ARMCodeEmitter.cpp revision 205407
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineModuleInfo>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    static char ID;
65  public:
66    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
67      : MachineFunctionPass(&ID), JTI(0), II((ARMInstrInfo*)tm.getInstrInfo()),
68        TD(tm.getTargetData()), TM(tm),
69    MCE(mce), MCPEs(0), MJTEs(0),
70    IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
71
72    /// getBinaryCodeForInstr - This function, generated by the
73    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
74    /// machine instructions.
75    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
76
77    bool runOnMachineFunction(MachineFunction &MF);
78
79    virtual const char *getPassName() const {
80      return "ARM Machine Code Emitter";
81    }
82
83    void emitInstruction(const MachineInstr &MI);
84
85  private:
86
87    void emitWordLE(unsigned Binary);
88    void emitDWordLE(uint64_t Binary);
89    void emitConstPoolInstruction(const MachineInstr &MI);
90    void emitMOVi2piecesInstruction(const MachineInstr &MI);
91    void emitLEApcrelJTInstruction(const MachineInstr &MI);
92    void emitPseudoMoveInstruction(const MachineInstr &MI);
93    void addPCLabel(unsigned LabelID);
94    void emitPseudoInstruction(const MachineInstr &MI);
95    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
96                                    const TargetInstrDesc &TID,
97                                    const MachineOperand &MO,
98                                    unsigned OpIdx);
99
100    unsigned getMachineSoImmOpValue(unsigned SoImm);
101
102    unsigned getAddrModeSBit(const MachineInstr &MI,
103                             const TargetInstrDesc &TID) const;
104
105    void emitDataProcessingInstruction(const MachineInstr &MI,
106                                       unsigned ImplicitRd = 0,
107                                       unsigned ImplicitRn = 0);
108
109    void emitLoadStoreInstruction(const MachineInstr &MI,
110                                  unsigned ImplicitRd = 0,
111                                  unsigned ImplicitRn = 0);
112
113    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
114                                      unsigned ImplicitRn = 0);
115
116    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
117
118    void emitMulFrmInstruction(const MachineInstr &MI);
119
120    void emitExtendInstruction(const MachineInstr &MI);
121
122    void emitMiscArithInstruction(const MachineInstr &MI);
123
124    void emitBranchInstruction(const MachineInstr &MI);
125
126    void emitInlineJumpTable(unsigned JTIndex);
127
128    void emitMiscBranchInstruction(const MachineInstr &MI);
129
130    void emitVFPArithInstruction(const MachineInstr &MI);
131
132    void emitVFPConversionInstruction(const MachineInstr &MI);
133
134    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
135
136    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
137
138    void emitMiscInstruction(const MachineInstr &MI);
139
140    /// getMachineOpValue - Return binary encoding of operand. If the machine
141    /// operand requires relocation, record the relocation and return zero.
142    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
143    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
144      return getMachineOpValue(MI, MI.getOperand(OpIdx));
145    }
146
147    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
148    ///
149    unsigned getShiftOp(unsigned Imm) const ;
150
151    /// Routines that handle operands which add machine relocations which are
152    /// fixed up by the relocation stage.
153    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
154                           bool MayNeedFarStub,  bool Indirect,
155                           intptr_t ACPV = 0);
156    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
157    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
158    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
159    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
160                               intptr_t JTBase = 0);
161  };
162}
163
164char ARMCodeEmitter::ID = 0;
165
166/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
167/// code to the specified MCE object.
168FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
169                                                JITCodeEmitter &JCE) {
170  return new ARMCodeEmitter(TM, JCE);
171}
172
173bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
174  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
175          MF.getTarget().getRelocationModel() != Reloc::Static) &&
176         "JIT relocation model must be set to static or default!");
177  JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
178  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
179  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
180  Subtarget = &TM.getSubtarget<ARMSubtarget>();
181  MCPEs = &MF.getConstantPool()->getConstants();
182  MJTEs = 0;
183  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
184  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
185  JTI->Initialize(MF, IsPIC);
186  MMI = &getAnalysis<MachineModuleInfo>();
187  MCE.setModuleInfo(MMI);
188
189  do {
190    DEBUG(errs() << "JITTing function '"
191          << MF.getFunction()->getName() << "'\n");
192    MCE.startFunction(MF);
193    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
194         MBB != E; ++MBB) {
195      MCE.StartMachineBasicBlock(MBB);
196      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
197           I != E; ++I)
198        emitInstruction(*I);
199    }
200  } while (MCE.finishFunction(MF));
201
202  return false;
203}
204
205/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
206///
207unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
208  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
209  default: llvm_unreachable("Unknown shift opc!");
210  case ARM_AM::asr: return 2;
211  case ARM_AM::lsl: return 0;
212  case ARM_AM::lsr: return 1;
213  case ARM_AM::ror:
214  case ARM_AM::rrx: return 3;
215  }
216  return 0;
217}
218
219/// getMachineOpValue - Return binary encoding of operand. If the machine
220/// operand requires relocation, record the relocation and return zero.
221unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
222                                           const MachineOperand &MO) {
223  if (MO.isReg())
224    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
225  else if (MO.isImm())
226    return static_cast<unsigned>(MO.getImm());
227  else if (MO.isGlobal())
228    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
229  else if (MO.isSymbol())
230    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
231  else if (MO.isCPI()) {
232    const TargetInstrDesc &TID = MI.getDesc();
233    // For VFP load, the immediate offset is multiplied by 4.
234    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
235      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
236    emitConstPoolAddress(MO.getIndex(), Reloc);
237  } else if (MO.isJTI())
238    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
239  else if (MO.isMBB())
240    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
241  else {
242#ifndef NDEBUG
243    errs() << MO;
244#endif
245    llvm_unreachable(0);
246  }
247  return 0;
248}
249
250/// emitGlobalAddress - Emit the specified address to the code stream.
251///
252void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
253                                       bool MayNeedFarStub, bool Indirect,
254                                       intptr_t ACPV) {
255  MachineRelocation MR = Indirect
256    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
257                                           GV, ACPV, MayNeedFarStub)
258    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
259                               GV, ACPV, MayNeedFarStub);
260  MCE.addRelocation(MR);
261}
262
263/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
264/// be emitted to the current location in the function, and allow it to be PC
265/// relative.
266void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
267  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
268                                                 Reloc, ES));
269}
270
271/// emitConstPoolAddress - Arrange for the address of an constant pool
272/// to be emitted to the current location in the function, and allow it to be PC
273/// relative.
274void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
275  // Tell JIT emitter we'll resolve the address.
276  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
277                                                    Reloc, CPI, 0, true));
278}
279
280/// emitJumpTableAddress - Arrange for the address of a jump table to
281/// be emitted to the current location in the function, and allow it to be PC
282/// relative.
283void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
284  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
285                                                    Reloc, JTIndex, 0, true));
286}
287
288/// emitMachineBasicBlock - Emit the specified address basic block.
289void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
290                                           unsigned Reloc, intptr_t JTBase) {
291  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
292                                             Reloc, BB, JTBase));
293}
294
295void ARMCodeEmitter::emitWordLE(unsigned Binary) {
296  DEBUG(errs() << "  0x";
297        errs().write_hex(Binary) << "\n");
298  MCE.emitWordLE(Binary);
299}
300
301void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
302  DEBUG(errs() << "  0x";
303        errs().write_hex(Binary) << "\n");
304  MCE.emitDWordLE(Binary);
305}
306
307void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
308  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
309
310  MCE.processDebugLoc(MI.getDebugLoc(), true);
311
312  NumEmitted++;  // Keep track of the # of mi's emitted
313  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
314  default: {
315    llvm_unreachable("Unhandled instruction encoding format!");
316    break;
317  }
318  case ARMII::Pseudo:
319    emitPseudoInstruction(MI);
320    break;
321  case ARMII::DPFrm:
322  case ARMII::DPSoRegFrm:
323    emitDataProcessingInstruction(MI);
324    break;
325  case ARMII::LdFrm:
326  case ARMII::StFrm:
327    emitLoadStoreInstruction(MI);
328    break;
329  case ARMII::LdMiscFrm:
330  case ARMII::StMiscFrm:
331    emitMiscLoadStoreInstruction(MI);
332    break;
333  case ARMII::LdStMulFrm:
334    emitLoadStoreMultipleInstruction(MI);
335    break;
336  case ARMII::MulFrm:
337    emitMulFrmInstruction(MI);
338    break;
339  case ARMII::ExtFrm:
340    emitExtendInstruction(MI);
341    break;
342  case ARMII::ArithMiscFrm:
343    emitMiscArithInstruction(MI);
344    break;
345  case ARMII::BrFrm:
346    emitBranchInstruction(MI);
347    break;
348  case ARMII::BrMiscFrm:
349    emitMiscBranchInstruction(MI);
350    break;
351  // VFP instructions.
352  case ARMII::VFPUnaryFrm:
353  case ARMII::VFPBinaryFrm:
354    emitVFPArithInstruction(MI);
355    break;
356  case ARMII::VFPConv1Frm:
357  case ARMII::VFPConv2Frm:
358  case ARMII::VFPConv3Frm:
359  case ARMII::VFPConv4Frm:
360  case ARMII::VFPConv5Frm:
361    emitVFPConversionInstruction(MI);
362    break;
363  case ARMII::VFPLdStFrm:
364    emitVFPLoadStoreInstruction(MI);
365    break;
366  case ARMII::VFPLdStMulFrm:
367    emitVFPLoadStoreMultipleInstruction(MI);
368    break;
369  case ARMII::VFPMiscFrm:
370    emitMiscInstruction(MI);
371    break;
372  }
373  MCE.processDebugLoc(MI.getDebugLoc(), false);
374}
375
376void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
377  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
378  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
379  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
380
381  // Remember the CONSTPOOL_ENTRY address for later relocation.
