InstCombineCasts.cpp revision 207618
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        int &Offset) {
26  assert(Val->getType()->isIntegerTy(32) && "Unexpected allocation size type!");
27  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
28    Offset = CI->getZExtValue();
29    Scale  = 0;
30    return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
31  }
32
33  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
34    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
35      if (I->getOpcode() == Instruction::Shl) {
36        // This is a value scaled by '1 << the shift amt'.
37        Scale = 1U << RHS->getZExtValue();
38        Offset = 0;
39        return I->getOperand(0);
40      }
41
42      if (I->getOpcode() == Instruction::Mul) {
43        // This value is scaled by 'RHS'.
44        Scale = RHS->getZExtValue();
45        Offset = 0;
46        return I->getOperand(0);
47      }
48
49      if (I->getOpcode() == Instruction::Add) {
50        // We have X+C.  Check to see if we really have (X*C2)+C1,
51        // where C1 is divisible by C2.
52        unsigned SubScale;
53        Value *SubVal =
54          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
55        Offset += RHS->getZExtValue();
56        Scale = SubScale;
57        return SubVal;
58      }
59    }
60  }
61
62  // Otherwise, we can't look past this.
63  Scale = 1;
64  Offset = 0;
65  return Val;
66}
67
68/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
69/// try to eliminate the cast by moving the type information into the alloc.
70Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
71                                                   AllocaInst &AI) {
72  // This requires TargetData to get the alloca alignment and size information.
73  if (!TD) return 0;
74
75  const PointerType *PTy = cast<PointerType>(CI.getType());
76
77  BuilderTy AllocaBuilder(*Builder);
78  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
79
80  // Get the type really allocated and the type casted to.
81  const Type *AllocElTy = AI.getAllocatedType();
82  const Type *CastElTy = PTy->getElementType();
83  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
84
85  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
86  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
87  if (CastElTyAlign < AllocElTyAlign) return 0;
88
89  // If the allocation has multiple uses, only promote it if we are strictly
90  // increasing the alignment of the resultant allocation.  If we keep it the
91  // same, we open the door to infinite loops of various kinds.  (A reference
92  // from a dbg.declare doesn't count as a use for this purpose.)
93  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
94      CastElTyAlign == AllocElTyAlign) return 0;
95
96  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
97  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
98  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
99
100  // See if we can satisfy the modulus by pulling a scale out of the array
101  // size argument.
102  unsigned ArraySizeScale;
103  int ArrayOffset;
104  Value *NumElements = // See if the array size is a decomposable linear expr.
105    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
106
107  // If we can now satisfy the modulus, by using a non-1 scale, we really can
108  // do the xform.
109  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
110      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
111
112  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
113  Value *Amt = 0;
114  if (Scale == 1) {
115    Amt = NumElements;
116  } else {
117    Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
118    // Insert before the alloca, not before the cast.
119    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
120  }
121
122  if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
123    Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
124                                  Offset, true);
125    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
126  }
127
128  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
129  New->setAlignment(AI.getAlignment());
130  New->takeName(&AI);
131
132  // If the allocation has one real use plus a dbg.declare, just remove the
133  // declare.
134  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
135    EraseInstFromFunction(*(Instruction*)DI);
136  }
137  // If the allocation has multiple real uses, insert a cast and change all
138  // things that used it to use the new cast.  This will also hack on CI, but it
139  // will die soon.
140  else if (!AI.hasOneUse()) {
141    // New is the allocation instruction, pointer typed. AI is the original
142    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
143    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
144    AI.replaceAllUsesWith(NewCast);
145  }
146  return ReplaceInstUsesWith(CI, New);
147}
148
149
150
151/// EvaluateInDifferentType - Given an expression that
152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
153/// insert the code to evaluate the expression.
154Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
155                                             bool isSigned) {
156  if (Constant *C = dyn_cast<Constant>(V)) {
157    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158    // If we got a constantexpr back, try to simplify it with TD info.
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160      C = ConstantFoldConstantExpression(CE, TD);
161    return C;
162  }
163
164  // Otherwise, it must be an instruction.
165  Instruction *I = cast<Instruction>(V);
166  Instruction *Res = 0;
167  unsigned Opc = I->getOpcode();
168  switch (Opc) {
169  case Instruction::Add:
170  case Instruction::Sub:
171  case Instruction::Mul:
172  case Instruction::And:
173  case Instruction::Or:
174  case Instruction::Xor:
175  case Instruction::AShr:
176  case Instruction::LShr:
177  case Instruction::Shl:
178  case Instruction::UDiv:
179  case Instruction::URem: {
180    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183    break;
184  }
185  case Instruction::Trunc:
186  case Instruction::ZExt:
187  case Instruction::SExt:
188    // If the source type of the cast is the type we're trying for then we can
189    // just return the source.  There's no need to insert it because it is not
190    // new.
191    if (I->getOperand(0)->getType() == Ty)
192      return I->getOperand(0);
193
194    // Otherwise, must be the same type of cast, so just reinsert a new one.
