CPPBackend.cpp revision 193323
1//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instruction.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/PassManager.h"
25#include "llvm/TypeSymbolTable.h"
26#include "llvm/Target/TargetMachineRegistry.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Streams.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Config/config.h"
34#include <algorithm>
35#include <set>
36
37using namespace llvm;
38
39static cl::opt<std::string>
40FuncName("cppfname", cl::desc("Specify the name of the generated function"),
41         cl::value_desc("function name"));
42
43enum WhatToGenerate {
44  GenProgram,
45  GenModule,
46  GenContents,
47  GenFunction,
48  GenFunctions,
49  GenInline,
50  GenVariable,
51  GenType
52};
53
54static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
55  cl::desc("Choose what kind of output to generate"),
56  cl::init(GenProgram),
57  cl::values(
58    clEnumValN(GenProgram,  "program",   "Generate a complete program"),
59    clEnumValN(GenModule,   "module",    "Generate a module definition"),
60    clEnumValN(GenContents, "contents",  "Generate contents of a module"),
61    clEnumValN(GenFunction, "function",  "Generate a function definition"),
62    clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
63    clEnumValN(GenInline,   "inline",    "Generate an inline function"),
64    clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
65    clEnumValN(GenType,     "type",      "Generate a type definition"),
66    clEnumValEnd
67  )
68);
69
70static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
71  cl::desc("Specify the name of the thing to generate"),
72  cl::init("!bad!"));
73
74/// CppBackendTargetMachineModule - Note that this is used on hosts
75/// that cannot link in a library unless there are references into the
76/// library.  In particular, it seems that it is not possible to get
77/// things to work on Win32 without this.  Though it is unused, do not
78/// remove it.
79extern "C" int CppBackendTargetMachineModule;
80int CppBackendTargetMachineModule = 0;
81
82// Register the target.
83static RegisterTarget<CPPTargetMachine> X("cpp", "C++ backend");
84
85namespace {
86  typedef std::vector<const Type*> TypeList;
87  typedef std::map<const Type*,std::string> TypeMap;
88  typedef std::map<const Value*,std::string> ValueMap;
89  typedef std::set<std::string> NameSet;
90  typedef std::set<const Type*> TypeSet;
91  typedef std::set<const Value*> ValueSet;
92  typedef std::map<const Value*,std::string> ForwardRefMap;
93
94  /// CppWriter - This class is the main chunk of code that converts an LLVM
95  /// module to a C++ translation unit.
96  class CppWriter : public ModulePass {
97    raw_ostream &Out;
98    const Module *TheModule;
99    uint64_t uniqueNum;
100    TypeMap TypeNames;
101    ValueMap ValueNames;
102    TypeMap UnresolvedTypes;
103    TypeList TypeStack;
104    NameSet UsedNames;
105    TypeSet DefinedTypes;
106    ValueSet DefinedValues;
107    ForwardRefMap ForwardRefs;
108    bool is_inline;
109
110  public:
111    static char ID;
112    explicit CppWriter(raw_ostream &o) :
113      ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
114
115    virtual const char *getPassName() const { return "C++ backend"; }
116
117    bool runOnModule(Module &M);
118
119    void printProgram(const std::string& fname, const std::string& modName );
120    void printModule(const std::string& fname, const std::string& modName );
121    void printContents(const std::string& fname, const std::string& modName );
122    void printFunction(const std::string& fname, const std::string& funcName );
123    void printFunctions();
124    void printInline(const std::string& fname, const std::string& funcName );
125    void printVariable(const std::string& fname, const std::string& varName );
126    void printType(const std::string& fname, const std::string& typeName );
127
128    void error(const std::string& msg);
129
130  private:
131    void printLinkageType(GlobalValue::LinkageTypes LT);
132    void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
133    void printCallingConv(unsigned cc);
134    void printEscapedString(const std::string& str);
135    void printCFP(const ConstantFP* CFP);
136
137    std::string getCppName(const Type* val);
138    inline void printCppName(const Type* val);
139
140    std::string getCppName(const Value* val);
141    inline void printCppName(const Value* val);
142
143    void printAttributes(const AttrListPtr &PAL, const std::string &name);
144    bool printTypeInternal(const Type* Ty);
145    inline void printType(const Type* Ty);
146    void printTypes(const Module* M);
147
148    void printConstant(const Constant *CPV);
149    void printConstants(const Module* M);
150
151    void printVariableUses(const GlobalVariable *GV);
152    void printVariableHead(const GlobalVariable *GV);
153    void printVariableBody(const GlobalVariable *GV);
154
155    void printFunctionUses(const Function *F);
156    void printFunctionHead(const Function *F);
157    void printFunctionBody(const Function *F);
158    void printInstruction(const Instruction *I, const std::string& bbname);
159    std::string getOpName(Value*);
160
161    void printModuleBody();
162  };
163
164  static unsigned indent_level = 0;
165  inline raw_ostream& nl(raw_ostream& Out, int delta = 0) {
166    Out << "\n";
167    if (delta >= 0 || indent_level >= unsigned(-delta))
168      indent_level += delta;
169    for (unsigned i = 0; i < indent_level; ++i)
170      Out << "  ";
171    return Out;
172  }
173
174  inline void in() { indent_level++; }
175  inline void out() { if (indent_level >0) indent_level--; }
176
177  inline void
178  sanitize(std::string& str) {
179    for (size_t i = 0; i < str.length(); ++i)
180      if (!isalnum(str[i]) && str[i] != '_')
181        str[i] = '_';
182  }
183
184  inline std::string
185  getTypePrefix(const Type* Ty ) {
186    switch (Ty->getTypeID()) {
187    case Type::VoidTyID:     return "void_";
188    case Type::IntegerTyID:
189      return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
190        "_";
191    case Type::FloatTyID:    return "float_";
192    case Type::DoubleTyID:   return "double_";
193    case Type::LabelTyID:    return "label_";
194    case Type::FunctionTyID: return "func_";
195    case Type::StructTyID:   return "struct_";
196    case Type::ArrayTyID:    return "array_";
197    case Type::PointerTyID:  return "ptr_";
198    case Type::VectorTyID:   return "packed_";
199    case Type::OpaqueTyID:   return "opaque_";
200    default:                 return "other_";
201    }
202    return "unknown_";
203  }
204
205  // Looks up the type in the symbol table and returns a pointer to its name or
206  // a null pointer if it wasn't found. Note that this isn't the same as the
207  // Mode::getTypeName function which will return an empty string, not a null
208  // pointer if the name is not found.
209  inline const std::string*
210  findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
211    TypeSymbolTable::const_iterator TI = ST.begin();
212    TypeSymbolTable::const_iterator TE = ST.end();
213    for (;TI != TE; ++TI)
214      if (TI->second == Ty)
215        return &(TI->first);
216    return 0;
217  }
218
219  void CppWriter::error(const std::string& msg) {
220    cerr << msg << "\n";
221    exit(2);
222  }
223
224  // printCFP - Print a floating point constant .. very carefully :)
225  // This makes sure that conversion to/from floating yields the same binary
226  // result so that we don't lose precision.
227  void CppWriter::printCFP(const ConstantFP *CFP) {
228    bool ignored;
229    APFloat APF = APFloat(CFP->getValueAPF());  // copy
230    if (CFP->getType() == Type::FloatTy)
231      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
232    Out << "ConstantFP::get(";
233    Out << "APFloat(";
234#if HAVE_PRINTF_A
235    char Buffer[100];
236    sprintf(Buffer, "%A", APF.convertToDouble());
237    if ((!strncmp(Buffer, "0x", 2) ||
238         !strncmp(Buffer, "-0x", 3) ||
239         !strncmp(Buffer, "+0x", 3)) &&
240        APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
241      if (CFP->getType() == Type::DoubleTy)
242        Out << "BitsToDouble(" << Buffer << ")";
243      else
244        Out << "BitsToFloat((float)" << Buffer << ")";
245      Out << ")";
246    } else {
247#endif
248      std::string StrVal = ftostr(CFP->getValueAPF());
249
250      while (StrVal[0] == ' ')
251        StrVal.erase(StrVal.begin());
252
253      // Check to make sure that the stringized number is not some string like
254      // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
255      if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
256           ((StrVal[0] == '-' || StrVal[0] == '+') &&
257            (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
258          (CFP->isExactlyValue(atof(StrVal.c_str())))) {
259        if (CFP->getType() == Type::DoubleTy)
260          Out <<  StrVal;
261        else
262          Out << StrVal << "f";
263      } else if (CFP->getType() == Type::DoubleTy)
264        Out << "BitsToDouble(0x"
265            << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
266            << "ULL) /* " << StrVal << " */";
267      else
268        Out << "BitsToFloat(0x"
269            << utohexstr((uint32_t)CFP->getValueAPF().
270                                        bitcastToAPInt().getZExtValue())
271            << "U) /* " << StrVal << " */";
272      Out << ")";
273#if HAVE_PRINTF_A
274    }
275#endif
276    Out << ")";
277  }
278
279  void CppWriter::printCallingConv(unsigned cc){
280    // Print the calling convention.