382  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
383
384  // Emit constpool island entry. In most cases, the actual values will be
385  // resolved and relocated after code emission.
386  if (MCPE.isMachineConstantPoolEntry()) {
387    ARMConstantPoolValue *ACPV =
388      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
389
390    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
391          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
392
393    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
394    GlobalValue *GV = ACPV->getGV();
395    if (GV) {
396      Reloc::Model RelocM = TM.getRelocationModel();
397      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
398                        isa<Function>(GV),
399                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
400                        (intptr_t)ACPV);
401     } else  {
402      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
403    }
404    emitWordLE(0);
405  } else {
406    Constant *CV = MCPE.Val.ConstVal;
407
408    DEBUG({
409        errs() << "  ** Constant pool #" << CPI << " @ "
410               << (void*)MCE.getCurrentPCValue() << " ";
411        if (const Function *F = dyn_cast<Function>(CV))
412          errs() << F->getName();
413        else
414          errs() << *CV;
415        errs() << '\n';
416      });
417
418    if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
419      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
420      emitWordLE(0);
421    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
422      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
423      emitWordLE(Val);
424    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
425      if (CFP->getType()->isFloatTy())
426        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
427      else if (CFP->getType()->isDoubleTy())
428        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
429      else {
430        llvm_unreachable("Unable to handle this constantpool entry!");
431      }
432    } else {
433      llvm_unreachable("Unable to handle this constantpool entry!");
434    }
435  }
436}
437
438void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
439  const MachineOperand &MO0 = MI.getOperand(0);
440  const MachineOperand &MO1 = MI.getOperand(1);
441  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
442                                                  "Not a valid so_imm value!");
443  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
444  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
445
446  // Emit the 'mov' instruction.
447  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
448
449  // Set the conditional execution predicate.
450  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
451
452  // Encode Rd.
453  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
454
455  // Encode so_imm.
456  // Set bit I(25) to identify this is the immediate form of <shifter_op>
457  Binary |= 1 << ARMII::I_BitShift;
458  Binary |= getMachineSoImmOpValue(V1);
459  emitWordLE(Binary);
460
461  // Now the 'orr' instruction.
462  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
463
464  // Set the conditional execution predicate.
465  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
466
467  // Encode Rd.
468  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
469
470  // Encode Rn.
471  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
472
473  // Encode so_imm.
474  // Set bit I(25) to identify this is the immediate form of <shifter_op>
475  Binary |= 1 << ARMII::I_BitShift;
476  Binary |= getMachineSoImmOpValue(V2);
477  emitWordLE(Binary);
478}
479
480void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
481  // It's basically add r, pc, (LJTI - $+8)
482
483  const TargetInstrDesc &TID = MI.getDesc();
484
485  // Emit the 'add' instruction.
486  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
487
488  // Set the conditional execution predicate
489  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
490
491  // Encode S bit if MI modifies CPSR.
492  Binary |= getAddrModeSBit(MI, TID);
493
494  // Encode Rd.
495  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
496
497  // Encode Rn which is PC.
498  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
499
500  // Encode the displacement.
501  Binary |= 1 << ARMII::I_BitShift;
502  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
503
504  emitWordLE(Binary);
505}
506
507void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
508  unsigned Opcode = MI.getDesc().Opcode;
509
510  // Part of binary is determined by TableGn.
511  unsigned Binary = getBinaryCodeForInstr(MI);
512
513  // Set the conditional execution predicate
514  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
515
516  // Encode S bit if MI modifies CPSR.
517  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
518    Binary |= 1 << ARMII::S_BitShift;
519
520  // Encode register def if there is one.
521  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
522
523  // Encode the shift operation.
524  switch (Opcode) {
525  default: break;
526  case ARM::MOVrx:
527    // rrx
528    Binary |= 0x6 << 4;
529    break;
530  case ARM::MOVsrl_flag:
531    // lsr #1
532    Binary |= (0x2 << 4) | (1 << 7);
533    break;
534  case ARM::MOVsra_flag:
535    // asr #1
536    Binary |= (0x4 << 4) | (1 << 7);
537    break;
538  }
539
540  // Encode register Rm.
541  Binary |= getMachineOpValue(MI, 1);
542
543  emitWordLE(Binary);
544}
545
546void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
547  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
548        << (void*)MCE.getCurrentPCValue() << '\n');
549  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
550}
551
552void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
553  unsigned Opcode = MI.getDesc().Opcode;
554  switch (Opcode) {
555  default:
556    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
557  // FIXME: Add support for MOVimm32.
558  case TargetOpcode::INLINEASM: {
559    // We allow inline assembler nodes with empty bodies - they can
560    // implicitly define registers, which is ok for JIT.
