InstCombineCasts.cpp revision 224145
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        uint64_t &Offset) {
26  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27    Offset = CI->getZExtValue();
28    Scale  = 0;
29    return ConstantInt::get(Val->getType(), 0);
30  }
31
32  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
33    // Cannot look past anything that might overflow.
34    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
35    if (OBI && !OBI->hasNoUnsignedWrap()) {
36      Scale = 1;
37      Offset = 0;
38      return Val;
39    }
40
41    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
42      if (I->getOpcode() == Instruction::Shl) {
43        // This is a value scaled by '1 << the shift amt'.
44        Scale = UINT64_C(1) << RHS->getZExtValue();
45        Offset = 0;
46        return I->getOperand(0);
47      }
48
49      if (I->getOpcode() == Instruction::Mul) {
50        // This value is scaled by 'RHS'.
51        Scale = RHS->getZExtValue();
52        Offset = 0;
53        return I->getOperand(0);
54      }
55
56      if (I->getOpcode() == Instruction::Add) {
57        // We have X+C.  Check to see if we really have (X*C2)+C1,
58        // where C1 is divisible by C2.
59        unsigned SubScale;
60        Value *SubVal =
61          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
62        Offset += RHS->getZExtValue();
63        Scale = SubScale;
64        return SubVal;
65      }
66    }
67  }
68
69  // Otherwise, we can't look past this.
70  Scale = 1;
71  Offset = 0;
72  return Val;
73}
74
75/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
76/// try to eliminate the cast by moving the type information into the alloc.
77Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
78                                                   AllocaInst &AI) {
79  // This requires TargetData to get the alloca alignment and size information.
80  if (!TD) return 0;
81
82  const PointerType *PTy = cast<PointerType>(CI.getType());
83
84  BuilderTy AllocaBuilder(*Builder);
85  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
86
87  // Get the type really allocated and the type casted to.
88  const Type *AllocElTy = AI.getAllocatedType();
89  const Type *CastElTy = PTy->getElementType();
90  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
91
92  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
93  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
94  if (CastElTyAlign < AllocElTyAlign) return 0;
95
96  // If the allocation has multiple uses, only promote it if we are strictly
97  // increasing the alignment of the resultant allocation.  If we keep it the
98  // same, we open the door to infinite loops of various kinds.
99  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
100
101  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
102  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
103  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
104
105  // See if we can satisfy the modulus by pulling a scale out of the array
106  // size argument.
107  unsigned ArraySizeScale;
108  uint64_t ArrayOffset;
109  Value *NumElements = // See if the array size is a decomposable linear expr.
110    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
111
112  // If we can now satisfy the modulus, by using a non-1 scale, we really can
113  // do the xform.
114  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
115      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
116
117  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
118  Value *Amt = 0;
119  if (Scale == 1) {
120    Amt = NumElements;
121  } else {
122    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
123    // Insert before the alloca, not before the cast.
124    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
125  }
126
127  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
128    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
129                                  Offset, true);
130    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
131  }
132
133  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
134  New->setAlignment(AI.getAlignment());
135  New->takeName(&AI);
136
137  // If the allocation has multiple real uses, insert a cast and change all
138  // things that used it to use the new cast.  This will also hack on CI, but it
139  // will die soon.
140  if (!AI.hasOneUse()) {
141    // New is the allocation instruction, pointer typed. AI is the original
142    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
143    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
144    ReplaceInstUsesWith(AI, NewCast);
145  }
146  return ReplaceInstUsesWith(CI, New);
147}
148
149
150
151/// EvaluateInDifferentType - Given an expression that
152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
153/// insert the code to evaluate the expression.
154Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
155                                             bool isSigned) {
156  if (Constant *C = dyn_cast<Constant>(V)) {
157    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158    // If we got a constantexpr back, try to simplify it with TD info.
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160      C = ConstantFoldConstantExpression(CE, TD);
161    return C;
162  }
163
164  // Otherwise, it must be an instruction.
165  Instruction *I = cast<Instruction>(V);
166  Instruction *Res = 0;
167  unsigned Opc = I->getOpcode();
168  switch (Opc) {
169  case Instruction::Add:
170  case Instruction::Sub:
171  case Instruction::Mul:
172  case Instruction::And:
173  case Instruction::Or:
174  case Instruction::Xor:
175  case Instruction::AShr:
176  case Instruction::LShr:
177  case Instruction::Shl:
178  case Instruction::UDiv:
179  case Instruction::URem: {
180    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183    break;
184  }
185  case Instruction::Trunc:
186  case Instruction::ZExt:
187  case Instruction::SExt:
188    // If the source type of the cast is the type we're trying for then we can
189    // just return the source.  There's no need to insert it because it is not
190    // new.
191    if (I->getOperand(0)->getType() == Ty)
192      return I->getOperand(0);
193
194    // Otherwise, must be the same type of cast, so just reinsert a new one.
195    // This also handles the case of zext(trunc(x)) -> zext(x).
196    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197                                      Opc == Instruction::SExt);
198    break;
199  case Instruction::Select: {
200    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202    Res = SelectInst::Create(I->getOperand(0), True, False);
203    break;
204  }
205  case Instruction::PHI: {
206    PHINode *OPN = cast<PHINode>(I);
207    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
208    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210      NPN->addIncoming(V, OPN->getIncomingBlock(i));
211    }
212    Res = NPN;
213    break;
214  }
215  default:
216    // TODO: Can handle more cases here.
217    llvm_unreachable("Unreachable!");
218    break;
219  }
220
221  Res->takeName(I);
222  return InsertNewInstWith(Res, *I);
223}
224
225
226/// This function is a wrapper around CastInst::isEliminableCastPair. It
227/// simply extracts arguments and returns what that function returns.
228static Instruction::CastOps
229isEliminableCastPair(
230  const CastInst *CI, ///< The first cast instruction
231  unsigned opcode,       ///< The opcode of the second cast instruction
232  const Type *DstTy,     ///< The target type for the second cast instruction
233  TargetData *TD         ///< The target data for pointer size
234) {
235
236  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
237  const Type *MidTy = CI->getType();                  // B from above
238
239  // Get the opcodes of the two Cast instructions
240  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
241  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
242
243  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
244                                                DstTy,
245                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
246
247  // We don't want to form an inttoptr or ptrtoint that converts to an integer
248  // type that differs from the pointer size.
249  if ((Res == Instruction::IntToPtr &&
250          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
251      (Res == Instruction::PtrToInt &&
252          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
253    Res = 0;
254
255  return Instruction::CastOps(Res);
256}
257
258/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
259/// results in any code being generated and is interesting to optimize out. If
260/// the cast can be eliminated by some other simple transformation, we prefer
261/// to do the simplification first.
262bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
263                                      const Type *Ty) {
264  // Noop casts and casts of constants should be eliminated trivially.
265  if (V->getType() == Ty || isa<Constant>(V)) return false;
266
267  // If this is another cast that can be eliminated, we prefer to have it
268  // eliminated.
269  if (const CastInst *CI = dyn_cast<CastInst>(V))
270    if (isEliminableCastPair(CI, opc, Ty, TD))
271      return false;
272
273  // If this is a vector sext from a compare, then we don't want to break the
274  // idiom where each element of the extended vector is either zero or all ones.
275  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
276    return false;
277
278  return true;
279}
280
281
282/// @brief Implement the transforms common to all CastInst visitors.
283Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
284  Value *Src = CI.getOperand(0);
285
286  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
287  // eliminate it now.
288  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
289    if (Instruction::CastOps opc =
290        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
291      // The first cast (CSrc) is eliminable so we need to fix up or replace
292      // the second cast (CI). CSrc will then have a good chance of being dead.
293      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
294    }
295  }
296
297  // If we are casting a select then fold the cast into the select
298  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
299    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
300      return NV;
301
302  // If we are casting a PHI then fold the cast into the PHI
303  if (isa<PHINode>(Src)) {
304    // We don't do this if this would create a PHI node with an illegal type if
305    // it is currently legal.
306    if (!Src->getType()->isIntegerTy() ||
307        !CI.getType()->isIntegerTy() ||
308        ShouldChangeType(CI.getType(), Src->getType()))
309      if (Instruction *NV = FoldOpIntoPhi(CI))
310        return NV;
311  }
312
313  return 0;
314}
315
316/// CanEvaluateTruncated - Return true if we can evaluate the specified
317/// expression tree as type Ty instead of its larger type, and arrive with the
318/// same value.  This is used by code that tries to eliminate truncates.
319///
320/// Ty will always be a type smaller than V.  We should return true if trunc(V)
321/// can be computed by computing V in the smaller type.  If V is an instruction,
322/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
323/// makes sense if x and y can be efficiently truncated.
324///
325/// This function works on both vectors and scalars.
326///
327static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
328  // We can always evaluate constants in another type.
329  if (isa<Constant>(V))
330    return true;
331
332  Instruction *I = dyn_cast<Instruction>(V);
333  if (!I) return false;
334
335  const Type *OrigTy = V->getType();
336
337  // If this is an extension from the dest type, we can eliminate it, even if it
338  // has multiple uses.
339  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
340      I->getOperand(0)->getType() == Ty)
341    return true;
342
343  // We can't extend or shrink something that has multiple uses: doing so would
344  // require duplicating the instruction in general, which isn't profitable.
345  if (!I->hasOneUse()) return false;
346
347  unsigned Opc = I->getOpcode();
348  switch (Opc) {
349  case Instruction::Add:
350  case Instruction::Sub:
351  case Instruction::Mul:
352  case Instruction::And:
353  case Instruction::Or:
354  case Instruction::Xor:
355    // These operators can all arbitrarily be extended or truncated.
356    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
357           CanEvaluateTruncated(I->getOperand(1), Ty);
358
359  case Instruction::UDiv:
360  case Instruction::URem: {
361    // UDiv and URem can be truncated if all the truncated bits are zero.
362    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
363    uint32_t BitWidth = Ty->getScalarSizeInBits();
364    if (BitWidth < OrigBitWidth) {
365      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
366      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
367          MaskedValueIsZero(I->getOperand(1), Mask)) {
368        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
369               CanEvaluateTruncated(I->getOperand(1), Ty);
370      }
371    }
372    break;
373  }
374  case Instruction::Shl:
375    // If we are truncating the result of this SHL, and if it's a shift of a
376    // constant amount, we can always perform a SHL in a smaller type.
377    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
378      uint32_t BitWidth = Ty->getScalarSizeInBits();
379      if (CI->getLimitedValue(BitWidth) < BitWidth)
380        return CanEvaluateTruncated(I->getOperand(0), Ty);
381    }
382    break;
383  case Instruction::LShr:
384    // If this is a truncate of a logical shr, we can truncate it to a smaller
385    // lshr iff we know that the bits we would otherwise be shifting in are
386    // already zeros.
387    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
389      uint32_t BitWidth = Ty->getScalarSizeInBits();
390      if (MaskedValueIsZero(I->getOperand(0),
391            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
392          CI->getLimitedValue(BitWidth) < BitWidth) {
393        return CanEvaluateTruncated(I->getOperand(0), Ty);
394      }
395    }
396    break;
397  case Instruction::Trunc:
398    // trunc(trunc(x)) -> trunc(x)
399    return true;
400  case Instruction::ZExt:
401  case Instruction::SExt:
402    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
403    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
404    return true;
405  case Instruction::Select: {
406    SelectInst *SI = cast<SelectInst>(I);
407    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
408           CanEvaluateTruncated(SI->getFalseValue(), Ty);
409  }
410  case Instruction::PHI: {
411    // We can change a phi if we can change all operands.  Note that we never
412    // get into trouble with cyclic PHIs here because we only consider
413    // instructions with a single use.
414    PHINode *PN = cast<PHINode>(I);
415    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
416      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
417        return false;
418    return true;
419  }
420  default:
421    // TODO: Can handle more cases here.
422    break;
423  }
424
425  return false;
426}
427
428Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
429  if (Instruction *Result = commonCastTransforms(CI))
430    return Result;
431
432  // See if we can simplify any instructions used by the input whose sole
433  // purpose is to compute bits we don't care about.
434  if (SimplifyDemandedInstructionBits(CI))
435    return &CI;
436
437  Value *Src = CI.getOperand(0);
438  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
439
440  // Attempt to truncate the entire input expression tree to the destination
441  // type.   Only do this if the dest type is a simple type, don't convert the
442  // expression tree to something weird like i93 unless the source is also
443  // strange.
444  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
445      CanEvaluateTruncated(Src, DestTy)) {
446
447    // If this cast is a truncate, evaluting in a different type always
448    // eliminates the cast, so it is always a win.
449    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
450          " to avoid cast: " << CI << '\n');
451    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
452    assert(Res->getType() == DestTy);
453    return ReplaceInstUsesWith(CI, Res);
454  }
455
456  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
457  if (DestTy->getScalarSizeInBits() == 1) {
458    Constant *One = ConstantInt::get(Src->getType(), 1);
459    Src = Builder->CreateAnd(Src, One, "tmp");
460    Value *Zero = Constant::getNullValue(Src->getType());
461    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
462  }
463
464  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
465  Value *A = 0; ConstantInt *Cst = 0;
466  if (Src->hasOneUse() &&
467      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
468    // We have three types to worry about here, the type of A, the source of
469    // the truncate (MidSize), and the destination of the truncate. We know that
470    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
471    // between ASize and ResultSize.
