SelectionDAGISel.cpp revision 251662
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
67STATISTIC(NumFastIselFailLowerArguments,
68          "Number of entry blocks where fast isel failed to lower arguments");
69
70#ifndef NDEBUG
71static cl::opt<bool>
72EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
73          cl::desc("Enable extra verbose messages in the \"fast\" "
74                   "instruction selector"));
75
76  // Terminators
77STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
78STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
79STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
80STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
81STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
82STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
83STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
84
85  // Standard binary operators...
86STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
87STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
88STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
89STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
90STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
91STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
92STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
93STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
94STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
95STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
96STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
97STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
98
99  // Logical operators...
100STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
101STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
102STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
103
104  // Memory instructions...
105STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
106STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
107STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
108STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
109STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
110STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
111STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
112
113  // Convert instructions...
114STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
115STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
116STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
117STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
118STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
119STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
120STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
121STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
122STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
123STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
124STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
125STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
126
127  // Other instructions...
128STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
129STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
130STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
131STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
132STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
133STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
134STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
135STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
136STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
137STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
138STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
139STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
140STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
141STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
142STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
143#endif
144
145static cl::opt<bool>
146EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
147          cl::desc("Enable verbose messages in the \"fast\" "
148                   "instruction selector"));
149static cl::opt<bool>
150EnableFastISelAbort("fast-isel-abort", cl::Hidden,
151          cl::desc("Enable abort calls when \"fast\" instruction selection "
152                   "fails to lower an instruction"));
153static cl::opt<bool>
154EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
155          cl::desc("Enable abort calls when \"fast\" instruction selection "
156                   "fails to lower a formal argument"));
157
158static cl::opt<bool>
159UseMBPI("use-mbpi",
160        cl::desc("use Machine Branch Probability Info"),
161        cl::init(true), cl::Hidden);
162
163#ifndef NDEBUG
164static cl::opt<bool>
165ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the first "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before legalize types"));
171static cl::opt<bool>
172ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
173          cl::desc("Pop up a window to show dags before legalize"));
174static cl::opt<bool>
175ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
176          cl::desc("Pop up a window to show dags before the second "
177                   "dag combine pass"));
178static cl::opt<bool>
179ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
180          cl::desc("Pop up a window to show dags before the post legalize types"
181                   " dag combine pass"));
182static cl::opt<bool>
183ViewISelDAGs("view-isel-dags", cl::Hidden,
184          cl::desc("Pop up a window to show isel dags as they are selected"));
185static cl::opt<bool>
186ViewSchedDAGs("view-sched-dags", cl::Hidden,
187          cl::desc("Pop up a window to show sched dags as they are processed"));
188static cl::opt<bool>
189ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
190      cl::desc("Pop up a window to show SUnit dags after they are processed"));
191#else
192static const bool ViewDAGCombine1 = false,
193                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
194                  ViewDAGCombine2 = false,
195                  ViewDAGCombineLT = false,
196                  ViewISelDAGs = false, ViewSchedDAGs = false,
197                  ViewSUnitDAGs = false;
198#endif
199
200//===---------------------------------------------------------------------===//
201///
202/// RegisterScheduler class - Track the registration of instruction schedulers.
203///
204//===---------------------------------------------------------------------===//
205MachinePassRegistry RegisterScheduler::Registry;
206
207//===---------------------------------------------------------------------===//
208///
209/// ISHeuristic command line option for instruction schedulers.
210///
211//===---------------------------------------------------------------------===//
212static cl::opt<RegisterScheduler::FunctionPassCtor, false,
213               RegisterPassParser<RegisterScheduler> >
214ISHeuristic("pre-RA-sched",
215            cl::init(&createDefaultScheduler),
216            cl::desc("Instruction schedulers available (before register"
217                     " allocation):"));
218
219static RegisterScheduler
220defaultListDAGScheduler("default", "Best scheduler for the target",
221                        createDefaultScheduler);
222
223namespace llvm {
224  //===--------------------------------------------------------------------===//
225  /// createDefaultScheduler - This creates an instruction scheduler appropriate
226  /// for the target.
227  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
228                                             CodeGenOpt::Level OptLevel) {
229    const TargetLowering &TLI = IS->getTargetLowering();
230    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
231
232    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
233        TLI.getSchedulingPreference() == Sched::Source)
234      return createSourceListDAGScheduler(IS, OptLevel);
235    if (TLI.getSchedulingPreference() == Sched::RegPressure)
236      return createBURRListDAGScheduler(IS, OptLevel);
237    if (TLI.getSchedulingPreference() == Sched::Hybrid)
238      return createHybridListDAGScheduler(IS, OptLevel);
239    if (TLI.getSchedulingPreference() == Sched::VLIW)
240      return createVLIWDAGScheduler(IS, OptLevel);
241    assert(TLI.getSchedulingPreference() == Sched::ILP &&
242           "Unknown sched type!");
243    return createILPListDAGScheduler(IS, OptLevel);
244  }
245}
246
247// EmitInstrWithCustomInserter - This method should be implemented by targets
248// that mark instructions with the 'usesCustomInserter' flag.  These
249// instructions are special in various ways, which require special support to
250// insert.  The specified MachineInstr is created but not inserted into any
251// basic blocks, and this method is called to expand it into a sequence of
252// instructions, potentially also creating new basic blocks and control flow.
253// When new basic blocks are inserted and the edges from MBB to its successors
254// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
255// DenseMap.
