ARMCodeEmitter.cpp revision 221345
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
171      const { return 0; }
172    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
189      unsigned Op) const { return 0; }
190    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
205      const { return 0; }
206    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
207      const { return 0; }
208    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
209      const { return 0; }
210    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
211      const { return 0; }
212    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
213      const { return 0; }
214    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
215      const { return 0; }
216    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
217      const { return 0; }
218    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
219      const { return 0; }
220    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
221      const { return 0; }
222    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
223      const { return 0; }
224    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
225      const { return 0; }
226    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
229                                            unsigned Op) const { return 0; }
230    unsigned getMsbOpValue(const MachineInstr &MI,
231                           unsigned Op) const { return 0; }
232    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
233      const {return 0; }
234    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
235      const { return 0; }
236
237    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
238      const {
239      // {17-13} = reg
240      // {12}    = (U)nsigned (add == '1', sub == '0')
241      // {11-0}  = imm12
242      const MachineOperand &MO  = MI.getOperand(Op);
243      const MachineOperand &MO1 = MI.getOperand(Op + 1);
244      if (!MO.isReg()) {
245        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
246        return 0;
247      }
248      unsigned Reg = getARMRegisterNumbering(MO.getReg());
249      int32_t Imm12 = MO1.getImm();
250      uint32_t Binary;
251      Binary = Imm12 & 0xfff;
252      if (Imm12 >= 0)
253        Binary |= (1 << 12);
254      Binary |= (Reg << 13);
255      return Binary;
256    }
257
258    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
259      return 0;
260    }
261
262    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
263      const { return 0;}
264    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
265      const { return 0;}
266    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
267      const { return 0;}
268    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
269      const { return 0; }
270    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
271      const { return 0; }
272    uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
273      const { return 0; }
274    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
275      const { return 0; }
276    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
277      const { return 0; }
278    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
279      // {17-13} = reg
280      // {12}    = (U)nsigned (add == '1', sub == '0')
281      // {11-0}  = imm12
282      const MachineOperand &MO  = MI.getOperand(Op);
283      const MachineOperand &MO1 = MI.getOperand(Op + 1);
284      if (!MO.isReg()) {
285        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
286        return 0;
287      }
288      unsigned Reg = getARMRegisterNumbering(MO.getReg());
289      int32_t Imm12 = MO1.getImm();
290
291      // Special value for #-0
292      if (Imm12 == INT32_MIN)
293        Imm12 = 0;
294
295      // Immediate is always encoded as positive. The 'U' bit controls add vs
296      // sub.
297      bool isAdd = true;
298      if (Imm12 < 0) {
299        Imm12 = -Imm12;
300        isAdd = false;
301      }
302
303      uint32_t Binary = Imm12 & 0xfff;
304      if (isAdd)
305        Binary |= (1 << 12);
306      Binary |= (Reg << 13);
307      return Binary;
308    }
309    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
310      const { return 0; }
311
312    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
313      const { return 0; }
314
315    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
316      const { return 0; }
317    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
318      const { return 0; }
319    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
320      const { return 0; }
321    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
322      const { return 0; }
323
324    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
325    /// machine operand requires relocation, record the relocation and return
326    /// zero.
327    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
328                            unsigned Reloc);
329
330    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
331    ///
332    unsigned getShiftOp(unsigned Imm) const ;
333
334    /// Routines that handle operands which add machine relocations which are
335    /// fixed up by the relocation stage.
336    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
337                           bool MayNeedFarStub,  bool Indirect,
338                           intptr_t ACPV = 0) const;
339    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
340    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
341    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
342    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
343                               intptr_t JTBase = 0) const;
344  };
345}
346
347char ARMCodeEmitter::ID = 0;
348
349/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
350/// code to the specified MCE object.
351FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
352                                                JITCodeEmitter &JCE) {
353  return new ARMCodeEmitter(TM, JCE);
354}
355
356bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
357  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
358          MF.getTarget().getRelocationModel() != Reloc::Static) &&
359         "JIT relocation model must be set to static or default!");
360  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
361  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
362  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
363  Subtarget = &TM.getSubtarget<ARMSubtarget>();
364  MCPEs = &MF.getConstantPool()->getConstants();
365  MJTEs = 0;
366  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
367  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
368  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
369  JTI->Initialize(MF, IsPIC);
370  MMI = &getAnalysis<MachineModuleInfo>();
371  MCE.setModuleInfo(MMI);
372
373  do {
374    DEBUG(errs() << "JITTing function '"
375          << MF.getFunction()->getName() << "'\n");
376    MCE.startFunction(MF);
377    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
378         MBB != E; ++MBB) {
379      MCE.StartMachineBasicBlock(MBB);
380      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
381           I != E; ++I)
382        emitInstruction(*I);
383    }
384  } while (MCE.finishFunction(MF));
385
386  return false;
387}
388
389/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
390///
391unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
392  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
393  default: llvm_unreachable("Unknown shift opc!");
394  case ARM_AM::asr: return 2;
395  case ARM_AM::lsl: return 0;
396  case ARM_AM::lsr: return 1;
397  case ARM_AM::ror:
398  case ARM_AM::rrx: return 3;
399  }
400  return 0;
401}
402
403/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
404/// machine operand requires relocation, record the relocation and return zero.
405unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
406                                        const MachineOperand &MO,
407                                        unsigned Reloc) {
408  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
409      && "Relocation to this function should be for movt or movw");
410
411  if (MO.isImm())
412    return static_cast<unsigned>(MO.getImm());
413  else if (MO.isGlobal())
414    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
415  else if (MO.isSymbol())
416    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
417  else if (MO.isMBB())
418    emitMachineBasicBlock(MO.getMBB(), Reloc);
419  else {
420#ifndef NDEBUG
421    errs() << MO;
422#endif
423    llvm_unreachable("Unsupported operand type for movw/movt");
424  }
425  return 0;
426}
427
428/// getMachineOpValue - Return binary encoding of operand. If the machine
429/// operand requires relocation, record the relocation and return zero.
430unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
431                                           const MachineOperand &MO) const {
432  if (MO.isReg())
433    return getARMRegisterNumbering(MO.getReg());
434  else if (MO.isImm())
435    return static_cast<unsigned>(MO.getImm());
436  else if (MO.isGlobal())
437    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
438  else if (MO.isSymbol())
439    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
440  else if (MO.isCPI()) {
441    const TargetInstrDesc &TID = MI.getDesc();
442    // For VFP load, the immediate offset is multiplied by 4.
