PPCRegisterInfo.td revision 249423
1//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11//===----------------------------------------------------------------------===//
12
13let Namespace = "PPC" in {
14def sub_lt : SubRegIndex;
15def sub_gt : SubRegIndex;
16def sub_eq : SubRegIndex;
17def sub_un : SubRegIndex;
18def sub_32 : SubRegIndex;
19}
20
21
22class PPCReg<string n> : Register<n> {
23  let Namespace = "PPC";
24}
25
26// We identify all our registers with a 5-bit ID, for consistency's sake.
27
28// GPR - One of the 32 32-bit general-purpose registers
29class GPR<bits<5> num, string n> : PPCReg<n> {
30  let HWEncoding{4-0} = num;
31}
32
33// GP8 - One of the 32 64-bit general-purpose registers
34class GP8<GPR SubReg, string n> : PPCReg<n> {
35  let HWEncoding = SubReg.HWEncoding;
36  let SubRegs = [SubReg];
37  let SubRegIndices = [sub_32];
38}
39
40// SPR - One of the 32-bit special-purpose registers
41class SPR<bits<10> num, string n> : PPCReg<n> {
42  let HWEncoding{9-0} = num;
43}
44
45// FPR - One of the 32 64-bit floating-point registers
46class FPR<bits<5> num, string n> : PPCReg<n> {
47  let HWEncoding{4-0} = num;
48}
49
50// VR - One of the 32 128-bit vector registers
51class VR<bits<5> num, string n> : PPCReg<n> {
52  let HWEncoding{4-0} = num;
53}
54
55// CR - One of the 8 4-bit condition registers
56class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
57  let HWEncoding{2-0} = num;
58  let SubRegs = subregs;
59}
60
61// CRBIT - One of the 32 1-bit condition register fields
62class CRBIT<bits<5> num, string n> : PPCReg<n> {
63  let HWEncoding{4-0} = num;
64}
65
66// General-purpose registers
67foreach Index = 0-31 in {
68  def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
69}
70
71// 64-bit General-purpose registers
72foreach Index = 0-31 in {
73  def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
74                    DwarfRegNum<[Index, -2]>;
75}
76
77// Floating-point registers
78foreach Index = 0-31 in {
79  def F#Index : FPR<Index, "f"#Index>,
80                DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
81}
82
83// Vector registers
84foreach Index = 0-31 in {
85  def V#Index : VR<Index, "v"#Index>,
86                DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
87}
88
89// The reprsentation of r0 when treated as the constant 0.
90def ZERO  : GPR<0, "0">;
91def ZERO8 : GP8<ZERO, "0">;
92
93// Representations of the frame pointer used by ISD::FRAMEADDR.
94def FP   : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
95def FP8  : GP8<FP, "**FRAME POINTER**">;
96
97// Condition register bits
98def CR0LT : CRBIT< 0, "0">;
99def CR0GT : CRBIT< 1, "1">;
100def CR0EQ : CRBIT< 2, "2">;
101def CR0UN : CRBIT< 3, "3">;
102def CR1LT : CRBIT< 4, "4">;
103def CR1GT : CRBIT< 5, "5">;
104def CR1EQ : CRBIT< 6, "6">;
105def CR1UN : CRBIT< 7, "7">;
106def CR2LT : CRBIT< 8, "8">;
107def CR2GT : CRBIT< 9, "9">;
108def CR2EQ : CRBIT<10, "10">;
109def CR2UN : CRBIT<11, "11">;
110def CR3LT : CRBIT<12, "12">;
111def CR3GT : CRBIT<13, "13">;
112def CR3EQ : CRBIT<14, "14">;
113def CR3UN : CRBIT<15, "15">;
114def CR4LT : CRBIT<16, "16">;
115def CR4GT : CRBIT<17, "17">;
116def CR4EQ : CRBIT<18, "18">;
117def CR4UN : CRBIT<19, "19">;
118def CR5LT : CRBIT<20, "20">;
119def CR5GT : CRBIT<21, "21">;
120def CR5EQ : CRBIT<22, "22">;
121def CR5UN : CRBIT<23, "23">;
122def CR6LT : CRBIT<24, "24">;
123def CR6GT : CRBIT<25, "25">;
124def CR6EQ : CRBIT<26, "26">;
125def CR6UN : CRBIT<27, "27">;
126def CR7LT : CRBIT<28, "28">;
127def CR7GT : CRBIT<29, "29">;
128def CR7EQ : CRBIT<30, "30">;
129def CR7UN : CRBIT<31, "31">;
130
131// Condition registers
132let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
133def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
134def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
135def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
136def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
137def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
138def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
139def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
140def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
141}
142
143// Link register
144def LR  : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
145//let Aliases = [LR] in
146def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;
147
148// Count register
149def CTR  : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
150def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;
151
152// VRsave register
153def VRSAVE: SPR<256, "VRsave">, DwarfRegNum<[109]>;
154
155// Carry bit.  In the architecture this is really bit 0 of the XER register
156// (which really is SPR register 1);  this is the only bit interesting to a
157// compiler.