195    // This also handles the case of zext(trunc(x)) -> zext(x).
196    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197                                      Opc == Instruction::SExt);
198    break;
199  case Instruction::Select: {
200    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202    Res = SelectInst::Create(I->getOperand(0), True, False);
203    break;
204  }
205  case Instruction::PHI: {
206    PHINode *OPN = cast<PHINode>(I);
207    PHINode *NPN = PHINode::Create(Ty);
208    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210      NPN->addIncoming(V, OPN->getIncomingBlock(i));
211    }
212    Res = NPN;
213    break;
214  }
215  default:
216    // TODO: Can handle more cases here.
217    llvm_unreachable("Unreachable!");
218    break;
219  }
220
221  Res->takeName(I);
222  return InsertNewInstBefore(Res, *I);
223}
224
225
226/// This function is a wrapper around CastInst::isEliminableCastPair. It
227/// simply extracts arguments and returns what that function returns.
228static Instruction::CastOps
229isEliminableCastPair(
230  const CastInst *CI, ///< The first cast instruction
231  unsigned opcode,       ///< The opcode of the second cast instruction
232  const Type *DstTy,     ///< The target type for the second cast instruction
233  TargetData *TD         ///< The target data for pointer size
234) {
235
236  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
237  const Type *MidTy = CI->getType();                  // B from above
238
239  // Get the opcodes of the two Cast instructions
240  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
241  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
242
243  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
244                                                DstTy,
245                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
246
247  // We don't want to form an inttoptr or ptrtoint that converts to an integer
248  // type that differs from the pointer size.
249  if ((Res == Instruction::IntToPtr &&
250          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
251      (Res == Instruction::PtrToInt &&
252          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
253    Res = 0;
254
255  return Instruction::CastOps(Res);
256}
257
258/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
259/// results in any code being generated and is interesting to optimize out. If
260/// the cast can be eliminated by some other simple transformation, we prefer
261/// to do the simplification first.
262bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
263                                      const Type *Ty) {
264  // Noop casts and casts of constants should be eliminated trivially.
265  if (V->getType() == Ty || isa<Constant>(V)) return false;
266
267  // If this is another cast that can be eliminated, we prefer to have it
268  // eliminated.
269  if (const CastInst *CI = dyn_cast<CastInst>(V))
270    if (isEliminableCastPair(CI, opc, Ty, TD))
271      return false;
272
273  // If this is a vector sext from a compare, then we don't want to break the
274  // idiom where each element of the extended vector is either zero or all ones.
275  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
276    return false;
277
278  return true;
279}
280
281
282/// @brief Implement the transforms common to all CastInst visitors.
283Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
284  Value *Src = CI.getOperand(0);
285
286  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
287  // eliminate it now.
288  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
289    if (Instruction::CastOps opc =
290        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
291      // The first cast (CSrc) is eliminable so we need to fix up or replace
292      // the second cast (CI). CSrc will then have a good chance of being dead.
293      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
294    }
295  }
296
297  // If we are casting a select then fold the cast into the select
298  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
299    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
300      return NV;
301
302  // If we are casting a PHI then fold the cast into the PHI
303  if (isa<PHINode>(Src)) {
304    // We don't do this if this would create a PHI node with an illegal type if
305    // it is currently legal.
306    if (!Src->getType()->isIntegerTy() ||
307        !CI.getType()->isIntegerTy() ||
308        ShouldChangeType(CI.getType(), Src->getType()))
309      if (Instruction *NV = FoldOpIntoPhi(CI))
310        return NV;
311  }
312
313  return 0;
314}
315
316/// CanEvaluateTruncated - Return true if we can evaluate the specified
317/// expression tree as type Ty instead of its larger type, and arrive with the
318/// same value.  This is used by code that tries to eliminate truncates.
319///
320/// Ty will always be a type smaller than V.  We should return true if trunc(V)
321/// can be computed by computing V in the smaller type.  If V is an instruction,
322/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
323/// makes sense if x and y can be efficiently truncated.
324///
325/// This function works on both vectors and scalars.
326///
327static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
328  // We can always evaluate constants in another type.
329  if (isa<Constant>(V))
330    return true;
331
332  Instruction *I = dyn_cast<Instruction>(V);
333  if (!I) return false;
334
335  const Type *OrigTy = V->getType();
336
337  // If this is an extension from the dest type, we can eliminate it, even if it
338  // has multiple uses.
339  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
340      I->getOperand(0)->getType() == Ty)
341    return true;
342
343  // We can't extend or shrink something that has multiple uses: doing so would
344  // require duplicating the instruction in general, which isn't profitable.
345  if (!I->hasOneUse()) return false;
346
347  unsigned Opc = I->getOpcode();
348  switch (Opc) {
349  case Instruction::Add:
350  case Instruction::Sub:
351  case Instruction::Mul:
352  case Instruction::And:
353  case Instruction::Or:
354  case Instruction::Xor:
355    // These operators can all arbitrarily be extended or truncated.