443    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
444      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
445    emitConstPoolAddress(MO.getIndex(), Reloc);
446  } else if (MO.isJTI())
447    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
448  else if (MO.isMBB())
449    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
450  else
451    llvm_unreachable("Unable to encode MachineOperand!");
452  return 0;
453}
454
455/// emitGlobalAddress - Emit the specified address to the code stream.
456///
457void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
458                                       bool MayNeedFarStub, bool Indirect,
459                                       intptr_t ACPV) const {
460  MachineRelocation MR = Indirect
461    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
462                                           const_cast<GlobalValue *>(GV),
463                                           ACPV, MayNeedFarStub)
464    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
465                               const_cast<GlobalValue *>(GV), ACPV,
466                               MayNeedFarStub);
467  MCE.addRelocation(MR);
468}
469
470/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
471/// be emitted to the current location in the function, and allow it to be PC
472/// relative.
473void ARMCodeEmitter::
474emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
475  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
476                                                 Reloc, ES));
477}
478
479/// emitConstPoolAddress - Arrange for the address of an constant pool
480/// to be emitted to the current location in the function, and allow it to be PC
481/// relative.
482void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
483  // Tell JIT emitter we'll resolve the address.
484  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
485                                                    Reloc, CPI, 0, true));
486}
487
488/// emitJumpTableAddress - Arrange for the address of a jump table to
489/// be emitted to the current location in the function, and allow it to be PC
490/// relative.
491void ARMCodeEmitter::
492emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
493  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
494                                                    Reloc, JTIndex, 0, true));
495}
496
497/// emitMachineBasicBlock - Emit the specified address basic block.
498void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
499                                           unsigned Reloc,
500                                           intptr_t JTBase) const {
501  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
502                                             Reloc, BB, JTBase));
503}
504
505void ARMCodeEmitter::emitWordLE(unsigned Binary) {
506  DEBUG(errs() << "  0x";
507        errs().write_hex(Binary) << "\n");
508  MCE.emitWordLE(Binary);
509}
510
511void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
512  DEBUG(errs() << "  0x";
513        errs().write_hex(Binary) << "\n");
514  MCE.emitDWordLE(Binary);
515}
516
517void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
518  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
519
520  MCE.processDebugLoc(MI.getDebugLoc(), true);
521
522  ++NumEmitted;  // Keep track of the # of mi's emitted
523  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
524  default: {
525    llvm_unreachable("Unhandled instruction encoding format!");
526    break;
527  }
528  case ARMII::MiscFrm:
529    if (MI.getOpcode() == ARM::LEApcrelJT) {
530      // Materialize jumptable address.
531      emitLEApcrelJTInstruction(MI);
532      break;
533    }
534    llvm_unreachable("Unhandled instruction encoding!");
535    break;
536  case ARMII::Pseudo:
537    emitPseudoInstruction(MI);
538    break;
539  case ARMII::DPFrm:
540  case ARMII::DPSoRegFrm:
541    emitDataProcessingInstruction(MI);
542    break;
543  case ARMII::LdFrm:
544  case ARMII::StFrm:
545    emitLoadStoreInstruction(MI);
546    break;
547  case ARMII::LdMiscFrm:
548  case ARMII::StMiscFrm:
549    emitMiscLoadStoreInstruction(MI);
550    break;
551  case ARMII::LdStMulFrm:
552    emitLoadStoreMultipleInstruction(MI);
553    break;
554  case ARMII::MulFrm:
555    emitMulFrmInstruction(MI);
556    break;
557  case ARMII::ExtFrm:
558    emitExtendInstruction(MI);
559    break;
560  case ARMII::ArithMiscFrm:
561    emitMiscArithInstruction(MI);
562    break;
563  case ARMII::SatFrm:
564    emitSaturateInstruction(MI);
565    break;
566  case ARMII::BrFrm:
567    emitBranchInstruction(MI);
568    break;
569  case ARMII::BrMiscFrm:
570    emitMiscBranchInstruction(MI);
571    break;
572  // VFP instructions.
573  case ARMII::VFPUnaryFrm:
574  case ARMII::VFPBinaryFrm:
575    emitVFPArithInstruction(MI);
576    break;
577  case ARMII::VFPConv1Frm:
578  case ARMII::VFPConv2Frm:
579  case ARMII::VFPConv3Frm:
580  case ARMII::VFPConv4Frm:
581  case ARMII::VFPConv5Frm:
582    emitVFPConversionInstruction(MI);
583    break;
584  case ARMII::VFPLdStFrm:
585    emitVFPLoadStoreInstruction(MI);
586    break;
587  case ARMII::VFPLdStMulFrm:
588    emitVFPLoadStoreMultipleInstruction(MI);
589    break;
590
591  // NEON instructions.
592  case ARMII::NGetLnFrm:
593  case ARMII::NSetLnFrm:
594    emitNEONLaneInstruction(MI);
595    break;
596  case ARMII::NDupFrm:
597    emitNEONDupInstruction(MI);
598    break;
599  case ARMII::N1RegModImmFrm:
600    emitNEON1RegModImmInstruction(MI);
601    break;
602  case ARMII::N2RegFrm:
603    emitNEON2RegInstruction(MI);
604    break;
605  case ARMII::N3RegFrm:
606    emitNEON3RegInstruction(MI);
607    break;
608  }
609  MCE.processDebugLoc(MI.getDebugLoc(), false);
610}
611
612void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
613  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
614  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
615  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
616
617  // Remember the CONSTPOOL_ENTRY address for later relocation.
618  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
619
620  // Emit constpool island entry. In most cases, the actual values will be
621  // resolved and relocated after code emission.