281    switch (cc) {
282    case CallingConv::C:     Out << "CallingConv::C"; break;
283    case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
284    case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
285    case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
286    default:                 Out << cc; break;
287    }
288  }
289
290  void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
291    switch (LT) {
292    case GlobalValue::InternalLinkage:
293      Out << "GlobalValue::InternalLinkage"; break;
294    case GlobalValue::PrivateLinkage:
295      Out << "GlobalValue::PrivateLinkage"; break;
296    case GlobalValue::AvailableExternallyLinkage:
297      Out << "GlobalValue::AvailableExternallyLinkage "; break;
298    case GlobalValue::LinkOnceAnyLinkage:
299      Out << "GlobalValue::LinkOnceAnyLinkage "; break;
300    case GlobalValue::LinkOnceODRLinkage:
301      Out << "GlobalValue::LinkOnceODRLinkage "; break;
302    case GlobalValue::WeakAnyLinkage:
303      Out << "GlobalValue::WeakAnyLinkage"; break;
304    case GlobalValue::WeakODRLinkage:
305      Out << "GlobalValue::WeakODRLinkage"; break;
306    case GlobalValue::AppendingLinkage:
307      Out << "GlobalValue::AppendingLinkage"; break;
308    case GlobalValue::ExternalLinkage:
309      Out << "GlobalValue::ExternalLinkage"; break;
310    case GlobalValue::DLLImportLinkage:
311      Out << "GlobalValue::DLLImportLinkage"; break;
312    case GlobalValue::DLLExportLinkage:
313      Out << "GlobalValue::DLLExportLinkage"; break;
314    case GlobalValue::ExternalWeakLinkage:
315      Out << "GlobalValue::ExternalWeakLinkage"; break;
316    case GlobalValue::GhostLinkage:
317      Out << "GlobalValue::GhostLinkage"; break;
318    case GlobalValue::CommonLinkage:
319      Out << "GlobalValue::CommonLinkage"; break;
320    }
321  }
322
323  void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
324    switch (VisType) {
325    default: assert(0 && "Unknown GVar visibility");
326    case GlobalValue::DefaultVisibility:
327      Out << "GlobalValue::DefaultVisibility";
328      break;
329    case GlobalValue::HiddenVisibility:
330      Out << "GlobalValue::HiddenVisibility";
331      break;
332    case GlobalValue::ProtectedVisibility:
333      Out << "GlobalValue::ProtectedVisibility";
334      break;
335    }
336  }
337
338  // printEscapedString - Print each character of the specified string, escaping
339  // it if it is not printable or if it is an escape char.
340  void CppWriter::printEscapedString(const std::string &Str) {
341    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
342      unsigned char C = Str[i];
343      if (isprint(C) && C != '"' && C != '\\') {
344        Out << C;
345      } else {
346        Out << "\\x"
347            << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
348            << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
349      }
350    }
351  }
352
353  std::string CppWriter::getCppName(const Type* Ty) {
354    // First, handle the primitive types .. easy
355    if (Ty->isPrimitiveType() || Ty->isInteger()) {
356      switch (Ty->getTypeID()) {
357      case Type::VoidTyID:   return "Type::VoidTy";
358      case Type::IntegerTyID: {
359        unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
360        return "IntegerType::get(" + utostr(BitWidth) + ")";
361      }
362      case Type::X86_FP80TyID: return "Type::X86_FP80Ty";
363      case Type::FloatTyID:    return "Type::FloatTy";
364      case Type::DoubleTyID:   return "Type::DoubleTy";
365      case Type::LabelTyID:    return "Type::LabelTy";
366      default:
367        error("Invalid primitive type");
368        break;
369      }
370      return "Type::VoidTy"; // shouldn't be returned, but make it sensible
371    }
372
373    // Now, see if we've seen the type before and return that
374    TypeMap::iterator I = TypeNames.find(Ty);
375    if (I != TypeNames.end())
376      return I->second;
377
378    // Okay, let's build a new name for this type. Start with a prefix
379    const char* prefix = 0;
380    switch (Ty->getTypeID()) {
381    case Type::FunctionTyID:    prefix = "FuncTy_"; break;
382    case Type::StructTyID:      prefix = "StructTy_"; break;
383    case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
384    case Type::PointerTyID:     prefix = "PointerTy_"; break;
385    case Type::OpaqueTyID:      prefix = "OpaqueTy_"; break;
386    case Type::VectorTyID:      prefix = "VectorTy_"; break;
387    default:                    prefix = "OtherTy_"; break; // prevent breakage
388    }
389
390    // See if the type has a name in the symboltable and build accordingly
391    const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
392    std::string name;
393    if (tName)
394      name = std::string(prefix) + *tName;
395    else
396      name = std::string(prefix) + utostr(uniqueNum++);
397    sanitize(name);
398
399    // Save the name
400    return TypeNames[Ty] = name;
401  }
402
403  void CppWriter::printCppName(const Type* Ty) {
404    printEscapedString(getCppName(Ty));
405  }
406
407  std::string CppWriter::getCppName(const Value* val) {
408    std::string name;
409    ValueMap::iterator I = ValueNames.find(val);
410    if (I != ValueNames.end() && I->first == val)
411      return  I->second;
412
413    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
414      name = std::string("gvar_") +
415        getTypePrefix(GV->getType()->getElementType());
416    } else if (isa<Function>(val)) {
417      name = std::string("func_");
418    } else if (const Constant* C = dyn_cast<Constant>(val)) {
419      name = std::string("const_") + getTypePrefix(C->getType());
420    } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
421      if (is_inline) {
422        unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
423                                        Function::const_arg_iterator(Arg)) + 1;
424        name = std::string("arg_") + utostr(argNum);
425        NameSet::iterator NI = UsedNames.find(name);
426        if (NI != UsedNames.end())
427          name += std::string("_") + utostr(uniqueNum++);
428        UsedNames.insert(name);
429        return ValueNames[val] = name;
430      } else {
431        name = getTypePrefix(val->getType());
432      }
433    } else {
434      name = getTypePrefix(val->getType());
435    }
436    name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
437    sanitize(name);
438    NameSet::iterator NI = UsedNames.find(name);
439    if (NI != UsedNames.end())
440      name += std::string("_") + utostr(uniqueNum++);
441    UsedNames.insert(name);
442    return ValueNames[val] = name;
443  }
444
445  void CppWriter::printCppName(const Value* val) {
446    printEscapedString(getCppName(val));
447  }
448
449  void CppWriter::printAttributes(const AttrListPtr &PAL,
450                                  const std::string &name) {
451    Out << "AttrListPtr " << name << "_PAL;";
452    nl(Out);
453    if (!PAL.isEmpty()) {
454      Out << '{'; in(); nl(Out);
455      Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
456      Out << "AttributeWithIndex PAWI;"; nl(Out);
457      for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
458        unsigned index = PAL.getSlot(i).Index;
459        Attributes attrs = PAL.getSlot(i).Attrs;
460        Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
461#define HANDLE_ATTR(X)                 \
462        if (attrs & Attribute::X)      \
463          Out << " | Attribute::" #X;  \
464        attrs &= ~Attribute::X;
465
466        HANDLE_ATTR(SExt);
467        HANDLE_ATTR(ZExt);
468        HANDLE_ATTR(NoReturn);
469        HANDLE_ATTR(InReg);
470        HANDLE_ATTR(StructRet);
471        HANDLE_ATTR(NoUnwind);
472        HANDLE_ATTR(NoAlias);
473        HANDLE_ATTR(ByVal);
474        HANDLE_ATTR(Nest);
475        HANDLE_ATTR(ReadNone);
476        HANDLE_ATTR(ReadOnly);
477        HANDLE_ATTR(NoInline);
478        HANDLE_ATTR(AlwaysInline);
479        HANDLE_ATTR(OptimizeForSize);
480        HANDLE_ATTR(StackProtect);
481        HANDLE_ATTR(StackProtectReq);
482        HANDLE_ATTR(NoCapture);
483#undef HANDLE_ATTR
484        assert(attrs == 0 && "Unhandled attribute!");
485        Out << ";";
486        nl(Out);
487        Out << "Attrs.push_back(PAWI);";
488        nl(Out);
489      }
490      Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
491      nl(Out);
492      out(); nl(Out);
493      Out << '}'; nl(Out);
494    }
495  }
496
497  bool CppWriter::printTypeInternal(const Type* Ty) {
498    // We don't print definitions for primitive types
499    if (Ty->isPrimitiveType() || Ty->isInteger())
500      return false;
501
502    // If we already defined this type, we don't need to define it again.
503    if (DefinedTypes.find(Ty) != DefinedTypes.end())
504      return false;
505
506    // Everything below needs the name for the type so get it now.
507    std::string typeName(getCppName(Ty));
508
509    // Search the type stack for recursion. If we find it, then generate this
510    // as an OpaqueType, but make sure not to do this multiple times because
511    // the type could appear in multiple places on the stack. Once the opaque
512    // definition is issued, it must not be re-issued. Consequently we have to
513    // check the UnresolvedTypes list as well.
