ConstantRange.cpp revision 193323
1//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Represent a range of possible values that may occur when the program is run
11// for an integral value.  This keeps track of a lower and upper bound for the
12// constant, which MAY wrap around the end of the numeric range.  To do this, it
13// keeps track of a [lower, upper) bound, which specifies an interval just like
14// STL iterators.  When used with boolean values, the following are important
15// ranges (other integral ranges use min/max values for special range values):
16//
17//  [F, F) = {}     = Empty set
18//  [T, F) = {T}
19//  [F, T) = {F}
20//  [T, T) = {F, T} = Full set
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28/// Initialize a full (the default) or empty set for the specified type.
29///
30ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
31  Lower(BitWidth, 0), Upper(BitWidth, 0) {
32  if (Full)
33    Lower = Upper = APInt::getMaxValue(BitWidth);
34  else
35    Lower = Upper = APInt::getMinValue(BitWidth);
36}
37
38/// Initialize a range to hold the single specified value.
39///
40ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { }
41
42ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
43  Lower(L), Upper(U) {
44  assert(L.getBitWidth() == U.getBitWidth() &&
45         "ConstantRange with unequal bit widths");
46  assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
47         "Lower == Upper, but they aren't min or max value!");
48}
49
50/// isFullSet - Return true if this set contains all of the elements possible
51/// for this data-type
52bool ConstantRange::isFullSet() const {
53  return Lower == Upper && Lower.isMaxValue();
54}
55
56/// isEmptySet - Return true if this set contains no members.
57///
58bool ConstantRange::isEmptySet() const {
59  return Lower == Upper && Lower.isMinValue();
60}
61
62/// isWrappedSet - Return true if this set wraps around the top of the range,
63/// for example: [100, 8)
64///
65bool ConstantRange::isWrappedSet() const {
66  return Lower.ugt(Upper);
67}
68
69/// getSetSize - Return the number of elements in this set.
70///
71APInt ConstantRange::getSetSize() const {
72  if (isEmptySet())
73    return APInt(getBitWidth(), 0);
74  if (getBitWidth() == 1) {
75    if (Lower != Upper)  // One of T or F in the set...
76      return APInt(2, 1);
77    return APInt(2, 2);      // Must be full set...
78  }
79
80  // Simply subtract the bounds...
81  return Upper - Lower;
82}
83
84/// getUnsignedMax - Return the largest unsigned value contained in the
85/// ConstantRange.
86///
87APInt ConstantRange::getUnsignedMax() const {
88  if (isFullSet() || isWrappedSet())
89    return APInt::getMaxValue(getBitWidth());
90  else
91    return getUpper() - 1;
92}
93
94/// getUnsignedMin - Return the smallest unsigned value contained in the
95/// ConstantRange.
96///
97APInt ConstantRange::getUnsignedMin() const {
98  if (isFullSet() || (isWrappedSet() && getUpper() != 0))
99    return APInt::getMinValue(getBitWidth());
100  else
101    return getLower();
102}
103
104/// getSignedMax - Return the largest signed value contained in the
105/// ConstantRange.
106///
107APInt ConstantRange::getSignedMax() const {
108  APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
109  if (!isWrappedSet()) {
110    if (getLower().sle(getUpper() - 1))
111      return getUpper() - 1;
112    else
113      return SignedMax;
114  } else {
115    if ((getUpper() - 1).slt(getLower())) {
116      if (getLower() != SignedMax)
117        return SignedMax;
118      else
119        return getUpper() - 1;
120    } else {
121      return getUpper() - 1;
122    }
123  }
124}
125
126/// getSignedMin - Return the smallest signed value contained in the
127/// ConstantRange.
128///
129APInt ConstantRange::getSignedMin() const {
130  APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
131  if (!isWrappedSet()) {
132    if (getLower().sle(getUpper() - 1))
133      return getLower();
134    else
135      return SignedMin;
136  } else {
137    if ((getUpper() - 1).slt(getLower())) {
138      if (getUpper() != SignedMin)
139        return SignedMin;
140      else
141        return getLower();
142    } else {
143      return getLower();
144    }
145  }
146}
147
148/// contains - Return true if the specified value is in the set.
149///
150bool ConstantRange::contains(const APInt &V) const {
151  if (Lower == Upper)
152    return isFullSet();
153
154  if (!isWrappedSet())
155    return Lower.ule(V) && V.ult(Upper);
156  else
157    return Lower.ule(V) || V.ult(Upper);
158}
159
160/// subtract - Subtract the specified constant from the endpoints of this
161/// constant range.
162ConstantRange ConstantRange::subtract(const APInt &Val) const {
163  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
164  // If the set is empty or full, don't modify the endpoints.