622  if (MCPE.isMachineConstantPoolEntry()) {
623    ARMConstantPoolValue *ACPV =
624      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
625
626    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
627          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
628
629    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
630    const GlobalValue *GV = ACPV->getGV();
631    if (GV) {
632      Reloc::Model RelocM = TM.getRelocationModel();
633      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
634                        isa<Function>(GV),
635                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
636                        (intptr_t)ACPV);
637     } else  {
638      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
639    }
640    emitWordLE(0);
641  } else {
642    const Constant *CV = MCPE.Val.ConstVal;
643
644    DEBUG({
645        errs() << "  ** Constant pool #" << CPI << " @ "
646               << (void*)MCE.getCurrentPCValue() << " ";
647        if (const Function *F = dyn_cast<Function>(CV))
648          errs() << F->getName();
649        else
650          errs() << *CV;
651        errs() << '\n';
652      });
653
654    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
655      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
656      emitWordLE(0);
657    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
658      uint32_t Val = uint32_t(*CI->getValue().getRawData());
659      emitWordLE(Val);
660    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
661      if (CFP->getType()->isFloatTy())
662        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
663      else if (CFP->getType()->isDoubleTy())
664        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
665      else {
666        llvm_unreachable("Unable to handle this constantpool entry!");
667      }
668    } else {
669      llvm_unreachable("Unable to handle this constantpool entry!");
670    }
671  }
672}
673
674void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
675  const MachineOperand &MO0 = MI.getOperand(0);
676  const MachineOperand &MO1 = MI.getOperand(1);
677
678  // Emit the 'movw' instruction.
679  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
680
681  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
682
683  // Set the conditional execution predicate.
684  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
685
686  // Encode Rd.
687  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
688
689  // Encode imm16 as imm4:imm12
690  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
691  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
692  emitWordLE(Binary);
693
694  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
695  // Emit the 'movt' instruction.
696  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
697
698  // Set the conditional execution predicate.
699  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
700
701  // Encode Rd.
702  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
703
704  // Encode imm16 as imm4:imm1, same as movw above.
705  Binary |= Hi16 & 0xFFF;
706  Binary |= ((Hi16 >> 12) & 0xF) << 16;
707  emitWordLE(Binary);
708}
709
710void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
711  const MachineOperand &MO0 = MI.getOperand(0);
712  const MachineOperand &MO1 = MI.getOperand(1);
713  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
714                                                  "Not a valid so_imm value!");
715  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
716  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
717
718  // Emit the 'mov' instruction.
719  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
720
721  // Set the conditional execution predicate.
722  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
723
724  // Encode Rd.
725  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
726
727  // Encode so_imm.
728  // Set bit I(25) to identify this is the immediate form of <shifter_op>
729  Binary |= 1 << ARMII::I_BitShift;
730  Binary |= getMachineSoImmOpValue(V1);
731  emitWordLE(Binary);
732
733  // Now the 'orr' instruction.
734  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
735
736  // Set the conditional execution predicate.
737  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
738
739  // Encode Rd.
740  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
741
742  // Encode Rn.
743  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
744
745  // Encode so_imm.
746  // Set bit I(25) to identify this is the immediate form of <shifter_op>
747  Binary |= 1 << ARMII::I_BitShift;
748  Binary |= getMachineSoImmOpValue(V2);
749  emitWordLE(Binary);
750}
751
752void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
753  // It's basically add r, pc, (LJTI - $+8)
754
755  const TargetInstrDesc &TID = MI.getDesc();
756
757  // Emit the 'add' instruction.
758  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
759
760  // Set the conditional execution predicate
761  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
762
763  // Encode S bit if MI modifies CPSR.
764  Binary |= getAddrModeSBit(MI, TID);
765
766  // Encode Rd.
767  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
768
769  // Encode Rn which is PC.
770  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
771
772  // Encode the displacement.
773  Binary |= 1 << ARMII::I_BitShift;
774  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
775
776  emitWordLE(Binary);
777}
778
779void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
780  unsigned Opcode = MI.getDesc().Opcode;
781
782  // Part of binary is determined by TableGn.
783  unsigned Binary = getBinaryCodeForInstr(MI);
784
785  // Set the conditional execution predicate
786  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
787
788  // Encode S bit if MI modifies CPSR.
789  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
790    Binary |= 1 << ARMII::S_BitShift;
791
792  // Encode register def if there is one.
793  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
794
795  // Encode the shift operation.
796  switch (Opcode) {
797  default: break;
798  case ARM::RRX:
799    // rrx
800    Binary |= 0x6 << 4;
801    break;
802  case ARM::MOVsrl_flag:
803    // lsr #1
804    Binary |= (0x2 << 4) | (1 << 7);
805    break;
806  case ARM::MOVsra_flag:
807    // asr #1
808    Binary |= (0x4 << 4) | (1 << 7);
809    break;
810  }
811
812  // Encode register Rm.
813  Binary |= getMachineOpValue(MI, 1);
814
815  emitWordLE(Binary);
816}
817
818void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
819  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
820        << (void*)MCE.getCurrentPCValue() << '\n');
821  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
822}
823
824void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
825  unsigned Opcode = MI.getDesc().Opcode;
826  switch (Opcode) {
827  default:
828    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
829  case ARM::BX_CALL:
830  case ARM::BMOVPCRX_CALL:
831  case ARM::BXr9_CALL:
832  case ARM::BMOVPCRXr9_CALL: {
833    // First emit mov lr, pc
834    unsigned Binary = 0x01a0e00f;
835    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
836    emitWordLE(Binary);
837
838    // and then emit the branch.
839    emitMiscBranchInstruction(MI);
840    break;
841  }
842  case TargetOpcode::INLINEASM: {
843    // We allow inline assembler nodes with empty bodies - they can
844    // implicitly define registers, which is ok for JIT.
845    if (MI.getOperand(0).getSymbolName()[0]) {
846      report_fatal_error("JIT does not support inline asm!");
847    }
848    break;
849  }
850  case TargetOpcode::PROLOG_LABEL:
851  case TargetOpcode::EH_LABEL:
852    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
853    break;
854  case TargetOpcode::IMPLICIT_DEF:
855  case TargetOpcode::KILL:
856    // Do nothing.
857    break;
858  case ARM::CONSTPOOL_ENTRY:
859    emitConstPoolInstruction(MI);
860    break;
861  case ARM::PICADD: {
862    // Remember of the address of the PC label for relocation later.
863    addPCLabel(MI.getOperand(2).getImm());
864    // PICADD is just an add instruction that implicitly read pc.
865    emitDataProcessingInstruction(MI, 0, ARM::PC);
866    break;
867  }
868  case ARM::PICLDR:
869  case ARM::PICLDRB:
870  case ARM::PICSTR:
871  case ARM::PICSTRB: {
872    // Remember of the address of the PC label for relocation later.