514    TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
515                                            Ty);
516    if (TI != TypeStack.end()) {
517      TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
518      if (I == UnresolvedTypes.end()) {
519        Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
520        nl(Out);
521        UnresolvedTypes[Ty] = typeName;
522      }
523      return true;
524    }
525
526    // We're going to print a derived type which, by definition, contains other
527    // types. So, push this one we're printing onto the type stack to assist with
528    // recursive definitions.
529    TypeStack.push_back(Ty);
530
531    // Print the type definition
532    switch (Ty->getTypeID()) {
533    case Type::FunctionTyID:  {
534      const FunctionType* FT = cast<FunctionType>(Ty);
535      Out << "std::vector<const Type*>" << typeName << "_args;";
536      nl(Out);
537      FunctionType::param_iterator PI = FT->param_begin();
538      FunctionType::param_iterator PE = FT->param_end();
539      for (; PI != PE; ++PI) {
540        const Type* argTy = static_cast<const Type*>(*PI);
541        bool isForward = printTypeInternal(argTy);
542        std::string argName(getCppName(argTy));
543        Out << typeName << "_args.push_back(" << argName;
544        if (isForward)
545          Out << "_fwd";
546        Out << ");";
547        nl(Out);
548      }
549      bool isForward = printTypeInternal(FT->getReturnType());
550      std::string retTypeName(getCppName(FT->getReturnType()));
551      Out << "FunctionType* " << typeName << " = FunctionType::get(";
552      in(); nl(Out) << "/*Result=*/" << retTypeName;
553      if (isForward)
554        Out << "_fwd";
555      Out << ",";
556      nl(Out) << "/*Params=*/" << typeName << "_args,";
557      nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
558      out();
559      nl(Out);
560      break;
561    }
562    case Type::StructTyID: {
563      const StructType* ST = cast<StructType>(Ty);
564      Out << "std::vector<const Type*>" << typeName << "_fields;";
565      nl(Out);
566      StructType::element_iterator EI = ST->element_begin();
567      StructType::element_iterator EE = ST->element_end();
568      for (; EI != EE; ++EI) {
569        const Type* fieldTy = static_cast<const Type*>(*EI);
570        bool isForward = printTypeInternal(fieldTy);
571        std::string fieldName(getCppName(fieldTy));
572        Out << typeName << "_fields.push_back(" << fieldName;
573        if (isForward)
574          Out << "_fwd";
575        Out << ");";
576        nl(Out);
577      }
578      Out << "StructType* " << typeName << " = StructType::get("
579          << typeName << "_fields, /*isPacked=*/"
580          << (ST->isPacked() ? "true" : "false") << ");";
581      nl(Out);
582      break;
583    }
584    case Type::ArrayTyID: {
585      const ArrayType* AT = cast<ArrayType>(Ty);
586      const Type* ET = AT->getElementType();
587      bool isForward = printTypeInternal(ET);
588      std::string elemName(getCppName(ET));
589      Out << "ArrayType* " << typeName << " = ArrayType::get("
590          << elemName << (isForward ? "_fwd" : "")
591          << ", " << utostr(AT->getNumElements()) << ");";
592      nl(Out);
593      break;
594    }
595    case Type::PointerTyID: {
596      const PointerType* PT = cast<PointerType>(Ty);
597      const Type* ET = PT->getElementType();
598      bool isForward = printTypeInternal(ET);
599      std::string elemName(getCppName(ET));
600      Out << "PointerType* " << typeName << " = PointerType::get("
601          << elemName << (isForward ? "_fwd" : "")
602          << ", " << utostr(PT->getAddressSpace()) << ");";
603      nl(Out);
604      break;
605    }
606    case Type::VectorTyID: {
607      const VectorType* PT = cast<VectorType>(Ty);
608      const Type* ET = PT->getElementType();
609      bool isForward = printTypeInternal(ET);
610      std::string elemName(getCppName(ET));
611      Out << "VectorType* " << typeName << " = VectorType::get("
612          << elemName << (isForward ? "_fwd" : "")
613          << ", " << utostr(PT->getNumElements()) << ");";
614      nl(Out);
615      break;
616    }
617    case Type::OpaqueTyID: {
618      Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
619      nl(Out);
620      break;
621    }
622    default:
623      error("Invalid TypeID");
624    }
625
626    // If the type had a name, make sure we recreate it.
627    const std::string* progTypeName =
628      findTypeName(TheModule->getTypeSymbolTable(),Ty);
629    if (progTypeName) {
630      Out << "mod->addTypeName(\"" << *progTypeName << "\", "
631          << typeName << ");";
632      nl(Out);
633    }
634
635    // Pop us off the type stack
636    TypeStack.pop_back();
637
638    // Indicate that this type is now defined.
639    DefinedTypes.insert(Ty);
640
641    // Early resolve as many unresolved types as possible. Search the unresolved
642    // types map for the type we just printed. Now that its definition is complete
643    // we can resolve any previous references to it. This prevents a cascade of
644    // unresolved types.
645    TypeMap::iterator I = UnresolvedTypes.find(Ty);
646    if (I != UnresolvedTypes.end()) {
647      Out << "cast<OpaqueType>(" << I->second
648          << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
649      nl(Out);
650      Out << I->second << " = cast<";
651      switch (Ty->getTypeID()) {
652      case Type::FunctionTyID: Out << "FunctionType"; break;
653      case Type::ArrayTyID:    Out << "ArrayType"; break;
654      case Type::StructTyID:   Out << "StructType"; break;
655      case Type::VectorTyID:   Out << "VectorType"; break;
656      case Type::PointerTyID:  Out << "PointerType"; break;
657      case Type::OpaqueTyID:   Out << "OpaqueType"; break;
658      default:                 Out << "NoSuchDerivedType"; break;
659      }
660      Out << ">(" << I->second << "_fwd.get());";
661      nl(Out); nl(Out);
662      UnresolvedTypes.erase(I);
663    }
664
665    // Finally, separate the type definition from other with a newline.
666    nl(Out);
667
668    // We weren't a recursive type
669    return false;
670  }
671
672  // Prints a type definition. Returns true if it could not resolve all the
673  // types in the definition but had to use a forward reference.
674  void CppWriter::printType(const Type* Ty) {
675    assert(TypeStack.empty());
676    TypeStack.clear();
677    printTypeInternal(Ty);
678    assert(TypeStack.empty());
679  }
680
681  void CppWriter::printTypes(const Module* M) {
682    // Walk the symbol table and print out all its types
683    const TypeSymbolTable& symtab = M->getTypeSymbolTable();
684    for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
685         TI != TE; ++TI) {
686
687      // For primitive types and types already defined, just add a name
688      TypeMap::const_iterator TNI = TypeNames.find(TI->second);
689      if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
690          TNI != TypeNames.end()) {
691        Out << "mod->addTypeName(\"";
692        printEscapedString(TI->first);
693        Out << "\", " << getCppName(TI->second) << ");";
694        nl(Out);
695        // For everything else, define the type
696      } else {
697        printType(TI->second);
698      }
699    }
700
701    // Add all of the global variables to the value table...
702    for (Module::const_global_iterator I = TheModule->global_begin(),
703           E = TheModule->global_end(); I != E; ++I) {
704      if (I->hasInitializer())
705        printType(I->getInitializer()->getType());
706      printType(I->getType());
707    }
708
709    // Add all the functions to the table
710    for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
711         FI != FE; ++FI) {
712      printType(FI->getReturnType());
713      printType(FI->getFunctionType());
714      // Add all the function arguments
715      for (Function::const_arg_iterator AI = FI->arg_begin(),
716             AE = FI->arg_end(); AI != AE; ++AI) {
717        printType(AI->getType());
718      }
719
720      // Add all of the basic blocks and instructions
721      for (Function::const_iterator BB = FI->begin(),
722             E = FI->end(); BB != E; ++BB) {
723        printType(BB->getType());
724        for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
725             ++I) {
726          printType(I->getType());
727          for (unsigned i = 0; i < I->getNumOperands(); ++i)
728            printType(I->getOperand(i)->getType());
729        }
730      }
731    }
732  }
733
734
735  // printConstant - Print out a constant pool entry...
736  void CppWriter::printConstant(const Constant *CV) {
737    // First, if the constant is actually a GlobalValue (variable or function)
738    // or its already in the constant list then we've printed it already and we
739    // can just return.
