizeInBits(B->getType()))
1702              B = SE.getSignExtendExpr(B, A->getType());
1703            else
1704              A = SE.getSignExtendExpr(A, B->getType());
1705          }
1706          if (const SCEVConstant *D =
1707                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1708            const ConstantInt *C = D->getValue();
1709            // Stride of one or negative one can have reuse with non-addresses.
1710            if (C->isOne() || C->isAllOnesValue())
1711              goto decline_post_inc;
1712            // Avoid weird situations.
1713            if (C->getValue().getMinSignedBits() >= 64 ||
1714                C->getValue().isMinSignedValue())
1715              goto decline_post_inc;
1716            // Without TLI, assume that any stride might be valid, and so any
1717            // use might be shared.
1718            if (!TLI)
1719              goto decline_post_inc;
1720            // Check for possible scaled-address reuse.
1721            const Type *AccessTy = getAccessType(UI->getUser());
1722            TargetLowering::AddrMode AM;
1723            AM.Scale = C->getSExtValue();
1724            if (TLI->isLegalAddressingMode(AM, AccessTy))
1725              goto decline_post_inc;
1726            AM.Scale = -AM.Scale;
1727            if (TLI->isLegalAddressingMode(AM, AccessTy))
1728              goto decline_post_inc;
1729          }
1730        }
1731
1732    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1733                 << *Cond << '\n');
1734
1735    // It's possible for the setcc instruction to be anywhere in the loop, and
1736    // possible for it to have multiple users.  If it is not immediately before
1737    // the exiting block branch, move it.
1738    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1739      if (Cond->hasOneUse()) {
1740        Cond->moveBefore(TermBr);
1741      } else {
1742        // Clone the terminating condition and insert into the loopend.
1743        ICmpInst *OldCond = Cond;
1744        Cond = cast<ICmpInst>(Cond->clone());
1745        Cond->setName(L->getHeader()->getName() + ".termcond");
1746        ExitingBlock->getInstList().insert(TermBr, Cond);
1747
1748        // Clone the IVUse, as the old use still exists!
1749        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1750        TermBr->replaceUsesOfWith(OldCond, Cond);
1751      }
1752    }
1753
1754    // If we get to here, we know that we can transform the setcc instruction to
1755    // use the post-incremented version of the IV, allowing us to coalesce the
1756    // live ranges for the IV correctly.
1757    CondUse->transformToPostInc(L);
1758    Changed = true;
1759
1760    PostIncs.insert(Cond);
1761  decline_post_inc:;
1762  }
1763
1764  // Determine an insertion point for the loop induction variable increment. It
1765  // must dominate all the post-inc comparisons we just set up, and it must
1766  // dominate the loop latch edge.
1767  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1768  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1769       E = PostIncs.end(); I != E; ++I) {
1770    BasicBlock *BB =
1771      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1772                                    (*I)->getParent());
1773    if (BB == (*I)->getParent())
1774      IVIncInsertPos = *I;
1775    else if (BB != IVIncInsertPos->getParent())
1776      IVIncInsertPos = BB->getTerminator();
1777  }
1778}
1779
1780/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1781/// at the given offset and other details. If so, update the use and
1782/// return true.
1783bool
1784LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1785                                LSRUse::KindType Kind, const Type *AccessTy) {
1786  int64_t NewMinOffset = LU.MinOffset;
1787  int64_t NewMaxOffset = LU.MaxOffset;
1788  const Type *NewAccessTy = AccessTy;
1789
1790  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1791  // something conservative, however this can pessimize in the case that one of
1792  // the uses will have all its uses outside the loop, for example.
1793  if (LU.Kind != Kind)
1794    return false;
1795  // Conservatively assume HasBaseReg is true for now.
1796  if (NewOffset < LU.MinOffset) {
1797    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1798                          Kind, AccessTy, TLI))
1799      return false;
1800    NewMinOffset = NewOffset;
1801  } else if (NewOffset > LU.MaxOffset) {
1802    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1803                          Kind, AccessTy, TLI))
1804      return false;
1805    NewMaxOffset = NewOffset;
1806  }
1807  // Check for a mismatched access type, and fall back conservatively as needed.
1808  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1809    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1810
1811  // Update the use.
1812  LU.MinOffset = NewMinOffset;
1813  LU.MaxOffset = NewMaxOffset;
1814  LU.AccessTy = NewAccessTy;
1815  if (NewOffset != LU.Offsets.back())
1816    LU.Offsets.push_back(NewOffset);
1817  return true;
1818}
1819
1820/// getUse - Return an LSRUse index and an offset value for a fixup which
1821/// needs the given expression, with the given kind and optional access type.
1822/// Either reuse an existing use or create a new one, as needed.
1823std::pair<size_t, int64_t>
1824LSRInstance::getUse(const SCEV *&Expr,
1825                    LSRUse::KindType Kind, const Type *AccessTy) {
1826  const SCEV *Copy = Expr;
1827  int64_t Offset = ExtractImmediate(Expr, SE);
1828
1829  // Basic uses can't accept any offset, for example.
1830  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1831    Expr = Copy;
1832    Offset = 0;
1833  }
1834
1835  std::pair<UseMapTy::iterator, bool> P =
1836    UseMap.insert(std::make_pair(Expr, 0));
1837  if (!P.second) {
1838    // A use already existed with this base.
1839    size_t LUIdx = P.first->second;
1840    LSRUse &LU = Uses[LUIdx];
1841    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1842      // Reuse this use.
1843      return std::make_pair(LUIdx, Offset);
1844  }
1845
1846  // Create a new use.
1847  size_t LUIdx = Uses.size();
1848  P.first->second = LUIdx;
1849  Uses.push_back(LSRUse(Kind, AccessTy));
1850  LSRUse &LU = Uses[LUIdx];
1851
1852  // We don't need to track redundant offsets, but we don't need to go out
1853  // of our way here to avoid them.
1854  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1855    LU.Offsets.push_back(Offset);
1856
1857  LU.MinOffset = Offset;
1858  LU.MaxOffset = Offset;
1859  return std::make_pair(LUIdx, Offset);
1860}
1861
1862/// DeleteUse - Delete the given use from the Uses list.
1863void LSRInstance::DeleteUse(LSRUse &LU) {
1864  if (&LU != &Uses.back())
1865    std::swap(LU, Uses.back());
1866  Uses.pop_back();
1867}
1868
1869/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1870/// a formula that has the same registers as the given formula.
1871LSRUse *
1872LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1873                                       const LSRUse &OrigLU) {
1874  // Search all uses for the formula. This could be more clever. Ignore
1875  // ICmpZero uses because they may contain formulae generated by
1876  // GenerateICmpZeroScales, in which case adding fixup offsets may
1877  // be invalid.
1878  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1879    LSRUse &LU = Uses[LUIdx];
1880    if (&LU != &OrigLU &&
1881        LU.Kind != LSRUse::ICmpZero &&
1882        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1883        LU.HasFormulaWithSameRegs(OrigF)) {
1884      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1885           E = LU.Formulae.end(); I != E; ++I) {
1886        const Formula &F = *I;
1887        if (F.BaseRegs == OrigF.BaseRegs &&
1888            F.ScaledReg == OrigF.ScaledReg &&
1889            F.AM.BaseGV == OrigF.AM.BaseGV &&
1890            F.AM.Scale == OrigF.AM.Scale &&
1891            LU.Kind) {
1892          if (F.AM.BaseOffs == 0)
1893            return &LU;
1894          break;
1895        }
1896      }
1897    }
1898  }
1899
1900  return 0;
1901}
1902
1903void LSRInstance::CollectInterestingTypesAndFactors() {
1904  SmallSetVector<const SCEV *, 4> Strides;
1905
1906  // Collect interesting types and strides.
1907  SmallVector<const SCEV *, 4> Worklist;
1908  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1909    const SCEV *Expr = IU.getExpr(*UI);
1910
1911    // Collect interesting types.
1912    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1913
1914    // Add strides for mentioned loops.
1915    Worklist.push_back(Expr);
1916    do {
1917      const SCEV *S = Worklist.pop_back_val();
1918      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1919        Strides.insert(AR->getStepRecurrence(SE));
1920        Worklist.push_back(AR->getStart());
1921      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1922        Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1923      }
1924    } while (!Worklist.empty());
1925  }
1926
1927  // Compute interesting factors from the set of interesting strides.