356    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
357           CanEvaluateTruncated(I->getOperand(1), Ty);
358
359  case Instruction::UDiv:
360  case Instruction::URem: {
361    // UDiv and URem can be truncated if all the truncated bits are zero.
362    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
363    uint32_t BitWidth = Ty->getScalarSizeInBits();
364    if (BitWidth < OrigBitWidth) {
365      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
366      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
367          MaskedValueIsZero(I->getOperand(1), Mask)) {
368        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
369               CanEvaluateTruncated(I->getOperand(1), Ty);
370      }
371    }
372    break;
373  }
374  case Instruction::Shl:
375    // If we are truncating the result of this SHL, and if it's a shift of a
376    // constant amount, we can always perform a SHL in a smaller type.
377    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
378      uint32_t BitWidth = Ty->getScalarSizeInBits();
379      if (CI->getLimitedValue(BitWidth) < BitWidth)
380        return CanEvaluateTruncated(I->getOperand(0), Ty);
381    }
382    break;
383  case Instruction::LShr:
384    // If this is a truncate of a logical shr, we can truncate it to a smaller
385    // lshr iff we know that the bits we would otherwise be shifting in are
386    // already zeros.
387    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
389      uint32_t BitWidth = Ty->getScalarSizeInBits();
390      if (MaskedValueIsZero(I->getOperand(0),
391            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
392          CI->getLimitedValue(BitWidth) < BitWidth) {
393        return CanEvaluateTruncated(I->getOperand(0), Ty);
394      }
395    }
396    break;
397  case Instruction::Trunc:
398    // trunc(trunc(x)) -> trunc(x)
399    return true;
400  case Instruction::Select: {
401    SelectInst *SI = cast<SelectInst>(I);
402    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
403           CanEvaluateTruncated(SI->getFalseValue(), Ty);
404  }
405  case Instruction::PHI: {
406    // We can change a phi if we can change all operands.  Note that we never
407    // get into trouble with cyclic PHIs here because we only consider
408    // instructions with a single use.
409    PHINode *PN = cast<PHINode>(I);
410    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
411      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
412        return false;
413    return true;
414  }
415  default:
416    // TODO: Can handle more cases here.
417    break;
418  }
419
420  return false;
421}
422
423Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
424  if (Instruction *Result = commonCastTransforms(CI))
425    return Result;
426
427  // See if we can simplify any instructions used by the input whose sole
428  // purpose is to compute bits we don't care about.
429  if (SimplifyDemandedInstructionBits(CI))
430    return &CI;
431
432  Value *Src = CI.getOperand(0);
433  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
434
435  // Attempt to truncate the entire input expression tree to the destination
436  // type.   Only do this if the dest type is a simple type, don't convert the
437  // expression tree to something weird like i93 unless the source is also
438  // strange.
439  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
440      CanEvaluateTruncated(Src, DestTy)) {
441
442    // If this cast is a truncate, evaluting in a different type always
443    // eliminates the cast, so it is always a win.
444    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
445          " to avoid cast: " << CI);
446    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
447    assert(Res->getType() == DestTy);
448    return ReplaceInstUsesWith(CI, Res);
449  }
450
451  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
452  if (DestTy->getScalarSizeInBits() == 1) {
453    Constant *One = ConstantInt::get(Src->getType(), 1);
454    Src = Builder->CreateAnd(Src, One, "tmp");
455    Value *Zero = Constant::getNullValue(Src->getType());
456    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
457  }
458
459  return 0;
460}
461
462/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
463/// in order to eliminate the icmp.
464Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
465                                             bool DoXform) {
466  // If we are just checking for a icmp eq of a single bit and zext'ing it
467  // to an integer, then shift the bit to the appropriate place and then
468  // cast to integer to avoid the comparison.
469  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
470    const APInt &Op1CV = Op1C->getValue();
471
472    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
473    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
474    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
475        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
476      if (!DoXform) return ICI;
477
478      Value *In = ICI->getOperand(0);
479      Value *Sh = ConstantInt::get(In->getType(),
480                                   In->getType()->getScalarSizeInBits()-1);
481      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
482      if (In->getType() != CI.getType())
483        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
484
485      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
486        Constant *One = ConstantInt::get(In->getType(), 1);
487        In = Builder->CreateXor(In, One, In->getName()+".not");
488      }
489
490      return ReplaceInstUsesWith(CI, In);
491    }
492
493
494
495    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
496    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
497    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
498    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
499    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
500    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
501    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
502    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
503    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
504        // This only works for EQ and NE
505        ICI->isEquality()) {
506      // If Op1C some other power of two, convert:
507      uint32_t BitWidth = Op1C->getType()->getBitWidth();
508      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
509      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
510      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
511
512      APInt KnownZeroMask(~KnownZero);
513      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
514        if (!DoXform) return ICI;
515
516        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
517        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
518          // (X&4) == 2 --> false
519          // (X&4) != 2 --> true
520          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
521                                           isNE);
522          Res = ConstantExpr::getZExt(Res, CI.getType());
523          return ReplaceInstUsesWith(CI, Res);
524        }
525
526        uint32_t ShiftAmt = KnownZeroMask.logBase2();
527        Value *In = ICI->getOperand(0);
528        if (ShiftAmt) {
529          // Perform a logical shr by shiftamt.