740    if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
741      return;
742
743    std::string constName(getCppName(CV));
744    std::string typeName(getCppName(CV->getType()));
745
746    if (isa<GlobalValue>(CV)) {
747      // Skip variables and functions, we emit them elsewhere
748      return;
749    }
750
751    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
752      std::string constValue = CI->getValue().toString(10, true);
753      Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
754          << cast<IntegerType>(CI->getType())->getBitWidth() << ",  \""
755          <<  constValue << "\", " << constValue.length() << ", 10));";
756    } else if (isa<ConstantAggregateZero>(CV)) {
757      Out << "ConstantAggregateZero* " << constName
758          << " = ConstantAggregateZero::get(" << typeName << ");";
759    } else if (isa<ConstantPointerNull>(CV)) {
760      Out << "ConstantPointerNull* " << constName
761          << " = ConstantPointerNull::get(" << typeName << ");";
762    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
763      Out << "ConstantFP* " << constName << " = ";
764      printCFP(CFP);
765      Out << ";";
766    } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
767      if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
768        Out << "Constant* " << constName << " = ConstantArray::get(\"";
769        std::string tmp = CA->getAsString();
770        bool nullTerminate = false;
771        if (tmp[tmp.length()-1] == 0) {
772          tmp.erase(tmp.length()-1);
773          nullTerminate = true;
774        }
775        printEscapedString(tmp);
776        // Determine if we want null termination or not.
777        if (nullTerminate)
778          Out << "\", true"; // Indicate that the null terminator should be
779                             // added.
780        else
781          Out << "\", false";// No null terminator
782        Out << ");";
783      } else {
784        Out << "std::vector<Constant*> " << constName << "_elems;";
785        nl(Out);
786        unsigned N = CA->getNumOperands();
787        for (unsigned i = 0; i < N; ++i) {
788          printConstant(CA->getOperand(i)); // recurse to print operands
789          Out << constName << "_elems.push_back("
790              << getCppName(CA->getOperand(i)) << ");";
791          nl(Out);
792        }
793        Out << "Constant* " << constName << " = ConstantArray::get("
794            << typeName << ", " << constName << "_elems);";
795      }
796    } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
797      Out << "std::vector<Constant*> " << constName << "_fields;";
798      nl(Out);
799      unsigned N = CS->getNumOperands();
800      for (unsigned i = 0; i < N; i++) {
801        printConstant(CS->getOperand(i));
802        Out << constName << "_fields.push_back("
803            << getCppName(CS->getOperand(i)) << ");";
804        nl(Out);
805      }
806      Out << "Constant* " << constName << " = ConstantStruct::get("
807          << typeName << ", " << constName << "_fields);";
808    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
809      Out << "std::vector<Constant*> " << constName << "_elems;";
810      nl(Out);
811      unsigned N = CP->getNumOperands();
812      for (unsigned i = 0; i < N; ++i) {
813        printConstant(CP->getOperand(i));
814        Out << constName << "_elems.push_back("
815            << getCppName(CP->getOperand(i)) << ");";
816        nl(Out);
817      }
818      Out << "Constant* " << constName << " = ConstantVector::get("
819          << typeName << ", " << constName << "_elems);";
820    } else if (isa<UndefValue>(CV)) {
821      Out << "UndefValue* " << constName << " = UndefValue::get("
822          << typeName << ");";
823    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
824      if (CE->getOpcode() == Instruction::GetElementPtr) {
825        Out << "std::vector<Constant*> " << constName << "_indices;";
826        nl(Out);
827        printConstant(CE->getOperand(0));
828        for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
829          printConstant(CE->getOperand(i));
830          Out << constName << "_indices.push_back("
831              << getCppName(CE->getOperand(i)) << ");";
832          nl(Out);
833        }
834        Out << "Constant* " << constName
835            << " = ConstantExpr::getGetElementPtr("
836            << getCppName(CE->getOperand(0)) << ", "
837            << "&" << constName << "_indices[0], "
838            << constName << "_indices.size()"
839            << " );";
840      } else if (CE->isCast()) {
841        printConstant(CE->getOperand(0));
842        Out << "Constant* " << constName << " = ConstantExpr::getCast(";
843        switch (CE->getOpcode()) {
844        default: assert(0 && "Invalid cast opcode");
845        case Instruction::Trunc: Out << "Instruction::Trunc"; break;
846        case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
847        case Instruction::SExt:  Out << "Instruction::SExt"; break;
848        case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
849        case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
850        case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
851        case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
852        case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
853        case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
854        case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
855        case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
856        case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
857        }
858        Out << ", " << getCppName(CE->getOperand(0)) << ", "
859            << getCppName(CE->getType()) << ");";
860      } else {
861        unsigned N = CE->getNumOperands();
862        for (unsigned i = 0; i < N; ++i ) {
863          printConstant(CE->getOperand(i));
864        }
865        Out << "Constant* " << constName << " = ConstantExpr::";
866        switch (CE->getOpcode()) {
867        case Instruction::Add:    Out << "getAdd(";  break;
868        case Instruction::Sub:    Out << "getSub("; break;
869        case Instruction::Mul:    Out << "getMul("; break;
870        case Instruction::UDiv:   Out << "getUDiv("; break;
871        case Instruction::SDiv:   Out << "getSDiv("; break;
872        case Instruction::FDiv:   Out << "getFDiv("; break;
873        case Instruction::URem:   Out << "getURem("; break;
874        case Instruction::SRem:   Out << "getSRem("; break;
875        case Instruction::FRem:   Out << "getFRem("; break;
876        case Instruction::And:    Out << "getAnd("; break;
877        case Instruction::Or:     Out << "getOr("; break;
878        case Instruction::Xor:    Out << "getXor("; break;
879        case Instruction::ICmp:
880          Out << "getICmp(ICmpInst::ICMP_";
881          switch (CE->getPredicate()) {
882          case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
883          case ICmpInst::ICMP_NE:  Out << "NE"; break;
884          case ICmpInst::ICMP_SLT: Out << "SLT"; break;
885          case ICmpInst::ICMP_ULT: Out << "ULT"; break;
886          case ICmpInst::ICMP_SGT: Out << "SGT"; break;
887          case ICmpInst::ICMP_UGT: Out << "UGT"; break;
888          case ICmpInst::ICMP_SLE: Out << "SLE"; break;
889          case ICmpInst::ICMP_ULE: Out << "ULE"; break;
890          case ICmpInst::ICMP_SGE: Out << "SGE"; break;
891          case ICmpInst::ICMP_UGE: Out << "UGE"; break;
892          default: error("Invalid ICmp Predicate");
893          }
894          break;
895        case Instruction::FCmp:
896          Out << "getFCmp(FCmpInst::FCMP_";
897          switch (CE->getPredicate()) {
898          case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
899          case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
900          case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
901          case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
902          case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
903          case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
904          case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
905          case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
906          case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
907          case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
908          case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
909          case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
910          case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
911          case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
912          case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
913          case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
914          default: error("Invalid FCmp Predicate");
915          }
916          break;
917        case Instruction::Shl:     Out << "getShl("; break;
918        case Instruction::LShr:    Out << "getLShr("; break;
919        case Instruction::AShr:    Out << "getAShr("; break;
920        case Instruction::Select:  Out << "getSelect("; break;
921        case Instruction::ExtractElement: Out << "getExtractElement("; break;
922        case Instruction::InsertElement:  Out << "getInsertElement("; break;
923        case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
924        default:
925          error("Invalid constant expression");
926          break;
927        }
928        Out << getCppName(CE->getOperand(0));
929        for (unsigned i = 1; i < CE->getNumOperands(); ++i)
930          Out << ", " << getCppName(CE->getOperand(i));
931        Out << ");";
932      }
933    } else {
934      error("Bad Constant");
935      Out << "Constant* " << constName << " = 0; ";
936    }
937    nl(Out);
938  }
939
940  void CppWriter::printConstants(const Module* M) {
941    // Traverse all the global variables looking for constant initializers
942    for (Module::const_global_iterator I = TheModule->global_begin(),
943           E = TheModule->global_end(); I != E; ++I)
944      if (I->hasInitializer())
945        printConstant(I->getInitializer());
946
947    // Traverse the LLVM functions looking for constants
948    for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
949         FI != FE; ++FI) {
950      // Add all of the basic blocks and instructions
951      for (Function::const_iterator BB = FI->begin(),
952             E = FI->end(); BB != E; ++BB) {
953        for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
954             ++I) {
955          for (unsigned i = 0; i < I->getNumOperands(); ++i) {
956            if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
957              printConstant(C);
958            }
959          }
960        }
961      }
962    }
963  }
964
965  void CppWriter::printVariableUses(const GlobalVariable *GV) {
966    nl(Out) << "// Type Definitions";
967    nl(Out);
968    printType(GV->getType());
969    if (GV->hasInitializer()) {
970      Constant* Init = GV->getInitializer();
971      printType(Init->getType());
972      if (Function* F = dyn_cast<Function>(Init)) {
973        nl(Out)<< "/ Function Declarations"; nl(Out);
974        printFunctionHead(F);
975      } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
976        nl(Out) << "// Global Variable Declarations"; nl(Out);
977        printVariableHead(gv);
978      } else  {
979        nl(Out) << "// Constant Definitions"; nl(Out);
980        printConstant(gv);
981      }
982      if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
983        nl(Out) << "// Global Variable Definitions"; nl(Out);
984        printVariableBody(gv);
985      }
986    }
987  }
988
989  void CppWriter::printVariableHead(const GlobalVariable *GV) {
990    nl(Out) << "GlobalVariable* " << getCppName(GV);
991    if (is_inline) {
992      Out << " = mod->getGlobalVariable(";
993      printEscapedString(GV->getName());
994      Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
995      nl(Out) << "if (!" << getCppName(GV) << ") {";
996      in(); nl(Out) << getCppName(GV);
997    }
998    Out << " = new GlobalVariable(";
999    nl(Out) << "/*Type=*/";
1000    printCppName(GV->getType()->getElementType());
1001    Out << ",";
1002    nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1003    Out << ",";
1004    nl(Out) << "/*Linkage=*/";
1005    printLinkageType(GV->getLinkage());
1006    Out << ",";
1007    nl(Out) << "/*Initializer=*/0, ";
1008    if (GV->hasInitializer()) {
1009      Out << "// has initializer, specified below";
1010    }
1011    nl(Out) << "/*Name=*/\"";
1012    printEscapedString(GV->getName());
1013    Out << "\",";
1014    nl(Out) << "mod);";
1015    nl(Out);
1016
1017    if (GV->hasSection()) {
1018      printCppName(GV);
1019      Out << "->setSection(\"";
1020      printEscapedString(GV->getSection());
1021      Out << "\");";
1022      nl(Out);
1023    }
1024    if (GV->getAlignment()) {
1025      printCppName(GV);
1026      Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1027      nl(Out);
1028    }
1029    if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1030      printCppName(GV);
1031      Out << "->setVisibility(";
1032      printVisibilityType(GV->getVisibility());
1033      Out << ");";
1034      nl(Out);
1035    }
1036    if (is_inline) {
1037      out(); Out << "}"; nl(Out);
1038    }
1039  }
1040
1041  void CppWriter::printVariableBody(const GlobalVariable *GV) {
1042    if (GV->hasInitializer()) {
1043      printCppName(GV);
1044      Out << "->setInitializer(";
1045      Out << getCppName(GV->getInitializer()) << ");";
1046      nl(Out);
1047    }
1048  }
1049
1050  std::string CppWriter::getOpName(Value* V) {
1051    if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1052      return getCppName(V);
1053
1054    // See if its alread in the map of forward references, if so just return the
1055    // name we already set up for it
1056    ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1057    if (I != ForwardRefs.end())
1058      return I->second;
1059
1060    // This is a new forward reference. Generate a unique name for it
1061    std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1062
1063    // Yes, this is a hack. An Argument is the smallest instantiable value that
1064    // we can make as a placeholder for the real value. We'll replace these
1065    // Argument instances later.