1928  for (SmallSetVector<const SCEV *, 4>::const_iterator
1929       I = Strides.begin(), E = Strides.end(); I != E; ++I)
1930    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1931         next(I); NewStrideIter != E; ++NewStrideIter) {
1932      const SCEV *OldStride = *I;
1933      const SCEV *NewStride = *NewStrideIter;
1934
1935      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1936          SE.getTypeSizeInBits(NewStride->getType())) {
1937        if (SE.getTypeSizeInBits(OldStride->getType()) >
1938            SE.getTypeSizeInBits(NewStride->getType()))
1939          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1940        else
1941          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1942      }
1943      if (const SCEVConstant *Factor =
1944            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1945                                                        SE, true))) {
1946        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1947          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1948      } else if (const SCEVConstant *Factor =
1949                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1950                                                               NewStride,
1951                                                               SE, true))) {
1952        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1953          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1954      }
1955    }
1956
1957  // If all uses use the same type, don't bother looking for truncation-based
1958  // reuse.
1959  if (Types.size() == 1)
1960    Types.clear();
1961
1962  DEBUG(print_factors_and_types(dbgs()));
1963}
1964
1965void LSRInstance::CollectFixupsAndInitialFormulae() {
1966  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1967    // Record the uses.
1968    LSRFixup &LF = getNewFixup();
1969    LF.UserInst = UI->getUser();
1970    LF.OperandValToReplace = UI->getOperandValToReplace();
1971    LF.PostIncLoops = UI->getPostIncLoops();
1972
1973    LSRUse::KindType Kind = LSRUse::Basic;
1974    const Type *AccessTy = 0;
1975    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1976      Kind = LSRUse::Address;
1977      AccessTy = getAccessType(LF.UserInst);
1978    }
1979
1980    const SCEV *S = IU.getExpr(*UI);
1981
1982    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1983    // (N - i == 0), and this allows (N - i) to be the expression that we work
1984    // with rather than just N or i, so we can consider the register
1985    // requirements for both N and i at the same time. Limiting this code to
1986    // equality icmps is not a problem because all interesting loops use
1987    // equality icmps, thanks to IndVarSimplify.
1988    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1989      if (CI->isEquality()) {
1990        // Swap the operands if needed to put the OperandValToReplace on the
1991        // left, for consistency.
1992        Value *NV = CI->getOperand(1);
1993        if (NV == LF.OperandValToReplace) {
1994          CI->setOperand(1, CI->getOperand(0));
1995          CI->setOperand(0, NV);
1996          NV = CI->getOperand(1);
1997          Changed = true;
1998        }
1999
2000        // x == y  -->  x - y == 0
2001        const SCEV *N = SE.getSCEV(NV);
2002        if (N->isLoopInvariant(L)) {
2003          Kind = LSRUse::ICmpZero;
2004          S = SE.getMinusSCEV(N, S);
2005        }
2006
2007        // -1 and the negations of all interesting strides (except the negation
2008        // of -1) are now also interesting.
2009        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2010          if (Factors[i] != -1)
2011            Factors.insert(-(uint64_t)Factors[i]);
2012        Factors.insert(-1);
2013      }
2014
2015    // Set up the initial formula for this use.
2016    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2017    LF.LUIdx = P.first;
2018    LF.Offset = P.second;
2019    LSRUse &LU = Uses[LF.LUIdx];
2020    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2021
2022    // If this is the first use of this LSRUse, give it a formula.
2023    if (LU.Formulae.empty()) {
2024      InsertInitialFormula(S, LU, LF.LUIdx);
2025      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2026    }
2027  }
2028
2029  DEBUG(print_fixups(dbgs()));
2030}
2031
2032/// InsertInitialFormula - Insert a formula for the given expression into
2033/// the given use, separating out loop-variant portions from loop-invariant
2034/// and loop-computable portions.
2035void
2036LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2037  Formula F;
2038  F.InitialMatch(S, L, SE, DT);
2039  bool Inserted = InsertFormula(LU, LUIdx, F);
2040  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2041}
2042
2043/// InsertSupplementalFormula - Insert a simple single-register formula for
2044/// the given expression into the given use.
2045void
2046LSRInstance::InsertSupplementalFormula(const SCEV *S,
2047                                       LSRUse &LU, size_t LUIdx) {
2048  Formula F;
2049  F.BaseRegs.push_back(S);
2050  F.AM.HasBaseReg = true;
2051  bool Inserted = InsertFormula(LU, LUIdx, F);
2052  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2053}
2054
2055/// CountRegisters - Note which registers are used by the given formula,
2056/// updating RegUses.
2057void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2058  if (F.ScaledReg)
2059    RegUses.CountRegister(F.ScaledReg, LUIdx);
2060  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2061       E = F.BaseRegs.end(); I != E; ++I)
2062    RegUses.CountRegister(*I, LUIdx);
2063}
2064
2065/// InsertFormula - If the given formula has not yet been inserted, add it to
2066/// the list, and return true. Return false otherwise.
2067bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2068  if (!LU.InsertFormula(F))
2069    return false;
2070
2071  CountRegisters(F, LUIdx);
2072  return true;
2073}
2074
2075/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2076/// loop-invariant values which we're tracking. These other uses will pin these
2077/// values in registers, making them less profitable for elimination.
2078/// TODO: This currently misses non-constant addrec step registers.
2079/// TODO: Should this give more weight to users inside the loop?
2080void
2081LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2082  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2083  SmallPtrSet<const SCEV *, 8> Inserted;
2084
2085  while (!Worklist.empty()) {
2086    const SCEV *S = Worklist.pop_back_val();
2087
2088    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2089      Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
2090    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2091      Worklist.push_back(C->getOperand());
2092    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2093      Worklist.push_back(D->getLHS());
2094      Worklist.push_back(D->getRHS());
2095    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2096      if (!Inserted.insert(U)) continue;
2097      const Value *V = U->getValue();
2098      if (const Instruction *Inst = dyn_cast<Instruction>(V))
2099        if (L->contains(Inst)) continue;
2100      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2101           UI != UE; ++UI) {
2102        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2103        // Ignore non-instructions.
2104        if (!UserInst)
2105          continue;
2106        // Ignore instructions in other functions (as can happen with
2107        // Constants).
2108        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2109          continue;
2110        // Ignore instructions not dominated by the loop.
2111        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2112          UserInst->getParent() :
2113          cast<PHINode>(UserInst)->getIncomingBlock(
2114            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2115        if (!DT.dominates(L->getHeader(), UseBB))
2116          continue;
2117        // Ignore uses which are part of other SCEV expressions, to avoid
2118        // analyzing them multiple times.
2119        if (SE.isSCEVable(UserInst->getType())) {
2120          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2121          // If the user is a no-op, look through to its uses.
2122          if (!isa<SCEVUnknown>(UserS))
2123            continue;
2124          if (UserS == U) {
2125            Worklist.push_back(
2126              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2127            continue;
2128          }
2129        }
2130        // Ignore icmp instructions which are already being analyzed.
2131        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2132          unsigned OtherIdx = !UI.getOperandNo();
2133          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2134          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2135            continue;
2136        }
2137
2138        LSRFixup &LF = getNewFixup();
2139        LF.UserInst = const_cast<Instruction *>(UserInst);
2140        LF.OperandValToReplace = UI.getUse();
2141        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2142        LF.LUIdx = P.first;
2143        LF.Offset = P.second;
2144        LSRUse &LU = Uses[LF.LUIdx];
2145        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2146        InsertSupplementalFormula(U, LU, LF.LUIdx);
2147        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2148        break;
2149      }
2150    }
2151  }
2152}
2153
2154/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2155/// separate registers. If C is non-null, multiply each subexpression by C.
2156static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2157                            SmallVectorImpl<const SCEV *> &Ops,
2158                            ScalarEvolution &SE) {
2159  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2160    // Break out add operands.
2161    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2162         I != E; ++I)
2163      CollectSubexprs(*I, C, Ops, SE);
2164    return;
2165  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2166    // Split a non-zero base out of an addrec.