530          // Insert the shift to put the result in the low bit.
531          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
532                                   In->getName()+".lobit");
533        }
534
535        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
536          Constant *One = ConstantInt::get(In->getType(), 1);
537          In = Builder->CreateXor(In, One, "tmp");
538        }
539
540        if (CI.getType() == In->getType())
541          return ReplaceInstUsesWith(CI, In);
542        else
543          return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
544      }
545    }
546  }
547
548  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
549  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
550  // may lead to additional simplifications.
551  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
552    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
553      uint32_t BitWidth = ITy->getBitWidth();
554      Value *LHS = ICI->getOperand(0);
555      Value *RHS = ICI->getOperand(1);
556
557      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
558      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
559      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
560      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
561      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
562
563      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
564        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
565        APInt UnknownBit = ~KnownBits;
566        if (UnknownBit.countPopulation() == 1) {
567          if (!DoXform) return ICI;
568
569          Value *Result = Builder->CreateXor(LHS, RHS);
570
571          // Mask off any bits that are set and won't be shifted away.
572          if (KnownOneLHS.uge(UnknownBit))
573            Result = Builder->CreateAnd(Result,
574                                        ConstantInt::get(ITy, UnknownBit));
575
576          // Shift the bit we're testing down to the lsb.
577          Result = Builder->CreateLShr(
578               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
579
580          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
581            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
582          Result->takeName(ICI);
583          return ReplaceInstUsesWith(CI, Result);
584        }
585      }
586    }
587  }
588
589  return 0;
590}
591
592/// CanEvaluateZExtd - Determine if the specified value can be computed in the
593/// specified wider type and produce the same low bits.  If not, return false.
594///
595/// If this function returns true, it can also return a non-zero number of bits
596/// (in BitsToClear) which indicates that the value it computes is correct for
597/// the zero extend, but that the additional BitsToClear bits need to be zero'd
598/// out.  For example, to promote something like:
599///
600///   %B = trunc i64 %A to i32
601///   %C = lshr i32 %B, 8
602///   %E = zext i32 %C to i64
603///
604/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
605/// set to 8 to indicate that the promoted value needs to have bits 24-31
606/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
607/// clear the top bits anyway, doing this has no extra cost.
608///
609/// This function works on both vectors and scalars.
610static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
611  BitsToClear = 0;
612  if (isa<Constant>(V))
613    return true;
614
615  Instruction *I = dyn_cast<Instruction>(V);
616  if (!I) return false;
617
618  // If the input is a truncate from the destination type, we can trivially
619  // eliminate it, even if it has multiple uses.
620  // FIXME: This is currently disabled until codegen can handle this without
621  // pessimizing code, PR5997.
622  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
623    return true;
624
625  // We can't extend or shrink something that has multiple uses: doing so would
626  // require duplicating the instruction in general, which isn't profitable.
627  if (!I->hasOneUse()) return false;
628
629  unsigned Opc = I->getOpcode(), Tmp;
630  switch (Opc) {
631  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
632  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
633  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
634    return true;
635  case Instruction::And:
636  case Instruction::Or:
637  case Instruction::Xor:
638  case Instruction::Add:
639  case Instruction::Sub:
640  case Instruction::Mul:
641  case Instruction::Shl:
642    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
643        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
644      return false;
645    // These can all be promoted if neither operand has 'bits to clear'.
646    if (BitsToClear == 0 && Tmp == 0)
647      return true;
648
649    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
650    // other side, BitsToClear is ok.
651    if (Tmp == 0 &&
652        (Opc == Instruction::And || Opc == Instruction::Or ||
653         Opc == Instruction::Xor)) {
654      // We use MaskedValueIsZero here for generality, but the case we care
655      // about the most is constant RHS.
656      unsigned VSize = V->getType()->getScalarSizeInBits();
657      if (MaskedValueIsZero(I->getOperand(1),
658                            APInt::getHighBitsSet(VSize, BitsToClear)))
659        return true;
660    }
661
662    // Otherwise, we don't know how to analyze this BitsToClear case yet.
663    return false;
664
665  case Instruction::LShr:
666    // We can promote lshr(x, cst) if we can promote x.  This requires the
667    // ultimate 'and' to clear out the high zero bits we're clearing out though.
668    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
669      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
670        return false;
671      BitsToClear += Amt->getZExtValue();
672      if (BitsToClear > V->getType()->getScalarSizeInBits())
673        BitsToClear = V->getType()->getScalarSizeInBits();
674      return true;
675    }
676    // Cannot promote variable LSHR.
677    return false;
678  case Instruction::Select:
679    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
680        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
681        // TODO: If important, we could handle the case when the BitsToClear are
682        // known zero in the disagreeing side.