873    addPCLabel(MI.getOperand(2).getImm());
874    // These are just load / store instructions that implicitly read pc.
875    emitLoadStoreInstruction(MI, 0, ARM::PC);
876    break;
877  }
878  case ARM::PICLDRH:
879  case ARM::PICLDRSH:
880  case ARM::PICLDRSB:
881  case ARM::PICSTRH: {
882    // Remember of the address of the PC label for relocation later.
883    addPCLabel(MI.getOperand(2).getImm());
884    // These are just load / store instructions that implicitly read pc.
885    emitMiscLoadStoreInstruction(MI, ARM::PC);
886    break;
887  }
888
889  case ARM::MOVi32imm:
890    // Two instructions to materialize a constant.
891    if (Subtarget->hasV6T2Ops())
892      emitMOVi32immInstruction(MI);
893    else
894      emitMOVi2piecesInstruction(MI);
895    break;
896
897  case ARM::LEApcrelJT:
898    // Materialize jumptable address.
899    emitLEApcrelJTInstruction(MI);
900    break;
901  case ARM::RRX:
902  case ARM::MOVsrl_flag:
903  case ARM::MOVsra_flag:
904    emitPseudoMoveInstruction(MI);
905    break;
906  }
907}
908
909unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
910                                                const TargetInstrDesc &TID,
911                                                const MachineOperand &MO,
912                                                unsigned OpIdx) {
913  unsigned Binary = getMachineOpValue(MI, MO);
914
915  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
916  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
917  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
918
919  // Encode the shift opcode.
920  unsigned SBits = 0;
921  unsigned Rs = MO1.getReg();
922  if (Rs) {
923    // Set shift operand (bit[7:4]).
924    // LSL - 0001
925    // LSR - 0011
926    // ASR - 0101
927    // ROR - 0111
928    // RRX - 0110 and bit[11:8] clear.
929    switch (SOpc) {
930    default: llvm_unreachable("Unknown shift opc!");
931    case ARM_AM::lsl: SBits = 0x1; break;
932    case ARM_AM::lsr: SBits = 0x3; break;
933    case ARM_AM::asr: SBits = 0x5; break;
934    case ARM_AM::ror: SBits = 0x7; break;
935    case ARM_AM::rrx: SBits = 0x6; break;
936    }
937  } else {
938    // Set shift operand (bit[6:4]).
939    // LSL - 000
940    // LSR - 010
941    // ASR - 100
942    // ROR - 110
943    switch (SOpc) {
944    default: llvm_unreachable("Unknown shift opc!");
945    case ARM_AM::lsl: SBits = 0x0; break;
946    case ARM_AM::lsr: SBits = 0x2; break;
947    case ARM_AM::asr: SBits = 0x4; break;
948    case ARM_AM::ror: SBits = 0x6; break;
949    }
950  }
951  Binary |= SBits << 4;
952  if (SOpc == ARM_AM::rrx)
953    return Binary;
954
955  // Encode the shift operation Rs or shift_imm (except rrx).
956  if (Rs) {
957    // Encode Rs bit[11:8].
958    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
959    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
960  }
961
962  // Encode shift_imm bit[11:7].
963  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
964}
965
966unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
967  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
968  assert(SoImmVal != -1 && "Not a valid so_imm value!");
969
970  // Encode rotate_imm.
971  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
972    << ARMII::SoRotImmShift;
973
974  // Encode immed_8.
975  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
976  return Binary;
977}
978
979unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
980                                         const TargetInstrDesc &TID) const {
981  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i >= e; --i){
982    const MachineOperand &MO = MI.getOperand(i-1);
983    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
984      return 1 << ARMII::S_BitShift;
985  }
986  return 0;
987}
988
989void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
990                                                   unsigned ImplicitRd,
991                                                   unsigned ImplicitRn) {
992  const TargetInstrDesc &TID = MI.getDesc();
993
994  // Part of binary is determined by TableGn.
995  unsigned Binary = getBinaryCodeForInstr(MI);
996
997  // Set the conditional execution predicate
998  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
999
1000  // Encode S bit if MI modifies CPSR.
1001  Binary |= getAddrModeSBit(MI, TID);
1002
1003  // Encode register def if there is one.
1004  unsigned NumDefs = TID.getNumDefs();
1005  unsigned OpIdx = 0;
1006  if (NumDefs)
1007    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1008  else if (ImplicitRd)
1009    // Special handling for implicit use (e.g. PC).
1010    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1011
1012  if (TID.Opcode == ARM::MOVi16) {
1013      // Get immediate from MI.
1014      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1015                      ARM::reloc_arm_movw);
1016      // Encode imm which is the same as in emitMOVi32immInstruction().
1017      Binary |= Lo16 & 0xFFF;
1018      Binary |= ((Lo16 >> 12) & 0xF) << 16;
1019      emitWordLE(Binary);
1020      return;
1021  } else if(TID.Opcode == ARM::MOVTi16) {
1022      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1023                       ARM::reloc_arm_movt) >> 16);
1024      Binary |= Hi16 & 0xFFF;
1025      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1026      emitWordLE(Binary);
1027      return;
1028  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
1029      uint32_t v = ~MI.getOperand(2).getImm();
1030      int32_t lsb = CountTrailingZeros_32(v);
1031      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1032      // Instr{20-16} = msb, Instr{11-7} = lsb
1033      Binary |= (msb & 0x1F) << 16;
1034      Binary |= (lsb & 0x1F) << 7;
1035      emitWordLE(Binary);
1036      return;
1037  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
1038      // Encode Rn in Instr{0-3}
1039      Binary |= getMachineOpValue(MI, OpIdx++);
1040
1041      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1042      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1043
1044      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1045      Binary |= (widthm1 & 0x1F) << 16;
1046      Binary |= (lsb & 0x1F) << 7;
1047      emitWordLE(Binary);
1048      return;
1049  }
1050
1051  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1052  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1053    ++OpIdx;
1054
1055  // Encode first non-shifter register operand if there is one.
1056  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
1057  if (!isUnary) {
1058    if (ImplicitRn)
1059      // Special handling for implicit use (e.g. PC).
1060      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1061    else {
1062      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1063      ++OpIdx;
1064    }
1065  }
1066
1067  // Encode shifter operand.
1068  const MachineOperand &MO = MI.getOperand(OpIdx);
1069  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1070    // Encode SoReg.