256MachineBasicBlock *
257TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
258                                            MachineBasicBlock *MBB) const {
259#ifndef NDEBUG
260  dbgs() << "If a target marks an instruction with "
261          "'usesCustomInserter', it must implement "
262          "TargetLowering::EmitInstrWithCustomInserter!";
263#endif
264  llvm_unreachable(0);
265}
266
267void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
268                                                   SDNode *Node) const {
269  assert(!MI->hasPostISelHook() &&
270         "If a target marks an instruction with 'hasPostISelHook', "
271         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
272}
273
274//===----------------------------------------------------------------------===//
275// SelectionDAGISel code
276//===----------------------------------------------------------------------===//
277
278SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
279                                   CodeGenOpt::Level OL) :
280  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
281  FuncInfo(new FunctionLoweringInfo(TLI)),
282  CurDAG(new SelectionDAG(tm, OL)),
283  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
284  GFI(),
285  OptLevel(OL),
286  DAGSize(0) {
287    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
288    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
289    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
290    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
291  }
292
293SelectionDAGISel::~SelectionDAGISel() {
294  delete SDB;
295  delete CurDAG;
296  delete FuncInfo;
297}
298
299void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
300  AU.addRequired<AliasAnalysis>();
301  AU.addPreserved<AliasAnalysis>();
302  AU.addRequired<GCModuleInfo>();
303  AU.addPreserved<GCModuleInfo>();
304  AU.addRequired<TargetLibraryInfo>();
305  if (UseMBPI && OptLevel != CodeGenOpt::None)
306    AU.addRequired<BranchProbabilityInfo>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
311/// may trap on it.  In this case we have to split the edge so that the path
312/// through the predecessor block that doesn't go to the phi block doesn't
313/// execute the possibly trapping instruction.
314///
315/// This is required for correctness, so it must be done at -O0.
316///
317static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
318  // Loop for blocks with phi nodes.
319  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
320    PHINode *PN = dyn_cast<PHINode>(BB->begin());
321    if (PN == 0) continue;
322
323  ReprocessBlock:
324    // For each block with a PHI node, check to see if any of the input values
325    // are potentially trapping constant expressions.  Constant expressions are
326    // the only potentially trapping value that can occur as the argument to a
327    // PHI.
328    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
329      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
330        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
331        if (CE == 0 || !CE->canTrap()) continue;
332
333        // The only case we have to worry about is when the edge is critical.
334        // Since this block has a PHI Node, we assume it has multiple input
335        // edges: check to see if the pred has multiple successors.
336        BasicBlock *Pred = PN->getIncomingBlock(i);
337        if (Pred->getTerminator()->getNumSuccessors() == 1)
338          continue;
339
340        // Okay, we have to split this edge.
341        SplitCriticalEdge(Pred->getTerminator(),
342                          GetSuccessorNumber(Pred, BB), SDISel, true);
343        goto ReprocessBlock;
344      }
345  }
346}
347
348bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
349  // Do some sanity-checking on the command-line options.
350  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
351         "-fast-isel-verbose requires -fast-isel");
352  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
353         "-fast-isel-abort requires -fast-isel");
354
355  const Function &Fn = *mf.getFunction();
356  const TargetInstrInfo &TII = *TM.getInstrInfo();
357  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
358
359  MF = &mf;
360  RegInfo = &MF->getRegInfo();
361  AA = &getAnalysis<AliasAnalysis>();
362  LibInfo = &getAnalysis<TargetLibraryInfo>();
363  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
364  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
365
366  TargetSubtargetInfo &ST =
367    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
368  ST.resetSubtargetFeatures(MF);
369  TM.resetTargetOptions(MF);
370
371  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
372
373  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
374
375  CurDAG->init(*MF, TTI);
376  FuncInfo->set(Fn, *MF);
377
378  if (UseMBPI && OptLevel != CodeGenOpt::None)
379    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
380  else
381    FuncInfo->BPI = 0;
382
383  SDB->init(GFI, *AA, LibInfo);
384
385  MF->setHasMSInlineAsm(false);
386  SelectAllBasicBlocks(Fn);
387
388  // If the first basic block in the function has live ins that need to be
389  // copied into vregs, emit the copies into the top of the block before
390  // emitting the code for the block.
391  MachineBasicBlock *EntryMBB = MF->begin();
392  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
393
394  DenseMap<unsigned, unsigned> LiveInMap;
395  if (!FuncInfo->ArgDbgValues.empty())
396    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
397           E = RegInfo->livein_end(); LI != E; ++LI)
398      if (LI->second)
399        LiveInMap.insert(std::make_pair(LI->first, LI->second));
400
401  // Insert DBG_VALUE instructions for function arguments to the entry block.
402  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
403    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
404    unsigned Reg = MI->getOperand(0).getReg();
405    if (TargetRegisterInfo::isPhysicalRegister(Reg))
406      EntryMBB->insert(EntryMBB->begin(), MI);
407    else {
408      MachineInstr *Def = RegInfo->getVRegDef(Reg);
409      MachineBasicBlock::iterator InsertPos = Def;
410      // FIXME: VR def may not be in entry block.
411      Def->getParent()->insert(llvm::next(InsertPos), MI);
412    }
413
414    // If Reg is live-in then update debug info to track its copy in a vreg.
415    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
416    if (LDI != LiveInMap.end()) {
417      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
418      MachineBasicBlock::iterator InsertPos = Def;
419      const MDNode *Variable =
420        MI->getOperand(MI->getNumOperands()-1).getMetadata();
421      unsigned Offset = MI->getOperand(1).getImm();
422      // Def is never a terminator here, so it is ok to increment InsertPos.