683        Tmp != BitsToClear)
684      return false;
685    return true;
686
687  case Instruction::PHI: {
688    // We can change a phi if we can change all operands.  Note that we never
689    // get into trouble with cyclic PHIs here because we only consider
690    // instructions with a single use.
691    PHINode *PN = cast<PHINode>(I);
692    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
693      return false;
694    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
695      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
696          // TODO: If important, we could handle the case when the BitsToClear
697          // are known zero in the disagreeing input.
698          Tmp != BitsToClear)
699        return false;
700    return true;
701  }
702  default:
703    // TODO: Can handle more cases here.
704    return false;
705  }
706}
707
708Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
709  // If this zero extend is only used by a truncate, let the truncate by
710  // eliminated before we try to optimize this zext.
711  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
712    return 0;
713
714  // If one of the common conversion will work, do it.
715  if (Instruction *Result = commonCastTransforms(CI))
716    return Result;
717
718  // See if we can simplify any instructions used by the input whose sole
719  // purpose is to compute bits we don't care about.
720  if (SimplifyDemandedInstructionBits(CI))
721    return &CI;
722
723  Value *Src = CI.getOperand(0);
724  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
725
726  // Attempt to extend the entire input expression tree to the destination
727  // type.   Only do this if the dest type is a simple type, don't convert the
728  // expression tree to something weird like i93 unless the source is also
729  // strange.
730  unsigned BitsToClear;
731  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
732      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
733    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
734           "Unreasonable BitsToClear");
735
736    // Okay, we can transform this!  Insert the new expression now.
737    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
738          " to avoid zero extend: " << CI);
739    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
740    assert(Res->getType() == DestTy);
741
742    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
743    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
744
745    // If the high bits are already filled with zeros, just replace this
746    // cast with the result.
747    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
748                                                     DestBitSize-SrcBitsKept)))
749      return ReplaceInstUsesWith(CI, Res);
750
751    // We need to emit an AND to clear the high bits.
752    Constant *C = ConstantInt::get(Res->getType(),
753                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
754    return BinaryOperator::CreateAnd(Res, C);
755  }
756
757  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
758  // types and if the sizes are just right we can convert this into a logical
759  // 'and' which will be much cheaper than the pair of casts.
760  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
761    // TODO: Subsume this into EvaluateInDifferentType.
762
763    // Get the sizes of the types involved.  We know that the intermediate type
764    // will be smaller than A or C, but don't know the relation between A and C.
765    Value *A = CSrc->getOperand(0);
766    unsigned SrcSize = A->getType()->getScalarSizeInBits();
767    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
768    unsigned DstSize = CI.getType()->getScalarSizeInBits();
769    // If we're actually extending zero bits, then if
770    // SrcSize <  DstSize: zext(a & mask)
771    // SrcSize == DstSize: a & mask
772    // SrcSize  > DstSize: trunc(a) & mask
773    if (SrcSize < DstSize) {
774      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
775      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
776      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
777      return new ZExtInst(And, CI.getType());
778    }
779
780    if (SrcSize == DstSize) {
781      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
782      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
783                                                           AndValue));
784    }
785    if (SrcSize > DstSize) {
786      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
787      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
788      return BinaryOperator::CreateAnd(Trunc,
789                                       ConstantInt::get(Trunc->getType(),
790                                                        AndValue));
791    }
792  }
793
794  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
795    return transformZExtICmp(ICI, CI);
796
797  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
798  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
799    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
800    // of the (zext icmp) will be transformed.
801    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
802    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
803    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
804        (transformZExtICmp(LHS, CI, false) ||
805         transformZExtICmp(RHS, CI, false))) {
806      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
807      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
808      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
809    }
810  }
811
812  // zext(trunc(t) & C) -> (t & zext(C)).
813  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
814    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
815      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
816        Value *TI0 = TI->getOperand(0);
817        if (TI0->getType() == CI.getType())
818          return
819            BinaryOperator::CreateAnd(TI0,
820                                ConstantExpr::getZExt(C, CI.getType()));
821      }
822
823  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
824  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
825    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
826      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
827        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
828            And->getOperand(1) == C)
829          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
830            Value *TI0 = TI->getOperand(0);
831            if (TI0->getType() == CI.getType()) {
832              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
833              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
834              return BinaryOperator::CreateXor(NewAnd, ZC);
835            }
836          }
837
838  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
839  Value *X;
840  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
841      match(SrcI, m_Not(m_Value(X))) &&
842      (!X->hasOneUse() || !isa<CmpInst>(X))) {
843    Value *New = Builder->CreateZExt(X, CI.getType());
844    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
845  }
846
847  return 0;
848}
849
850/// CanEvaluateSExtd - Return true if we can take the specified value
851/// and return it as type Ty without inserting any new casts and without
852/// changing the value of the common low bits.  This is used by code that tries
853/// to promote integer operations to a wider types will allow us to eliminate
854/// the extension.
855///
856/// This function works on both vectors and scalars.
857///
858static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
859  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
860         "Can't sign extend type to a smaller type");
861  // If this is a constant, it can be trivially promoted.