1066    Out << "Argument* " << result << " = new Argument("
1067        << getCppName(V->getType()) << ");";
1068    nl(Out);
1069    ForwardRefs[V] = result;
1070    return result;
1071  }
1072
1073  // printInstruction - This member is called for each Instruction in a function.
1074  void CppWriter::printInstruction(const Instruction *I,
1075                                   const std::string& bbname) {
1076    std::string iName(getCppName(I));
1077
1078    // Before we emit this instruction, we need to take care of generating any
1079    // forward references. So, we get the names of all the operands in advance
1080    std::string* opNames = new std::string[I->getNumOperands()];
1081    for (unsigned i = 0; i < I->getNumOperands(); i++) {
1082      opNames[i] = getOpName(I->getOperand(i));
1083    }
1084
1085    switch (I->getOpcode()) {
1086    default:
1087      error("Invalid instruction");
1088      break;
1089
1090    case Instruction::Ret: {
1091      const ReturnInst* ret =  cast<ReturnInst>(I);
1092      Out << "ReturnInst::Create("
1093          << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1094      break;
1095    }
1096    case Instruction::Br: {
1097      const BranchInst* br = cast<BranchInst>(I);
1098      Out << "BranchInst::Create(" ;
1099      if (br->getNumOperands() == 3 ) {
1100        Out << opNames[2] << ", "
1101            << opNames[1] << ", "
1102            << opNames[0] << ", ";
1103
1104      } else if (br->getNumOperands() == 1) {
1105        Out << opNames[0] << ", ";
1106      } else {
1107        error("Branch with 2 operands?");
1108      }
1109      Out << bbname << ");";
1110      break;
1111    }
1112    case Instruction::Switch: {
1113      const SwitchInst* sw = cast<SwitchInst>(I);
1114      Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1115          << opNames[0] << ", "
1116          << opNames[1] << ", "
1117          << sw->getNumCases() << ", " << bbname << ");";
1118      nl(Out);
1119      for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
1120        Out << iName << "->addCase("
1121            << opNames[i] << ", "
1122            << opNames[i+1] << ");";
1123        nl(Out);
1124      }
1125      break;
1126    }
1127    case Instruction::Invoke: {
1128      const InvokeInst* inv = cast<InvokeInst>(I);
1129      Out << "std::vector<Value*> " << iName << "_params;";
1130      nl(Out);
1131      for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1132        Out << iName << "_params.push_back("
1133            << opNames[i] << ");";
1134        nl(Out);
1135      }
1136      Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1137          << opNames[0] << ", "
1138          << opNames[1] << ", "
1139          << opNames[2] << ", "
1140          << iName << "_params.begin(), " << iName << "_params.end(), \"";
1141      printEscapedString(inv->getName());
1142      Out << "\", " << bbname << ");";
1143      nl(Out) << iName << "->setCallingConv(";
1144      printCallingConv(inv->getCallingConv());
1145      Out << ");";
1146      printAttributes(inv->getAttributes(), iName);
1147      Out << iName << "->setAttributes(" << iName << "_PAL);";
1148      nl(Out);
1149      break;
1150    }
1151    case Instruction::Unwind: {
1152      Out << "new UnwindInst("
1153          << bbname << ");";
1154      break;
1155    }
1156    case Instruction::Unreachable:{
1157      Out << "new UnreachableInst("
1158          << bbname << ");";
1159      break;
1160    }
1161    case Instruction::Add:
1162    case Instruction::Sub:
1163    case Instruction::Mul:
1164    case Instruction::UDiv:
1165    case Instruction::SDiv:
1166    case Instruction::FDiv:
1167    case Instruction::URem:
1168    case Instruction::SRem:
1169    case Instruction::FRem:
1170    case Instruction::And:
1171    case Instruction::Or:
1172    case Instruction::Xor:
1173    case Instruction::Shl:
1174    case Instruction::LShr:
1175    case Instruction::AShr:{
1176      Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1177      switch (I->getOpcode()) {
1178      case Instruction::Add: Out << "Instruction::Add"; break;
1179      case Instruction::Sub: Out << "Instruction::Sub"; break;
1180      case Instruction::Mul: Out << "Instruction::Mul"; break;
1181      case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1182      case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1183      case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1184      case Instruction::URem:Out << "Instruction::URem"; break;
1185      case Instruction::SRem:Out << "Instruction::SRem"; break;
1186      case Instruction::FRem:Out << "Instruction::FRem"; break;
1187      case Instruction::And: Out << "Instruction::And"; break;
1188      case Instruction::Or:  Out << "Instruction::Or";  break;
1189      case Instruction::Xor: Out << "Instruction::Xor"; break;
1190      case Instruction::Shl: Out << "Instruction::Shl"; break;
1191      case Instruction::LShr:Out << "Instruction::LShr"; break;
1192      case Instruction::AShr:Out << "Instruction::AShr"; break;
1193      default: Out << "Instruction::BadOpCode"; break;
1194      }
1195      Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1196      printEscapedString(I->getName());
1197      Out << "\", " << bbname << ");";
1198      break;
1199    }
1200    case Instruction::FCmp: {
1201      Out << "FCmpInst* " << iName << " = new FCmpInst(";
1202      switch (cast<FCmpInst>(I)->getPredicate()) {
1203      case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1204      case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1205      case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1206      case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1207      case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1208      case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1209      case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1210      case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1211      case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1212      case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1213      case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1214      case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1215      case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1216      case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1217      case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1218      case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1219      default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1220      }
1221      Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1222      printEscapedString(I->getName());
1223      Out << "\", " << bbname << ");";
1224      break;
1225    }
1226    case Instruction::ICmp: {
1227      Out << "ICmpInst* " << iName << " = new ICmpInst(";
1228      switch (cast<ICmpInst>(I)->getPredicate()) {
1229      case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1230      case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1231      case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1232      case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1233      case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1234      case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1235      case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1236      case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1237      case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1238      case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1239      default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1240      }