561    if (MI.getOperand(0).getSymbolName()[0]) {
562      llvm_report_error("JIT does not support inline asm!");
563    }
564    break;
565  }
566  case TargetOpcode::DBG_LABEL:
567  case TargetOpcode::EH_LABEL:
568    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
569    break;
570  case TargetOpcode::IMPLICIT_DEF:
571  case TargetOpcode::KILL:
572    // Do nothing.
573    break;
574  case ARM::CONSTPOOL_ENTRY:
575    emitConstPoolInstruction(MI);
576    break;
577  case ARM::PICADD: {
578    // Remember of the address of the PC label for relocation later.
579    addPCLabel(MI.getOperand(2).getImm());
580    // PICADD is just an add instruction that implicitly read pc.
581    emitDataProcessingInstruction(MI, 0, ARM::PC);
582    break;
583  }
584  case ARM::PICLDR:
585  case ARM::PICLDRB:
586  case ARM::PICSTR:
587  case ARM::PICSTRB: {
588    // Remember of the address of the PC label for relocation later.
589    addPCLabel(MI.getOperand(2).getImm());
590    // These are just load / store instructions that implicitly read pc.
591    emitLoadStoreInstruction(MI, 0, ARM::PC);
592    break;
593  }
594  case ARM::PICLDRH:
595  case ARM::PICLDRSH:
596  case ARM::PICLDRSB:
597  case ARM::PICSTRH: {
598    // Remember of the address of the PC label for relocation later.
599    addPCLabel(MI.getOperand(2).getImm());
600    // These are just load / store instructions that implicitly read pc.
601    emitMiscLoadStoreInstruction(MI, ARM::PC);
602    break;
603  }
604  case ARM::MOVi2pieces:
605    // Two instructions to materialize a constant.
606    emitMOVi2piecesInstruction(MI);
607    break;
608  case ARM::LEApcrelJT:
609    // Materialize jumptable address.
610    emitLEApcrelJTInstruction(MI);
611    break;
612  case ARM::MOVrx:
613  case ARM::MOVsrl_flag:
614  case ARM::MOVsra_flag:
615    emitPseudoMoveInstruction(MI);
616    break;
617  }
618}
619
620unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
621                                                const TargetInstrDesc &TID,
622                                                const MachineOperand &MO,
623                                                unsigned OpIdx) {
624  unsigned Binary = getMachineOpValue(MI, MO);
625
626  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
627  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
628  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
629
630  // Encode the shift opcode.
631  unsigned SBits = 0;
632  unsigned Rs = MO1.getReg();
633  if (Rs) {
634    // Set shift operand (bit[7:4]).
635    // LSL - 0001
636    // LSR - 0011
637    // ASR - 0101
638    // ROR - 0111
639    // RRX - 0110 and bit[11:8] clear.
640    switch (SOpc) {
641    default: llvm_unreachable("Unknown shift opc!");
642    case ARM_AM::lsl: SBits = 0x1; break;
643    case ARM_AM::lsr: SBits = 0x3; break;
644    case ARM_AM::asr: SBits = 0x5; break;
645    case ARM_AM::ror: SBits = 0x7; break;
646    case ARM_AM::rrx: SBits = 0x6; break;
647    }
648  } else {
649    // Set shift operand (bit[6:4]).
650    // LSL - 000
651    // LSR - 010
652    // ASR - 100
653    // ROR - 110
654    switch (SOpc) {
655    default: llvm_unreachable("Unknown shift opc!");
656    case ARM_AM::lsl: SBits = 0x0; break;
657    case ARM_AM::lsr: SBits = 0x2; break;
658    case ARM_AM::asr: SBits = 0x4; break;
659    case ARM_AM::ror: SBits = 0x6; break;
660    }
661  }
662  Binary |= SBits << 4;
663  if (SOpc == ARM_AM::rrx)
664    return Binary;
665
666  // Encode the shift operation Rs or shift_imm (except rrx).
667  if (Rs) {
668    // Encode Rs bit[11:8].
669    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
670    return Binary |
671      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
672  }
673
674  // Encode shift_imm bit[11:7].
675  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
676}
677
678unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
679  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
680  assert(SoImmVal != -1 && "Not a valid so_imm value!");
681
682  // Encode rotate_imm.
683  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
684    << ARMII::SoRotImmShift;
685
686  // Encode immed_8.
687  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
688  return Binary;
689}
690
691unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
692                                         const TargetInstrDesc &TID) const {
693  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
694    const MachineOperand &MO = MI.getOperand(i-1);
695    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
696      return 1 << ARMII::S_BitShift;
697  }
698  return 0;
699}
700
701void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
702                                                   unsigned ImplicitRd,
703                                                   unsigned ImplicitRn) {
704  const TargetInstrDesc &TID = MI.getDesc();
705
706  if (TID.Opcode == ARM::BFC) {
707    llvm_report_error("ARMv6t2 JIT is not yet supported.");
708  }
709
710  // Part of binary is determined by TableGn.
711  unsigned Binary = getBinaryCodeForInstr(MI);
712
713  // Set the conditional execution predicate
714  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
715
716  // Encode S bit if MI modifies CPSR.