1071    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
1072    return;
1073  }
1074
1075  if (MO.isReg()) {
1076    // Encode register Rm.
1077    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1078    return;
1079  }
1080
1081  // Encode so_imm.
1082  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1083
1084  emitWordLE(Binary);
1085}
1086
1087void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1088                                              unsigned ImplicitRd,
1089                                              unsigned ImplicitRn) {
1090  const TargetInstrDesc &TID = MI.getDesc();
1091  unsigned Form = TID.TSFlags & ARMII::FormMask;
1092  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1093
1094  // Part of binary is determined by TableGn.
1095  unsigned Binary = getBinaryCodeForInstr(MI);
1096
1097  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1098  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1099      MI.getOpcode() == ARM::STRi12) {
1100    emitWordLE(Binary);
1101    return;
1102  }
1103
1104  // Set the conditional execution predicate
1105  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1106
1107  unsigned OpIdx = 0;
1108
1109  // Operand 0 of a pre- and post-indexed store is the address base
1110  // writeback. Skip it.
1111  bool Skipped = false;
1112  if (IsPrePost && Form == ARMII::StFrm) {
1113    ++OpIdx;
1114    Skipped = true;
1115  }
1116
1117  // Set first operand
1118  if (ImplicitRd)
1119    // Special handling for implicit use (e.g. PC).
1120    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1121  else
1122    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1123
1124  // Set second operand
1125  if (ImplicitRn)
1126    // Special handling for implicit use (e.g. PC).
1127    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1128  else
1129    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1130
1131  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1132  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1133    ++OpIdx;
1134
1135  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1136  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1137    ? 0 : MI.getOperand(OpIdx+1).getImm();
1138
1139  // Set bit U(23) according to sign of immed value (positive or negative).
1140  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1141             ARMII::U_BitShift);
1142  if (!MO2.getReg()) { // is immediate
1143    if (ARM_AM::getAM2Offset(AM2Opc))
1144      // Set the value of offset_12 field
1145      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1146    emitWordLE(Binary);
1147    return;
1148  }
1149
1150  // Set bit I(25), because this is not in immediate encoding.
1151  Binary |= 1 << ARMII::I_BitShift;
1152  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1153  // Set bit[3:0] to the corresponding Rm register
1154  Binary |= getARMRegisterNumbering(MO2.getReg());
1155
1156  // If this instr is in scaled register offset/index instruction, set
1157  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1158  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1159    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1160    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1161  }
1162
1163  emitWordLE(Binary);
1164}
1165
1166void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1167                                                  unsigned ImplicitRn) {
1168  const TargetInstrDesc &TID = MI.getDesc();
1169  unsigned Form = TID.TSFlags & ARMII::FormMask;
1170  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1171
1172  // Part of binary is determined by TableGn.
1173  unsigned Binary = getBinaryCodeForInstr(MI);
1174
1175  // Set the conditional execution predicate
1176  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1177
1178  unsigned OpIdx = 0;
1179
1180  // Operand 0 of a pre- and post-indexed store is the address base
1181  // writeback. Skip it.
1182  bool Skipped = false;
1183  if (IsPrePost && Form == ARMII::StMiscFrm) {
1184    ++OpIdx;
1185    Skipped = true;
1186  }
1187
1188  // Set first operand
1189  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1190
1191  // Skip LDRD and STRD's second operand.
1192  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1193    ++OpIdx;
1194
1195  // Set second operand
1196  if (ImplicitRn)
1197    // Special handling for implicit use (e.g. PC).
1198    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1199  else
1200    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1201
1202  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1203  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1204    ++OpIdx;
1205
1206  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1207  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1208    ? 0 : MI.getOperand(OpIdx+1).getImm();
1209
1210  // Set bit U(23) according to sign of immed value (positive or negative)
1211  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1212             ARMII::U_BitShift);
1213
1214  // If this instr is in register offset/index encoding, set bit[3:0]
1215  // to the corresponding Rm register.
1216  if (MO2.getReg()) {
1217    Binary |= getARMRegisterNumbering(MO2.getReg());
1218    emitWordLE(Binary);
1219    return;
1220  }
1221
1222  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1223  Binary |= 1 << ARMII::AM3_I_BitShift;
1224  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1225    // Set operands
1226    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1227    Binary |= (ImmOffs & 0xF);                      // immedL
1228  }
1229
1230  emitWordLE(Binary);
1231}
1232
1233static unsigned getAddrModeUPBits(unsigned Mode) {
1234  unsigned Binary = 0;
1235
1236  // Set addressing mode by modifying bits U(23) and P(24)
1237  // IA - Increment after  - bit U = 1 and bit P = 0
1238  // IB - Increment before - bit U = 1 and bit P = 1
1239  // DA - Decrement after  - bit U = 0 and bit P = 0
1240  // DB - Decrement before - bit U = 0 and bit P = 1
1241  switch (Mode) {
1242  default: llvm_unreachable("Unknown addressing sub-mode!");
1243  case ARM_AM::da:                                     break;
1244  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1245  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1246  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1247  }
1248
1249  return Binary;
1250}
1251
1252void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1253  const TargetInstrDesc &TID = MI.getDesc();
1254  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1255
1256  // Part of binary is determined by TableGn.
1257  unsigned Binary = getBinaryCodeForInstr(MI);
1258
1259  // Set the conditional execution predicate
1260  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1261
1262  // Skip operand 0 of an instruction with base register update.
1263  unsigned OpIdx = 0;
1264  if (IsUpdating)
1265    ++OpIdx;
1266
1267  // Set base address operand
1268  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1269
1270  // Set addressing mode by modifying bits U(23) and P(24)
1271  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1272  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1273
1274  // Set bit W(21)
1275  if (IsUpdating)
1276    Binary |= 0x1 << ARMII::W_BitShift;
1277
1278  // Set registers
1279  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1280    const MachineOperand &MO = MI.getOperand(i);
1281    if (!MO.isReg() || MO.isImplicit())
1282      break;
1283    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1284    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1285           RegNum < 16);
1286    Binary |= 0x1 << RegNum;
1287  }
1288
1289  emitWordLE(Binary);
1290}
1291
1292void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1293  const TargetInstrDesc &TID = MI.getDesc();
1294
1295  // Part of binary is determined by TableGn.