423      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
424              TII.get(TargetOpcode::DBG_VALUE))
425        .addReg(LDI->second, RegState::Debug)
426        .addImm(Offset).addMetadata(Variable);
427
428      // If this vreg is directly copied into an exported register then
429      // that COPY instructions also need DBG_VALUE, if it is the only
430      // user of LDI->second.
431      MachineInstr *CopyUseMI = NULL;
432      for (MachineRegisterInfo::use_iterator
433             UI = RegInfo->use_begin(LDI->second);
434           MachineInstr *UseMI = UI.skipInstruction();) {
435        if (UseMI->isDebugValue()) continue;
436        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
437          CopyUseMI = UseMI; continue;
438        }
439        // Otherwise this is another use or second copy use.
440        CopyUseMI = NULL; break;
441      }
442      if (CopyUseMI) {
443        MachineInstr *NewMI =
444          BuildMI(*MF, CopyUseMI->getDebugLoc(),
445                  TII.get(TargetOpcode::DBG_VALUE))
446          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
447          .addImm(Offset).addMetadata(Variable);
448        MachineBasicBlock::iterator Pos = CopyUseMI;
449        EntryMBB->insertAfter(Pos, NewMI);
450      }
451    }
452  }
453
454  // Determine if there are any calls in this machine function.
455  MachineFrameInfo *MFI = MF->getFrameInfo();
456  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
457       ++I) {
458
459    if (MFI->hasCalls() && MF->hasMSInlineAsm())
460      break;
461
462    const MachineBasicBlock *MBB = I;
463    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
464         II != IE; ++II) {
465      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
466      if ((MCID.isCall() && !MCID.isReturn()) ||
467          II->isStackAligningInlineAsm()) {
468        MFI->setHasCalls(true);
469      }
470      if (II->isMSInlineAsm()) {
471        MF->setHasMSInlineAsm(true);
472      }
473    }
474  }
475
476  // Determine if there is a call to setjmp in the machine function.
477  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
478
479  // Replace forward-declared registers with the registers containing
480  // the desired value.
481  MachineRegisterInfo &MRI = MF->getRegInfo();
482  for (DenseMap<unsigned, unsigned>::iterator
483       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
484       I != E; ++I) {
485    unsigned From = I->first;
486    unsigned To = I->second;
487    // If To is also scheduled to be replaced, find what its ultimate
488    // replacement is.
489    for (;;) {
490      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
491      if (J == E) break;
492      To = J->second;
493    }
494    // Replace it.
495    MRI.replaceRegWith(From, To);
496  }
497
498  // Freeze the set of reserved registers now that MachineFrameInfo has been
499  // set up. All the information required by getReservedRegs() should be
500  // available now.
501  MRI.freezeReservedRegs(*MF);
502
503  // Release function-specific state. SDB and CurDAG are already cleared
504  // at this point.
505  FuncInfo->clear();
506
507  return true;
508}
509
510void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
511                                        BasicBlock::const_iterator End,
512                                        bool &HadTailCall) {
513  // Lower all of the non-terminator instructions. If a call is emitted
514  // as a tail call, cease emitting nodes for this block. Terminators
515  // are handled below.
516  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
517    SDB->visit(*I);
518
519  // Make sure the root of the DAG is up-to-date.
520  CurDAG->setRoot(SDB->getControlRoot());
521  HadTailCall = SDB->HasTailCall;
522  SDB->clear();
523
524  // Final step, emit the lowered DAG as machine code.
525  CodeGenAndEmitDAG();
526}
527
528void SelectionDAGISel::ComputeLiveOutVRegInfo() {
529  SmallPtrSet<SDNode*, 128> VisitedNodes;
530  SmallVector<SDNode*, 128> Worklist;
531
532  Worklist.push_back(CurDAG->getRoot().getNode());
533
534  APInt KnownZero;
535  APInt KnownOne;
536
537  do {
538    SDNode *N = Worklist.pop_back_val();
539
540    // If we've already seen this node, ignore it.
541    if (!VisitedNodes.insert(N))
542      continue;
543
544    // Otherwise, add all chain operands to the worklist.
545    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
546      if (N->getOperand(i).getValueType() == MVT::Other)
547        Worklist.push_back(N->getOperand(i).getNode());
548
549    // If this is a CopyToReg with a vreg dest, process it.
550    if (N->getOpcode() != ISD::CopyToReg)
551      continue;
552
553    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
554    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
555      continue;
556
557    // Ignore non-scalar or non-integer values.
558    SDValue Src = N->getOperand(2);
559    EVT SrcVT = Src.getValueType();
560    if (!SrcVT.isInteger() || SrcVT.isVector())
561      continue;
562
563    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
564    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
565    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
566  } while (!Worklist.empty());
567}
568
569void SelectionDAGISel::CodeGenAndEmitDAG() {
570  std::string GroupName;
571  if (TimePassesIsEnabled)
572    GroupName = "Instruction Selection and Scheduling";
573  std::string BlockName;
574  int BlockNumber = -1;
575  (void)BlockNumber;
576#ifdef NDEBUG
577  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
578      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
579      ViewSUnitDAGs)
580#endif
581  {
582    BlockNumber = FuncInfo->MBB->getNumber();
583    BlockName = MF->getName().str() + ":" +
584                FuncInfo->MBB->getBasicBlock()->getName().str();
585  }
586  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
587        << " '" << BlockName << "'\n"; CurDAG->dump());
588
589  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
590
591  // Run the DAG combiner in pre-legalize mode.
592  {
593    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
594    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
595  }
596
597  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
598        << " '" << BlockName << "'\n"; CurDAG->dump());
599
600  // Second step, hack on the DAG until it only uses operations and types that
601  // the target supports.