717  Binary |= getAddrModeSBit(MI, TID);
718
719  // Encode register def if there is one.
720  unsigned NumDefs = TID.getNumDefs();
721  unsigned OpIdx = 0;
722  if (NumDefs)
723    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
724  else if (ImplicitRd)
725    // Special handling for implicit use (e.g. PC).
726    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
727               << ARMII::RegRdShift);
728
729  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
730  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
731    ++OpIdx;
732
733  // Encode first non-shifter register operand if there is one.
734  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
735  if (!isUnary) {
736    if (ImplicitRn)
737      // Special handling for implicit use (e.g. PC).
738      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
739                 << ARMII::RegRnShift);
740    else {
741      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
742      ++OpIdx;
743    }
744  }
745
746  // Encode shifter operand.
747  const MachineOperand &MO = MI.getOperand(OpIdx);
748  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
749    // Encode SoReg.
750    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
751    return;
752  }
753
754  if (MO.isReg()) {
755    // Encode register Rm.
756    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
757    return;
758  }
759
760  // Encode so_imm.
761  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
762
763  emitWordLE(Binary);
764}
765
766void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
767                                              unsigned ImplicitRd,
768                                              unsigned ImplicitRn) {
769  const TargetInstrDesc &TID = MI.getDesc();
770  unsigned Form = TID.TSFlags & ARMII::FormMask;
771  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
772
773  // Part of binary is determined by TableGn.
774  unsigned Binary = getBinaryCodeForInstr(MI);
775
776  // Set the conditional execution predicate
777  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
778
779  unsigned OpIdx = 0;
780
781  // Operand 0 of a pre- and post-indexed store is the address base
782  // writeback. Skip it.
783  bool Skipped = false;
784  if (IsPrePost && Form == ARMII::StFrm) {
785    ++OpIdx;
786    Skipped = true;
787  }
788
789  // Set first operand
790  if (ImplicitRd)
791    // Special handling for implicit use (e.g. PC).
792    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
793               << ARMII::RegRdShift);
794  else
795    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
796
797  // Set second operand
798  if (ImplicitRn)
799    // Special handling for implicit use (e.g. PC).
800    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
801               << ARMII::RegRnShift);
802  else
803    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
804
805  // If this is a two-address operand, skip it. e.g. LDR_PRE.
806  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
807    ++OpIdx;
808
809  const MachineOperand &MO2 = MI.getOperand(OpIdx);
810  unsigned AM2Opc = (ImplicitRn == ARM::PC)
811    ? 0 : MI.getOperand(OpIdx+1).getImm();
812
813  // Set bit U(23) according to sign of immed value (positive or negative).
814  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
815             ARMII::U_BitShift);
816  if (!MO2.getReg()) { // is immediate
817    if (ARM_AM::getAM2Offset(AM2Opc))
818      // Set the value of offset_12 field
819      Binary |= ARM_AM::getAM2Offset(AM2Opc);
820    emitWordLE(Binary);
821    return;
822  }
823
824  // Set bit I(25), because this is not in immediate enconding.
825  Binary |= 1 << ARMII::I_BitShift;
826  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
827  // Set bit[3:0] to the corresponding Rm register
828  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
829
830  // If this instr is in scaled register offset/index instruction, set
831  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
832  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
833    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
834    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
835  }
836
837  emitWordLE(Binary);
838}
839
840void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
841                                                  unsigned ImplicitRn) {
842  const TargetInstrDesc &TID = MI.getDesc();
843  unsigned Form = TID.TSFlags & ARMII::FormMask;
844  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
845
846  // Part of binary is determined by TableGn.
847  unsigned Binary = getBinaryCodeForInstr(MI);
848
849  // Set the conditional execution predicate
850  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
851
852  unsigned OpIdx = 0;
853
854  // Operand 0 of a pre- and post-indexed store is the address base
855  // writeback. Skip it.
856  bool Skipped = false;
857  if (IsPrePost && Form == ARMII::StMiscFrm) {
858    ++OpIdx;
859    Skipped = true;
860  }
861
862  // Set first operand
863  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
864
865  // Skip LDRD and STRD's second operand.
866  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
867    ++OpIdx;
868
869  // Set second operand
870  if (ImplicitRn)
871    // Special handling for implicit use (e.g. PC).
872    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
873               << ARMII::RegRnShift);
874  else
875    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
876
877  // If this is a two-address operand, skip it. e.g. LDRH_POST.
878  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
879    ++OpIdx;
880
881  const MachineOperand &MO2 = MI.getOperand(OpIdx);
882  unsigned AM3Opc = (ImplicitRn == ARM::PC)
883    ? 0 : MI.getOperand(OpIdx+1).getImm();
884
885  // Set bit U(23) according to sign of immed value (positive or negative)
886  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
887             ARMII::U_BitShift);
888
889  // If this instr is in register offset/index encoding, set bit[3:0]
890  // to the corresponding Rm register.