1296  unsigned Binary = getBinaryCodeForInstr(MI);
1297
1298  // Set the conditional execution predicate
1299  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1300
1301  // Encode S bit if MI modifies CPSR.
1302  Binary |= getAddrModeSBit(MI, TID);
1303
1304  // 32x32->64bit operations have two destination registers. The number
1305  // of register definitions will tell us if that's what we're dealing with.
1306  unsigned OpIdx = 0;
1307  if (TID.getNumDefs() == 2)
1308    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1309
1310  // Encode Rd
1311  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1312
1313  // Encode Rm
1314  Binary |= getMachineOpValue(MI, OpIdx++);
1315
1316  // Encode Rs
1317  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1318
1319  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1320  // it as Rn (for multiply, that's in the same offset as RdLo.
1321  if (TID.getNumOperands() > OpIdx &&
1322      !TID.OpInfo[OpIdx].isPredicate() &&
1323      !TID.OpInfo[OpIdx].isOptionalDef())
1324    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1325
1326  emitWordLE(Binary);
1327}
1328
1329void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1330  const TargetInstrDesc &TID = MI.getDesc();
1331
1332  // Part of binary is determined by TableGn.
1333  unsigned Binary = getBinaryCodeForInstr(MI);
1334
1335  // Set the conditional execution predicate
1336  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1337
1338  unsigned OpIdx = 0;
1339
1340  // Encode Rd
1341  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1342
1343  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1344  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1345  if (MO2.isReg()) {
1346    // Two register operand form.
1347    // Encode Rn.
1348    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1349
1350    // Encode Rm.
1351    Binary |= getMachineOpValue(MI, MO2);
1352    ++OpIdx;
1353  } else {
1354    Binary |= getMachineOpValue(MI, MO1);
1355  }
1356
1357  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1358  if (MI.getOperand(OpIdx).isImm() &&
1359      !TID.OpInfo[OpIdx].isPredicate() &&
1360      !TID.OpInfo[OpIdx].isOptionalDef())
1361    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1362
1363  emitWordLE(Binary);
1364}
1365
1366void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1367  const TargetInstrDesc &TID = MI.getDesc();
1368
1369  // Part of binary is determined by TableGn.
1370  unsigned Binary = getBinaryCodeForInstr(MI);
1371
1372  // Set the conditional execution predicate
1373  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1374
1375  unsigned OpIdx = 0;
1376
1377  // Encode Rd
1378  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1379
1380  const MachineOperand &MO = MI.getOperand(OpIdx++);
1381  if (OpIdx == TID.getNumOperands() ||
1382      TID.OpInfo[OpIdx].isPredicate() ||
1383      TID.OpInfo[OpIdx].isOptionalDef()) {
1384    // Encode Rm and it's done.
1385    Binary |= getMachineOpValue(MI, MO);
1386    emitWordLE(Binary);
1387    return;
1388  }
1389
1390  // Encode Rn.
1391  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1392
1393  // Encode Rm.
1394  Binary |= getMachineOpValue(MI, OpIdx++);
1395
1396  // Encode shift_imm.
1397  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1398  if (TID.Opcode == ARM::PKHTB) {
1399    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1400    if (ShiftAmt == 32)
1401      ShiftAmt = 0;
1402  }
1403  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1404  Binary |= ShiftAmt << ARMII::ShiftShift;
1405
1406  emitWordLE(Binary);
1407}
1408
1409void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1410  const TargetInstrDesc &TID = MI.getDesc();
1411
1412  // Part of binary is determined by TableGen.
1413  unsigned Binary = getBinaryCodeForInstr(MI);
1414
1415  // Set the conditional execution predicate
1416  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1417
1418  // Encode Rd
1419  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1420
1421  // Encode saturate bit position.
1422  unsigned Pos = MI.getOperand(1).getImm();
1423  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1424    Pos -= 1;
1425  assert((Pos < 16 || (Pos < 32 &&
1426                       TID.Opcode != ARM::SSAT16 &&
1427                       TID.Opcode != ARM::USAT16)) &&
1428         "saturate bit position out of range");
1429  Binary |= Pos << 16;
1430
1431  // Encode Rm
1432  Binary |= getMachineOpValue(MI, 2);
1433
1434  // Encode shift_imm.
1435  if (TID.getNumOperands() == 4) {
1436    unsigned ShiftOp = MI.getOperand(3).getImm();
1437    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1438    if (Opc == ARM_AM::asr)
1439      Binary |= (1 << 6);
1440    unsigned ShiftAmt = MI.getOperand(3).getImm();
1441    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1442      ShiftAmt = 0;
1443    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1444    Binary |= ShiftAmt << ARMII::ShiftShift;
1445  }
1446
1447  emitWordLE(Binary);
1448}
1449
1450void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1451  const TargetInstrDesc &TID = MI.getDesc();
1452
1453  if (TID.Opcode == ARM::TPsoft) {
1454    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1455  }
1456
1457  // Part of binary is determined by TableGn.
1458  unsigned Binary = getBinaryCodeForInstr(MI);
1459
1460  // Set the conditional execution predicate
1461  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1462
1463  // Set signed_immed_24 field
1464  Binary |= getMachineOpValue(MI, 0);
1465
1466  emitWordLE(Binary);
1467}
1468
1469void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1470  // Remember the base address of the inline jump table.
1471  uintptr_t JTBase = MCE.getCurrentPCValue();
1472  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1473  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1474               << '\n');
1475
1476  // Now emit the jump table entries.
1477  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1478  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1479    if (IsPIC)
1480      // DestBB address - JT base.
1481      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1482    else
1483      // Absolute DestBB address.
1484      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1485    emitWordLE(0);
1486  }
1487}
1488
1489void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1490  const TargetInstrDesc &TID = MI.getDesc();
1491
1492  // Handle jump tables.
1493  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1494    // First emit a ldr pc, [] instruction.
1495    emitDataProcessingInstruction(MI, ARM::PC);
1496
1497    // Then emit the inline jump table.
1498    unsigned JTIndex =
1499      (TID.Opcode == ARM::BR_JTr)
1500      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1501    emitInlineJumpTable(JTIndex);
1502    return;
1503  } else if (TID.Opcode == ARM::BR_JTm) {
1504    // First emit a ldr pc, [] instruction.
1505    emitLoadStoreInstruction(MI, ARM::PC);
1506
1507    // Then emit the inline jump table.