1241      Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1242      printEscapedString(I->getName());
1243      Out << "\", " << bbname << ");";
1244      break;
1245    }
1246    case Instruction::Malloc: {
1247      const MallocInst* mallocI = cast<MallocInst>(I);
1248      Out << "MallocInst* " << iName << " = new MallocInst("
1249          << getCppName(mallocI->getAllocatedType()) << ", ";
1250      if (mallocI->isArrayAllocation())
1251        Out << opNames[0] << ", " ;
1252      Out << "\"";
1253      printEscapedString(mallocI->getName());
1254      Out << "\", " << bbname << ");";
1255      if (mallocI->getAlignment())
1256        nl(Out) << iName << "->setAlignment("
1257            << mallocI->getAlignment() << ");";
1258      break;
1259    }
1260    case Instruction::Free: {
1261      Out << "FreeInst* " << iName << " = new FreeInst("
1262          << getCppName(I->getOperand(0)) << ", " << bbname << ");";
1263      break;
1264    }
1265    case Instruction::Alloca: {
1266      const AllocaInst* allocaI = cast<AllocaInst>(I);
1267      Out << "AllocaInst* " << iName << " = new AllocaInst("
1268          << getCppName(allocaI->getAllocatedType()) << ", ";
1269      if (allocaI->isArrayAllocation())
1270        Out << opNames[0] << ", ";
1271      Out << "\"";
1272      printEscapedString(allocaI->getName());
1273      Out << "\", " << bbname << ");";
1274      if (allocaI->getAlignment())
1275        nl(Out) << iName << "->setAlignment("
1276            << allocaI->getAlignment() << ");";
1277      break;
1278    }
1279    case Instruction::Load:{
1280      const LoadInst* load = cast<LoadInst>(I);
1281      Out << "LoadInst* " << iName << " = new LoadInst("
1282          << opNames[0] << ", \"";
1283      printEscapedString(load->getName());
1284      Out << "\", " << (load->isVolatile() ? "true" : "false" )
1285          << ", " << bbname << ");";
1286      break;
1287    }
1288    case Instruction::Store: {
1289      const StoreInst* store = cast<StoreInst>(I);
1290      Out << " new StoreInst("
1291          << opNames[0] << ", "
1292          << opNames[1] << ", "
1293          << (store->isVolatile() ? "true" : "false")
1294          << ", " << bbname << ");";
1295      break;
1296    }
1297    case Instruction::GetElementPtr: {
1298      const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1299      if (gep->getNumOperands() <= 2) {
1300        Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1301            << opNames[0];
1302        if (gep->getNumOperands() == 2)
1303          Out << ", " << opNames[1];
1304      } else {
1305        Out << "std::vector<Value*> " << iName << "_indices;";
1306        nl(Out);
1307        for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1308          Out << iName << "_indices.push_back("
1309              << opNames[i] << ");";
1310          nl(Out);
1311        }
1312        Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1313            << opNames[0] << ", " << iName << "_indices.begin(), "
1314            << iName << "_indices.end()";
1315      }
1316      Out << ", \"";
1317      printEscapedString(gep->getName());
1318      Out << "\", " << bbname << ");";
1319      break;
1320    }
1321    case Instruction::PHI: {
1322      const PHINode* phi = cast<PHINode>(I);
1323
1324      Out << "PHINode* " << iName << " = PHINode::Create("
1325          << getCppName(phi->getType()) << ", \"";
1326      printEscapedString(phi->getName());
1327      Out << "\", " << bbname << ");";
1328      nl(Out) << iName << "->reserveOperandSpace("
1329        << phi->getNumIncomingValues()
1330          << ");";
1331      nl(Out);
1332      for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1333        Out << iName << "->addIncoming("
1334            << opNames[i] << ", " << opNames[i+1] << ");";
1335        nl(Out);
1336      }
1337      break;
1338    }
1339    case Instruction::Trunc:
1340    case Instruction::ZExt:
1341    case Instruction::SExt:
1342    case Instruction::FPTrunc:
1343    case Instruction::FPExt:
1344    case Instruction::FPToUI:
1345    case Instruction::FPToSI:
1346    case Instruction::UIToFP:
1347    case Instruction::SIToFP:
1348    case Instruction::PtrToInt:
1349    case Instruction::IntToPtr:
1350    case Instruction::BitCast: {
1351      const CastInst* cst = cast<CastInst>(I);
1352      Out << "CastInst* " << iName << " = new ";
1353      switch (I->getOpcode()) {
1354      case Instruction::Trunc:    Out << "TruncInst"; break;
1355      case Instruction::ZExt:     Out << "ZExtInst"; break;
1356      case Instruction::SExt:     Out << "SExtInst"; break;
1357      case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1358      case Instruction::FPExt:    Out << "FPExtInst"; break;
1359      case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1360      case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1361      case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1362      case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1363      case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1364      case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1365      case Instruction::BitCast:  Out << "BitCastInst"; break;
1366      default: assert(!"Unreachable"); break;
1367      }
1368      Out << "(" << opNames[0] << ", "
1369          << getCppName(cst->getType()) << ", \"";
1370      printEscapedString(cst->getName());
1371      Out << "\", " << bbname << ");";
1372      break;
1373    }
1374    case Instruction::Call:{
1375      const CallInst* call = cast<CallInst>(I);
1376      if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1377        Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1378            << getCppName(ila->getFunctionType()) << ", \""
1379            << ila->getAsmString() << "\", \""
1380            << ila->getConstraintString() << "\","
1381            << (ila->hasSideEffects() ? "true" : "false") << ");";
1382        nl(Out);
1383      }
1384      if (call->getNumOperands() > 2) {
1385        Out << "std::vector<Value*> " << iName << "_params;";
1386        nl(Out);
1387        for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1388          Out << iName << "_params.push_back(" << opNames[i] << ");";
1389          nl(Out);
1390        }
1391        Out << "CallInst* " << iName << " = CallInst::Create("
1392            << opNames[0] << ", " << iName << "_params.begin(), "
1393            << iName << "_params.end(), \"";
1394      } else if (call->getNumOperands() == 2) {
1395        Out << "CallInst* " << iName << " = CallInst::Create("
1396            << opNames[0] << ", " << opNames[1] << ", \"";
1397      } else {
1398        Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1399            << ", \"";
1400      }
1401      printEscapedString(call->getName());
1402      Out << "\", " << bbname << ");";
1403      nl(Out) << iName << "->setCallingConv(";
1404      printCallingConv(call->getCallingConv());
1405      Out << ");";
1406      nl(Out) << iName << "->setTailCall("
1407          << (call->isTailCall() ? "true":"false");
1408      Out << ");";
1409      printAttributes(call->getAttributes(), iName);
1410      Out << iName << "->setAttributes(" << iName << "_PAL);";
1411      nl(Out);
1412      break;
1413    }
1414    case Instruction::Select: {
1415      const SelectInst* sel = cast<SelectInst>(I);
1416      Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1417      Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1418      printEscapedString(sel->getName());
1419      Out << "\", " << bbname << ");";
1420      break;
1421    }
1422    case Instruction::UserOp1:
1423      /// FALL THROUGH
1424    case Instruction::UserOp2: {
1425      /// FIXME: What should be done here?