165  if (Lower == Upper)
166    return *this;
167  return ConstantRange(Lower - Val, Upper - Val);
168}
169
170
171// intersect1Wrapped - This helper function is used to intersect two ranges when
172// it is known that LHS is wrapped and RHS isn't.
173//
174ConstantRange
175ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
176                                 const ConstantRange &RHS) {
177  assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
178
179  // Check to see if we overlap on the Left side of RHS...
180  //
181  if (RHS.Lower.ult(LHS.Upper)) {
182    // We do overlap on the left side of RHS, see if we overlap on the right of
183    // RHS...
184    if (RHS.Upper.ugt(LHS.Lower)) {
185      // Ok, the result overlaps on both the left and right sides.  See if the
186      // resultant interval will be smaller if we wrap or not...
187      //
188      if (LHS.getSetSize().ult(RHS.getSetSize()))
189        return LHS;
190      else
191        return RHS;
192
193    } else {
194      // No overlap on the right, just on the left.
195      return ConstantRange(RHS.Lower, LHS.Upper);
196    }
197  } else {
198    // We don't overlap on the left side of RHS, see if we overlap on the right
199    // of RHS...
200    if (RHS.Upper.ugt(LHS.Lower)) {
201      // Simple overlap...
202      return ConstantRange(LHS.Lower, RHS.Upper);
203    } else {
204      // No overlap...
205      return ConstantRange(LHS.getBitWidth(), false);
206    }
207  }
208}
209
210/// intersectWith - Return the range that results from the intersection of this
211/// range with another range.
212///
213ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
214  assert(getBitWidth() == CR.getBitWidth() &&
215         "ConstantRange types don't agree!");
216  // Handle common special cases
217  if (isEmptySet() || CR.isFullSet())
218    return *this;
219  if (isFullSet()  || CR.isEmptySet())
220    return CR;
221
222  if (!isWrappedSet()) {
223    if (!CR.isWrappedSet()) {
224      using namespace APIntOps;
225      APInt L = umax(Lower, CR.Lower);
226      APInt U = umin(Upper, CR.Upper);
227
228      if (L.ult(U)) // If range isn't empty...
229        return ConstantRange(L, U);
230      else
231        return ConstantRange(getBitWidth(), false);// Otherwise, empty set
232    } else
233      return intersect1Wrapped(CR, *this);
234  } else {   // We know "this" is wrapped...
235    if (!CR.isWrappedSet())
236      return intersect1Wrapped(*this, CR);
237    else {
238      // Both ranges are wrapped...
239      using namespace APIntOps;
240      APInt L = umax(Lower, CR.Lower);
241      APInt U = umin(Upper, CR.Upper);
242      return ConstantRange(L, U);
243    }
244  }
245  return *this;
246}
247
248/// maximalIntersectWith - Return the range that results from the intersection
249/// of this range with another range.  The resultant range is guaranteed to
250/// include all elements contained in both input ranges, and to have the
251/// smallest possible set size that does so.  Because there may be two
252/// intersections with the same set size, A.maximalIntersectWith(B) might not
253/// be equal to B.maximalIntersect(A).
254ConstantRange ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
255  assert(getBitWidth() == CR.getBitWidth() &&
256         "ConstantRange types don't agree!");
257
258  // Handle common cases.
259  if (   isEmptySet() || CR.isFullSet()) return *this;
260  if (CR.isEmptySet() ||    isFullSet()) return CR;
261
262  if (!isWrappedSet() && CR.isWrappedSet())
263    return CR.maximalIntersectWith(*this);
264
265  if (!isWrappedSet() && !CR.isWrappedSet()) {
266    if (Lower.ult(CR.Lower)) {
267      if (Upper.ule(CR.Lower))
268        return ConstantRange(getBitWidth(), false);
269
270      if (Upper.ult(CR.Upper))
271        return ConstantRange(CR.Lower, Upper);
272
273      return CR;
274    } else {
275      if (Upper.ult(CR.Upper))
276        return *this;
277
278      if (Lower.ult(CR.Upper))
279        return ConstantRange(Lower, CR.Upper);
280
281      return ConstantRange(getBitWidth(), false);
282    }
283  }
284
285  if (isWrappedSet() && !CR.isWrappedSet()) {
286    if (CR.Lower.ult(Upper)) {
287      if (CR.Upper.ult(Upper))
288        return CR;
289
290      if (CR.Upper.ult(Lower))
291        return ConstantRange(CR.Lower, Upper);
292
293      if (getSetSize().ult(CR.getSetSize()))
294        return *this;
295      else
296        return CR;
297    } else if (CR.Lower.ult(Lower)) {
298      if (CR.Upper.ule(Lower))
299        return ConstantRange(getBitWidth(), false);
300
301      return ConstantRange(Lower, CR.Upper);
302    }
303    return CR;
304  }
305
306  if (CR.Upper.ult(Upper)) {
307    if (CR.Lower.ult(Upper)) {
308      if (getSetSize().ult(CR.getSetSize()))
309        return *this;
310      else
311        return CR;
312    }
313
314    if (CR.Lower.ult(Lower))
315      return ConstantRange(Lower, CR.Upper);
316
317    return CR;
318  } else if (CR.Upper.ult(Lower)) {
319    if (CR.Lower.ult(Lower))
320      return *this;
321
322    return ConstantRange(CR.Lower, Upper);
323  }
324  if (getSetSize().ult(CR.getSetSize()))
325    return *this;
326  else
327    return CR;
328}
329
330
331/// unionWith - Return the range that results from the union of this range with
332/// another range.  The resultant range is guaranteed to include the elements of
333/// both sets, but may contain more.  For example, [3, 9) union [12,15) is
334/// [3, 15), which includes 9, 10, and 11, which were not included in either
335/// set before.