602  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
603                                               BlockName);
604
605  bool Changed;
606  {
607    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
608    Changed = CurDAG->LegalizeTypes();
609  }
610
611  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
612        << " '" << BlockName << "'\n"; CurDAG->dump());
613
614  if (Changed) {
615    if (ViewDAGCombineLT)
616      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
617
618    // Run the DAG combiner in post-type-legalize mode.
619    {
620      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
621                         TimePassesIsEnabled);
622      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
623    }
624
625    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
626          << " '" << BlockName << "'\n"; CurDAG->dump());
627  }
628
629  {
630    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
631    Changed = CurDAG->LegalizeVectors();
632  }
633
634  if (Changed) {
635    {
636      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
637      CurDAG->LegalizeTypes();
638    }
639
640    if (ViewDAGCombineLT)
641      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
642
643    // Run the DAG combiner in post-type-legalize mode.
644    {
645      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
646                         TimePassesIsEnabled);
647      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
648    }
649
650    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
651          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
652  }
653
654  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
655
656  {
657    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
658    CurDAG->Legalize();
659  }
660
661  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
662        << " '" << BlockName << "'\n"; CurDAG->dump());
663
664  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
665
666  // Run the DAG combiner in post-legalize mode.
667  {
668    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
669    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
670  }
671
672  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
673        << " '" << BlockName << "'\n"; CurDAG->dump());
674
675  if (OptLevel != CodeGenOpt::None)
676    ComputeLiveOutVRegInfo();
677
678  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
679
680  // Third, instruction select all of the operations to machine code, adding the
681  // code to the MachineBasicBlock.
682  {
683    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
684    DoInstructionSelection();
685  }
686
687  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
688        << " '" << BlockName << "'\n"; CurDAG->dump());
689
690  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
691
692  // Schedule machine code.
693  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
694  {
695    NamedRegionTimer T("Instruction Scheduling", GroupName,
696                       TimePassesIsEnabled);
697    Scheduler->Run(CurDAG, FuncInfo->MBB);
698  }
699
700  if (ViewSUnitDAGs) Scheduler->viewGraph();
701
702  // Emit machine code to BB.  This can change 'BB' to the last block being
703  // inserted into.
704  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
705  {
706    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
707
708    // FuncInfo->InsertPt is passed by reference and set to the end of the
709    // scheduled instructions.
710    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
711  }
712
713  // If the block was split, make sure we update any references that are used to
714  // update PHI nodes later on.
715  if (FirstMBB != LastMBB)
716    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
717
718  // Free the scheduler state.
719  {
720    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
721                       TimePassesIsEnabled);
722    delete Scheduler;
723  }
724
725  // Free the SelectionDAG state, now that we're finished with it.
726  CurDAG->clear();
727}
728
729namespace {
730/// ISelUpdater - helper class to handle updates of the instruction selection
731/// graph.
732class ISelUpdater : public SelectionDAG::DAGUpdateListener {
733  SelectionDAG::allnodes_iterator &ISelPosition;
734public:
735  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
736    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
737
738  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
739  /// deleted is the current ISelPosition node, update ISelPosition.
740  ///
741  virtual void NodeDeleted(SDNode *N, SDNode *E) {
742    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
743      ++ISelPosition;
744  }
745};
746} // end anonymous namespace
747
748void SelectionDAGISel::DoInstructionSelection() {
749  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
750        << FuncInfo->MBB->getNumber()
751        << " '" << FuncInfo->MBB->getName() << "'\n");
752
753  PreprocessISelDAG();
754
755  // Select target instructions for the DAG.
756  {
757    // Number all nodes with a topological order and set DAGSize.
758    DAGSize = CurDAG->AssignTopologicalOrder();
759
760    // Create a dummy node (which is not added to allnodes), that adds
761    // a reference to the root node, preventing it from being deleted,
762    // and tracking any changes of the root.
763    HandleSDNode Dummy(CurDAG->getRoot());
764    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
765    ++ISelPosition;
766
767    // Make sure that ISelPosition gets properly updated when nodes are deleted
768    // in calls made from this function.
769    ISelUpdater ISU(*CurDAG, ISelPosition);
770
771    // The AllNodes list is now topological-sorted. Visit the
772    // nodes by starting at the end of the list (the root of the
773    // graph) and preceding back toward the beginning (the entry
774    // node).
775    while (ISelPosition != CurDAG->allnodes_begin()) {
776      SDNode *Node = --ISelPosition;
777      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
778      // but there are currently some corner cases that it misses. Also, this
779      // makes it theoretically possible to disable the DAGCombiner.
780      if (Node->use_empty())
781        continue;
782
783      SDNode *ResNode = Select(Node);
784
785      // FIXME: This is pretty gross.  'Select' should be changed to not return
786      // anything at all and this code should be nuked with a tactical strike.
787
788      // If node should not be replaced, continue with the next one.
789      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
790        continue;
791      // Replace node.
792      if (ResNode) {
793        // Propagate ordering
794        CurDAG->AssignOrdering(ResNode, CurDAG->GetOrdering(Node));
795
796        ReplaceUses(Node, ResNode);
797      }
798
799      // If after the replacement this node is not used any more,
800      // remove this dead node.
801      if (Node->use_empty()) // Don't delete EntryToken, etc.
802        CurDAG->RemoveDeadNode(Node);
803    }
804
805    CurDAG->setRoot(Dummy.getValue());
806  }
807
808  DEBUG(dbgs() << "===== Instruction selection ends:\n");
809
810  PostprocessISelDAG();
811}
812
813/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
814/// do other setup for EH landing-pad blocks.
815void SelectionDAGISel::PrepareEHLandingPad() {
816  MachineBasicBlock *MBB = FuncInfo->MBB;
817
818  // Add a label to mark the beginning of the landing pad.  Deletion of the
819  // landing pad can thus be detected via the MachineModuleInfo.