472    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
473
474    // If the shift amount is larger than the size of A, then the result is
475    // known to be zero because all the input bits got shifted out.
476    if (Cst->getZExtValue() >= ASize)
477      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
478
479    // Since we're doing an lshr and a zero extend, and know that the shift
480    // amount is smaller than ASize, it is always safe to do the shift in A's
481    // type, then zero extend or truncate to the result.
482    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
483    Shift->takeName(Src);
484    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
485  }
486
487  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
488  // type isn't non-native.
489  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
490      ShouldChangeType(Src->getType(), CI.getType()) &&
491      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
492    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
493    return BinaryOperator::CreateAnd(NewTrunc,
494                                     ConstantExpr::getTrunc(Cst, CI.getType()));
495  }
496
497  return 0;
498}
499
500/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
501/// in order to eliminate the icmp.
502Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
503                                             bool DoXform) {
504  // If we are just checking for a icmp eq of a single bit and zext'ing it
505  // to an integer, then shift the bit to the appropriate place and then
506  // cast to integer to avoid the comparison.
507  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
508    const APInt &Op1CV = Op1C->getValue();
509
510    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
511    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
512    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
513        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
514      if (!DoXform) return ICI;
515
516      Value *In = ICI->getOperand(0);
517      Value *Sh = ConstantInt::get(In->getType(),
518                                   In->getType()->getScalarSizeInBits()-1);
519      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
520      if (In->getType() != CI.getType())
521        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
522
523      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
524        Constant *One = ConstantInt::get(In->getType(), 1);
525        In = Builder->CreateXor(In, One, In->getName()+".not");
526      }
527
528      return ReplaceInstUsesWith(CI, In);
529    }
530
531
532
533    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
534    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
535    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
536    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
537    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
538    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
539    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
540    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
541    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
542        // This only works for EQ and NE
543        ICI->isEquality()) {
544      // If Op1C some other power of two, convert:
545      uint32_t BitWidth = Op1C->getType()->getBitWidth();
546      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
547      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
548      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
549
550      APInt KnownZeroMask(~KnownZero);
551      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
552        if (!DoXform) return ICI;
553
554        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
555        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
556          // (X&4) == 2 --> false
557          // (X&4) != 2 --> true
558          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
559                                           isNE);
560          Res = ConstantExpr::getZExt(Res, CI.getType());
561          return ReplaceInstUsesWith(CI, Res);
562        }
563
564        uint32_t ShiftAmt = KnownZeroMask.logBase2();
565        Value *In = ICI->getOperand(0);
566        if (ShiftAmt) {
567          // Perform a logical shr by shiftamt.
568          // Insert the shift to put the result in the low bit.
569          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
570                                   In->getName()+".lobit");
571        }
572
573        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
574          Constant *One = ConstantInt::get(In->getType(), 1);
575          In = Builder->CreateXor(In, One, "tmp");
576        }
577
578        if (CI.getType() == In->getType())
579          return ReplaceInstUsesWith(CI, In);
580        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
581      }
582    }
583  }
584
585  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
586  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
587  // may lead to additional simplifications.
588  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
589    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
590      uint32_t BitWidth = ITy->getBitWidth();
591      Value *LHS = ICI->getOperand(0);
592      Value *RHS = ICI->getOperand(1);
593
594      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
595      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
596      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
597      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
598      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
599
600      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
601        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
602        APInt UnknownBit = ~KnownBits;
603        if (UnknownBit.countPopulation() == 1) {
604          if (!DoXform) return ICI;
605
606          Value *Result = Builder->CreateXor(LHS, RHS);
607
608          // Mask off any bits that are set and won't be shifted away.
609          if (KnownOneLHS.uge(UnknownBit))
610            Result = Builder->CreateAnd(Result,
611                                        ConstantInt::get(ITy, UnknownBit));
612
613          // Shift the bit we're testing down to the lsb.
614          Result = Builder->CreateLShr(
615               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
616
617          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
618            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
619          Result->takeName(ICI);
620          return ReplaceInstUsesWith(CI, Result);
621        }
622      }
623    }
624  }
625
626  return 0;
627}
628
629/// CanEvaluateZExtd - Determine if the specified value can be computed in the
630/// specified wider type and produce the same low bits.  If not, return false.
631///
632/// If this function returns true, it can also return a non-zero number of bits
633/// (in BitsToClear) which indicates that the value it computes is correct for
634/// the zero extend, but that the additional BitsToClear bits need to be zero'd
635/// out.  For example, to promote something like:
636///
637///   %B = trunc i64 %A to i32
638///   %C = lshr i32 %B, 8
639///   %E = zext i32 %C to i64
640///
641/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
642/// set to 8 to indicate that the promoted value needs to have bits 24-31
643/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
644/// clear the top bits anyway, doing this has no extra cost.
645///
646/// This function works on both vectors and scalars.
647static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
648  BitsToClear = 0;
649  if (isa<Constant>(V))
650    return true;
651
652  Instruction *I = dyn_cast<Instruction>(V);
653  if (!I) return false;
654
655  // If the input is a truncate from the destination type, we can trivially
656  // eliminate it, even if it has multiple uses.
657  // FIXME: This is currently disabled until codegen can handle this without
658  // pessimizing code, PR5997.
659  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
660    return true;
661
662  // We can't extend or shrink something that has multiple uses: doing so would
663  // require duplicating the instruction in general, which isn't profitable.
664  if (!I->hasOneUse()) return false;
665
666  unsigned Opc = I->getOpcode(), Tmp;
667  switch (Opc) {
668  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
669  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
670  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
671    return true;
672  case Instruction::And:
673  case Instruction::Or:
674  case Instruction::Xor:
675  case Instruction::Add:
676  case Instruction::Sub:
677  case Instruction::Mul:
678  case Instruction::Shl:
679    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
680        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
681      return false;
682    // These can all be promoted if neither operand has 'bits to clear'.
683    if (BitsToClear == 0 && Tmp == 0)
684      return true;
685
686    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
687    // other side, BitsToClear is ok.
688    if (Tmp == 0 &&
689        (Opc == Instruction::And || Opc == Instruction::Or ||
690         Opc == Instruction::Xor)) {
691      // We use MaskedValueIsZero here for generality, but the case we care
692      // about the most is constant RHS.