862  if (isa<Constant>(V))
863    return true;
864
865  Instruction *I = dyn_cast<Instruction>(V);
866  if (!I) return false;
867
868  // If this is a truncate from the dest type, we can trivially eliminate it,
869  // even if it has multiple uses.
870  // FIXME: This is currently disabled until codegen can handle this without
871  // pessimizing code, PR5997.
872  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
873    return true;
874
875  // We can't extend or shrink something that has multiple uses: doing so would
876  // require duplicating the instruction in general, which isn't profitable.
877  if (!I->hasOneUse()) return false;
878
879  switch (I->getOpcode()) {
880  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
881  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
882  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
883    return true;
884  case Instruction::And:
885  case Instruction::Or:
886  case Instruction::Xor:
887  case Instruction::Add:
888  case Instruction::Sub:
889  case Instruction::Mul:
890    // These operators can all arbitrarily be extended if their inputs can.
891    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
892           CanEvaluateSExtd(I->getOperand(1), Ty);
893
894  //case Instruction::Shl:   TODO
895  //case Instruction::LShr:  TODO
896
897  case Instruction::Select:
898    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
899           CanEvaluateSExtd(I->getOperand(2), Ty);
900
901  case Instruction::PHI: {
902    // We can change a phi if we can change all operands.  Note that we never
903    // get into trouble with cyclic PHIs here because we only consider
904    // instructions with a single use.
905    PHINode *PN = cast<PHINode>(I);
906    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
907      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
908    return true;
909  }
910  default:
911    // TODO: Can handle more cases here.
912    break;
913  }
914
915  return false;
916}
917
918Instruction *InstCombiner::visitSExt(SExtInst &CI) {
919  // If this sign extend is only used by a truncate, let the truncate by
920  // eliminated before we try to optimize this zext.
921  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
922    return 0;
923
924  if (Instruction *I = commonCastTransforms(CI))
925    return I;
926
927  // See if we can simplify any instructions used by the input whose sole
928  // purpose is to compute bits we don't care about.
929  if (SimplifyDemandedInstructionBits(CI))
930    return &CI;
931
932  Value *Src = CI.getOperand(0);
933  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
934
935  // Attempt to extend the entire input expression tree to the destination
936  // type.   Only do this if the dest type is a simple type, don't convert the
937  // expression tree to something weird like i93 unless the source is also
938  // strange.
939  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
940      CanEvaluateSExtd(Src, DestTy)) {
941    // Okay, we can transform this!  Insert the new expression now.
942    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
943          " to avoid sign extend: " << CI);
944    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
945    assert(Res->getType() == DestTy);
946
947    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
948    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
949
950    // If the high bits are already filled with sign bit, just replace this
951    // cast with the result.
952    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
953      return ReplaceInstUsesWith(CI, Res);
954
955    // We need to emit a shl + ashr to do the sign extend.
956    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
957    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
958                                      ShAmt);
959  }
960
961  // If this input is a trunc from our destination, then turn sext(trunc(x))
962  // into shifts.
963  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
964    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
965      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
966      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
967
968      // We need to emit a shl + ashr to do the sign extend.
969      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
970      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
971      return BinaryOperator::CreateAShr(Res, ShAmt);
972    }
973
974
975  // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
976  // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
977  {
978  ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
979  if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
980    // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
981    // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
982    if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
983        (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
984      Value *Sh = ConstantInt::get(CmpLHS->getType(),
985                                   CmpLHS->getType()->getScalarSizeInBits()-1);
986      Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
987      if (In->getType() != CI.getType())
988        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
989
990      if (Pred == ICmpInst::ICMP_SGT)
991        In = Builder->CreateNot(In, In->getName()+".not");
992      return ReplaceInstUsesWith(CI, In);
993    }
994  }
995  }
996
997
998  // If the input is a shl/ashr pair of a same constant, then this is a sign
999  // extension from a smaller value.  If we could trust arbitrary bitwidth
1000  // integers, we could turn this into a truncate to the smaller bit and then
1001  // use a sext for the whole extension.  Since we don't, look deeper and check
1002  // for a truncate.  If the source and dest are the same type, eliminate the
1003  // trunc and extend and just do shifts.  For example, turn:
1004  //   %a = trunc i32 %i to i8
1005  //   %b = shl i8 %a, 6
1006  //   %c = ashr i8 %b, 6
1007  //   %d = sext i8 %c to i32
1008  // into:
1009  //   %a = shl i32 %i, 30
1010  //   %d = ashr i32 %a, 30
1011  Value *A = 0;
1012  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1013  ConstantInt *BA = 0, *CA = 0;
1014  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1015                        m_ConstantInt(CA))) &&
1016      BA == CA && A->getType() == CI.getType()) {
1017    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1018    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1019    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1020    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1021    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1022    return BinaryOperator::CreateAShr(A, ShAmtV);
1023  }
1024
1025  return 0;
1026}
1027
1028
1029/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1030/// in the specified FP type without changing its value.