2167    if (!AR->getStart()->isZero()) {
2168      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2169                                       AR->getStepRecurrence(SE),
2170                                       AR->getLoop()), C, Ops, SE);
2171      CollectSubexprs(AR->getStart(), C, Ops, SE);
2172      return;
2173    }
2174  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2175    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2176    if (Mul->getNumOperands() == 2)
2177      if (const SCEVConstant *Op0 =
2178            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2179        CollectSubexprs(Mul->getOperand(1),
2180                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2181                        Ops, SE);
2182        return;
2183      }
2184  }
2185
2186  // Otherwise use the value itself.
2187  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2188}
2189
2190/// GenerateReassociations - Split out subexpressions from adds and the bases of
2191/// addrecs.
2192void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2193                                         Formula Base,
2194                                         unsigned Depth) {
2195  // Arbitrarily cap recursion to protect compile time.
2196  if (Depth >= 3) return;
2197
2198  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2199    const SCEV *BaseReg = Base.BaseRegs[i];
2200
2201    SmallVector<const SCEV *, 8> AddOps;
2202    CollectSubexprs(BaseReg, 0, AddOps, SE);
2203    if (AddOps.size() == 1) continue;
2204
2205    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2206         JE = AddOps.end(); J != JE; ++J) {
2207      // Don't pull a constant into a register if the constant could be folded
2208      // into an immediate field.
2209      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2210                           Base.getNumRegs() > 1,
2211                           LU.Kind, LU.AccessTy, TLI, SE))
2212        continue;
2213
2214      // Collect all operands except *J.
2215      SmallVector<const SCEV *, 8> InnerAddOps;
2216      for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2217           KE = AddOps.end(); K != KE; ++K)
2218        if (K != J)
2219          InnerAddOps.push_back(*K);
2220
2221      // Don't leave just a constant behind in a register if the constant could
2222      // be folded into an immediate field.
2223      if (InnerAddOps.size() == 1 &&
2224          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2225                           Base.getNumRegs() > 1,
2226                           LU.Kind, LU.AccessTy, TLI, SE))
2227        continue;
2228
2229      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2230      if (InnerSum->isZero())
2231        continue;
2232      Formula F = Base;
2233      F.BaseRegs[i] = InnerSum;
2234      F.BaseRegs.push_back(*J);
2235      if (InsertFormula(LU, LUIdx, F))
2236        // If that formula hadn't been seen before, recurse to find more like
2237        // it.
2238        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2239    }
2240  }
2241}
2242
2243/// GenerateCombinations - Generate a formula consisting of all of the
2244/// loop-dominating registers added into a single register.
2245void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2246                                       Formula Base) {
2247  // This method is only interesting on a plurality of registers.
2248  if (Base.BaseRegs.size() <= 1) return;
2249
2250  Formula F = Base;
2251  F.BaseRegs.clear();
2252  SmallVector<const SCEV *, 4> Ops;
2253  for (SmallVectorImpl<const SCEV *>::const_iterator
2254       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2255    const SCEV *BaseReg = *I;
2256    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2257        !BaseReg->hasComputableLoopEvolution(L))
2258      Ops.push_back(BaseReg);
2259    else
2260      F.BaseRegs.push_back(BaseReg);
2261  }
2262  if (Ops.size() > 1) {
2263    const SCEV *Sum = SE.getAddExpr(Ops);
2264    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2265    // opportunity to fold something. For now, just ignore such cases
2266    // rather than proceed with zero in a register.
2267    if (!Sum->isZero()) {
2268      F.BaseRegs.push_back(Sum);
2269      (void)InsertFormula(LU, LUIdx, F);
2270    }
2271  }
2272}
2273
2274/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2275void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2276                                          Formula Base) {
2277  // We can't add a symbolic offset if the address already contains one.
2278  if (Base.AM.BaseGV) return;
2279
2280  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2281    const SCEV *G = Base.BaseRegs[i];
2282    GlobalValue *GV = ExtractSymbol(G, SE);
2283    if (G->isZero() || !GV)
2284      continue;
2285    Formula F = Base;
2286    F.AM.BaseGV = GV;
2287    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2288                    LU.Kind, LU.AccessTy, TLI))
2289      continue;
2290    F.BaseRegs[i] = G;
2291    (void)InsertFormula(LU, LUIdx, F);
2292  }
2293}
2294
2295/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2296void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2297                                          Formula Base) {
2298  // TODO: For now, just add the min and max offset, because it usually isn't
2299  // worthwhile looking at everything inbetween.
2300  SmallVector<int64_t, 4> Worklist;
2301  Worklist.push_back(LU.MinOffset);
2302  if (LU.MaxOffset != LU.MinOffset)
2303    Worklist.push_back(LU.MaxOffset);
2304
2305  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2306    const SCEV *G = Base.BaseRegs[i];
2307
2308    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2309         E = Worklist.end(); I != E; ++I) {
2310      Formula F = Base;
2311      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2312      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2313                     LU.Kind, LU.AccessTy, TLI)) {
2314        F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
2315
2316        (void)InsertFormula(LU, LUIdx, F);
2317      }
2318    }
2319
2320    int64_t Imm = ExtractImmediate(G, SE);
2321    if (G->isZero() || Imm == 0)
2322      continue;
2323    Formula F = Base;
2324    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2325    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2326                    LU.Kind, LU.AccessTy, TLI))
2327      continue;
2328    F.BaseRegs[i] = G;
2329    (void)InsertFormula(LU, LUIdx, F);
2330  }
2331}
2332
2333/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2334/// the comparison. For example, x == y -> x*c == y*c.
2335void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2336                                         Formula Base) {
2337  if (LU.Kind != LSRUse::ICmpZero) return;
2338
2339  // Determine the integer type for the base formula.
2340  const Type *IntTy = Base.getType();
2341  if (!IntTy) return;
2342  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2343
2344  // Don't do this if there is more than one offset.
2345  if (LU.MinOffset != LU.MaxOffset) return;
2346
2347  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2348
2349  // Check each interesting stride.
2350  for (SmallSetVector<int64_t, 8>::const_iterator
2351       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2352    int64_t Factor = *I;
2353    Formula F = Base;
2354
2355    // Check that the multiplication doesn't overflow.
2356    if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2357      continue;
2358    F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2359    if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
2360      continue;
2361
2362    // Check that multiplying with the use offset doesn't overflow.
2363    int64_t Offset = LU.MinOffset;
2364    if (Offset == INT64_MIN && Factor == -1)
2365      continue;
2366    Offset = (uint64_t)Offset * Factor;
2367    if (Offset / Factor != LU.MinOffset)
2368      continue;
2369
2370    // Check that this scale is legal.
2371    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2372      continue;
2373
2374    // Compensate for the use having MinOffset built into it.
2375    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2376
2377    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2378
2379    // Check that multiplying with each base register doesn't overflow.
2380    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2381      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2382      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2383        goto next;
2384    }
2385
2386    // Check that multiplying with the scaled register doesn't overflow.
2387    if (F.ScaledReg) {
2388      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2389      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2390        continue;
2391    }
2392
2393    // If we make it here and it's legal, add it.
2394    (void)InsertFormula(LU, LUIdx, F);
2395  next:;
2396  }
2397}
2398
2399/// GenerateScales - Generate stride factor reuse formulae by making use of
2400/// scaled-offset address modes, for example.
2401void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2402  // Determine the integer type for the base formula.
2403  const Type *IntTy = Base.getType();
2404  if (!IntTy) return;
2405
2406  // If this Formula already has a scaled register, we can't add another one.
2407  if (Base.AM.Scale != 0) return;
2408
2409  // Check each interesting stride.
2410  for (SmallSetVector<int64_t, 8>::const_iterator
2411       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2412    int64_t Factor = *I;
2413
2414    Base.AM.Scale = Factor;
2415    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2416    // Check whether this scale is going to be legal.
2417    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2418                    LU.Kind, LU.AccessTy, TLI)) {
2419      // As a special-case, handle special out-of-loop Basic users specially.
2420      // TODO: Reconsider this special case.