158def CARRY: SPR<1, "ca">;
159
160// FP rounding mode:  bits 30 and 31 of the FP status and control register
161// This is not allocated as a normal register; it appears only in
162// Uses and Defs.  The ABI says it needs to be preserved by a function,
163// but this is not achieved by saving and restoring it as with
164// most registers, it has to be done in code; to make this work all the
165// return and call instructions are described as Uses of RM, so instructions
166// that do nothing but change RM will not get deleted.
167// Also, in the architecture it is not really a SPR; 512 is arbitrary.
168def RM: SPR<512, "**ROUNDING MODE**">;
169
170/// Register classes
171// Allocate volatiles first
172// then nonvolatiles in reverse order since stmw/lmw save from rN to r31
173def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12),
174                                                (sequence "R%u", 30, 13),
175                                                R31, R0, R1, FP)>;
176
177def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
178                                                (sequence "X%u", 30, 14),
179                                                X31, X13, X0, X1, FP8)>;
180
181// For some instructions r0 is special (representing the value 0 instead of
182// the value in the r0 register), and we use these register subclasses to
183// prevent r0 from being allocated for use by those instructions.
184def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)>;
185def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)>;
186
187// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
188// ABI the size of the Floating-point register save area is determined by the
189// allocated non-volatile register with the lowest register number, as FP
190// register N is spilled to offset 8 * (32 - N) below the back chain word of the
191// previous stack frame. By allocating non-volatiles in reverse order we make
192// sure that the Floating-point register save area is always as small as
193// possible because there aren't any unused spill slots.
194def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
195                                                (sequence "F%u", 31, 14))>;
196def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;
197
198def VRRC : RegisterClass<"PPC", [v16i8,v8i16,v4i32,v4f32], 128,
199                         (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
200                             V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
201                             V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;
202
203def CRBITRC : RegisterClass<"PPC", [i32], 32,
204  (add CR0LT, CR0GT, CR0EQ, CR0UN,
205       CR1LT, CR1GT, CR1EQ, CR1UN,
206       CR2LT, CR2GT, CR2EQ, CR2UN,
207       CR3LT, CR3GT, CR3EQ, CR3UN,
208       CR4LT, CR4GT, CR4EQ, CR4UN,
209       CR5LT, CR5GT, CR5EQ, CR5UN,
210       CR6LT, CR6GT, CR6EQ, CR6UN,
211       CR7LT, CR7GT, CR7EQ, CR7UN)>
212{
213  let CopyCost = -1;
214}
215
216def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6,
217                                                CR7, CR2, CR3, CR4)>;
218
219// The CTR registers are not allocatable because they're used by the
220// decrement-and-branch instructions, and thus need to stay live across
221// multiple basic blocks.
222def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
223  let isAllocatable = 0;
224}
225def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
226  let isAllocatable = 0;
227}
228
229def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
230def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY)> {
231  let CopyCost = -1;
232}
233