1031static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1032  bool losesInfo;
1033  APFloat F = CFP->getValueAPF();
1034  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1035  if (!losesInfo)
1036    return ConstantFP::get(CFP->getContext(), F);
1037  return 0;
1038}
1039
1040/// LookThroughFPExtensions - If this is an fp extension instruction, look
1041/// through it until we get the source value.
1042static Value *LookThroughFPExtensions(Value *V) {
1043  if (Instruction *I = dyn_cast<Instruction>(V))
1044    if (I->getOpcode() == Instruction::FPExt)
1045      return LookThroughFPExtensions(I->getOperand(0));
1046
1047  // If this value is a constant, return the constant in the smallest FP type
1048  // that can accurately represent it.  This allows us to turn
1049  // (float)((double)X+2.0) into x+2.0f.
1050  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1051    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1052      return V;  // No constant folding of this.
1053    // See if the value can be truncated to float and then reextended.
1054    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1055      return V;
1056    if (CFP->getType()->isDoubleTy())
1057      return V;  // Won't shrink.
1058    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1059      return V;
1060    // Don't try to shrink to various long double types.
1061  }
1062
1063  return V;
1064}
1065
1066Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1067  if (Instruction *I = commonCastTransforms(CI))
1068    return I;
1069
1070  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1071  // smaller than the destination type, we can eliminate the truncate by doing
1072  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1073  // as many builtins (sqrt, etc).
1074  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1075  if (OpI && OpI->hasOneUse()) {
1076    switch (OpI->getOpcode()) {
1077    default: break;
1078    case Instruction::FAdd:
1079    case Instruction::FSub:
1080    case Instruction::FMul:
1081    case Instruction::FDiv:
1082    case Instruction::FRem:
1083      const Type *SrcTy = OpI->getType();
1084      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1085      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1086      if (LHSTrunc->getType() != SrcTy &&
1087          RHSTrunc->getType() != SrcTy) {
1088        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1089        // If the source types were both smaller than the destination type of
1090        // the cast, do this xform.
1091        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1092            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1093          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1094          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1095          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1096        }
1097      }
1098      break;
1099    }
1100  }
1101  return 0;
1102}
1103
1104Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1105  return commonCastTransforms(CI);
1106}
1107
1108Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1109  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1110  if (OpI == 0)
1111    return commonCastTransforms(FI);
1112
1113  // fptoui(uitofp(X)) --> X
1114  // fptoui(sitofp(X)) --> X
1115  // This is safe if the intermediate type has enough bits in its mantissa to
1116  // accurately represent all values of X.  For example, do not do this with
1117  // i64->float->i64.  This is also safe for sitofp case, because any negative
1118  // 'X' value would cause an undefined result for the fptoui.
1119  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1120      OpI->getOperand(0)->getType() == FI.getType() &&
1121      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1122                    OpI->getType()->getFPMantissaWidth())
1123    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1124
1125  return commonCastTransforms(FI);
1126}
1127
1128Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1129  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1130  if (OpI == 0)
1131    return commonCastTransforms(FI);
1132
1133  // fptosi(sitofp(X)) --> X
1134  // fptosi(uitofp(X)) --> X
1135  // This is safe if the intermediate type has enough bits in its mantissa to
1136  // accurately represent all values of X.  For example, do not do this with
1137  // i64->float->i64.  This is also safe for sitofp case, because any negative
1138  // 'X' value would cause an undefined result for the fptoui.
1139  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1140      OpI->getOperand(0)->getType() == FI.getType() &&
1141      (int)FI.getType()->getScalarSizeInBits() <=
1142                    OpI->getType()->getFPMantissaWidth())
1143    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1144
1145  return commonCastTransforms(FI);
1146}
1147
1148Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1149  return commonCastTransforms(CI);
1150}
1151
1152Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1153  return commonCastTransforms(CI);
1154}
1155
1156Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1157  // If the source integer type is not the intptr_t type for this target, do a
1158  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1159  // cast to be exposed to other transforms.
1160  if (TD) {
1161    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1162        TD->getPointerSizeInBits()) {
1163      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1164                                      TD->getIntPtrType(CI.getContext()), "tmp");
1165      return new IntToPtrInst(P, CI.getType());
1166    }
1167    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1168        TD->getPointerSizeInBits()) {
1169      Value *P = Builder->CreateZExt(CI.getOperand(0),
1170                                     TD->getIntPtrType(CI.getContext()), "tmp");
1171      return new IntToPtrInst(P, CI.getType());
1172    }
1173  }
1174
1175  if (Instruction *I = commonCastTransforms(CI))
1176    return I;
1177
1178  return 0;
1179}
1180
1181/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1182Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1183  Value *Src = CI.getOperand(0);
1184
1185  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1186    // If casting the result of a getelementptr instruction with no offset, turn
1187    // this into a cast of the original pointer!
1188    if (GEP->hasAllZeroIndices()) {
1189      // Changing the cast operand is usually not a good idea but it is safe
1190      // here because the pointer operand is being replaced with another
1191      // pointer operand so the opcode doesn't need to change.