1508    emitInlineJumpTable(MI.getOperand(3).getIndex());
1509    return;
1510  }
1511
1512  // Part of binary is determined by TableGn.
1513  unsigned Binary = getBinaryCodeForInstr(MI);
1514
1515  // Set the conditional execution predicate
1516  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1517
1518  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1519    // The return register is LR.
1520    Binary |= getARMRegisterNumbering(ARM::LR);
1521  else
1522    // otherwise, set the return register
1523    Binary |= getMachineOpValue(MI, 0);
1524
1525  emitWordLE(Binary);
1526}
1527
1528static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1529  unsigned RegD = MI.getOperand(OpIdx).getReg();
1530  unsigned Binary = 0;
1531  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1532  RegD = getARMRegisterNumbering(RegD);
1533  if (!isSPVFP)
1534    Binary |=   RegD               << ARMII::RegRdShift;
1535  else {
1536    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1537    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1538  }
1539  return Binary;
1540}
1541
1542static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1543  unsigned RegN = MI.getOperand(OpIdx).getReg();
1544  unsigned Binary = 0;
1545  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1546  RegN = getARMRegisterNumbering(RegN);
1547  if (!isSPVFP)
1548    Binary |=   RegN               << ARMII::RegRnShift;
1549  else {
1550    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1551    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1552  }
1553  return Binary;
1554}
1555
1556static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1557  unsigned RegM = MI.getOperand(OpIdx).getReg();
1558  unsigned Binary = 0;
1559  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1560  RegM = getARMRegisterNumbering(RegM);
1561  if (!isSPVFP)
1562    Binary |=   RegM;
1563  else {
1564    Binary |= ((RegM & 0x1E) >> 1);
1565    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1566  }
1567  return Binary;
1568}
1569
1570void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1571  const TargetInstrDesc &TID = MI.getDesc();
1572
1573  // Part of binary is determined by TableGn.
1574  unsigned Binary = getBinaryCodeForInstr(MI);
1575
1576  // Set the conditional execution predicate
1577  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1578
1579  unsigned OpIdx = 0;
1580  assert((Binary & ARMII::D_BitShift) == 0 &&
1581         (Binary & ARMII::N_BitShift) == 0 &&
1582         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1583
1584  // Encode Dd / Sd.
1585  Binary |= encodeVFPRd(MI, OpIdx++);
1586
1587  // If this is a two-address operand, skip it, e.g. FMACD.
1588  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1589    ++OpIdx;
1590
1591  // Encode Dn / Sn.
1592  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1593    Binary |= encodeVFPRn(MI, OpIdx++);
1594
1595  if (OpIdx == TID.getNumOperands() ||
1596      TID.OpInfo[OpIdx].isPredicate() ||
1597      TID.OpInfo[OpIdx].isOptionalDef()) {
1598    // FCMPEZD etc. has only one operand.
1599    emitWordLE(Binary);
1600    return;
1601  }
1602
1603  // Encode Dm / Sm.
1604  Binary |= encodeVFPRm(MI, OpIdx);
1605
1606  emitWordLE(Binary);
1607}
1608
1609void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1610  const TargetInstrDesc &TID = MI.getDesc();
1611  unsigned Form = TID.TSFlags & ARMII::FormMask;
1612
1613  // Part of binary is determined by TableGn.
1614  unsigned Binary = getBinaryCodeForInstr(MI);
1615
1616  // Set the conditional execution predicate
1617  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1618
1619  switch (Form) {
1620  default: break;
1621  case ARMII::VFPConv1Frm:
1622  case ARMII::VFPConv2Frm:
1623  case ARMII::VFPConv3Frm:
1624    // Encode Dd / Sd.
1625    Binary |= encodeVFPRd(MI, 0);
1626    break;
1627  case ARMII::VFPConv4Frm:
1628    // Encode Dn / Sn.
1629    Binary |= encodeVFPRn(MI, 0);
1630    break;
1631  case ARMII::VFPConv5Frm:
1632    // Encode Dm / Sm.
1633    Binary |= encodeVFPRm(MI, 0);
1634    break;
1635  }
1636
1637  switch (Form) {
1638  default: break;
1639  case ARMII::VFPConv1Frm:
1640    // Encode Dm / Sm.
1641    Binary |= encodeVFPRm(MI, 1);
1642    break;
1643  case ARMII::VFPConv2Frm:
1644  case ARMII::VFPConv3Frm:
1645    // Encode Dn / Sn.
1646    Binary |= encodeVFPRn(MI, 1);
1647    break;
1648  case ARMII::VFPConv4Frm:
1649  case ARMII::VFPConv5Frm:
1650    // Encode Dd / Sd.
1651    Binary |= encodeVFPRd(MI, 1);
1652    break;
1653  }
1654
1655  if (Form == ARMII::VFPConv5Frm)
1656    // Encode Dn / Sn.
1657    Binary |= encodeVFPRn(MI, 2);
1658  else if (Form == ARMII::VFPConv3Frm)
1659    // Encode Dm / Sm.
1660    Binary |= encodeVFPRm(MI, 2);
1661
1662  emitWordLE(Binary);
1663}
1664
1665void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1666  // Part of binary is determined by TableGn.
1667  unsigned Binary = getBinaryCodeForInstr(MI);
1668
1669  // Set the conditional execution predicate
1670  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1671
1672  unsigned OpIdx = 0;
1673
1674  // Encode Dd / Sd.
1675  Binary |= encodeVFPRd(MI, OpIdx++);
1676
1677  // Encode address base.
1678  const MachineOperand &Base = MI.getOperand(OpIdx++);
1679  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1680
1681  // If there is a non-zero immediate offset, encode it.
1682  if (Base.isReg()) {
1683    const MachineOperand &Offset = MI.getOperand(OpIdx);
1684    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1685      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1686        Binary |= 1 << ARMII::U_BitShift;
1687      Binary |= ImmOffs;
1688      emitWordLE(Binary);
1689      return;
1690    }
1691  }
1692
1693  // If immediate offset is omitted, default to +0.
1694  Binary |= 1 << ARMII::U_BitShift;
1695
1696  emitWordLE(Binary);
1697}
1698
1699void
1700ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1701  const TargetInstrDesc &TID = MI.getDesc();
1702  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1703
1704  // Part of binary is determined by TableGn.