693      unsigned VSize = V->getType()->getScalarSizeInBits();
694      if (MaskedValueIsZero(I->getOperand(1),
695                            APInt::getHighBitsSet(VSize, BitsToClear)))
696        return true;
697    }
698
699    // Otherwise, we don't know how to analyze this BitsToClear case yet.
700    return false;
701
702  case Instruction::LShr:
703    // We can promote lshr(x, cst) if we can promote x.  This requires the
704    // ultimate 'and' to clear out the high zero bits we're clearing out though.
705    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
706      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
707        return false;
708      BitsToClear += Amt->getZExtValue();
709      if (BitsToClear > V->getType()->getScalarSizeInBits())
710        BitsToClear = V->getType()->getScalarSizeInBits();
711      return true;
712    }
713    // Cannot promote variable LSHR.
714    return false;
715  case Instruction::Select:
716    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
717        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
718        // TODO: If important, we could handle the case when the BitsToClear are
719        // known zero in the disagreeing side.
720        Tmp != BitsToClear)
721      return false;
722    return true;
723
724  case Instruction::PHI: {
725    // We can change a phi if we can change all operands.  Note that we never
726    // get into trouble with cyclic PHIs here because we only consider
727    // instructions with a single use.
728    PHINode *PN = cast<PHINode>(I);
729    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
730      return false;
731    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
732      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
733          // TODO: If important, we could handle the case when the BitsToClear
734          // are known zero in the disagreeing input.
735          Tmp != BitsToClear)
736        return false;
737    return true;
738  }
739  default:
740    // TODO: Can handle more cases here.
741    return false;
742  }
743}
744
745Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
746  // If this zero extend is only used by a truncate, let the truncate by
747  // eliminated before we try to optimize this zext.
748  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
749    return 0;
750
751  // If one of the common conversion will work, do it.
752  if (Instruction *Result = commonCastTransforms(CI))
753    return Result;
754
755  // See if we can simplify any instructions used by the input whose sole
756  // purpose is to compute bits we don't care about.
757  if (SimplifyDemandedInstructionBits(CI))
758    return &CI;
759
760  Value *Src = CI.getOperand(0);
761  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
762
763  // Attempt to extend the entire input expression tree to the destination
764  // type.   Only do this if the dest type is a simple type, don't convert the
765  // expression tree to something weird like i93 unless the source is also
766  // strange.
767  unsigned BitsToClear;
768  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
769      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
770    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
771           "Unreasonable BitsToClear");
772
773    // Okay, we can transform this!  Insert the new expression now.
774    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
775          " to avoid zero extend: " << CI);
776    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
777    assert(Res->getType() == DestTy);
778
779    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
780    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
781
782    // If the high bits are already filled with zeros, just replace this
783    // cast with the result.
784    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
785                                                     DestBitSize-SrcBitsKept)))
786      return ReplaceInstUsesWith(CI, Res);
787
788    // We need to emit an AND to clear the high bits.
789    Constant *C = ConstantInt::get(Res->getType(),
790                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
791    return BinaryOperator::CreateAnd(Res, C);
792  }
793
794  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
795  // types and if the sizes are just right we can convert this into a logical
796  // 'and' which will be much cheaper than the pair of casts.
797  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
798    // TODO: Subsume this into EvaluateInDifferentType.
799
800    // Get the sizes of the types involved.  We know that the intermediate type
801    // will be smaller than A or C, but don't know the relation between A and C.
802    Value *A = CSrc->getOperand(0);
803    unsigned SrcSize = A->getType()->getScalarSizeInBits();
804    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
805    unsigned DstSize = CI.getType()->getScalarSizeInBits();
806    // If we're actually extending zero bits, then if
807    // SrcSize <  DstSize: zext(a & mask)
808    // SrcSize == DstSize: a & mask
809    // SrcSize  > DstSize: trunc(a) & mask
810    if (SrcSize < DstSize) {
811      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
812      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
813      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
814      return new ZExtInst(And, CI.getType());
815    }
816
817    if (SrcSize == DstSize) {
818      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
819      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
820                                                           AndValue));
821    }
822    if (SrcSize > DstSize) {
823      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
824      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
825      return BinaryOperator::CreateAnd(Trunc,
826                                       ConstantInt::get(Trunc->getType(),
827                                                        AndValue));
828    }
829  }
830
831  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
832    return transformZExtICmp(ICI, CI);
833
834  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
835  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
836    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
837    // of the (zext icmp) will be transformed.
838    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
839    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
840    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
841        (transformZExtICmp(LHS, CI, false) ||
842         transformZExtICmp(RHS, CI, false))) {
843      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
844      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
845      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
846    }
847  }
848
849  // zext(trunc(t) & C) -> (t & zext(C)).
850  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
851    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
852      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
853        Value *TI0 = TI->getOperand(0);
854        if (TI0->getType() == CI.getType())
855          return
856            BinaryOperator::CreateAnd(TI0,
857                                ConstantExpr::getZExt(C, CI.getType()));
858      }
859
860  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
861  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
862    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
863      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
864        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
865            And->getOperand(1) == C)
866          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
867            Value *TI0 = TI->getOperand(0);
868            if (TI0->getType() == CI.getType()) {
869              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
870              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
871              return BinaryOperator::CreateXor(NewAnd, ZC);
872            }
873          }
874
875  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
876  Value *X;
877  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
878      match(SrcI, m_Not(m_Value(X))) &&
879      (!X->hasOneUse() || !isa<CmpInst>(X))) {
880    Value *New = Builder->CreateZExt(X, CI.getType());
881    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
882  }
883
884  return 0;
885}
886
887/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
888/// in order to eliminate the icmp.
889Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
890  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
891  ICmpInst::Predicate Pred = ICI->getPredicate();
892
893  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
894    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
895    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
896    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
897        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
898
899      Value *Sh = ConstantInt::get(Op0->getType(),
900                                   Op0->getType()->getScalarSizeInBits()-1);
901      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
902      if (In->getType() != CI.getType())
903        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
904
905      if (Pred == ICmpInst::ICMP_SGT)
906        In = Builder->CreateNot(In, In->getName()+".not");
907      return ReplaceInstUsesWith(CI, In);
908    }
909
910    // If we know that only one bit of the LHS of the icmp can be set and we
911    // have an equality comparison with zero or a power of 2, we can transform
912    // the icmp and sext into bitwise/integer operations.
913    if (ICI->hasOneUse() &&
914        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
915      unsigned BitWidth = Op1C->getType()->getBitWidth();
916      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
917      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
918      ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
919
920      APInt KnownZeroMask(~KnownZero);
921      if (KnownZeroMask.isPowerOf2()) {
922        Value *In = ICI->getOperand(0);
923
924        // If the icmp tests for a known zero bit we can constant fold it.
