MipsInstrFPU.td revision 223017
1//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisInt<2>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<0, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPRound : SDNode<"MipsISD::FPRound", SDTFPRoundOp, [SDNPOptInGlue]>;
44def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
45                          [SDNPHasChain, SDNPOptInGlue]>;
46def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
47def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
48                                   SDT_MipsExtractElementF64>;
49
50// Operand for printing out a condition code.
51let PrintMethod = "printFCCOperand" in
52  def condcode : Operand<i32>;
53
54//===----------------------------------------------------------------------===//
55// Feature predicates.
56//===----------------------------------------------------------------------===//
57
58def In32BitMode      : Predicate<"!Subtarget.isFP64bit()">;
59def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
60def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
61def IsNotMipsI       : Predicate<"!Subtarget.isMips1()">;
62
63//===----------------------------------------------------------------------===//
64// Instruction Class Templates
65//
66// A set of multiclasses is used to address the register usage.
67//
68// S32 - single precision in 16 32bit even fp registers
69//       single precision in 32 32bit fp registers in SingleOnly mode
70// S64 - single precision in 32 64bit fp registers (In64BitMode)
71// D32 - double precision in 16 32bit even fp registers
72// D64 - double precision in 32 64bit fp registers (In64BitMode)
73//
74// Only S32 and D32 are supported right now.
75//===----------------------------------------------------------------------===//
76
77multiclass FFR1_1<bits<6> funct, string asmstr>
78{
79  def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
80      !strconcat(asmstr, ".s\t$fd, $fs"), []>;
81
82  def _D32  : FFR<0x11, funct, 0x1, (outs FGR32:$fd), (ins AFGR64:$fs),
83      !strconcat(asmstr, ".d\t$fd, $fs"), []>, Requires<[In32BitMode]>;
84}
85
86multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
87{
88  def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
89                 !strconcat(asmstr, ".s\t$fd, $fs"),
90                 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
91
92  def _D32  : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
93                 !strconcat(asmstr, ".d\t$fd, $fs"),
94                 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
95}
96
97class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
98              RegisterClass RcDst, string asmstr>:
99  FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
100      !strconcat(asmstr, "\t$fd, $fs"), []>;
101
102
103multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp, bit isComm = 0> {
104  let isCommutable = isComm in {
105  def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
106                 (ins FGR32:$fs, FGR32:$ft),
107                 !strconcat(asmstr, ".s\t$fd, $fs, $ft"),
108                 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
109
110  def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
111                 (ins AFGR64:$fs, AFGR64:$ft),
112                 !strconcat(asmstr, ".d\t$fd, $fs, $ft"),
113                 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
114                 Requires<[In32BitMode]>;
115  }
116}
117
118//===----------------------------------------------------------------------===//
119// Floating Point Instructions
120//===----------------------------------------------------------------------===//
121
122let ft = 0 in {
123  defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
124  defm CEIL_W  : FFR1_1<0b001110, "ceil.w">;
125  defm ROUND_W : FFR1_1<0b001100, "round.w">;
126  defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
127  defm CVTW    : FFR1_1<0b100100, "cvt.w">;
128
129  defm FABS    : FFR1_2<0b000101, "abs",  fabs>;
130  defm FNEG    : FFR1_2<0b000111, "neg",  fneg>;
131  defm FSQRT   : FFR1_2<0b000100, "sqrt", fsqrt>;
132
133  /// Convert to Single Precison
134  def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32,  FGR32,  "cvt.s.w">;
135
136  let Predicates = [IsNotSingleFloat] in {
137    /// Ceil to long signed integer
138    def CEIL_LS   : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
139    def CEIL_LD   : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
140
141    /// Round to long signed integer
142    def ROUND_LS  : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
143    def ROUND_LD  : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
144
145    /// Floor to long signed integer
146    def FLOOR_LS  : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
147    def FLOOR_LD  : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
148
149    /// Trunc to long signed integer
150    def TRUNC_LS  : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
151    def TRUNC_LD  : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
152
153    /// Convert to long signed integer
154    def CVTL_S    : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
155    def CVTL_D    : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
156
157    /// Convert to Double Precison
158    def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
159    def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
160    def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
161
162    /// Convert to Single Precison
163    def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
164    def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
165  }
166}
167
168// The odd-numbered registers are only referenced when doing loads,
169// stores, and moves between floating-point and integer registers.
170// When defining instructions, we reference all 32-bit registers,
171// regardless of register aliasing.
172let fd = 0 in {
173  /// Move Control Registers From/To CPU Registers
174  def CFC1  : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
175                  "cfc1\t$rt, $fs", []>;
176
177  def CTC1  : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
178                  "ctc1\t$fs, $rt", []>;
179
180  def MFC1  : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
181                  "mfc1\t$rt, $fs", []>;
182
183  def MTC1  : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
184                  "mtc1\t$rt, $fs", []>;
185}
186
187def FMOV_S32 : FFR<0x11, 0b000110, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
188                   "mov.s\t$fd, $fs", []>;
189def FMOV_D32 : FFR<0x11, 0b000110, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
190                   "mov.d\t$fd, $fs", []>;
191
192/// Floating Point Memory Instructions
193let Predicates = [IsNotSingleFloat, IsNotMipsI] in {
194  def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
195                 "ldc1\t$ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
196
197  def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
198                 "sdc1\t$ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
199}
200
201// LWC1 and SWC1 can always be emitted with odd registers.