820  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
821
822  // Assign the call site to the landing pad's begin label.
823  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
824
825  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
826  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
827    .addSym(Label);
828
829  // Mark exception register as live in.
830  unsigned Reg = TLI.getExceptionPointerRegister();
831  if (Reg) MBB->addLiveIn(Reg);
832
833  // Mark exception selector register as live in.
834  Reg = TLI.getExceptionSelectorRegister();
835  if (Reg) MBB->addLiveIn(Reg);
836}
837
838/// isFoldedOrDeadInstruction - Return true if the specified instruction is
839/// side-effect free and is either dead or folded into a generated instruction.
840/// Return false if it needs to be emitted.
841static bool isFoldedOrDeadInstruction(const Instruction *I,
842                                      FunctionLoweringInfo *FuncInfo) {
843  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
844         !isa<TerminatorInst>(I) && // Terminators aren't folded.
845         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
846         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
847         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
848}
849
850#ifndef NDEBUG
851// Collect per Instruction statistics for fast-isel misses.  Only those
852// instructions that cause the bail are accounted for.  It does not account for
853// instructions higher in the block.  Thus, summing the per instructions stats
854// will not add up to what is reported by NumFastIselFailures.
855static void collectFailStats(const Instruction *I) {
856  switch (I->getOpcode()) {
857  default: assert (0 && "<Invalid operator> ");
858
859  // Terminators
860  case Instruction::Ret:         NumFastIselFailRet++; return;
861  case Instruction::Br:          NumFastIselFailBr++; return;
862  case Instruction::Switch:      NumFastIselFailSwitch++; return;
863  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
864  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
865  case Instruction::Resume:      NumFastIselFailResume++; return;
866  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
867
868  // Standard binary operators...
869  case Instruction::Add:  NumFastIselFailAdd++; return;
870  case Instruction::FAdd: NumFastIselFailFAdd++; return;
871  case Instruction::Sub:  NumFastIselFailSub++; return;
872  case Instruction::FSub: NumFastIselFailFSub++; return;
873  case Instruction::Mul:  NumFastIselFailMul++; return;
874  case Instruction::FMul: NumFastIselFailFMul++; return;
875  case Instruction::UDiv: NumFastIselFailUDiv++; return;
876  case Instruction::SDiv: NumFastIselFailSDiv++; return;
877  case Instruction::FDiv: NumFastIselFailFDiv++; return;
878  case Instruction::URem: NumFastIselFailURem++; return;
879  case Instruction::SRem: NumFastIselFailSRem++; return;
880  case Instruction::FRem: NumFastIselFailFRem++; return;
881
882  // Logical operators...
883  case Instruction::And: NumFastIselFailAnd++; return;
884  case Instruction::Or:  NumFastIselFailOr++; return;
885  case Instruction::Xor: NumFastIselFailXor++; return;
886
887  // Memory instructions...
888  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
889  case Instruction::Load:          NumFastIselFailLoad++; return;
890  case Instruction::Store:         NumFastIselFailStore++; return;
891  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
892  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
893  case Instruction::Fence:         NumFastIselFailFence++; return;
894  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
895
896  // Convert instructions...
897  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
898  case Instruction::ZExt:     NumFastIselFailZExt++; return;
899  case Instruction::SExt:     NumFastIselFailSExt++; return;
900  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
901  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
902  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
903  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
904  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
905  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
906  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
907  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
908  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
909
910  // Other instructions...
911  case Instruction::ICmp:           NumFastIselFailICmp++; return;
912  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
913  case Instruction::PHI:            NumFastIselFailPHI++; return;
914  case Instruction::Select:         NumFastIselFailSelect++; return;
915  case Instruction::Call:           NumFastIselFailCall++; return;
916  case Instruction::Shl:            NumFastIselFailShl++; return;
917  case Instruction::LShr:           NumFastIselFailLShr++; return;
918  case Instruction::AShr:           NumFastIselFailAShr++; return;
919  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
920  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
921  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
922  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
923  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
924  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
925  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
926  }
927}
928#endif
929
930void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
931  // Initialize the Fast-ISel state, if needed.
932  FastISel *FastIS = 0;
933  if (TM.Options.EnableFastISel)
934    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
935
936  // Iterate over all basic blocks in the function.
937  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
938  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
939       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
940    const BasicBlock *LLVMBB = *I;
941
942    if (OptLevel != CodeGenOpt::None) {
943      bool AllPredsVisited = true;
944      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
945           PI != PE; ++PI) {
946        if (!FuncInfo->VisitedBBs.count(*PI)) {
947          AllPredsVisited = false;
948          break;
949        }
950      }
951
952      if (AllPredsVisited) {
953        for (BasicBlock::const_iterator I = LLVMBB->begin();
954             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
955          FuncInfo->ComputePHILiveOutRegInfo(PN);
956      } else {
957        for (BasicBlock::const_iterator I = LLVMBB->begin();
958             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
959          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
960      }
961
962      FuncInfo->VisitedBBs.insert(LLVMBB);
963    }
964
965    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
966    BasicBlock::const_iterator const End = LLVMBB->end();
967    BasicBlock::const_iterator BI = End;
968
969    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
970    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
971
972    // Setup an EH landing-pad block.
973    if (FuncInfo->MBB->isLandingPad())
974      PrepareEHLandingPad();
975
976    // Before doing SelectionDAG ISel, see if FastISel has been requested.
977    if (FastIS) {
978      FastIS->startNewBlock();
979
980      // Emit code for any incoming arguments. This must happen before
981      // beginning FastISel on the entry block.
