1198090Srdivacky//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
2198090Srdivacky//
3198090Srdivacky//                     The LLVM Compiler Infrastructure
4198090Srdivacky//
5198090Srdivacky// This file is distributed under the University of Illinois Open Source
6198090Srdivacky// License. See LICENSE.TXT for details.
7198090Srdivacky//
8198090Srdivacky//===----------------------------------------------------------------------===//
9198090Srdivacky//
10221345Sdim// This module provides means for calculating a maximum spanning tree for a
11198090Srdivacky// given set of weighted edges. The type parameter T is the type of a node.
12198090Srdivacky//
13198090Srdivacky//===----------------------------------------------------------------------===//
14198090Srdivacky
15198090Srdivacky#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
16198090Srdivacky#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
17198090Srdivacky
18198090Srdivacky#include "llvm/ADT/EquivalenceClasses.h"
19249423Sdim#include "llvm/IR/BasicBlock.h"
20249423Sdim#include <algorithm>
21198090Srdivacky#include <vector>
22198090Srdivacky
23198090Srdivackynamespace llvm {
24198090Srdivacky
25198090Srdivacky  /// MaximumSpanningTree - A MST implementation.
26198090Srdivacky  /// The type parameter T determines the type of the nodes of the graph.
27198090Srdivacky  template <typename T>
28198090Srdivacky  class MaximumSpanningTree {
29243830Sdim  public:
30243830Sdim    typedef std::pair<const T*, const T*> Edge;
31243830Sdim    typedef std::pair<Edge, double> EdgeWeight;
32243830Sdim    typedef std::vector<EdgeWeight> EdgeWeights;
33243830Sdim  protected:
34243830Sdim    typedef std::vector<Edge> MaxSpanTree;
35198090Srdivacky
36243830Sdim    MaxSpanTree MST;
37243830Sdim
38243830Sdim  private:
39198090Srdivacky    // A comparing class for comparing weighted edges.
40198090Srdivacky    struct EdgeWeightCompare {
41243830Sdim      static bool getBlockSize(const T *X) {
42243830Sdim        const BasicBlock *BB = dyn_cast_or_null<BasicBlock>(X);
43243830Sdim        return BB ? BB->size() : 0;
44243830Sdim      }
45243830Sdim
46243830Sdim      bool operator()(EdgeWeight X, EdgeWeight Y) const {
47198090Srdivacky        if (X.second > Y.second) return true;
48198090Srdivacky        if (X.second < Y.second) return false;
49243830Sdim
50243830Sdim        // Equal edge weights: break ties by comparing block sizes.
51243830Sdim        size_t XSizeA = getBlockSize(X.first.first);
52243830Sdim        size_t YSizeA = getBlockSize(Y.first.first);
53243830Sdim        if (XSizeA > YSizeA) return true;
54243830Sdim        if (XSizeA < YSizeA) return false;
55243830Sdim
56243830Sdim        size_t XSizeB = getBlockSize(X.first.second);
57243830Sdim        size_t YSizeB = getBlockSize(Y.first.second);
58243830Sdim        if (XSizeB > YSizeB) return true;
59243830Sdim        if (XSizeB < YSizeB) return false;
60243830Sdim
61198090Srdivacky        return false;
62198090Srdivacky      }
63198090Srdivacky    };
64198090Srdivacky
65198090Srdivacky  public:
66198090Srdivacky    static char ID; // Class identification, replacement for typeinfo
67198090Srdivacky
68198090Srdivacky    /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
69198090Srdivacky    /// spanning tree.
70198090Srdivacky    MaximumSpanningTree(EdgeWeights &EdgeVector) {
71198090Srdivacky
72243830Sdim      std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
73198090Srdivacky
74198090Srdivacky      // Create spanning tree, Forest contains a special data structure
75198090Srdivacky      // that makes checking if two nodes are already in a common (sub-)tree
76198090Srdivacky      // fast and cheap.
77198090Srdivacky      EquivalenceClasses<const T*> Forest;
78198090Srdivacky      for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
79198090Srdivacky           EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
80198090Srdivacky        Edge e = (*EWi).first;
81198090Srdivacky
82198090Srdivacky        Forest.insert(e.first);
83198090Srdivacky        Forest.insert(e.second);
84198090Srdivacky      }
85198090Srdivacky
86198090Srdivacky      // Iterate over the sorted edges, biggest first.
87198090Srdivacky      for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
88198090Srdivacky           EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
89198090Srdivacky        Edge e = (*EWi).first;
90198090Srdivacky
91198090Srdivacky        if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
92198090Srdivacky          Forest.unionSets(e.first, e.second);
93198090Srdivacky          // So we know now that the edge is not already in a subtree, so we push
94198090Srdivacky          // the edge to the MST.
95198090Srdivacky          MST.push_back(e);
96198090Srdivacky        }
97198090Srdivacky      }
98198090Srdivacky    }
99198090Srdivacky
100198090Srdivacky    typename MaxSpanTree::iterator begin() {
101198090Srdivacky      return MST.begin();
102198090Srdivacky    }
103198090Srdivacky
104198090Srdivacky    typename MaxSpanTree::iterator end() {
105198090Srdivacky      return MST.end();
106198090Srdivacky    }
107198090Srdivacky  };
108198090Srdivacky
109198090Srdivacky} // End llvm namespace
110198090Srdivacky
111198090Srdivacky#endif
112