891  if (MO2.getReg()) {
892    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
893    emitWordLE(Binary);
894    return;
895  }
896
897  // This instr is in immediate offset/index encoding, set bit 22 to 1.
898  Binary |= 1 << ARMII::AM3_I_BitShift;
899  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
900    // Set operands
901    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
902    Binary |= (ImmOffs & 0xF);                      // immedL
903  }
904
905  emitWordLE(Binary);
906}
907
908static unsigned getAddrModeUPBits(unsigned Mode) {
909  unsigned Binary = 0;
910
911  // Set addressing mode by modifying bits U(23) and P(24)
912  // IA - Increment after  - bit U = 1 and bit P = 0
913  // IB - Increment before - bit U = 1 and bit P = 1
914  // DA - Decrement after  - bit U = 0 and bit P = 0
915  // DB - Decrement before - bit U = 0 and bit P = 1
916  switch (Mode) {
917  default: llvm_unreachable("Unknown addressing sub-mode!");
918  case ARM_AM::da:                                     break;
919  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
920  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
921  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
922  }
923
924  return Binary;
925}
926
927void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
928  const TargetInstrDesc &TID = MI.getDesc();
929  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
930
931  // Part of binary is determined by TableGn.
932  unsigned Binary = getBinaryCodeForInstr(MI);
933
934  // Set the conditional execution predicate
935  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
936
937  // Skip operand 0 of an instruction with base register update.
938  unsigned OpIdx = 0;
939  if (IsUpdating)
940    ++OpIdx;
941
942  // Set base address operand
943  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
944
945  // Set addressing mode by modifying bits U(23) and P(24)
946  const MachineOperand &MO = MI.getOperand(OpIdx++);
947  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
948
949  // Set bit W(21)
950  if (IsUpdating)
951    Binary |= 0x1 << ARMII::W_BitShift;
952
953  // Set registers
954  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
955    const MachineOperand &MO = MI.getOperand(i);
956    if (!MO.isReg() || MO.isImplicit())
957      break;
958    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
959    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
960           RegNum < 16);
961    Binary |= 0x1 << RegNum;
962  }
963
964  emitWordLE(Binary);
965}
966
967void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
968  const TargetInstrDesc &TID = MI.getDesc();
969
970  // Part of binary is determined by TableGn.
971  unsigned Binary = getBinaryCodeForInstr(MI);
972
973  // Set the conditional execution predicate
974  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
975
976  // Encode S bit if MI modifies CPSR.
977  Binary |= getAddrModeSBit(MI, TID);
978
979  // 32x32->64bit operations have two destination registers. The number
980  // of register definitions will tell us if that's what we're dealing with.
981  unsigned OpIdx = 0;
982  if (TID.getNumDefs() == 2)
983    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
984
985  // Encode Rd
986  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
987
988  // Encode Rm
989  Binary |= getMachineOpValue(MI, OpIdx++);
990
991  // Encode Rs
992  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
993
994  // Many multiple instructions (e.g. MLA) have three src operands. Encode
995  // it as Rn (for multiply, that's in the same offset as RdLo.
996  if (TID.getNumOperands() > OpIdx &&
997      !TID.OpInfo[OpIdx].isPredicate() &&
998      !TID.OpInfo[OpIdx].isOptionalDef())
999    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1000
1001  emitWordLE(Binary);
1002}
1003
1004void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1005  const TargetInstrDesc &TID = MI.getDesc();
1006
1007  // Part of binary is determined by TableGn.
1008  unsigned Binary = getBinaryCodeForInstr(MI);
1009
1010  // Set the conditional execution predicate
1011  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1012
1013  unsigned OpIdx = 0;
1014
1015  // Encode Rd
1016  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1017
1018  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1019  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1020  if (MO2.isReg()) {
1021    // Two register operand form.
1022    // Encode Rn.
1023    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1024
1025    // Encode Rm.
1026    Binary |= getMachineOpValue(MI, MO2);
1027    ++OpIdx;
1028  } else {
1029    Binary |= getMachineOpValue(MI, MO1);
1030  }
1031
1032  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1033  if (MI.getOperand(OpIdx).isImm() &&
1034      !TID.OpInfo[OpIdx].isPredicate() &&
1035      !TID.OpInfo[OpIdx].isOptionalDef())
1036    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1037
1038  emitWordLE(Binary);
1039}
1040
1041void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1042  const TargetInstrDesc &TID = MI.getDesc();
1043
1044  // Part of binary is determined by TableGn.
1045  unsigned Binary = getBinaryCodeForInstr(MI);
1046
1047  // Set the conditional execution predicate
1048  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1049
1050  unsigned OpIdx = 0;
1051
1052  // Encode Rd
1053  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1054
1055  const MachineOperand &MO = MI.getOperand(OpIdx++);
1056  if (OpIdx == TID.getNumOperands() ||
1057      TID.OpInfo[OpIdx].isPredicate() ||
1058      TID.OpInfo[OpIdx].isOptionalDef()) {
1059    // Encode Rm and it's done.