982      if (LLVMBB == &Fn.getEntryBlock()) {
983        ++NumEntryBlocks;
984
985        // Lower any arguments needed in this block if this is the entry block.
986        if (!FastIS->LowerArguments()) {
987          // Fast isel failed to lower these arguments
988          ++NumFastIselFailLowerArguments;
989          if (EnableFastISelAbortArgs)
990            llvm_unreachable("FastISel didn't lower all arguments");
991
992          // Use SelectionDAG argument lowering
993          LowerArguments(Fn);
994          CurDAG->setRoot(SDB->getControlRoot());
995          SDB->clear();
996          CodeGenAndEmitDAG();
997        }
998
999        // If we inserted any instructions at the beginning, make a note of
1000        // where they are, so we can be sure to emit subsequent instructions
1001        // after them.
1002        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1003          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1004        else
1005          FastIS->setLastLocalValue(0);
1006      }
1007
1008      unsigned NumFastIselRemaining = std::distance(Begin, End);
1009      // Do FastISel on as many instructions as possible.
1010      for (; BI != Begin; --BI) {
1011        const Instruction *Inst = llvm::prior(BI);
1012
1013        // If we no longer require this instruction, skip it.
1014        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1015          --NumFastIselRemaining;
1016          continue;
1017        }
1018
1019        // Bottom-up: reset the insert pos at the top, after any local-value
1020        // instructions.
1021        FastIS->recomputeInsertPt();
1022
1023        // Try to select the instruction with FastISel.
1024        if (FastIS->SelectInstruction(Inst)) {
1025          --NumFastIselRemaining;
1026          ++NumFastIselSuccess;
1027          // If fast isel succeeded, skip over all the folded instructions, and
1028          // then see if there is a load right before the selected instructions.
1029          // Try to fold the load if so.
1030          const Instruction *BeforeInst = Inst;
1031          while (BeforeInst != Begin) {
1032            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1033            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1034              break;
1035          }
1036          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1037              BeforeInst->hasOneUse() &&
1038              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1039            // If we succeeded, don't re-select the load.
1040            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1041            --NumFastIselRemaining;
1042            ++NumFastIselSuccess;
1043          }
1044          continue;
1045        }
1046
1047#ifndef NDEBUG
1048        if (EnableFastISelVerbose2)
1049          collectFailStats(Inst);
1050#endif
1051
1052        // Then handle certain instructions as single-LLVM-Instruction blocks.
1053        if (isa<CallInst>(Inst)) {
1054
1055          if (EnableFastISelVerbose || EnableFastISelAbort) {
1056            dbgs() << "FastISel missed call: ";
1057            Inst->dump();
1058          }
1059
1060          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1061            unsigned &R = FuncInfo->ValueMap[Inst];
1062            if (!R)
1063              R = FuncInfo->CreateRegs(Inst->getType());
1064          }
1065
1066          bool HadTailCall = false;
1067          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1068          SelectBasicBlock(Inst, BI, HadTailCall);
1069
1070          // If the call was emitted as a tail call, we're done with the block.
1071          // We also need to delete any previously emitted instructions.
1072          if (HadTailCall) {
1073            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1074            --BI;
1075            break;
1076          }
1077
1078          // Recompute NumFastIselRemaining as Selection DAG instruction
1079          // selection may have handled the call, input args, etc.
1080          unsigned RemainingNow = std::distance(Begin, BI);
1081          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1082          NumFastIselRemaining = RemainingNow;
1083          continue;
1084        }
1085
1086        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1087          // Don't abort, and use a different message for terminator misses.
1088          NumFastIselFailures += NumFastIselRemaining;
1089          if (EnableFastISelVerbose || EnableFastISelAbort) {
1090            dbgs() << "FastISel missed terminator: ";
1091            Inst->dump();
1092          }
1093        } else {
1094          NumFastIselFailures += NumFastIselRemaining;
1095          if (EnableFastISelVerbose || EnableFastISelAbort) {
1096            dbgs() << "FastISel miss: ";
1097            Inst->dump();
1098          }
1099          if (EnableFastISelAbort)
1100            // The "fast" selector couldn't handle something and bailed.
1101            // For the purpose of debugging, just abort.
1102            llvm_unreachable("FastISel didn't select the entire block");
1103        }
1104        break;
1105      }
1106
1107      FastIS->recomputeInsertPt();
1108    } else {
1109      // Lower any arguments needed in this block if this is the entry block.
1110      if (LLVMBB == &Fn.getEntryBlock()) {
1111        ++NumEntryBlocks;
1112        LowerArguments(Fn);
1113      }
1114    }
1115
1116    if (Begin != BI)
1117      ++NumDAGBlocks;
1118    else
1119      ++NumFastIselBlocks;
1120
1121    if (Begin != BI) {
1122      // Run SelectionDAG instruction selection on the remainder of the block
1123      // not handled by FastISel. If FastISel is not run, this is the entire
1124      // block.
1125      bool HadTailCall;
1126      SelectBasicBlock(Begin, BI, HadTailCall);
1127    }
1128
1129    FinishBasicBlock();
1130    FuncInfo->PHINodesToUpdate.clear();
1131  }
1132
1133  delete FastIS;
1134  SDB->clearDanglingDebugInfo();
1135}
1136
1137void
1138SelectionDAGISel::FinishBasicBlock() {
1139
1140  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1141               << FuncInfo->PHINodesToUpdate.size() << "\n";
1142        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1143          dbgs() << "Node " << i << " : ("
1144                 << FuncInfo->PHINodesToUpdate[i].first
1145                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1146
1147  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1148  // PHI nodes in successors.