925        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
926          Value *V = Pred == ICmpInst::ICMP_NE ?
927                       ConstantInt::getAllOnesValue(CI.getType()) :
928                       ConstantInt::getNullValue(CI.getType());
929          return ReplaceInstUsesWith(CI, V);
930        }
931
932        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
933          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
934          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
935          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
936          // Perform a right shift to place the desired bit in the LSB.
937          if (ShiftAmt)
938            In = Builder->CreateLShr(In,
939                                     ConstantInt::get(In->getType(), ShiftAmt));
940
941          // At this point "In" is either 1 or 0. Subtract 1 to turn
942          // {1, 0} -> {0, -1}.
943          In = Builder->CreateAdd(In,
944                                  ConstantInt::getAllOnesValue(In->getType()),
945                                  "sext");
946        } else {
947          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
948          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
949          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
950          // Perform a left shift to place the desired bit in the MSB.
951          if (ShiftAmt)
952            In = Builder->CreateShl(In,
953                                    ConstantInt::get(In->getType(), ShiftAmt));
954
955          // Distribute the bit over the whole bit width.
956          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
957                                                        BitWidth - 1), "sext");
958        }
959
960        if (CI.getType() == In->getType())
961          return ReplaceInstUsesWith(CI, In);
962        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
963      }
964    }
965  }
966
967  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
968  if (const VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
969    if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
970        Op0->getType() == CI.getType()) {
971      const Type *EltTy = VTy->getElementType();
972
973      // splat the shift constant to a constant vector.
974      Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
975      Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
976      return ReplaceInstUsesWith(CI, In);
977    }
978  }
979
980  return 0;
981}
982
983/// CanEvaluateSExtd - Return true if we can take the specified value
984/// and return it as type Ty without inserting any new casts and without
985/// changing the value of the common low bits.  This is used by code that tries
986/// to promote integer operations to a wider types will allow us to eliminate
987/// the extension.
988///
989/// This function works on both vectors and scalars.
990///
991static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
992  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
993         "Can't sign extend type to a smaller type");
994  // If this is a constant, it can be trivially promoted.
995  if (isa<Constant>(V))
996    return true;
997
998  Instruction *I = dyn_cast<Instruction>(V);
999  if (!I) return false;
1000
1001  // If this is a truncate from the dest type, we can trivially eliminate it,
1002  // even if it has multiple uses.
1003  // FIXME: This is currently disabled until codegen can handle this without
1004  // pessimizing code, PR5997.
1005  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1006    return true;
1007
1008  // We can't extend or shrink something that has multiple uses: doing so would
1009  // require duplicating the instruction in general, which isn't profitable.
1010  if (!I->hasOneUse()) return false;
1011
1012  switch (I->getOpcode()) {
1013  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1014  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1015  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1016    return true;
1017  case Instruction::And:
1018  case Instruction::Or:
1019  case Instruction::Xor:
1020  case Instruction::Add:
1021  case Instruction::Sub:
1022  case Instruction::Mul:
1023    // These operators can all arbitrarily be extended if their inputs can.
1024    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1025           CanEvaluateSExtd(I->getOperand(1), Ty);
1026
1027  //case Instruction::Shl:   TODO
1028  //case Instruction::LShr:  TODO
1029
1030  case Instruction::Select:
1031    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1032           CanEvaluateSExtd(I->getOperand(2), Ty);
1033
1034  case Instruction::PHI: {
1035    // We can change a phi if we can change all operands.  Note that we never
1036    // get into trouble with cyclic PHIs here because we only consider
1037    // instructions with a single use.
1038    PHINode *PN = cast<PHINode>(I);
1039    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1040      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1041    return true;
1042  }
1043  default:
1044    // TODO: Can handle more cases here.
1045    break;
1046  }
1047
1048  return false;
1049}
1050
1051Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1052  // If this sign extend is only used by a truncate, let the truncate by
1053  // eliminated before we try to optimize this zext.
1054  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1055    return 0;
1056
1057  if (Instruction *I = commonCastTransforms(CI))
1058    return I;
1059
1060  // See if we can simplify any instructions used by the input whose sole
1061  // purpose is to compute bits we don't care about.
1062  if (SimplifyDemandedInstructionBits(CI))
1063    return &CI;
1064
1065  Value *Src = CI.getOperand(0);
1066  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1067
1068  // Attempt to extend the entire input expression tree to the destination
1069  // type.   Only do this if the dest type is a simple type, don't convert the
1070  // expression tree to something weird like i93 unless the source is also
1071  // strange.
1072  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1073      CanEvaluateSExtd(Src, DestTy)) {
1074    // Okay, we can transform this!  Insert the new expression now.
1075    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1076          " to avoid sign extend: " << CI);
1077    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1078    assert(Res->getType() == DestTy);
1079
1080    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1081    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1082
1083    // If the high bits are already filled with sign bit, just replace this
1084    // cast with the result.
1085    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1086      return ReplaceInstUsesWith(CI, Res);
1087
1088    // We need to emit a shl + ashr to do the sign extend.
1089    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1090    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1091                                      ShAmt);
1092  }
1093
1094  // If this input is a trunc from our destination, then turn sext(trunc(x))
1095  // into shifts.
1096  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1097    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1098      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1099      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1100
1101      // We need to emit a shl + ashr to do the sign extend.
1102      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1103      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1104      return BinaryOperator::CreateAShr(Res, ShAmt);
1105    }
1106
1107  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1108    return transformSExtICmp(ICI, CI);
1109
1110  // If the input is a shl/ashr pair of a same constant, then this is a sign
1111  // extension from a smaller value.  If we could trust arbitrary bitwidth
1112  // integers, we could turn this into a truncate to the smaller bit and then
1113  // use a sext for the whole extension.  Since we don't, look deeper and check
1114  // for a truncate.  If the source and dest are the same type, eliminate the
1115  // trunc and extend and just do shifts.  For example, turn:
1116  //   %a = trunc i32 %i to i8
1117  //   %b = shl i8 %a, 6
1118  //   %c = ashr i8 %b, 6
1119  //   %d = sext i8 %c to i32
1120  // into:
1121  //   %a = shl i32 %i, 30
1122  //   %d = ashr i32 %a, 30
1123  Value *A = 0;
1124  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1125  ConstantInt *BA = 0, *CA = 0;
1126  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1127                        m_ConstantInt(CA))) &&
1128      BA == CA && A->getType() == CI.getType()) {
1129    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1130    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1131    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1132    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1133    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1134    return BinaryOperator::CreateAShr(A, ShAmtV);
1135  }
1136
1137  return 0;
1138}
1139
1140
1141/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1142/// in the specified FP type without changing its value.