2421      if (LU.Kind == LSRUse::Basic &&
2422          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2423                     LSRUse::Special, LU.AccessTy, TLI) &&
2424          LU.AllFixupsOutsideLoop)
2425        LU.Kind = LSRUse::Special;
2426      else
2427        continue;
2428    }
2429    // For an ICmpZero, negating a solitary base register won't lead to
2430    // new solutions.
2431    if (LU.Kind == LSRUse::ICmpZero &&
2432        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2433      continue;
2434    // For each addrec base reg, apply the scale, if possible.
2435    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2436      if (const SCEVAddRecExpr *AR =
2437            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2438        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2439        if (FactorS->isZero())
2440          continue;
2441        // Divide out the factor, ignoring high bits, since we'll be
2442        // scaling the value back up in the end.
2443        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2444          // TODO: This could be optimized to avoid all the copying.
2445          Formula F = Base;
2446          F.ScaledReg = Quotient;
2447          F.DeleteBaseReg(F.BaseRegs[i]);
2448          (void)InsertFormula(LU, LUIdx, F);
2449        }
2450      }
2451  }
2452}
2453
2454/// GenerateTruncates - Generate reuse formulae from different IV types.
2455void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2456  // This requires TargetLowering to tell us which truncates are free.
2457  if (!TLI) return;
2458
2459  // Don't bother truncating symbolic values.
2460  if (Base.AM.BaseGV) return;
2461
2462  // Determine the integer type for the base formula.
2463  const Type *DstTy = Base.getType();
2464  if (!DstTy) return;
2465  DstTy = SE.getEffectiveSCEVType(DstTy);
2466
2467  for (SmallSetVector<const Type *, 4>::const_iterator
2468       I = Types.begin(), E = Types.end(); I != E; ++I) {
2469    const Type *SrcTy = *I;
2470    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2471      Formula F = Base;
2472
2473      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2474      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2475           JE = F.BaseRegs.end(); J != JE; ++J)
2476        *J = SE.getAnyExtendExpr(*J, SrcTy);
2477
2478      // TODO: This assumes we've done basic processing on all uses and
2479      // have an idea what the register usage is.
2480      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2481        continue;
2482
2483      (void)InsertFormula(LU, LUIdx, F);
2484    }
2485  }
2486}
2487
2488namespace {
2489
2490/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2491/// defer modifications so that the search phase doesn't have to worry about
2492/// the data structures moving underneath it.
2493struct WorkItem {
2494  size_t LUIdx;
2495  int64_t Imm;
2496  const SCEV *OrigReg;
2497
2498  WorkItem(size_t LI, int64_t I, const SCEV *R)
2499    : LUIdx(LI), Imm(I), OrigReg(R) {}
2500
2501  void print(raw_ostream &OS) const;
2502  void dump() const;
2503};
2504
2505}
2506
2507void WorkItem::print(raw_ostream &OS) const {
2508  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2509     << " , add offset " << Imm;
2510}
2511
2512void WorkItem::dump() const {
2513  print(errs()); errs() << '\n';
2514}
2515
2516/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2517/// distance apart and try to form reuse opportunities between them.
2518void LSRInstance::GenerateCrossUseConstantOffsets() {
2519  // Group the registers by their value without any added constant offset.
2520  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2521  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2522  RegMapTy Map;
2523  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2524  SmallVector<const SCEV *, 8> Sequence;
2525  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2526       I != E; ++I) {
2527    const SCEV *Reg = *I;
2528    int64_t Imm = ExtractImmediate(Reg, SE);
2529    std::pair<RegMapTy::iterator, bool> Pair =
2530      Map.insert(std::make_pair(Reg, ImmMapTy()));
2531    if (Pair.second)
2532      Sequence.push_back(Reg);
2533    Pair.first->second.insert(std::make_pair(Imm, *I));
2534    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2535  }
2536
2537  // Now examine each set of registers with the same base value. Build up
2538  // a list of work to do and do the work in a separate step so that we're
2539  // not adding formulae and register counts while we're searching.
2540  SmallVector<WorkItem, 32> WorkItems;
2541  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2542  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2543       E = Sequence.end(); I != E; ++I) {
2544    const SCEV *Reg = *I;
2545    const ImmMapTy &Imms = Map.find(Reg)->second;
2546
2547    // It's not worthwhile looking for reuse if there's only one offset.
2548    if (Imms.size() == 1)
2549      continue;
2550
2551    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2552          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2553               J != JE; ++J)
2554            dbgs() << ' ' << J->first;
2555          dbgs() << '\n');
2556
2557    // Examine each offset.
2558    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2559         J != JE; ++J) {
2560      const SCEV *OrigReg = J->second;
2561
2562      int64_t JImm = J->first;
2563      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2564
2565      if (!isa<SCEVConstant>(OrigReg) &&
2566          UsedByIndicesMap[Reg].count() == 1) {
2567        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2568        continue;
2569      }
2570
2571      // Conservatively examine offsets between this orig reg a few selected
2572      // other orig regs.
2573      ImmMapTy::const_iterator OtherImms[] = {
2574        Imms.begin(), prior(Imms.end()),
2575        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2576      };
2577      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2578        ImmMapTy::const_iterator M = OtherImms[i];
2579        if (M == J || M == JE) continue;
2580
2581        // Compute the difference between the two.
2582        int64_t Imm = (uint64_t)JImm - M->first;
2583        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2584             LUIdx = UsedByIndices.find_next(LUIdx))
2585          // Make a memo of this use, offset, and register tuple.
2586          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2587            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2588      }
2589    }
2590  }
2591
2592  Map.clear();
2593  Sequence.clear();
2594  UsedByIndicesMap.clear();
2595  UniqueItems.clear();
2596
2597  // Now iterate through the worklist and add new formulae.
2598  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2599       E = WorkItems.end(); I != E; ++I) {
2600    const WorkItem &WI = *I;
2601    size_t LUIdx = WI.LUIdx;
2602    LSRUse &LU = Uses[LUIdx];
2603    int64_t Imm = WI.Imm;
2604    const SCEV *OrigReg = WI.OrigReg;
2605
2606    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2607    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2608    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2609
2610    // TODO: Use a more targeted data structure.
2611    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2612      const Formula &F = LU.Formulae[L];
2613      // Use the immediate in the scaled register.
2614      if (F.ScaledReg == OrigReg) {
2615        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2616                       Imm * (uint64_t)F.AM.Scale;
2617        // Don't create 50 + reg(-50).
2618        if (F.referencesReg(SE.getSCEV(
2619                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2620          continue;
2621        Formula NewF = F;
2622        NewF.AM.BaseOffs = Offs;
2623        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2624                        LU.Kind, LU.AccessTy, TLI))
2625          continue;
2626        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2627
2628        // If the new scale is a constant in a register, and adding the constant
2629        // value to the immediate would produce a value closer to zero than the
2630        // immediate itself, then the formula isn't worthwhile.
2631        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2632          if (C->getValue()->getValue().isNegative() !=
2633                (NewF.AM.BaseOffs < 0) &&
2634              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2635                .ule(abs64(NewF.AM.BaseOffs)))
2636            continue;
2637
2638        // OK, looks good.
2639        (void)InsertFormula(LU, LUIdx, NewF);
2640      } else {
2641        // Use the immediate in a base register.
2642        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2643          const SCEV *BaseReg = F.BaseRegs[N];
2644          if (BaseReg != OrigReg)
2645            continue;
2646          Formula NewF = F;
2647          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2648          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2649                          LU.Kind, LU.AccessTy, TLI))
2650            continue;
2651          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2652
2653          // If the new formula has a constant in a register, and adding the
2654          // constant value to the immediate would produce a value closer to
2655          // zero than the immediate itself, then the formula isn't worthwhile.
2656          for (SmallVectorImpl<const SCEV *>::const_iterator
2657               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2658               J != JE; ++J)
2659            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2660              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2661                   abs64(NewF.AM.BaseOffs)) &&
2662                  (C->getValue()->getValue() +
2663                   NewF.AM.BaseOffs).countTrailingZeros() >=
2664                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2665                goto skip_formula;
2666
2667          // Ok, looks good.
2668          (void)InsertFormula(LU, LUIdx, NewF);
2669          break;
2670        skip_formula:;
2671        }
2672      }
2673    }
2674  }
2675}
2676
2677/// GenerateAllReuseFormulae - Generate formulae for each use.