1149  if (SDB->SwitchCases.empty() &&
1150      SDB->JTCases.empty() &&
1151      SDB->BitTestCases.empty()) {
1152    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1153      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1154      assert(PHI->isPHI() &&
1155             "This is not a machine PHI node that we are updating!");
1156      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1157        continue;
1158      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1159    }
1160    return;
1161  }
1162
1163  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1164    // Lower header first, if it wasn't already lowered
1165    if (!SDB->BitTestCases[i].Emitted) {
1166      // Set the current basic block to the mbb we wish to insert the code into
1167      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1168      FuncInfo->InsertPt = FuncInfo->MBB->end();
1169      // Emit the code
1170      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1171      CurDAG->setRoot(SDB->getRoot());
1172      SDB->clear();
1173      CodeGenAndEmitDAG();
1174    }
1175
1176    uint32_t UnhandledWeight = 0;
1177    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1178      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1179
1180    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1181      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1182      // Set the current basic block to the mbb we wish to insert the code into
1183      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1184      FuncInfo->InsertPt = FuncInfo->MBB->end();
1185      // Emit the code
1186      if (j+1 != ej)
1187        SDB->visitBitTestCase(SDB->BitTestCases[i],
1188                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1189                              UnhandledWeight,
1190                              SDB->BitTestCases[i].Reg,
1191                              SDB->BitTestCases[i].Cases[j],
1192                              FuncInfo->MBB);
1193      else
1194        SDB->visitBitTestCase(SDB->BitTestCases[i],
1195                              SDB->BitTestCases[i].Default,
1196                              UnhandledWeight,
1197                              SDB->BitTestCases[i].Reg,
1198                              SDB->BitTestCases[i].Cases[j],
1199                              FuncInfo->MBB);
1200
1201
1202      CurDAG->setRoot(SDB->getRoot());
1203      SDB->clear();
1204      CodeGenAndEmitDAG();
1205    }
1206
1207    // Update PHI Nodes
1208    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1209         pi != pe; ++pi) {
1210      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1211      MachineBasicBlock *PHIBB = PHI->getParent();
1212      assert(PHI->isPHI() &&
1213             "This is not a machine PHI node that we are updating!");
1214      // This is "default" BB. We have two jumps to it. From "header" BB and
1215      // from last "case" BB.
1216      if (PHIBB == SDB->BitTestCases[i].Default)
1217        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1218           .addMBB(SDB->BitTestCases[i].Parent)
1219           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1220           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1221      // One of "cases" BB.
1222      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1223           j != ej; ++j) {
1224        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1225        if (cBB->isSuccessor(PHIBB))
1226          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1227      }
1228    }
1229  }
1230  SDB->BitTestCases.clear();
1231
1232  // If the JumpTable record is filled in, then we need to emit a jump table.
1233  // Updating the PHI nodes is tricky in this case, since we need to determine
1234  // whether the PHI is a successor of the range check MBB or the jump table MBB
1235  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1236    // Lower header first, if it wasn't already lowered
1237    if (!SDB->JTCases[i].first.Emitted) {
1238      // Set the current basic block to the mbb we wish to insert the code into
1239      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1240      FuncInfo->InsertPt = FuncInfo->MBB->end();
1241      // Emit the code
1242      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1243                                FuncInfo->MBB);
1244      CurDAG->setRoot(SDB->getRoot());
1245      SDB->clear();
1246      CodeGenAndEmitDAG();
1247    }
1248
1249    // Set the current basic block to the mbb we wish to insert the code into
1250    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1251    FuncInfo->InsertPt = FuncInfo->MBB->end();
1252    // Emit the code
1253    SDB->visitJumpTable(SDB->JTCases[i].second);
1254    CurDAG->setRoot(SDB->getRoot());
1255    SDB->clear();
1256    CodeGenAndEmitDAG();
1257
1258    // Update PHI Nodes
1259    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1260         pi != pe; ++pi) {
1261      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1262      MachineBasicBlock *PHIBB = PHI->getParent();
1263      assert(PHI->isPHI() &&
1264             "This is not a machine PHI node that we are updating!");
1265      // "default" BB. We can go there only from header BB.
1266      if (PHIBB == SDB->JTCases[i].second.Default)
1267        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1268           .addMBB(SDB->JTCases[i].first.HeaderBB);
1269      // JT BB. Just iterate over successors here
1270      if (FuncInfo->MBB->isSuccessor(PHIBB))
1271        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1272    }
1273  }
1274  SDB->JTCases.clear();
1275
1276  // If the switch block involved a branch to one of the actual successors, we
1277  // need to update PHI nodes in that block.
1278  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1279    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1280    assert(PHI->isPHI() &&
1281           "This is not a machine PHI node that we are updating!");
1282    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1283      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1284  }
1285
1286  // If we generated any switch lowering information, build and codegen any
1287  // additional DAGs necessary.
1288  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1289    // Set the current basic block to the mbb we wish to insert the code into
1290    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1291    FuncInfo->InsertPt = FuncInfo->MBB->end();
1292
1293    // Determine the unique successors.
1294    SmallVector<MachineBasicBlock *, 2> Succs;
1295    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1296    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1297      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1298
1299    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1300    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1301    CurDAG->setRoot(SDB->getRoot());
1302    SDB->clear();
1303    CodeGenAndEmitDAG();
1304
1305    // Remember the last block, now that any splitting is done, for use in
1306    // populating PHI nodes in successors.
1307    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1308
1309    // Handle any PHI nodes in successors of this chunk, as if we were coming
1310    // from the original BB before switch expansion.  Note that PHI nodes can
1311    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1312    // handle them the right number of times.