1143static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1144  bool losesInfo;
1145  APFloat F = CFP->getValueAPF();
1146  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1147  if (!losesInfo)
1148    return ConstantFP::get(CFP->getContext(), F);
1149  return 0;
1150}
1151
1152/// LookThroughFPExtensions - If this is an fp extension instruction, look
1153/// through it until we get the source value.
1154static Value *LookThroughFPExtensions(Value *V) {
1155  if (Instruction *I = dyn_cast<Instruction>(V))
1156    if (I->getOpcode() == Instruction::FPExt)
1157      return LookThroughFPExtensions(I->getOperand(0));
1158
1159  // If this value is a constant, return the constant in the smallest FP type
1160  // that can accurately represent it.  This allows us to turn
1161  // (float)((double)X+2.0) into x+2.0f.
1162  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1163    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1164      return V;  // No constant folding of this.
1165    // See if the value can be truncated to float and then reextended.
1166    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1167      return V;
1168    if (CFP->getType()->isDoubleTy())
1169      return V;  // Won't shrink.
1170    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1171      return V;
1172    // Don't try to shrink to various long double types.
1173  }
1174
1175  return V;
1176}
1177
1178Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1179  if (Instruction *I = commonCastTransforms(CI))
1180    return I;
1181
1182  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1183  // smaller than the destination type, we can eliminate the truncate by doing
1184  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1185  // as many builtins (sqrt, etc).
1186  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1187  if (OpI && OpI->hasOneUse()) {
1188    switch (OpI->getOpcode()) {
1189    default: break;
1190    case Instruction::FAdd:
1191    case Instruction::FSub:
1192    case Instruction::FMul:
1193    case Instruction::FDiv:
1194    case Instruction::FRem:
1195      const Type *SrcTy = OpI->getType();
1196      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1197      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1198      if (LHSTrunc->getType() != SrcTy &&
1199          RHSTrunc->getType() != SrcTy) {
1200        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1201        // If the source types were both smaller than the destination type of
1202        // the cast, do this xform.
1203        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1204            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1205          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1206          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1207          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1208        }
1209      }
1210      break;
1211    }
1212  }
1213
1214  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1215  // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1216  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1217  if (Call && Call->getCalledFunction() &&
1218      Call->getCalledFunction()->getName() == "sqrt" &&
1219      Call->getNumArgOperands() == 1 &&
1220      Call->hasOneUse()) {
1221    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1222    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1223        CI.getType()->isFloatTy() &&
1224        Call->getType()->isDoubleTy() &&
1225        Arg->getType()->isDoubleTy() &&
1226        Arg->getOperand(0)->getType()->isFloatTy()) {
1227      Function *Callee = Call->getCalledFunction();
1228      Module *M = CI.getParent()->getParent()->getParent();
1229      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1230                                                   Callee->getAttributes(),
1231                                                   Builder->getFloatTy(),
1232                                                   Builder->getFloatTy(),
1233                                                   NULL);
1234      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1235                                       "sqrtfcall");
1236      ret->setAttributes(Callee->getAttributes());
1237
1238
1239      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1240      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1241      EraseInstFromFunction(*Call);
1242      return ret;
1243    }
1244  }
1245
1246  return 0;
1247}
1248
1249Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1250  return commonCastTransforms(CI);
1251}
1252
1253Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1254  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1255  if (OpI == 0)
1256    return commonCastTransforms(FI);
1257
1258  // fptoui(uitofp(X)) --> X
1259  // fptoui(sitofp(X)) --> X
1260  // This is safe if the intermediate type has enough bits in its mantissa to
1261  // accurately represent all values of X.  For example, do not do this with
1262  // i64->float->i64.  This is also safe for sitofp case, because any negative
1263  // 'X' value would cause an undefined result for the fptoui.
1264  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1265      OpI->getOperand(0)->getType() == FI.getType() &&
1266      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1267                    OpI->getType()->getFPMantissaWidth())
1268    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1269
1270  return commonCastTransforms(FI);
1271}
1272
1273Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1274  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1275  if (OpI == 0)
1276    return commonCastTransforms(FI);
1277
1278  // fptosi(sitofp(X)) --> X
1279  // fptosi(uitofp(X)) --> X
1280  // This is safe if the intermediate type has enough bits in its mantissa to
1281  // accurately represent all values of X.  For example, do not do this with
1282  // i64->float->i64.  This is also safe for sitofp case, because any negative
1283  // 'X' value would cause an undefined result for the fptoui.
1284  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1285      OpI->getOperand(0)->getType() == FI.getType() &&
1286      (int)FI.getType()->getScalarSizeInBits() <=
1287                    OpI->getType()->getFPMantissaWidth())
1288    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1289
1290  return commonCastTransforms(FI);
1291}
1292
1293Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1294  return commonCastTransforms(CI);
1295}
1296
1297Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1298  return commonCastTransforms(CI);
1299}
1300
1301Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1302  // If the source integer type is not the intptr_t type for this target, do a
1303  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1304  // cast to be exposed to other transforms.
1305  if (TD) {
1306    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1307        TD->getPointerSizeInBits()) {
1308      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1309                                      TD->getIntPtrType(CI.getContext()), "tmp");
1310      return new IntToPtrInst(P, CI.getType());
1311    }
1312    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1313        TD->getPointerSizeInBits()) {
1314      Value *P = Builder->CreateZExt(CI.getOperand(0),
1315                                     TD->getIntPtrType(CI.getContext()), "tmp");
1316      return new IntToPtrInst(P, CI.getType());
1317    }
1318  }
1319
1320  if (Instruction *I = commonCastTransforms(CI))
1321    return I;
1322
1323  return 0;
1324}
1325
1326/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1327Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1328  Value *Src = CI.getOperand(0);
1329
1330  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1331    // If casting the result of a getelementptr instruction with no offset, turn
1332    // this into a cast of the original pointer!
1333    if (GEP->hasAllZeroIndices()) {
1334      // Changing the cast operand is usually not a good idea but it is safe
1335      // here because the pointer operand is being replaced with another
1336      // pointer operand so the opcode doesn't need to change.
1337      Worklist.Add(GEP);
1338      CI.setOperand(0, GEP->getOperand(0));
1339      return &CI;
1340    }
1341
1342    // If the GEP has a single use, and the base pointer is a bitcast, and the
1343    // GEP computes a constant offset, see if we can convert these three
1344    // instructions into fewer.  This typically happens with unions and other
1345    // non-type-safe code.