1060    Binary |= getMachineOpValue(MI, MO);
1061    emitWordLE(Binary);
1062    return;
1063  }
1064
1065  // Encode Rn.
1066  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1067
1068  // Encode Rm.
1069  Binary |= getMachineOpValue(MI, OpIdx++);
1070
1071  // Encode shift_imm.
1072  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1073  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1074  Binary |= ShiftAmt << ARMII::ShiftShift;
1075
1076  emitWordLE(Binary);
1077}
1078
1079void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1080  const TargetInstrDesc &TID = MI.getDesc();
1081
1082  if (TID.Opcode == ARM::TPsoft) {
1083    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1084  }
1085
1086  // Part of binary is determined by TableGn.
1087  unsigned Binary = getBinaryCodeForInstr(MI);
1088
1089  // Set the conditional execution predicate
1090  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1091
1092  // Set signed_immed_24 field
1093  Binary |= getMachineOpValue(MI, 0);
1094
1095  emitWordLE(Binary);
1096}
1097
1098void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1099  // Remember the base address of the inline jump table.
1100  uintptr_t JTBase = MCE.getCurrentPCValue();
1101  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1102  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1103               << '\n');
1104
1105  // Now emit the jump table entries.
1106  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1107  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1108    if (IsPIC)
1109      // DestBB address - JT base.
1110      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1111    else
1112      // Absolute DestBB address.
1113      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1114    emitWordLE(0);
1115  }
1116}
1117
1118void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1119  const TargetInstrDesc &TID = MI.getDesc();
1120
1121  // Handle jump tables.
1122  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1123    // First emit a ldr pc, [] instruction.
1124    emitDataProcessingInstruction(MI, ARM::PC);
1125
1126    // Then emit the inline jump table.
1127    unsigned JTIndex =
1128      (TID.Opcode == ARM::BR_JTr)
1129      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1130    emitInlineJumpTable(JTIndex);
1131    return;
1132  } else if (TID.Opcode == ARM::BR_JTm) {
1133    // First emit a ldr pc, [] instruction.
1134    emitLoadStoreInstruction(MI, ARM::PC);
1135
1136    // Then emit the inline jump table.
1137    emitInlineJumpTable(MI.getOperand(3).getIndex());
1138    return;
1139  }
1140
1141  // Part of binary is determined by TableGn.
1142  unsigned Binary = getBinaryCodeForInstr(MI);
1143
1144  // Set the conditional execution predicate
1145  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1146
1147  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1148    // The return register is LR.
1149    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1150  else
1151    // otherwise, set the return register
1152    Binary |= getMachineOpValue(MI, 0);
1153
1154  emitWordLE(Binary);
1155}
1156
1157static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1158  unsigned RegD = MI.getOperand(OpIdx).getReg();
1159  unsigned Binary = 0;
1160  bool isSPVFP = false;
1161  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
1162  if (!isSPVFP)
1163    Binary |=   RegD               << ARMII::RegRdShift;
1164  else {
1165    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1166    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1167  }
1168  return Binary;
1169}
1170
1171static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1172  unsigned RegN = MI.getOperand(OpIdx).getReg();
1173  unsigned Binary = 0;
1174  bool isSPVFP = false;
1175  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
1176  if (!isSPVFP)
1177    Binary |=   RegN               << ARMII::RegRnShift;
1178  else {
1179    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1180    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1181  }
1182  return Binary;
1183}
1184
1185static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1186  unsigned RegM = MI.getOperand(OpIdx).getReg();
1187  unsigned Binary = 0;
1188  bool isSPVFP = false;
1189  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
1190  if (!isSPVFP)
1191    Binary |=   RegM;
1192  else {
1193    Binary |= ((RegM & 0x1E) >> 1);
1194    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1195  }
1196  return Binary;
1197}
1198
1199void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1200  const TargetInstrDesc &TID = MI.getDesc();
1201
1202  // Part of binary is determined by TableGn.
1203  unsigned Binary = getBinaryCodeForInstr(MI);
1204
1205  // Set the conditional execution predicate
1206  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1207
1208  unsigned OpIdx = 0;
1209  assert((Binary & ARMII::D_BitShift) == 0 &&
1210         (Binary & ARMII::N_BitShift) == 0 &&
1211         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1212
1213  // Encode Dd / Sd.
1214  Binary |= encodeVFPRd(MI, OpIdx++);
1215
1216  // If this is a two-address operand, skip it, e.g. FMACD.
1217  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1218    ++OpIdx;
1219
1220  // Encode Dn / Sn.
1221  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1222    Binary |= encodeVFPRn(MI, OpIdx++);
1223
1224  if (OpIdx == TID.getNumOperands() ||
1225      TID.OpInfo[OpIdx].isPredicate() ||
1226      TID.OpInfo[OpIdx].isOptionalDef()) {
1227    // FCMPEZD etc. has only one operand.