336///
337ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
338  assert(getBitWidth() == CR.getBitWidth() &&
339         "ConstantRange types don't agree!");
340
341  if (   isFullSet() || CR.isEmptySet()) return *this;
342  if (CR.isFullSet() ||    isEmptySet()) return CR;
343
344  if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
345
346  APInt L = Lower, U = Upper;
347
348  if (!isWrappedSet() && !CR.isWrappedSet()) {
349    if (CR.Lower.ult(L))
350      L = CR.Lower;
351
352    if (CR.Upper.ugt(U))
353      U = CR.Upper;
354  }
355
356  if (isWrappedSet() && !CR.isWrappedSet()) {
357    if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) ||
358        (CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) {
359      return *this;
360    }
361
362    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) {
363      return ConstantRange(getBitWidth());
364    }
365
366    if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) {
367      APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
368      if (d1.ult(d2)) {
369        U = CR.Upper;
370      } else {
371        L = CR.Upper;
372      }
373    }
374
375    if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) {
376      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
377      if (d1.ult(d2)) {
378        U = CR.Lower + 1;
379      } else {
380        L = CR.Upper - 1;
381      }
382    }
383
384    if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) {
385      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
386
387      if (d1.ult(d2)) {
388        U = CR.Lower + 1;
389      } else {
390        L = CR.Lower;
391      }
392    }
393  }
394
395  if (isWrappedSet() && CR.isWrappedSet()) {
396    if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper))
397      return ConstantRange(getBitWidth());
398
399    if (CR.Upper.ugt(U)) {
400      U = CR.Upper;
401    }
402
403    if (CR.Lower.ult(L)) {
404      L = CR.Lower;
405    }
406
407    if (L == U) return ConstantRange(getBitWidth());
408  }
409
410  return ConstantRange(L, U);
411}
412
413/// zeroExtend - Return a new range in the specified integer type, which must
414/// be strictly larger than the current type.  The returned range will
415/// correspond to the possible range of values as if the source range had been
416/// zero extended.
417ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
418  unsigned SrcTySize = getBitWidth();
419  assert(SrcTySize < DstTySize && "Not a value extension");
420  if (isFullSet())
421    // Change a source full set into [0, 1 << 8*numbytes)
422    return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
423
424  APInt L = Lower; L.zext(DstTySize);
425  APInt U = Upper; U.zext(DstTySize);
426  return ConstantRange(L, U);
427}
428
429/// signExtend - Return a new range in the specified integer type, which must
430/// be strictly larger than the current type.  The returned range will
431/// correspond to the possible range of values as if the source range had been
432/// sign extended.
433ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
434  unsigned SrcTySize = getBitWidth();
435  assert(SrcTySize < DstTySize && "Not a value extension");
436  if (isFullSet()) {
437    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
438                         APInt::getLowBitsSet(DstTySize, SrcTySize-1));
439  }
440
441  APInt L = Lower; L.sext(DstTySize);
442  APInt U = Upper; U.sext(DstTySize);
443  return ConstantRange(L, U);
444}
445
446/// truncate - Return a new range in the specified integer type, which must be
447/// strictly smaller than the current type.  The returned range will
448/// correspond to the possible range of values as if the source range had been
449/// truncated to the specified type.
450ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
451  unsigned SrcTySize = getBitWidth();
452  assert(SrcTySize > DstTySize && "Not a value truncation");
453  APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
454  if (isFullSet() || getSetSize().ugt(Size))
455    return ConstantRange(DstTySize);
456
457  APInt L = Lower; L.trunc(DstTySize);
458  APInt U = Upper; U.trunc(DstTySize);
459  return ConstantRange(L, U);
460}
461
462/// print - Print out the bounds to a stream...
463///
464void ConstantRange::print(raw_ostream &OS) const {
465  OS << "[" << Lower << "," << Upper << ")";
466}
467
468/// dump - Allow printing from a debugger easily...
469///
470void ConstantRange::dump() const {
471  print(errs());
472}
473