1426      break;
1427    }
1428    case Instruction::VAArg: {
1429      const VAArgInst* va = cast<VAArgInst>(I);
1430      Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1431          << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1432      printEscapedString(va->getName());
1433      Out << "\", " << bbname << ");";
1434      break;
1435    }
1436    case Instruction::ExtractElement: {
1437      const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1438      Out << "ExtractElementInst* " << getCppName(eei)
1439          << " = new ExtractElementInst(" << opNames[0]
1440          << ", " << opNames[1] << ", \"";
1441      printEscapedString(eei->getName());
1442      Out << "\", " << bbname << ");";
1443      break;
1444    }
1445    case Instruction::InsertElement: {
1446      const InsertElementInst* iei = cast<InsertElementInst>(I);
1447      Out << "InsertElementInst* " << getCppName(iei)
1448          << " = InsertElementInst::Create(" << opNames[0]
1449          << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1450      printEscapedString(iei->getName());
1451      Out << "\", " << bbname << ");";
1452      break;
1453    }
1454    case Instruction::ShuffleVector: {
1455      const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1456      Out << "ShuffleVectorInst* " << getCppName(svi)
1457          << " = new ShuffleVectorInst(" << opNames[0]
1458          << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1459      printEscapedString(svi->getName());
1460      Out << "\", " << bbname << ");";
1461      break;
1462    }
1463    case Instruction::ExtractValue: {
1464      const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1465      Out << "std::vector<unsigned> " << iName << "_indices;";
1466      nl(Out);
1467      for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1468        Out << iName << "_indices.push_back("
1469            << evi->idx_begin()[i] << ");";
1470        nl(Out);
1471      }
1472      Out << "ExtractValueInst* " << getCppName(evi)
1473          << " = ExtractValueInst::Create(" << opNames[0]
1474          << ", "
1475          << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1476      printEscapedString(evi->getName());
1477      Out << "\", " << bbname << ");";
1478      break;
1479    }
1480    case Instruction::InsertValue: {
1481      const InsertValueInst *ivi = cast<InsertValueInst>(I);
1482      Out << "std::vector<unsigned> " << iName << "_indices;";
1483      nl(Out);
1484      for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1485        Out << iName << "_indices.push_back("
1486            << ivi->idx_begin()[i] << ");";
1487        nl(Out);
1488      }
1489      Out << "InsertValueInst* " << getCppName(ivi)
1490          << " = InsertValueInst::Create(" << opNames[0]
1491          << ", " << opNames[1] << ", "
1492          << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1493      printEscapedString(ivi->getName());
1494      Out << "\", " << bbname << ");";
1495      break;
1496    }
1497  }
1498  DefinedValues.insert(I);
1499  nl(Out);
1500  delete [] opNames;
1501}
1502
1503  // Print out the types, constants and declarations needed by one function
1504  void CppWriter::printFunctionUses(const Function* F) {
1505    nl(Out) << "// Type Definitions"; nl(Out);
1506    if (!is_inline) {
1507      // Print the function's return type
1508      printType(F->getReturnType());
1509
1510      // Print the function's function type
1511      printType(F->getFunctionType());
1512
1513      // Print the types of each of the function's arguments
1514      for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1515           AI != AE; ++AI) {
1516        printType(AI->getType());
1517      }
1518    }
1519
1520    // Print type definitions for every type referenced by an instruction and
1521    // make a note of any global values or constants that are referenced
1522    SmallPtrSet<GlobalValue*,64> gvs;
1523    SmallPtrSet<Constant*,64> consts;
1524    for (Function::const_iterator BB = F->begin(), BE = F->end();
1525         BB != BE; ++BB){
1526      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1527           I != E; ++I) {
1528        // Print the type of the instruction itself
1529        printType(I->getType());
1530
1531        // Print the type of each of the instruction's operands
1532        for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1533          Value* operand = I->getOperand(i);
1534          printType(operand->getType());
1535
1536          // If the operand references a GVal or Constant, make a note of it
1537          if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1538            gvs.insert(GV);
1539            if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1540              if (GVar->hasInitializer())
1541                consts.insert(GVar->getInitializer());
1542          } else if (Constant* C = dyn_cast<Constant>(operand))
1543            consts.insert(C);
1544        }
1545      }
1546    }
1547
1548    // Print the function declarations for any functions encountered
1549    nl(Out) << "// Function Declarations"; nl(Out);
1550    for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1551         I != E; ++I) {
1552      if (Function* Fun = dyn_cast<Function>(*I)) {
1553        if (!is_inline || Fun != F)
1554          printFunctionHead(Fun);
1555      }
1556    }
1557
1558    // Print the global variable declarations for any variables encountered
1559    nl(Out) << "// Global Variable Declarations"; nl(Out);
1560    for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1561         I != E; ++I) {
1562      if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1563        printVariableHead(F);
1564    }
1565
1566  // Print the constants found
1567    nl(Out) << "// Constant Definitions"; nl(Out);
1568    for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1569           E = consts.end(); I != E; ++I) {
1570      printConstant(*I);
1571    }
1572
1573    // Process the global variables definitions now that all the constants have
1574    // been emitted. These definitions just couple the gvars with their constant
1575    // initializers.
1576    nl(Out) << "// Global Variable Definitions"; nl(Out);
1577    for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1578         I != E; ++I) {
1579      if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1580        printVariableBody(GV);
1581    }
1582  }
1583
1584  void CppWriter::printFunctionHead(const Function* F) {
1585    nl(Out) << "Function* " << getCppName(F);
1586    if (is_inline) {
1587      Out << " = mod->getFunction(\"";
1588      printEscapedString(F->getName());
1589      Out << "\", " << getCppName(F->getFunctionType()) << ");";
1590      nl(Out) << "if (!" << getCppName(F) << ") {";
1591      nl(Out) << getCppName(F);
1592    }
1593    Out<< " = Function::Create(";
1594    nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1595    nl(Out) << "/*Linkage=*/";
1596    printLinkageType(F->getLinkage());
1597    Out << ",";
1598    nl(Out) << "/*Name=*/\"";
1599    printEscapedString(F->getName());
1600    Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1601    nl(Out,-1);
1602    printCppName(F);
1603    Out << "->setCallingConv(";
1604    printCallingConv(F->getCallingConv());
1605    Out << ");";
1606    nl(Out);
1607    if (F->hasSection()) {
1608      printCppName(F);
1609      Out << "->setSection(\"" << F->getSection() << "\");";
1610      nl(Out);
1611    }
1612    if (F->getAlignment()) {
1613      printCppName(F);
1614      Out << "->setAlignment(" << F->getAlignment() << ");";
1615      nl(Out);
1616    }
1617    if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1618      printCppName(F);
1619      Out << "->setVisibility(";
1620      printVisibilityType(F->getVisibility());
1621      Out << ");";
1622      nl(Out);
1623    }
1624    if (F->hasGC()) {
1625      printCppName(F);
1626      Out << "->setGC(\"" << F->getGC() << "\");";
1627      nl(Out);
1628    }
1629    if (is_inline) {
1630      Out << "}";
1631      nl(Out);
1632    }
1633    printAttributes(F->getAttributes(), getCppName(F));
1634    printCppName(F);
1635    Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1636    nl(Out);
1637  }
1638
1639  void CppWriter::printFunctionBody(const Function *F) {
1640    if (F->isDeclaration())
1641      return; // external functions have no bodies.
1642
1643    // Clear the DefinedValues and ForwardRefs maps because we can't have
1644    // cross-function forward refs
1645    ForwardRefs.clear();
1646    DefinedValues.clear();
1647
1648    // Create all the argument values
1649    if (!is_inline) {
1650      if (!F->arg_empty()) {
1651        Out << "Function::arg_iterator args = " << getCppName(F)
1652            << "->arg_begin();";
1653        nl(Out);
1654      }
1655      for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1656           AI != AE; ++AI) {
1657        Out << "Value* " << getCppName(AI) << " = args++;";
1658        nl(Out);
1659        if (AI->hasName()) {
1660          Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1661          nl(Out);
1662        }
1663      }
1664    }
1665
1666    // Create all the basic blocks
1667    nl(Out);
1668    for (Function::const_iterator BI = F->begin(), BE = F->end();
1669         BI != BE; ++BI) {
1670      std::string bbname(getCppName(BI));
1671      Out << "BasicBlock* " << bbname << " = BasicBlock::Create(\"";
1672      if (BI->hasName())
1673        printEscapedString(BI->getName());
1674      Out << "\"," << getCppName(BI->getParent()) << ",0);";
1675      nl(Out);
1676    }
1677
1678    // Output all of its basic blocks... for the function
1679    for (Function::const_iterator BI = F->begin(), BE = F->end();
1680         BI != BE; ++BI) {
1681      std::string bbname(getCppName(BI));
1682      nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1683      nl(Out);
1684
1685      // Output all of the instructions in the basic block...
1686      for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1687           I != E; ++I) {
1688        printInstruction(I,bbname);
1689      }
1690    }
1691
1692    // Loop over the ForwardRefs and resolve them now that all instructions
1693    // are generated.
1694    if (!ForwardRefs.empty()) {
1695      nl(Out) << "// Resolve Forward References";
1696      nl(Out);
1697    }
1698
1699    while (!ForwardRefs.empty()) {
1700      ForwardRefMap::iterator I = ForwardRefs.begin();
1701      Out << I->second << "->replaceAllUsesWith("
1702          << getCppName(I->first) << "); delete " << I->second << ";";
1703      nl(Out);
1704      ForwardRefs.erase(I);
1705    }
1706  }
1707
1708  void CppWriter::printInline(const std::string& fname,
1709                              const std::string& func) {
1710    const Function* F = TheModule->getFunction(func);
1711    if (!F) {
1712      error(std::string("Function '") + func + "' not found in input module");
1713      return;
1714    }
1715    if (F->isDeclaration()) {
1716      error(std::string("Function '") + func + "' is external!");
1717      return;
1718    }
1719    nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1720            << getCppName(F);
1721    unsigned arg_count = 1;
1722    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1723         AI != AE; ++AI) {
1724      Out << ", Value* arg_" << arg_count;
1725    }
1726    Out << ") {";
1727    nl(Out);
1728    is_inline = true;
1729    printFunctionUses(F);
1730    printFunctionBody(F);
1731    is_inline = false;
1732    Out << "return " << getCppName(F->begin()) << ";";
1733    nl(Out) << "}";
1734    nl(Out);
1735  }
1736
1737  void CppWriter::printModuleBody() {
1738    // Print out all the type definitions
1739    nl(Out) << "// Type Definitions"; nl(Out);
1740    printTypes(TheModule);
1741
1742    // Functions can call each other and global variables can reference them so
1743    // define all the functions first before emitting their function bodies.
1744    nl(Out) << "// Function Declarations"; nl(Out);
1745    for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1746         I != E; ++I)
1747      printFunctionHead(I);
1748
1749    // Process the global variables declarations. We can't initialze them until
1750    // after the constants are printed so just print a header for each global
1751    nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1752    for (Module::const_global_iterator I = TheModule->global_begin(),
1753           E = TheModule->global_end(); I != E; ++I) {
1754      printVariableHead(I);
1755    }
1756
1757    // Print out all the constants definitions. Constants don't recurse except
1758    // through GlobalValues. All GlobalValues have been declared at this point
1759    // so we can proceed to generate the constants.