1346    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1347        GEP->hasAllConstantIndices()) {
1348      // We are guaranteed to get a constant from EmitGEPOffset.
1349      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1350      int64_t Offset = OffsetV->getSExtValue();
1351
1352      // Get the base pointer input of the bitcast, and the type it points to.
1353      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1354      const Type *GEPIdxTy =
1355      cast<PointerType>(OrigBase->getType())->getElementType();
1356      SmallVector<Value*, 8> NewIndices;
1357      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1358        // If we were able to index down into an element, create the GEP
1359        // and bitcast the result.  This eliminates one bitcast, potentially
1360        // two.
1361        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1362        Builder->CreateInBoundsGEP(OrigBase,
1363                                   NewIndices.begin(), NewIndices.end()) :
1364        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1365        NGEP->takeName(GEP);
1366
1367        if (isa<BitCastInst>(CI))
1368          return new BitCastInst(NGEP, CI.getType());
1369        assert(isa<PtrToIntInst>(CI));
1370        return new PtrToIntInst(NGEP, CI.getType());
1371      }
1372    }
1373  }
1374
1375  return commonCastTransforms(CI);
1376}
1377
1378Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1379  // If the destination integer type is not the intptr_t type for this target,
1380  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1381  // to be exposed to other transforms.
1382  if (TD) {
1383    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1384      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1385                                         TD->getIntPtrType(CI.getContext()),
1386                                         "tmp");
1387      return new TruncInst(P, CI.getType());
1388    }
1389    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1390      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1391                                         TD->getIntPtrType(CI.getContext()),
1392                                         "tmp");
1393      return new ZExtInst(P, CI.getType());
1394    }
1395  }
1396
1397  return commonPointerCastTransforms(CI);
1398}
1399
1400/// OptimizeVectorResize - This input value (which is known to have vector type)
1401/// is being zero extended or truncated to the specified vector type.  Try to
1402/// replace it with a shuffle (and vector/vector bitcast) if possible.
1403///
1404/// The source and destination vector types may have different element types.
1405static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1406                                         InstCombiner &IC) {
1407  // We can only do this optimization if the output is a multiple of the input
1408  // element size, or the input is a multiple of the output element size.
1409  // Convert the input type to have the same element type as the output.
1410  const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1411
1412  if (SrcTy->getElementType() != DestTy->getElementType()) {
1413    // The input types don't need to be identical, but for now they must be the
1414    // same size.  There is no specific reason we couldn't handle things like
1415    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1416    // there yet.
1417    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1418        DestTy->getElementType()->getPrimitiveSizeInBits())
1419      return 0;
1420
1421    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1422    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1423  }
1424
1425  // Now that the element types match, get the shuffle mask and RHS of the
1426  // shuffle to use, which depends on whether we're increasing or decreasing the
1427  // size of the input.
1428  SmallVector<Constant*, 16> ShuffleMask;
1429  Value *V2;
1430  const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1431
1432  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1433    // If we're shrinking the number of elements, just shuffle in the low
1434    // elements from the input and use undef as the second shuffle input.
1435    V2 = UndefValue::get(SrcTy);
1436    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1437      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1438
1439  } else {
1440    // If we're increasing the number of elements, shuffle in all of the
1441    // elements from InVal and fill the rest of the result elements with zeros
1442    // from a constant zero.
1443    V2 = Constant::getNullValue(SrcTy);
1444    unsigned SrcElts = SrcTy->getNumElements();
1445    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1446      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1447
1448    // The excess elements reference the first element of the zero input.
1449    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1450                       ConstantInt::get(Int32Ty, SrcElts));
1451  }
1452
1453  return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
1454}
1455
1456static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1457  return Value % Ty->getPrimitiveSizeInBits() == 0;
1458}
1459
1460static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
1461  return Value / Ty->getPrimitiveSizeInBits();
1462}
1463
1464/// CollectInsertionElements - V is a value which is inserted into a vector of
1465/// VecEltTy.  Look through the value to see if we can decompose it into
1466/// insertions into the vector.  See the example in the comment for
1467/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1468/// The type of V is always a non-zero multiple of VecEltTy's size.
1469///
1470/// This returns false if the pattern can't be matched or true if it can,
1471/// filling in Elements with the elements found here.
1472static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1473                                     SmallVectorImpl<Value*> &Elements,
1474                                     const Type *VecEltTy) {
1475  // Undef values never contribute useful bits to the result.
1476  if (isa<UndefValue>(V)) return true;
1477
1478  // If we got down to a value of the right type, we win, try inserting into the
1479  // right element.
1480  if (V->getType() == VecEltTy) {
1481    // Inserting null doesn't actually insert any elements.
1482    if (Constant *C = dyn_cast<Constant>(V))
1483      if (C->isNullValue())
1484        return true;
1485
1486    // Fail if multiple elements are inserted into this slot.
1487    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1488      return false;
1489
1490    Elements[ElementIndex] = V;
1491    return true;
1492  }
1493
1494  if (Constant *C = dyn_cast<Constant>(V)) {
1495    // Figure out the # elements this provides, and bitcast it or slice it up
1496    // as required.
1497    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1498                                        VecEltTy);
1499    // If the constant is the size of a vector element, we just need to bitcast
1500    // it to the right type so it gets properly inserted.
1501    if (NumElts == 1)
1502      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1503                                      ElementIndex, Elements, VecEltTy);
1504
1505    // Okay, this is a constant that covers multiple elements.  Slice it up into
1506    // pieces and insert each element-sized piece into the vector.
1507    if (!isa<IntegerType>(C->getType()))
1508      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1509                                       C->getType()->getPrimitiveSizeInBits()));
1510    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1511    const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1512
1513    for (unsigned i = 0; i != NumElts; ++i) {
1514      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1515                                                               i*ElementSize));
1516      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1517      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1518        return false;
1519    }
1520    return true;
1521  }
1522
1523  if (!V->hasOneUse()) return false;
1524
1525  Instruction *I = dyn_cast<Instruction>(V);
1526  if (I == 0) return false;
1527  switch (I->getOpcode()) {
1528  default: return false; // Unhandled case.
1529  case Instruction::BitCast:
1530    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1531                                    Elements, VecEltTy);
1532  case Instruction::ZExt:
1533    if (!isMultipleOfTypeSize(
1534                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1535                              VecEltTy))
1536      return false;
1537    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1538                                    Elements, VecEltTy);
1539  case Instruction::Or:
1540    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1541                                    Elements, VecEltTy) &&
1542           CollectInsertionElements(I->getOperand(1), ElementIndex,
1543                                    Elements, VecEltTy);
1544  case Instruction::Shl: {
1545    // Must be shifting by a constant that is a multiple of the element size.