202def LWC1  : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1\t$ft, $addr",
203               [(set FGR32:$ft, (load addr:$addr))]>;
204def SWC1  : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr),
205               "swc1\t$ft, $addr", [(store FGR32:$ft, addr:$addr)]>;
206
207/// Floating-point Aritmetic
208defm FADD : FFR1_4<0x10, "add", fadd, 1>;
209defm FDIV : FFR1_4<0x03, "div", fdiv>;
210defm FMUL : FFR1_4<0x02, "mul", fmul, 1>;
211defm FSUB : FFR1_4<0x01, "sub", fsub>;
212
213//===----------------------------------------------------------------------===//
214// Floating Point Branch Codes
215//===----------------------------------------------------------------------===//
216// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
217// They must be kept in synch.
218def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
219def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
220def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
221def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
222
223/// Floating Point Branch of False/True (Likely)
224let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
225  class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
226        (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
227        [(MipsFPBrcond op, bb:$dst)]>;
228
229def BC1F  : FBRANCH<MIPS_BRANCH_F,  "bc1f">;
230def BC1T  : FBRANCH<MIPS_BRANCH_T,  "bc1t">;
231def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
232def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
233
234//===----------------------------------------------------------------------===//
235// Floating Point Flag Conditions
236//===----------------------------------------------------------------------===//
237// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
238// They must be kept in synch.
239def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
240def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
241def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
242def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
243def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
244def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
245def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
246def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
247def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
248def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
249def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
250def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
251def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
252def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
253def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
254def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
255
256/// Floating Point Compare
257let hasDelaySlot = 1, Defs=[FCR31] in {
258  def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
259                     "c.$cc.s\t$fs, $ft",
260                     [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
261
262  def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
263                     "c.$cc.d\t$fs, $ft",
264                     [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
265                     Requires<[In32BitMode]>;
266}
267
268
269// Conditional moves:
270// These instructions are expanded in
271// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
272// conditional move instructions.
273// flag:int, data:float
274let usesCustomInserter = 1, Constraints = "$F = $dst" in
275class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func,
276                   string instr_asm> :
277  FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F),
278      !strconcat(instr_asm, "\t$dst, $T, $cond"), []>;
279
280def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">;
281def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">;
282
283let Predicates = [In32BitMode] in {
284  def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">;
285  def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">;
286}
287
288defm : MovzPats<FGR32, MOVZ_S>;
289defm : MovnPats<FGR32, MOVN_S>;
290
291let Predicates = [In32BitMode] in {
292  defm : MovzPats<AFGR64, MOVZ_D>;
293  defm : MovnPats<AFGR64, MOVN_D>;
294}
295
296let usesCustomInserter = 1, Uses = [FCR31], Constraints = "$F = $dst" in {
297// flag:float, data:int
298class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> :
299  FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F),
300        !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
301        [(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>;
302
303// flag:float, data:float
304class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf,
305                  string instr_asm> :
306  FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F),
307         !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
308         [(set RC:$dst, (cmov RC:$T, RC:$F))]>;
309}
310
311def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">;
312def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">;
313def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">;
314def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">;
315
316let Predicates = [In32BitMode] in {
317  def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">;
318  def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">;
319}
320
321//===----------------------------------------------------------------------===//
322// Floating Point Pseudo-Instructions
323//===----------------------------------------------------------------------===//
324def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
325                             "# MOVCCRToCCR", []>;
326
327// This pseudo instr gets expanded into 2 mtc1 instrs after register
328// allocation.
329def BuildPairF64 :
330  MipsPseudo<(outs AFGR64:$dst),
331             (ins CPURegs:$lo, CPURegs:$hi), "",
332             [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
333
334// This pseudo instr gets expanded into 2 mfc1 instrs after register
335// allocation.
336// if n is 0, lower part of src is extracted.
337// if n is 1, higher part of src is extracted.
338def ExtractElementF64 :
339  MipsPseudo<(outs CPURegs:$dst),
340             (ins AFGR64:$src, i32imm:$n), "",
341             [(set CPURegs:$dst,
342               (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
343
344//===----------------------------------------------------------------------===//
345// Floating Point Patterns
346//===----------------------------------------------------------------------===//
347def fpimm0 : PatLeaf<(fpimm), [{
348  return N->isExactlyValue(+0.0);
349}]>;
350
351def fpimm0neg : PatLeaf<(fpimm), [{
352  return N->isExactlyValue(-0.0);
353}]>;
354
355def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
356def : Pat<(f32 fpimm0neg), (FNEG_S32 (MTC1 ZERO))>;
357
358def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
359def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
360
361def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
362def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
363
364def : Pat<(i32 (bitconvert FGR32:$src)),  (MFC1 FGR32:$src)>;
365def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;
366
367let Predicates = [In32BitMode] in {
368  def : Pat<(f32 (fround AFGR64:$src)), (CVTS_D32 AFGR64:$src)>;
369  def : Pat<(f64 (fextend FGR32:$src)), (CVTD_S32 FGR32:$src)>;
370}
371
372// MipsFPRound is only emitted for MipsI targets.
373def : Pat<(f32 (MipsFPRound AFGR64:$src)), (CVTW_D32 AFGR64:$src)>;
374
375