1228    emitWordLE(Binary);
1229    return;
1230  }
1231
1232  // Encode Dm / Sm.
1233  Binary |= encodeVFPRm(MI, OpIdx);
1234
1235  emitWordLE(Binary);
1236}
1237
1238void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1239  const TargetInstrDesc &TID = MI.getDesc();
1240  unsigned Form = TID.TSFlags & ARMII::FormMask;
1241
1242  // Part of binary is determined by TableGn.
1243  unsigned Binary = getBinaryCodeForInstr(MI);
1244
1245  // Set the conditional execution predicate
1246  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1247
1248  switch (Form) {
1249  default: break;
1250  case ARMII::VFPConv1Frm:
1251  case ARMII::VFPConv2Frm:
1252  case ARMII::VFPConv3Frm:
1253    // Encode Dd / Sd.
1254    Binary |= encodeVFPRd(MI, 0);
1255    break;
1256  case ARMII::VFPConv4Frm:
1257    // Encode Dn / Sn.
1258    Binary |= encodeVFPRn(MI, 0);
1259    break;
1260  case ARMII::VFPConv5Frm:
1261    // Encode Dm / Sm.
1262    Binary |= encodeVFPRm(MI, 0);
1263    break;
1264  }
1265
1266  switch (Form) {
1267  default: break;
1268  case ARMII::VFPConv1Frm:
1269    // Encode Dm / Sm.
1270    Binary |= encodeVFPRm(MI, 1);
1271    break;
1272  case ARMII::VFPConv2Frm:
1273  case ARMII::VFPConv3Frm:
1274    // Encode Dn / Sn.
1275    Binary |= encodeVFPRn(MI, 1);
1276    break;
1277  case ARMII::VFPConv4Frm:
1278  case ARMII::VFPConv5Frm:
1279    // Encode Dd / Sd.
1280    Binary |= encodeVFPRd(MI, 1);
1281    break;
1282  }
1283
1284  if (Form == ARMII::VFPConv5Frm)
1285    // Encode Dn / Sn.
1286    Binary |= encodeVFPRn(MI, 2);
1287  else if (Form == ARMII::VFPConv3Frm)
1288    // Encode Dm / Sm.
1289    Binary |= encodeVFPRm(MI, 2);
1290
1291  emitWordLE(Binary);
1292}
1293
1294void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1295  // Part of binary is determined by TableGn.
1296  unsigned Binary = getBinaryCodeForInstr(MI);
1297
1298  // Set the conditional execution predicate
1299  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1300
1301  unsigned OpIdx = 0;
1302
1303  // Encode Dd / Sd.
1304  Binary |= encodeVFPRd(MI, OpIdx++);
1305
1306  // Encode address base.
1307  const MachineOperand &Base = MI.getOperand(OpIdx++);
1308  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1309
1310  // If there is a non-zero immediate offset, encode it.
1311  if (Base.isReg()) {
1312    const MachineOperand &Offset = MI.getOperand(OpIdx);
1313    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1314      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1315        Binary |= 1 << ARMII::U_BitShift;
1316      Binary |= ImmOffs;
1317      emitWordLE(Binary);
1318      return;
1319    }
1320  }
1321
1322  // If immediate offset is omitted, default to +0.
1323  Binary |= 1 << ARMII::U_BitShift;
1324
1325  emitWordLE(Binary);
1326}
1327
1328void
1329ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1330  const TargetInstrDesc &TID = MI.getDesc();
1331  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1332
1333  // Part of binary is determined by TableGn.
1334  unsigned Binary = getBinaryCodeForInstr(MI);
1335
1336  // Set the conditional execution predicate
1337  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1338
1339  // Skip operand 0 of an instruction with base register update.
1340  unsigned OpIdx = 0;
1341  if (IsUpdating)
1342    ++OpIdx;
1343
1344  // Set base address operand
1345  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1346
1347  // Set addressing mode by modifying bits U(23) and P(24)
1348  const MachineOperand &MO = MI.getOperand(OpIdx++);
1349  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1350
1351  // Set bit W(21)
1352  if (IsUpdating)
1353    Binary |= 0x1 << ARMII::W_BitShift;
1354
1355  // First register is encoded in Dd.
1356  Binary |= encodeVFPRd(MI, OpIdx+2);
1357
1358  // Number of registers are encoded in offset field.
1359  unsigned NumRegs = 1;
1360  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1361    const MachineOperand &MO = MI.getOperand(i);
1362    if (!MO.isReg() || MO.isImplicit())
1363      break;
1364    ++NumRegs;
1365  }
1366  Binary |= NumRegs * 2;
1367
1368  emitWordLE(Binary);
1369}
1370
1371void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1372  // Part of binary is determined by TableGn.
1373  unsigned Binary = getBinaryCodeForInstr(MI);
1374
1375  // Set the conditional execution predicate
1376  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1377
1378  emitWordLE(Binary);
1379}
1380
1381#include "ARMGenCodeEmitter.inc"
1382