1546    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1547    if (CI == 0) return false;
1548    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1549    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1550
1551    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1552                                    Elements, VecEltTy);
1553  }
1554
1555  }
1556}
1557
1558
1559/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1560/// may be doing shifts and ors to assemble the elements of the vector manually.
1561/// Try to rip the code out and replace it with insertelements.  This is to
1562/// optimize code like this:
1563///
1564///    %tmp37 = bitcast float %inc to i32
1565///    %tmp38 = zext i32 %tmp37 to i64
1566///    %tmp31 = bitcast float %inc5 to i32
1567///    %tmp32 = zext i32 %tmp31 to i64
1568///    %tmp33 = shl i64 %tmp32, 32
1569///    %ins35 = or i64 %tmp33, %tmp38
1570///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1571///
1572/// Into two insertelements that do "buildvector{%inc, %inc5}".
1573static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1574                                                InstCombiner &IC) {
1575  const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1576  Value *IntInput = CI.getOperand(0);
1577
1578  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1579  if (!CollectInsertionElements(IntInput, 0, Elements,
1580                                DestVecTy->getElementType()))
1581    return 0;
1582
1583  // If we succeeded, we know that all of the element are specified by Elements
1584  // or are zero if Elements has a null entry.  Recast this as a set of
1585  // insertions.
1586  Value *Result = Constant::getNullValue(CI.getType());
1587  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1588    if (Elements[i] == 0) continue;  // Unset element.
1589
1590    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1591                                             IC.Builder->getInt32(i));
1592  }
1593
1594  return Result;
1595}
1596
1597
1598/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1599/// bitcast.  The various long double bitcasts can't get in here.
1600static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1601  Value *Src = CI.getOperand(0);
1602  const Type *DestTy = CI.getType();
1603
1604  // If this is a bitcast from int to float, check to see if the int is an
1605  // extraction from a vector.
1606  Value *VecInput = 0;
1607  // bitcast(trunc(bitcast(somevector)))
1608  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1609      isa<VectorType>(VecInput->getType())) {
1610    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1611    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1612
1613    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1614      // If the element type of the vector doesn't match the result type,
1615      // bitcast it to be a vector type we can extract from.
1616      if (VecTy->getElementType() != DestTy) {
1617        VecTy = VectorType::get(DestTy,
1618                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1619        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1620      }
1621
1622      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1623    }
1624  }
1625
1626  // bitcast(trunc(lshr(bitcast(somevector), cst))
1627  ConstantInt *ShAmt = 0;
1628  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1629                                m_ConstantInt(ShAmt)))) &&
1630      isa<VectorType>(VecInput->getType())) {
1631    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1632    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1633    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1634        ShAmt->getZExtValue() % DestWidth == 0) {
1635      // If the element type of the vector doesn't match the result type,
1636      // bitcast it to be a vector type we can extract from.
1637      if (VecTy->getElementType() != DestTy) {
1638        VecTy = VectorType::get(DestTy,
1639                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1640        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1641      }
1642
1643      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1644      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1645    }
1646  }
1647  return 0;
1648}
1649
1650Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1651  // If the operands are integer typed then apply the integer transforms,
1652  // otherwise just apply the common ones.
1653  Value *Src = CI.getOperand(0);
1654  const Type *SrcTy = Src->getType();
1655  const Type *DestTy = CI.getType();
1656
1657  // Get rid of casts from one type to the same type. These are useless and can
1658  // be replaced by the operand.
1659  if (DestTy == Src->getType())
1660    return ReplaceInstUsesWith(CI, Src);
1661
1662  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1663    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1664    const Type *DstElTy = DstPTy->getElementType();
1665    const Type *SrcElTy = SrcPTy->getElementType();
1666
1667    // If the address spaces don't match, don't eliminate the bitcast, which is
1668    // required for changing types.
1669    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1670      return 0;
1671
1672    // If we are casting a alloca to a pointer to a type of the same
1673    // size, rewrite the allocation instruction to allocate the "right" type.
1674    // There is no need to modify malloc calls because it is their bitcast that
1675    // needs to be cleaned up.
1676    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1677      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1678        return V;
1679
1680    // If the source and destination are pointers, and this cast is equivalent
1681    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1682    // This can enhance SROA and other transforms that want type-safe pointers.
1683    Constant *ZeroUInt =
1684      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1685    unsigned NumZeros = 0;
1686    while (SrcElTy != DstElTy &&
1687           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1688           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1689      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1690      ++NumZeros;
1691    }
1692
1693    // If we found a path from the src to dest, create the getelementptr now.
1694    if (SrcElTy == DstElTy) {
1695      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1696      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end());
1697    }
1698  }
1699
1700  // Try to optimize int -> float bitcasts.
1701  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1702    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1703      return I;
1704
1705  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1706    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1707      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1708      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1709                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1710      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1711    }
1712
1713    if (isa<IntegerType>(SrcTy)) {
1714      // If this is a cast from an integer to vector, check to see if the input
1715      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1716      // the casts with a shuffle and (potentially) a bitcast.
1717      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1718        CastInst *SrcCast = cast<CastInst>(Src);
1719        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1720          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1721            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1722                                               cast<VectorType>(DestTy), *this))
1723              return I;
1724      }
1725
1726      // If the input is an 'or' instruction, we may be doing shifts and ors to
1727      // assemble the elements of the vector manually.  Try to rip the code out
1728      // and replace it with insertelements.
1729      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1730        return ReplaceInstUsesWith(CI, V);
1731    }
1732  }
1733
1734  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1735    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1736      Value *Elem =
1737        Builder->CreateExtractElement(Src,
1738                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1739      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1740    }
1741  }
1742
1743  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1744    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1745    // a bitcast to a vector with the same # elts.
1746    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1747        cast<VectorType>(DestTy)->getNumElements() ==
1748              SVI->getType()->getNumElements() &&
1749        SVI->getType()->getNumElements() ==
1750          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1751      BitCastInst *Tmp;
1752      // If either of the operands is a cast from CI.getType(), then
1753      // evaluating the shuffle in the casted destination's type will allow
1754      // us to eliminate at least one cast.
1755      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1756           Tmp->getOperand(0)->getType() == DestTy) ||
1757          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1758           Tmp->getOperand(0)->getType() == DestTy)) {
1759        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1760        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1761        // Return a new shuffle vector.  Use the same element ID's, as we
1762        // know the vector types match #elts.
1763        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1764      }
1765    }
1766  }
1767
1768  if (SrcTy->isPointerTy())
1769    return commonPointerCastTransforms(CI);
1770  return commonCastTransforms(CI);
1771}
1772