1192      Worklist.Add(GEP);
1193      CI.setOperand(0, GEP->getOperand(0));
1194      return &CI;
1195    }
1196
1197    // If the GEP has a single use, and the base pointer is a bitcast, and the
1198    // GEP computes a constant offset, see if we can convert these three
1199    // instructions into fewer.  This typically happens with unions and other
1200    // non-type-safe code.
1201    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1202        GEP->hasAllConstantIndices()) {
1203      // We are guaranteed to get a constant from EmitGEPOffset.
1204      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1205      int64_t Offset = OffsetV->getSExtValue();
1206
1207      // Get the base pointer input of the bitcast, and the type it points to.
1208      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1209      const Type *GEPIdxTy =
1210      cast<PointerType>(OrigBase->getType())->getElementType();
1211      SmallVector<Value*, 8> NewIndices;
1212      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1213        // If we were able to index down into an element, create the GEP
1214        // and bitcast the result.  This eliminates one bitcast, potentially
1215        // two.
1216        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1217        Builder->CreateInBoundsGEP(OrigBase,
1218                                   NewIndices.begin(), NewIndices.end()) :
1219        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1220        NGEP->takeName(GEP);
1221
1222        if (isa<BitCastInst>(CI))
1223          return new BitCastInst(NGEP, CI.getType());
1224        assert(isa<PtrToIntInst>(CI));
1225        return new PtrToIntInst(NGEP, CI.getType());
1226      }
1227    }
1228  }
1229
1230  return commonCastTransforms(CI);
1231}
1232
1233Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1234  // If the destination integer type is not the intptr_t type for this target,
1235  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1236  // to be exposed to other transforms.
1237  if (TD) {
1238    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1239      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1240                                         TD->getIntPtrType(CI.getContext()),
1241                                         "tmp");
1242      return new TruncInst(P, CI.getType());
1243    }
1244    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1245      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1246                                         TD->getIntPtrType(CI.getContext()),
1247                                         "tmp");
1248      return new ZExtInst(P, CI.getType());
1249    }
1250  }
1251
1252  return commonPointerCastTransforms(CI);
1253}
1254
1255Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1256  // If the operands are integer typed then apply the integer transforms,
1257  // otherwise just apply the common ones.
1258  Value *Src = CI.getOperand(0);
1259  const Type *SrcTy = Src->getType();
1260  const Type *DestTy = CI.getType();
1261
1262  // Get rid of casts from one type to the same type. These are useless and can
1263  // be replaced by the operand.
1264  if (DestTy == Src->getType())
1265    return ReplaceInstUsesWith(CI, Src);
1266
1267  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1268    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1269    const Type *DstElTy = DstPTy->getElementType();
1270    const Type *SrcElTy = SrcPTy->getElementType();
1271
1272    // If the address spaces don't match, don't eliminate the bitcast, which is
1273    // required for changing types.
1274    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1275      return 0;
1276
1277    // If we are casting a alloca to a pointer to a type of the same
1278    // size, rewrite the allocation instruction to allocate the "right" type.
1279    // There is no need to modify malloc calls because it is their bitcast that
1280    // needs to be cleaned up.
1281    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1282      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1283        return V;
1284
1285    // If the source and destination are pointers, and this cast is equivalent
1286    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1287    // This can enhance SROA and other transforms that want type-safe pointers.
1288    Constant *ZeroUInt =
1289      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1290    unsigned NumZeros = 0;
1291    while (SrcElTy != DstElTy &&
1292           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1293           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1294      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1295      ++NumZeros;
1296    }
1297
1298    // If we found a path from the src to dest, create the getelementptr now.
1299    if (SrcElTy == DstElTy) {
1300      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1301      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1302                                               ((Instruction*)NULL));
1303    }
1304  }
1305
1306  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1307    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1308      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1309      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1310                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1311      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1312    }
1313  }
1314
1315  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1316    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1317      Value *Elem =
1318        Builder->CreateExtractElement(Src,
1319                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1320      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1321    }
1322  }
1323
1324  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1325    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1326    // a bitcast to a vector with the same # elts.
1327    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1328        cast<VectorType>(DestTy)->getNumElements() ==
1329              SVI->getType()->getNumElements() &&
1330        SVI->getType()->getNumElements() ==
1331          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1332      BitCastInst *Tmp;
1333      // If either of the operands is a cast from CI.getType(), then
1334      // evaluating the shuffle in the casted destination's type will allow
1335      // us to eliminate at least one cast.
1336      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1337           Tmp->getOperand(0)->getType() == DestTy) ||
1338          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1339           Tmp->getOperand(0)->getType() == DestTy)) {
1340        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1341        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1342        // Return a new shuffle vector.  Use the same element ID's, as we
1343        // know the vector types match #elts.
1344        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1345      }
1346    }
1347  }
1348
1349  if (SrcTy->isPointerTy())
1350    return commonPointerCastTransforms(CI);
1351  return commonCastTransforms(CI);
1352}
1353