1760    nl(Out) << "// Constant Definitions"; nl(Out);
1761    printConstants(TheModule);
1762
1763    // Process the global variables definitions now that all the constants have
1764    // been emitted. These definitions just couple the gvars with their constant
1765    // initializers.
1766    nl(Out) << "// Global Variable Definitions"; nl(Out);
1767    for (Module::const_global_iterator I = TheModule->global_begin(),
1768           E = TheModule->global_end(); I != E; ++I) {
1769      printVariableBody(I);
1770    }
1771
1772    // Finally, we can safely put out all of the function bodies.
1773    nl(Out) << "// Function Definitions"; nl(Out);
1774    for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1775         I != E; ++I) {
1776      if (!I->isDeclaration()) {
1777        nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1778                << ")";
1779        nl(Out) << "{";
1780        nl(Out,1);
1781        printFunctionBody(I);
1782        nl(Out,-1) << "}";
1783        nl(Out);
1784      }
1785    }
1786  }
1787
1788  void CppWriter::printProgram(const std::string& fname,
1789                               const std::string& mName) {
1790    Out << "#include <llvm/Module.h>\n";
1791    Out << "#include <llvm/DerivedTypes.h>\n";
1792    Out << "#include <llvm/Constants.h>\n";
1793    Out << "#include <llvm/GlobalVariable.h>\n";
1794    Out << "#include <llvm/Function.h>\n";
1795    Out << "#include <llvm/CallingConv.h>\n";
1796    Out << "#include <llvm/BasicBlock.h>\n";
1797    Out << "#include <llvm/Instructions.h>\n";
1798    Out << "#include <llvm/InlineAsm.h>\n";
1799    Out << "#include <llvm/Support/MathExtras.h>\n";
1800    Out << "#include <llvm/Support/raw_ostream.h>\n";
1801    Out << "#include <llvm/Pass.h>\n";
1802    Out << "#include <llvm/PassManager.h>\n";
1803    Out << "#include <llvm/ADT/SmallVector.h>\n";
1804    Out << "#include <llvm/Analysis/Verifier.h>\n";
1805    Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1806    Out << "#include <algorithm>\n";
1807    Out << "using namespace llvm;\n\n";
1808    Out << "Module* " << fname << "();\n\n";
1809    Out << "int main(int argc, char**argv) {\n";
1810    Out << "  Module* Mod = " << fname << "();\n";
1811    Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1812    Out << "  outs().flush();\n";
1813    Out << "  PassManager PM;\n";
1814    Out << "  PM.add(createPrintModulePass(&outs()));\n";
1815    Out << "  PM.run(*Mod);\n";
1816    Out << "  return 0;\n";
1817    Out << "}\n\n";
1818    printModule(fname,mName);
1819  }
1820
1821  void CppWriter::printModule(const std::string& fname,
1822                              const std::string& mName) {
1823    nl(Out) << "Module* " << fname << "() {";
1824    nl(Out,1) << "// Module Construction";
1825    nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
1826    if (!TheModule->getTargetTriple().empty()) {
1827      nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1828    }
1829    if (!TheModule->getTargetTriple().empty()) {
1830      nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1831              << "\");";
1832    }
1833
1834    if (!TheModule->getModuleInlineAsm().empty()) {
1835      nl(Out) << "mod->setModuleInlineAsm(\"";
1836      printEscapedString(TheModule->getModuleInlineAsm());
1837      Out << "\");";
1838    }
1839    nl(Out);
1840
1841    // Loop over the dependent libraries and emit them.
1842    Module::lib_iterator LI = TheModule->lib_begin();
1843    Module::lib_iterator LE = TheModule->lib_end();
1844    while (LI != LE) {
1845      Out << "mod->addLibrary(\"" << *LI << "\");";
1846      nl(Out);
1847      ++LI;
1848    }
1849    printModuleBody();
1850    nl(Out) << "return mod;";
1851    nl(Out,-1) << "}";
1852    nl(Out);
1853  }
1854
1855  void CppWriter::printContents(const std::string& fname,
1856                                const std::string& mName) {
1857    Out << "\nModule* " << fname << "(Module *mod) {\n";
1858    Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
1859    printModuleBody();
1860    Out << "\nreturn mod;\n";
1861    Out << "\n}\n";
1862  }
1863
1864  void CppWriter::printFunction(const std::string& fname,
1865                                const std::string& funcName) {
1866    const Function* F = TheModule->getFunction(funcName);
1867    if (!F) {
1868      error(std::string("Function '") + funcName + "' not found in input module");
1869      return;
1870    }
1871    Out << "\nFunction* " << fname << "(Module *mod) {\n";
1872    printFunctionUses(F);
1873    printFunctionHead(F);
1874    printFunctionBody(F);
1875    Out << "return " << getCppName(F) << ";\n";
1876    Out << "}\n";
1877  }
1878
1879  void CppWriter::printFunctions() {
1880    const Module::FunctionListType &funcs = TheModule->getFunctionList();
1881    Module::const_iterator I  = funcs.begin();
1882    Module::const_iterator IE = funcs.end();
1883
1884    for (; I != IE; ++I) {
1885      const Function &func = *I;
1886      if (!func.isDeclaration()) {
1887        std::string name("define_");
1888        name += func.getName();
1889        printFunction(name, func.getName());
1890      }
1891    }
1892  }
1893
1894  void CppWriter::printVariable(const std::string& fname,
1895                                const std::string& varName) {
1896    const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1897
1898    if (!GV) {
1899      error(std::string("Variable '") + varName + "' not found in input module");
1900      return;
1901    }
1902    Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1903    printVariableUses(GV);
1904    printVariableHead(GV);
1905    printVariableBody(GV);
1906    Out << "return " << getCppName(GV) << ";\n";
1907    Out << "}\n";
1908  }
1909
1910  void CppWriter::printType(const std::string& fname,
1911                            const std::string& typeName) {
1912    const Type* Ty = TheModule->getTypeByName(typeName);
1913    if (!Ty) {
1914      error(std::string("Type '") + typeName + "' not found in input module");
1915      return;
1916    }
1917    Out << "\nType* " << fname << "(Module *mod) {\n";
1918    printType(Ty);
1919    Out << "return " << getCppName(Ty) << ";\n";
1920    Out << "}\n";
1921  }
1922
1923  bool CppWriter::runOnModule(Module &M) {
1924    TheModule = &M;
1925
1926    // Emit a header
1927    Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1928
1929    // Get the name of the function we're supposed to generate
1930    std::string fname = FuncName.getValue();
1931
1932    // Get the name of the thing we are to generate
1933    std::string tgtname = NameToGenerate.getValue();
1934    if (GenerationType == GenModule ||
1935        GenerationType == GenContents ||
1936        GenerationType == GenProgram ||
1937        GenerationType == GenFunctions) {
1938      if (tgtname == "!bad!") {
1939        if (M.getModuleIdentifier() == "-")
1940          tgtname = "<stdin>";
1941        else
1942          tgtname = M.getModuleIdentifier();
1943      }
1944    } else if (tgtname == "!bad!")
1945      error("You must use the -for option with -gen-{function,variable,type}");
1946
1947    switch (WhatToGenerate(GenerationType)) {
1948     case GenProgram:
1949      if (fname.empty())
1950        fname = "makeLLVMModule";
1951      printProgram(fname,tgtname);
1952      break;
1953     case GenModule:
1954      if (fname.empty())
1955        fname = "makeLLVMModule";
1956      printModule(fname,tgtname);
1957      break;
1958     case GenContents:
1959      if (fname.empty())
1960        fname = "makeLLVMModuleContents";
1961      printContents(fname,tgtname);
1962      break;
1963     case GenFunction:
1964      if (fname.empty())
1965        fname = "makeLLVMFunction";
1966      printFunction(fname,tgtname);
1967      break;
1968     case GenFunctions:
1969      printFunctions();
1970      break;
1971     case GenInline:
1972      if (fname.empty())
1973        fname = "makeLLVMInline";
1974      printInline(fname,tgtname);
1975      break;
1976     case GenVariable:
1977      if (fname.empty())
1978        fname = "makeLLVMVariable";
1979      printVariable(fname,tgtname);
1980      break;
1981     case GenType:
1982      if (fname.empty())
1983        fname = "makeLLVMType";
1984      printType(fname,tgtname);
1985      break;
1986     default:
1987      error("Invalid generation option");
1988    }
1989
1990    return false;
1991  }
1992}
1993
1994char CppWriter::ID = 0;
1995
1996//===----------------------------------------------------------------------===//
1997//                       External Interface declaration
1998//===----------------------------------------------------------------------===//
1999
2000bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2001                                                raw_ostream &o,
2002                                                CodeGenFileType FileType,
2003                                                CodeGenOpt::Level OptLevel) {
2004  if (FileType != TargetMachine::AssemblyFile) return true;
2005  PM.add(new CppWriter(o));
2006  return false;
2007}
2008