2678void
2679LSRInstance::GenerateAllReuseFormulae() {
2680  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2681  // queries are more precise.
2682  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2683    LSRUse &LU = Uses[LUIdx];
2684    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2685      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2686    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2687      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2688  }
2689  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2690    LSRUse &LU = Uses[LUIdx];
2691    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2692      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2693    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2694      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2695    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2696      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2697    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2698      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2699  }
2700  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2701    LSRUse &LU = Uses[LUIdx];
2702    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2703      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2704  }
2705
2706  GenerateCrossUseConstantOffsets();
2707}
2708
2709/// If their are multiple formulae with the same set of registers used
2710/// by other uses, pick the best one and delete the others.
2711void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2712#ifndef NDEBUG
2713  bool ChangedFormulae = false;
2714#endif
2715
2716  // Collect the best formula for each unique set of shared registers. This
2717  // is reset for each use.
2718  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2719    BestFormulaeTy;
2720  BestFormulaeTy BestFormulae;
2721
2722  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2723    LSRUse &LU = Uses[LUIdx];
2724    FormulaSorter Sorter(L, LU, SE, DT);
2725    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2726
2727    bool Any = false;
2728    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2729         FIdx != NumForms; ++FIdx) {
2730      Formula &F = LU.Formulae[FIdx];
2731
2732      SmallVector<const SCEV *, 2> Key;
2733      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2734           JE = F.BaseRegs.end(); J != JE; ++J) {
2735        const SCEV *Reg = *J;
2736        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2737          Key.push_back(Reg);
2738      }
2739      if (F.ScaledReg &&
2740          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2741        Key.push_back(F.ScaledReg);
2742      // Unstable sort by host order ok, because this is only used for
2743      // uniquifying.
2744      std::sort(Key.begin(), Key.end());
2745
2746      std::pair<BestFormulaeTy::const_iterator, bool> P =
2747        BestFormulae.insert(std::make_pair(Key, FIdx));
2748      if (!P.second) {
2749        Formula &Best = LU.Formulae[P.first->second];
2750        if (Sorter.operator()(F, Best))
2751          std::swap(F, Best);
2752        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2753              dbgs() << "\n"
2754                        "    in favor of formula "; Best.print(dbgs());
2755              dbgs() << '\n');
2756#ifndef NDEBUG
2757        ChangedFormulae = true;
2758#endif
2759        LU.DeleteFormula(F);
2760        --FIdx;
2761        --NumForms;
2762        Any = true;
2763        continue;
2764      }
2765    }
2766
2767    // Now that we've filtered out some formulae, recompute the Regs set.
2768    if (Any)
2769      LU.RecomputeRegs(LUIdx, RegUses);
2770
2771    // Reset this to prepare for the next use.
2772    BestFormulae.clear();
2773  }
2774
2775  DEBUG(if (ChangedFormulae) {
2776          dbgs() << "\n"
2777                    "After filtering out undesirable candidates:\n";
2778          print_uses(dbgs());
2779        });
2780}
2781
2782// This is a rough guess that seems to work fairly well.
2783static const size_t ComplexityLimit = UINT16_MAX;
2784
2785/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2786/// solutions the solver might have to consider. It almost never considers
2787/// this many solutions because it prune the search space, but the pruning
2788/// isn't always sufficient.
2789size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2790  uint32_t Power = 1;
2791  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2792       E = Uses.end(); I != E; ++I) {
2793    size_t FSize = I->Formulae.size();
2794    if (FSize >= ComplexityLimit) {
2795      Power = ComplexityLimit;
2796      break;
2797    }
2798    Power *= FSize;
2799    if (Power >= ComplexityLimit)
2800      break;
2801  }
2802  return Power;
2803}
2804
2805/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
2806/// formulae to choose from, use some rough heuristics to prune down the number
2807/// of formulae. This keeps the main solver from taking an extraordinary amount
2808/// of time in some worst-case scenarios.
2809void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2810  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2811    DEBUG(dbgs() << "The search space is too complex.\n");
2812
2813    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2814                    "which use a superset of registers used by other "
2815                    "formulae.\n");
2816
2817    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2818      LSRUse &LU = Uses[LUIdx];
2819      bool Any = false;
2820      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2821        Formula &F = LU.Formulae[i];
2822        // Look for a formula with a constant or GV in a register. If the use
2823        // also has a formula with that same value in an immediate field,
2824        // delete the one that uses a register.
2825        for (SmallVectorImpl<const SCEV *>::const_iterator
2826             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2827          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2828            Formula NewF = F;
2829            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2830            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2831                                (I - F.BaseRegs.begin()));
2832            if (LU.HasFormulaWithSameRegs(NewF)) {
2833              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2834              LU.DeleteFormula(F);
2835              --i;
2836              --e;
2837              Any = true;
2838              break;
2839            }
2840          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2841            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2842              if (!F.AM.BaseGV) {
2843                Formula NewF = F;
2844                NewF.AM.BaseGV = GV;
2845                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2846                                    (I - F.BaseRegs.begin()));
2847                if (LU.HasFormulaWithSameRegs(NewF)) {
2848                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2849                        dbgs() << '\n');
2850                  LU.DeleteFormula(F);
2851                  --i;
2852                  --e;
2853                  Any = true;
2854                  break;
2855                }
2856              }
2857          }
2858        }
2859      }
2860      if (Any)
2861        LU.RecomputeRegs(LUIdx, RegUses);
2862    }
2863
2864    DEBUG(dbgs() << "After pre-selection:\n";
2865          print_uses(dbgs()));
2866  }
2867
2868  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2869    DEBUG(dbgs() << "The search space is too complex.\n");
2870
2871    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2872                    "separated by a constant offset will use the same "
2873                    "registers.\n");
2874
2875    // This is especially useful for unrolled loops.
2876
2877    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2878      LSRUse &LU = Uses[LUIdx];
2879      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2880           E = LU.Formulae.end(); I != E; ++I) {
2881        const Formula &F = *I;
2882        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2883          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2884            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2885                                   /*HasBaseReg=*/false,
2886                                   LU.Kind, LU.AccessTy)) {
2887              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
2888                    dbgs() << '\n');
2889
2890              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2891
2892              // Delete formulae from the new use which are no longer legal.
2893              bool Any = false;
2894              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2895                Formula &F = LUThatHas->Formulae[i];
2896                if (!isLegalUse(F.AM,
2897                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
2898                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2899                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2900                        dbgs() << '\n');
2901                  LUThatHas->DeleteFormula(F);
2902                  --i;
2903                  --e;
2904                  Any = true;
2905                }
2906              }
2907              if (Any)
2908                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2909
2910              // Update the relocs to reference the new use.
2911              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2912                   E = Fixups.end(); I != E; ++I) {
2913                LSRFixup &Fixup = *I;
2914                if (Fixup.LUIdx == LUIdx) {
2915                  Fixup.LUIdx = LUThatHas - &Uses.front();
2916                  Fixup.Offset += F.AM.BaseOffs;
2917                  DEBUG(errs() << "New fixup has offset "
2918                               << Fixup.Offset << '\n');
2919                }
2920                if (Fixup.LUIdx == NumUses-1)
2921                  Fixup.LUIdx = LUIdx;
2922              }
2923
2924              // Delete the old use.
2925              DeleteUse(LU);
2926              --LUIdx;
2927              --NumUses;
2928              break;
2929            }
2930          }
2931        }
2932      }
2933    }
2934
2935    DEBUG(dbgs() << "After pre-selection:\n";
2936          print_uses(dbgs()));
2937  }
2938
2939  // With all other options exhausted, loop until the system is simple
2940  // enough to handle.
2941  SmallPtrSet<const SCEV *, 4> Taken;
2942  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2943    // Ok, we have too many of formulae on our hands to conveniently handle.
2944    // Use a rough heuristic to thin out the list.
2945    DEBUG(dbgs() << "The search space is too complex.\n");
2946
2947    // Pick the register which is used by the most LSRUses, which is likely
2948    // to be a good reuse register candidate.