1705  unsigned Binary = getBinaryCodeForInstr(MI);
1706
1707  // Set the conditional execution predicate
1708  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1709
1710  // Skip operand 0 of an instruction with base register update.
1711  unsigned OpIdx = 0;
1712  if (IsUpdating)
1713    ++OpIdx;
1714
1715  // Set base address operand
1716  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1717
1718  // Set addressing mode by modifying bits U(23) and P(24)
1719  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1720  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1721
1722  // Set bit W(21)
1723  if (IsUpdating)
1724    Binary |= 0x1 << ARMII::W_BitShift;
1725
1726  // First register is encoded in Dd.
1727  Binary |= encodeVFPRd(MI, OpIdx+2);
1728
1729  // Count the number of registers.
1730  unsigned NumRegs = 1;
1731  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1732    const MachineOperand &MO = MI.getOperand(i);
1733    if (!MO.isReg() || MO.isImplicit())
1734      break;
1735    ++NumRegs;
1736  }
1737  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1738  // Otherwise, it will be 0, in the case of 32-bit registers.
1739  if(Binary & 0x100)
1740    Binary |= NumRegs * 2;
1741  else
1742    Binary |= NumRegs;
1743
1744  emitWordLE(Binary);
1745}
1746
1747static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1748  unsigned RegD = MI.getOperand(OpIdx).getReg();
1749  unsigned Binary = 0;
1750  RegD = getARMRegisterNumbering(RegD);
1751  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1752  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1753  return Binary;
1754}
1755
1756static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1757  unsigned RegN = MI.getOperand(OpIdx).getReg();
1758  unsigned Binary = 0;
1759  RegN = getARMRegisterNumbering(RegN);
1760  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1761  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1762  return Binary;
1763}
1764
1765static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1766  unsigned RegM = MI.getOperand(OpIdx).getReg();
1767  unsigned Binary = 0;
1768  RegM = getARMRegisterNumbering(RegM);
1769  Binary |= (RegM & 0xf);
1770  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1771  return Binary;
1772}
1773
1774/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1775/// data-processing instruction to the corresponding Thumb encoding.
1776static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1777  assert((Binary & 0xfe000000) == 0xf2000000 &&
1778         "not an ARM NEON data-processing instruction");
1779  unsigned UBit = (Binary >> 24) & 1;
1780  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1781}
1782
1783void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1784  unsigned Binary = getBinaryCodeForInstr(MI);
1785
1786  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1787  const TargetInstrDesc &TID = MI.getDesc();
1788  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1789    RegTOpIdx = 0;
1790    RegNOpIdx = 1;
1791    LnOpIdx = 2;
1792  } else { // ARMII::NSetLnFrm
1793    RegTOpIdx = 2;
1794    RegNOpIdx = 0;
1795    LnOpIdx = 3;
1796  }
1797
1798  // Set the conditional execution predicate
1799  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1800
1801  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1802  RegT = getARMRegisterNumbering(RegT);
1803  Binary |= (RegT << ARMII::RegRdShift);
1804  Binary |= encodeNEONRn(MI, RegNOpIdx);
1805
1806  unsigned LaneShift;
1807  if ((Binary & (1 << 22)) != 0)
1808    LaneShift = 0; // 8-bit elements
1809  else if ((Binary & (1 << 5)) != 0)
1810    LaneShift = 1; // 16-bit elements
1811  else
1812    LaneShift = 2; // 32-bit elements
1813
1814  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1815  unsigned Opc1 = Lane >> 2;
1816  unsigned Opc2 = Lane & 3;
1817  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1818  Binary |= (Opc1 << 21);
1819  Binary |= (Opc2 << 5);
1820
1821  emitWordLE(Binary);
1822}
1823
1824void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1825  unsigned Binary = getBinaryCodeForInstr(MI);
1826
1827  // Set the conditional execution predicate
1828  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1829
1830  unsigned RegT = MI.getOperand(1).getReg();
1831  RegT = getARMRegisterNumbering(RegT);
1832  Binary |= (RegT << ARMII::RegRdShift);
1833  Binary |= encodeNEONRn(MI, 0);
1834  emitWordLE(Binary);
1835}
1836
1837void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1838  unsigned Binary = getBinaryCodeForInstr(MI);
1839  // Destination register is encoded in Dd.
1840  Binary |= encodeNEONRd(MI, 0);
1841  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1842  unsigned Imm = MI.getOperand(1).getImm();
1843  unsigned Op = (Imm >> 12) & 1;
1844  unsigned Cmode = (Imm >> 8) & 0xf;
1845  unsigned I = (Imm >> 7) & 1;
1846  unsigned Imm3 = (Imm >> 4) & 0x7;
1847  unsigned Imm4 = Imm & 0xf;
1848  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1849  if (IsThumb)
1850    Binary = convertNEONDataProcToThumb(Binary);
1851  emitWordLE(Binary);
1852}
1853
1854void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1855  const TargetInstrDesc &TID = MI.getDesc();
1856  unsigned Binary = getBinaryCodeForInstr(MI);
1857  // Destination register is encoded in Dd; source register in Dm.
1858  unsigned OpIdx = 0;
1859  Binary |= encodeNEONRd(MI, OpIdx++);
1860  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1861    ++OpIdx;
1862  Binary |= encodeNEONRm(MI, OpIdx);
1863  if (IsThumb)
1864    Binary = convertNEONDataProcToThumb(Binary);
1865  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1866  emitWordLE(Binary);
1867}
1868
1869void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1870  const TargetInstrDesc &TID = MI.getDesc();
1871  unsigned Binary = getBinaryCodeForInstr(MI);
1872  // Destination register is encoded in Dd; source registers in Dn and Dm.
1873  unsigned OpIdx = 0;
1874  Binary |= encodeNEONRd(MI, OpIdx++);
1875  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1876    ++OpIdx;
1877  Binary |= encodeNEONRn(MI, OpIdx++);
1878  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1879    ++OpIdx;
1880  Binary |= encodeNEONRm(MI, OpIdx);
1881  if (IsThumb)
1882    Binary = convertNEONDataProcToThumb(Binary);
1883  // FIXME: This does not handle VMOVDneon or VMOVQ.
1884  emitWordLE(Binary);
1885}
1886
1887#include "ARMGenCodeEmitter.inc"
1888