2949    const SCEV *Best = 0;
2950    unsigned BestNum = 0;
2951    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2952         I != E; ++I) {
2953      const SCEV *Reg = *I;
2954      if (Taken.count(Reg))
2955        continue;
2956      if (!Best)
2957        Best = Reg;
2958      else {
2959        unsigned Count = RegUses.getUsedByIndices(Reg).count();
2960        if (Count > BestNum) {
2961          Best = Reg;
2962          BestNum = Count;
2963        }
2964      }
2965    }
2966
2967    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
2968                 << " will yield profitable reuse.\n");
2969    Taken.insert(Best);
2970
2971    // In any use with formulae which references this register, delete formulae
2972    // which don't reference it.
2973    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2974      LSRUse &LU = Uses[LUIdx];
2975      if (!LU.Regs.count(Best)) continue;
2976
2977      bool Any = false;
2978      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2979        Formula &F = LU.Formulae[i];
2980        if (!F.referencesReg(Best)) {
2981          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2982          LU.DeleteFormula(F);
2983          --e;
2984          --i;
2985          Any = true;
2986          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
2987          continue;
2988        }
2989      }
2990
2991      if (Any)
2992        LU.RecomputeRegs(LUIdx, RegUses);
2993    }
2994
2995    DEBUG(dbgs() << "After pre-selection:\n";
2996          print_uses(dbgs()));
2997  }
2998}
2999
3000/// SolveRecurse - This is the recursive solver.
3001void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3002                               Cost &SolutionCost,
3003                               SmallVectorImpl<const Formula *> &Workspace,
3004                               const Cost &CurCost,
3005                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3006                               DenseSet<const SCEV *> &VisitedRegs) const {
3007  // Some ideas:
3008  //  - prune more:
3009  //    - use more aggressive filtering
3010  //    - sort the formula so that the most profitable solutions are found first
3011  //    - sort the uses too
3012  //  - search faster:
3013  //    - don't compute a cost, and then compare. compare while computing a cost
3014  //      and bail early.
3015  //    - track register sets with SmallBitVector
3016
3017  const LSRUse &LU = Uses[Workspace.size()];
3018
3019  // If this use references any register that's already a part of the
3020  // in-progress solution, consider it a requirement that a formula must
3021  // reference that register in order to be considered. This prunes out
3022  // unprofitable searching.
3023  SmallSetVector<const SCEV *, 4> ReqRegs;
3024  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3025       E = CurRegs.end(); I != E; ++I)
3026    if (LU.Regs.count(*I))
3027      ReqRegs.insert(*I);
3028
3029  bool AnySatisfiedReqRegs = false;
3030  SmallPtrSet<const SCEV *, 16> NewRegs;
3031  Cost NewCost;
3032retry:
3033  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3034       E = LU.Formulae.end(); I != E; ++I) {
3035    const Formula &F = *I;
3036
3037    // Ignore formulae which do not use any of the required registers.
3038    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3039         JE = ReqRegs.end(); J != JE; ++J) {
3040      const SCEV *Reg = *J;
3041      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3042          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3043          F.BaseRegs.end())
3044        goto skip;
3045    }
3046    AnySatisfiedReqRegs = true;
3047
3048    // Evaluate the cost of the current formula. If it's already worse than
3049    // the current best, prune the search at that point.
3050    NewCost = CurCost;
3051    NewRegs = CurRegs;
3052    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3053    if (NewCost < SolutionCost) {
3054      Workspace.push_back(&F);
3055      if (Workspace.size() != Uses.size()) {
3056        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3057                     NewRegs, VisitedRegs);
3058        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3059          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3060      } else {
3061        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3062              dbgs() << ". Regs:";
3063              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3064                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3065                dbgs() << ' ' << **I;
3066              dbgs() << '\n');
3067
3068        SolutionCost = NewCost;
3069        Solution = Workspace;
3070      }
3071      Workspace.pop_back();
3072    }
3073  skip:;
3074  }
3075
3076  // If none of the formulae had all of the required registers, relax the
3077  // constraint so that we don't exclude all formulae.
3078  if (!AnySatisfiedReqRegs) {
3079    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3080    ReqRegs.clear();
3081    goto retry;
3082  }
3083}
3084
3085/// Solve - Choose one formula from each use. Return the results in the given
3086/// Solution vector.
3087void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3088  SmallVector<const Formula *, 8> Workspace;
3089  Cost SolutionCost;
3090  SolutionCost.Loose();
3091  Cost CurCost;
3092  SmallPtrSet<const SCEV *, 16> CurRegs;
3093  DenseSet<const SCEV *> VisitedRegs;
3094  Workspace.reserve(Uses.size());
3095
3096  // SolveRecurse does all the work.
3097  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3098               CurRegs, VisitedRegs);
3099
3100  // Ok, we've now made all our decisions.
3101  DEBUG(dbgs() << "\n"
3102                  "The chosen solution requires "; SolutionCost.print(dbgs());
3103        dbgs() << ":\n";
3104        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3105          dbgs() << "  ";
3106          Uses[i].print(dbgs());
3107          dbgs() << "\n"
3108                    "    ";
3109          Solution[i]->print(dbgs());
3110          dbgs() << '\n';
3111        });
3112
3113  assert(Solution.size() == Uses.size() && "Malformed solution!");
3114}
3115
3116/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3117/// the dominator tree far as we can go while still being dominated by the
3118/// input positions. This helps canonicalize the insert position, which
3119/// encourages sharing.
3120BasicBlock::iterator
3121LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3122                                 const SmallVectorImpl<Instruction *> &Inputs)
3123                                                                         const {
3124  for (;;) {
3125    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3126    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3127
3128    BasicBlock *IDom;
3129    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3130      if (!Rung) return IP;
3131      Rung = Rung->getIDom();
3132      if (!Rung) return IP;
3133      IDom = Rung->getBlock();
3134
3135      // Don't climb into a loop though.
3136      const Loop *IDomLoop = LI.getLoopFor(IDom);
3137      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3138      if (IDomDepth <= IPLoopDepth &&
3139          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3140        break;
3141    }
3142
3143    bool AllDominate = true;
3144    Instruction *BetterPos = 0;
3145    Instruction *Tentative = IDom->getTerminator();
3146    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3147         E = Inputs.end(); I != E; ++I) {
3148      Instruction *Inst = *I;
3149      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3150        AllDominate = false;
3151        break;
3152      }
3153      // Attempt to find an insert position in the middle of the block,
3154      // instead of at the end, so that it can be used for other expansions.
3155      if (IDom == Inst->getParent() &&
3156          (!BetterPos || DT.dominates(BetterPos, Inst)))
3157        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3158    }
3159    if (!AllDominate)
3160      break;
3161    if (BetterPos)
3162      IP = BetterPos;
3163    else
3164      IP = Tentative;
3165  }
3166
3167  return IP;
3168}
3169
3170/// AdjustInsertPositionForExpand - Determine an input position which will be
3171/// dominated by the operands and which will dominate the result.
3172BasicBlock::iterator
3173LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3174                                           const LSRFixup &LF,
3175                                           const LSRUse &LU) const {
3176  // Collect some instructions which must be dominated by the
3177  // expanding replacement. These must be dominated by any operands that
3178  // will be required in the expansion.
3179  SmallVector<Instruction *, 4> Inputs;
3180  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3181    Inputs.push_back(I);
3182  if (LU.Kind == LSRUse::ICmpZero)
3183    if (Instruction *I =
3184          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3185      Inputs.push_back(I);
3186  if (LF.PostIncLoops.count(L)) {
3187    if (LF.isUseFullyOutsideLoop(L))
3188      Inputs.push_back(L->getLoopLatch()->getTerminator());
3189    else
3190      Inputs.push_back(IVIncInsertPos);
3191  }
3192  // The expansion must also be dominated by the increment positions of any
3193  // loops it for which it is using post-inc mode.
3194  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3195       E = LF.PostIncLoops.end(); I != E; ++I) {
3196    const Loop *PIL = *I;
3197    if (PIL == L) continue;
3198
3199    // Be dominated by the loop exit.
3200    SmallVector<BasicBlock *, 4> ExitingBlocks;
3201    PIL->getExitingBlocks(ExitingBlocks);
3202    if (!ExitingBlocks.empty()) {
3203      BasicBlock *BB = ExitingBlocks[0];
3204      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3205        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3206      Inputs.push_back(BB->getTerminator());
3207    }
3208  }
3209
3210  // Then, climb up the immediate dominator tree as far as we can go while
3211  // still being dominated by the input positions.
3212  IP = HoistInsertPosition(IP, Inputs);
3213
3214  // Don't insert instructions before PHI nodes.
3215  while (isa<PHINode>(IP)) ++IP;
3216
3217  // Ignore debug intrinsics.
3218  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3219
3220  return IP;
3221}
3222
3223/// Expand - Emit instructions for the leading candidate expression for this
3224/// LSRUse (this is called "expanding").
3225Value *LSRInstance::Expand(const LSRFixup &LF,
3226                           const Formula &F,
3227                           BasicBlock::iterator IP,
3228                           SCEVExpander &Rewriter,
3229                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3230  const LSRUse &LU = Uses[LF.LUIdx];
3231
3232  // Determine an input position which will be dominated by the operands and
3233  // which will dominate the result.
3234  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3235
3236  // Inform the Rewriter if we have a post-increment use, so that it can
3237  // perform an advantageous expansion.
3238  Rewriter.setPostInc(LF.PostIncLoops);
3239
3240  // This is the type that the user actually needs.
3241  const Type *OpTy = LF.OperandValToReplace->getType();
3242  // This will be the type that we'll initially expand to.
3243  const Type *Ty = F.getType();
3244  if (!Ty)
3245    // No type known; just expand directly to the ultimate type.
3246    Ty = OpTy;
3247  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3248    // Expand directly to the ultimate type if it's the right size.
3249    Ty = OpTy;
3250  // This is the type to do integer arithmetic in.
3251  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3252
3253  // Build up a list of operands to add together to form the full base.
3254  SmallVector<const SCEV *, 8> Ops;
3255
3256  // Expand the BaseRegs portion.
3257  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3258       E = F.BaseRegs.end(); I != E; ++I) {
3259    const SCEV *Reg = *I;
3260    assert(!Reg->isZero() && "Zero allocated in a base register!");
3261
3262    // If we're expanding for a post-inc user, make the post-inc adjustment.
3263    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3264    Reg = TransformForPostIncUse(Denormalize, Reg,
3265                                 LF.UserInst, LF.OperandValToReplace,
3266                                 Loops, SE, DT);
3267
3268    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3269  }
3270
3271  // Flush the operand list to suppress SCEVExpander hoisting.
3272  if (!Ops.empty()) {
3273    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3274    Ops.clear();
3275    Ops.push_back(SE.getUnknown(FullV));
3276  }
3277
3278  // Expand the ScaledReg portion.
3279  Value *ICmpScaledV = 0;
3280  if (F.AM.Scale != 0) {
3281    const SCEV *ScaledS = F.ScaledReg;
3282
3283    // If we're expanding for a post-inc user, make the post-inc adjustment.
3284    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3285    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3286                                     LF.UserInst, LF.OperandValToReplace,
3287                                     Loops, SE, DT);
3288
3289    if (LU.Kind == LSRUse::ICmpZero) {
3290      // An interesting way of "folding" with an icmp is to use a negated
3291      // scale, which we'll implement by inserting it into the other operand
3292      // of the icmp.
3293      assert(F.AM.Scale == -1 &&
3294             "The only scale supported by ICmpZero uses is -1!");
3295      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3296    } else {
3297      // Otherwise just expand the scaled register and an explicit scale,
3298      // which is expected to be matched as part of the address.
3299      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3300      ScaledS = SE.getMulExpr(ScaledS,
3301                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3302      Ops.push_back(ScaledS);
3303
3304      // Flush the operand list to suppress SCEVExpander hoisting.
3305      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3306      Ops.clear();
3307      Ops.push_back(SE.getUnknown(FullV));
3308    }
3309  }
3310
3311  // Expand the GV portion.
3312  if (F.AM.BaseGV) {
3313    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3314
3315    // Flush the operand list to suppress SCEVExpander hoisting.
3316    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3317    Ops.clear();
3318    Ops.push_back(SE.getUnknown(FullV));
3319  }
3320
3321  // Expand the immediate portion.
3322  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3323  if (Offset != 0) {
3324    if (LU.Kind == LSRUse::ICmpZero) {
3325      // The other interesting way of "folding" with an ICmpZero is to use a
3326      // negated immediate.
3327      if (!ICmpScaledV)
3328        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3329      else {
3330        Ops.push_back(SE.getUnknown(ICmpScaledV));
3331        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3332      }
3333    } else {
3334      // Just add the immediate values. These again are expected to be matched
3335      // as part of the address.
3336      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3337    }
3338  }
3339
3340  // Emit instructions summing all the operands.
3341  const SCEV *FullS = Ops.empty() ?
3342                      SE.getConstant(IntTy, 0) :
3343                      SE.getAddExpr(Ops);
3344  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3345
3346  // We're done expanding now, so reset the rewriter.
3347  Rewriter.clearPostInc();
3348
3349  // An ICmpZero Formula represents an ICmp which we're handling as a
3350  // comparison against zero. Now that we've expanded an expression for that
3351  // form, update the ICmp's other operand.
3352  if (LU.Kind == LSRUse::ICmpZero) {
3353    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3354    DeadInsts.push_back(CI->getOperand(1));
3355    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3356                           "a scale at the same time!");
3357    if (F.AM.Scale == -1) {
3358      if (ICmpScaledV->getType() != OpTy) {
3359        Instruction *Cast =
3360          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3361                                                   OpTy, false),
3362                           ICmpScaledV, OpTy, "tmp", CI);
3363        ICmpScaledV = Cast;
3364      }
3365      CI->setOperand(1, ICmpScaledV);
3366    } else {
3367      assert(F.AM.Scale == 0 &&
3368             "ICmp does not support folding a global value and "
3369             "a scale at the same time!");
3370      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3371                                           -(uint64_t)Offset);
3372      if (C->getType() != OpTy)
3373        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3374                                                          OpTy, false),
3375                                  C, OpTy);
3376
3377      CI->setOperand(1, C);
3378    }
3379  }
3380
3381  return FullV;
3382}
3383
3384/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3385/// of their operands effectively happens in their predecessor blocks, so the
3386/// expression may need to be expanded in multiple places.
3387void LSRInstance::RewriteForPHI(PHINode *PN,
3388                                const LSRFixup &LF,
3389                                const Formula &F,
3390                                SCEVExpander &Rewriter,
3391                                SmallVectorImpl<WeakVH> &DeadInsts,
3392                                Pass *P) const {
3393  DenseMap<BasicBlock *, Value *> Inserted;
3394  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3395    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3396      BasicBlock *BB = PN->getIncomingBlock(i);
3397
3398      // If this is a critical edge, split the edge so that we do not insert
3399      // the code on all predecessor/successor paths.  We do this unless this
3400      // is the canonical backedge for this loop, which complicates post-inc
3401      // users.
3402      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3403          !isa<IndirectBrInst>(BB->getTerminator()) &&
3404          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3405        // Split the critical edge.
3406        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3407
3408        // If PN is outside of the loop and BB is in the loop, we want to
3409        // move the block to be immediately before the PHI block, not
3410        // immediately after BB.
3411        if (L->contains(BB) && !L->contains(PN))
3412          NewBB->moveBefore(PN->getParent());
3413
3414        // Splitting the edge can reduce the number of PHI entries we have.
3415        e = PN->getNumIncomingValues();
3416        BB = NewBB;
3417        i = PN->getBasicBlockIndex(BB);
3418      }
3419
3420      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3421        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3422      if (!Pair.second)
3423        PN->setIncomingValue(i, Pair.first->second);
3424      else {
3425        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3426
3427        // If this is reuse-by-noop-cast, insert the noop cast.
3428        const Type *OpTy = LF.OperandValToReplace->getType();
3429        if (FullV->getType() != OpTy)
3430          FullV =
3431            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3432                                                     OpTy, false),
3433                             FullV, LF.OperandValToReplace->getType(),
3434                             "tmp", BB->getTerminator());
3435
3436        PN->setIncomingValue(i, FullV);
3437        Pair.first->second = FullV;
3438      }
3439    }
3440}
3441
3442/// Rewrite - Emit instructions for the leading candidate expression for this
3443/// LSRUse (this is called "expanding"), and update the UserInst to reference
3444/// the newly expanded value.
3445void LSRInstance::Rewrite(const LSRFixup &LF,
3446                          const Formula &F,
3447                          SCEVExpander &Rewriter,
3448                          SmallVectorImpl<WeakVH> &DeadInsts,
3449                          Pass *P) const {
3450  // First, find an insertion point that dominates UserInst. For PHI nodes,
3451  // find the nearest block which dominates all the relevant uses.
3452  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3453    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3454  } else {
3455    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3456
3457    // If this is reuse-by-noop-cast, insert the noop cast.
3458    const Type *OpTy = LF.OperandValToReplace->getType();
3459    if (FullV->getType() != OpTy) {
3460      Instruction *Cast =
3461        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3462                         FullV, OpTy, "tmp", LF.UserInst);
3463      FullV = Cast;
3464    }
3465
3466    // Update the user. ICmpZero is handled specially here (for now) because
3467    // Expand may have updated one of the operands of the icmp already, and
3468    // its new value may happen to be equal to LF.OperandValToReplace, in
3469    // which case doing replaceUsesOfWith leads to replacing both operands
3470    // with the same value. TODO: Reorganize this.
3471    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3472      LF.UserInst->setOperand(0, FullV);
3473    else
3474      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3475  }
3476
3477  DeadInsts.push_back(LF.OperandValToReplace);
3478}
3479
3480/// ImplementSolution - Rewrite all the fixup locations with new values,
3481/// following the chosen solution.
3482void
3483LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3484                               Pass *P) {
3485  // Keep track of instructions we may have made dead, so that
3486  // we can remove them after we are done working.
3487  SmallVector<WeakVH, 16> DeadInsts;
3488
3489  SCEVExpander Rewriter(SE);
3490  Rewriter.disableCanonicalMode();
3491  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3492
3493  // Expand the new value definitions and update the users.
3494  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3495       E = Fixups.end(); I != E; ++I) {
3496    const LSRFixup &Fixup = *I;
3497
3498    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3499
3500    Changed = true;
3501  }
3502
3503  // Clean up after ourselves. This must be done before deleting any
3504  // instructions.
3505  Rewriter.clear();
3506
3507  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3508}
3509
3510LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3511  : IU(P->getAnalysis<IVUsers>()),
3512    SE(P->getAnalysis<ScalarEvolution>()),
3513    DT(P->getAnalysis<DominatorTree>()),
3514    LI(P->getAnalysis<LoopInfo>()),
3515    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3516
3517  // If LoopSimplify form is not available, stay out of trouble.
3518  if (!L->isLoopSimplifyForm()) return;
3519
3520  // If there's no interesting work to be done, bail early.
3521  if (IU.empty()) return;
3522
3523  DEBUG(dbgs() << "\nLSR on loop ";
3524        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3525        dbgs() << ":\n");
3526
3527  // First, perform some low-level loop optimizations.
3528  OptimizeShadowIV();
3529  OptimizeLoopTermCond();
3530
3531  // Start collecting data and preparing for the solver.
3532  CollectInterestingTypesAndFactors();
3533  CollectFixupsAndInitialFormulae();
3534  CollectLoopInvariantFixupsAndFormulae();
3535
3536  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3537        print_uses(dbgs()));
3538
3539  // Now use the reuse data to generate a bunch of interesting ways
3540  // to formulate the values needed for the uses.
3541  GenerateAllReuseFormulae();
3542
3543  DEBUG(dbgs() << "\n"
3544                  "After generating reuse formulae:\n";
3545        print_uses(dbgs()));
3546
3547  FilterOutUndesirableDedicatedRegisters();
3548  NarrowSearchSpaceUsingHeuristics();
3549
3550  SmallVector<const Formula *, 8> Solution;
3551  Solve(Solution);
3552
3553  // Release memory that is no longer needed.
3554  Factors.clear();
3555  Types.clear();
3556  RegUses.clear();
3557
3558#ifndef NDEBUG
3559  // Formulae should be legal.
3560  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3561       E = Uses.end(); I != E; ++I) {
3562     const LSRUse &LU = *I;
3563     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3564          JE = LU.Formulae.end(); J != JE; ++J)
3565        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3566                          LU.Kind, LU.AccessTy, TLI) &&
3567               "Illegal formula generated!");
3568  };
3569#endif
3570
3571  // Now that we've decided what we want, make it so.
3572  ImplementSolution(Solution, P);
3573}
3574
3575void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3576  if (Factors.empty() && Types.empty()) return;
3577
3578  OS << "LSR has identified the following interesting factors and types: ";
3579  bool First = true;
3580
3581  for (SmallSetVector<int64_t, 8>::const_iterator
3582       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3583    if (!First) OS << ", ";
3584    First = false;
3585    OS << '*' << *I;
3586  }
3587
3588  for (SmallSetVector<const Type *, 4>::const_iterator
3589       I = Types.begin(), E = Types.end(); I != E; ++I) {
3590    if (!First) OS << ", ";
3591    First = false;
3592    OS << '(' << **I << ')';
3593  }
3594  OS << '\n';
3595}
3596
3597void LSRInstance::print_fixups(raw_ostream &OS) const {
3598  OS << "LSR is examining the following fixup sites:\n";
3599  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3600       E = Fixups.end(); I != E; ++I) {
3601    dbgs() << "  ";
3602    I->print(OS);
3603    OS << '\n';
3604  }
3605}
3606
3607void LSRInstance::print_uses(raw_ostream &OS) const {
3608  OS << "LSR is examining the following uses:\n";
3609  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3610       E = Uses.end(); I != E; ++I) {
3611    const LSRUse &LU = *I;
3612    dbgs() << "  ";
3613    LU.print(OS);
3614    OS << '\n';
3615    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3616         JE = LU.Formulae.end(); J != JE; ++J) {
3617      OS << "    ";
3618      J->print(OS);
3619      OS << '\n';
3620    }
3621  }
3622}
3623
3624void LSRInstance::print(raw_ostream &OS) const {
3625  print_factors_and_types(OS);
3626  print_fixups(OS);
3627  print_uses(OS);
3628}
3629
3630void LSRInstance::dump() const {
3631  print(errs()); errs() << '\n';
3632}
3633
3634namespace {
3635
3636class LoopStrengthReduce : public LoopPass {
3637  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3638  /// transformation profitability.
3639  const TargetLowering *const TLI;
3640
3641public:
3642  static char ID; // Pass ID, replacement for typeid
3643  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3644
3645private:
3646  bool runOnLoop(Loop *L, LPPassManager &LPM);
3647  void getAnalysisUsage(AnalysisUsage &AU) const;
3648};
3649
3650}
3651
3652char LoopStrengthReduce::ID = 0;
3653static RegisterPass<LoopStrengthReduce>
3654X("loop-reduce", "Loop Strength Reduction");
3655
3656Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3657  return new LoopStrengthReduce(TLI);
3658}
3659
3660LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3661  : LoopPass(&ID), TLI(tli) {}
3662
3663void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3664  // We split critical edges, so we change the CFG.  However, we do update
3665  // many analyses if they are around.
3666  AU.addPreservedID(LoopSimplifyID);
3667  AU.addPreserved("domfrontier");
3668
3669  AU.addRequired<LoopInfo>();
3670  AU.addPreserved<LoopInfo>();
3671  AU.addRequiredID(LoopSimplifyID);
3672  AU.addRequired<DominatorTree>();
3673  AU.addPreserved<DominatorTree>();
3674  AU.addRequired<ScalarEvolution>();
3675  AU.addPreserved<ScalarEvolution>();
3676  AU.addRequired<IVUsers>();
3677  AU.addPreserved<IVUsers>();
3678}
3679
3680bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3681  bool Changed = false;
3682
3683  // Run the main LSR transformation.
3684  Changed |= LSRInstance(TLI, L, this).getChanged();
3685
3686  // At this point, it is worth checking to see if any recurrence PHIs are also
3687  // dead, so that we can remove them as well.
3688  Changed |= DeleteDeadPHIs(L->getHeader());
3689
3690  return Changed;
3691}
3692