1313    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1314      FuncInfo->MBB = Succs[i];
1315      FuncInfo->InsertPt = FuncInfo->MBB->end();
1316      // FuncInfo->MBB may have been removed from the CFG if a branch was
1317      // constant folded.
1318      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1319        for (MachineBasicBlock::iterator
1320             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1321             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1322          MachineInstrBuilder PHI(*MF, MBBI);
1323          // This value for this PHI node is recorded in PHINodesToUpdate.
1324          for (unsigned pn = 0; ; ++pn) {
1325            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1326                   "Didn't find PHI entry!");
1327            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1328              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1329              break;
1330            }
1331          }
1332        }
1333      }
1334    }
1335  }
1336  SDB->SwitchCases.clear();
1337}
1338
1339
1340/// Create the scheduler. If a specific scheduler was specified
1341/// via the SchedulerRegistry, use it, otherwise select the
1342/// one preferred by the target.
1343///
1344ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1345  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1346
1347  if (!Ctor) {
1348    Ctor = ISHeuristic;
1349    RegisterScheduler::setDefault(Ctor);
1350  }
1351
1352  return Ctor(this, OptLevel);
1353}
1354
1355//===----------------------------------------------------------------------===//
1356// Helper functions used by the generated instruction selector.
1357//===----------------------------------------------------------------------===//
1358// Calls to these methods are generated by tblgen.
1359
1360/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1361/// the dag combiner simplified the 255, we still want to match.  RHS is the
1362/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1363/// specified in the .td file (e.g. 255).
1364bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1365                                    int64_t DesiredMaskS) const {
1366  const APInt &ActualMask = RHS->getAPIntValue();
1367  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1368
1369  // If the actual mask exactly matches, success!
1370  if (ActualMask == DesiredMask)
1371    return true;
1372
1373  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1374  if (ActualMask.intersects(~DesiredMask))
1375    return false;
1376
1377  // Otherwise, the DAG Combiner may have proven that the value coming in is
1378  // either already zero or is not demanded.  Check for known zero input bits.
1379  APInt NeededMask = DesiredMask & ~ActualMask;
1380  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1381    return true;
1382
1383  // TODO: check to see if missing bits are just not demanded.
1384
1385  // Otherwise, this pattern doesn't match.
1386  return false;
1387}
1388
1389/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1390/// the dag combiner simplified the 255, we still want to match.  RHS is the
1391/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1392/// specified in the .td file (e.g. 255).
1393bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1394                                   int64_t DesiredMaskS) const {
1395  const APInt &ActualMask = RHS->getAPIntValue();
1396  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1397
1398  // If the actual mask exactly matches, success!
1399  if (ActualMask == DesiredMask)
1400    return true;
1401
1402  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1403  if (ActualMask.intersects(~DesiredMask))
1404    return false;
1405
1406  // Otherwise, the DAG Combiner may have proven that the value coming in is
1407  // either already zero or is not demanded.  Check for known zero input bits.
1408  APInt NeededMask = DesiredMask & ~ActualMask;
1409
1410  APInt KnownZero, KnownOne;
1411  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1412
1413  // If all the missing bits in the or are already known to be set, match!
1414  if ((NeededMask & KnownOne) == NeededMask)
1415    return true;
1416
1417  // TODO: check to see if missing bits are just not demanded.
1418
1419  // Otherwise, this pattern doesn't match.
1420  return false;
1421}
1422
1423
1424/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1425/// by tblgen.  Others should not call it.
1426void SelectionDAGISel::
1427SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1428  std::vector<SDValue> InOps;
1429  std::swap(InOps, Ops);
1430
1431  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1432  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1433  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1434  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1435
1436  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1437  if (InOps[e-1].getValueType() == MVT::Glue)
1438    --e;  // Don't process a glue operand if it is here.
1439
1440  while (i != e) {
1441    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1442    if (!InlineAsm::isMemKind(Flags)) {
1443      // Just skip over this operand, copying the operands verbatim.
1444      Ops.insert(Ops.end(), InOps.begin()+i,
1445                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1446      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1447    } else {
1448      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1449             "Memory operand with multiple values?");
1450      // Otherwise, this is a memory operand.  Ask the target to select it.
1451      std::vector<SDValue> SelOps;
1452      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1453        report_fatal_error("Could not match memory address.  Inline asm"
1454                           " failure!");
1455
1456      // Add this to the output node.
1457      unsigned NewFlags =
1458        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1459      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1460      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1461      i += 2;
1462    }
1463  }
1464
1465  // Add the glue input back if present.
1466  if (e != InOps.size())
1467    Ops.push_back(InOps.back());
1468}
1469
1470/// findGlueUse - Return use of MVT::Glue value produced by the specified
1471/// SDNode.
1472///
1473static SDNode *findGlueUse(SDNode *N) {
1474  unsigned FlagResNo = N->getNumValues()-1;
1475  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1476    SDUse &Use = I.getUse();
1477    if (Use.getResNo() == FlagResNo)
1478      return Use.getUser();
1479  }
1480  return NULL;
1481}
1482
1483/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1484/// This function recursively traverses up the operand chain, ignoring
1485/// certain nodes.
1486static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1487                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1488                          bool IgnoreChains) {
1489  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1490  // greater than all of its (recursive) operands.  If we scan to a point where
1491  // 'use' is smaller than the node we're scanning for, then we know we will
1492  // never find it.
1493  //
1494  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1495  // happen because we scan down to newly selected nodes in the case of glue
1496  // uses.
1497  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1498    return false;
1499
1500  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1501  // won't fail if we scan it again.
1502  if (!Visited.insert(Use))
1503    return false;
1504
1505  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1506    // Ignore chain uses, they are validated by HandleMergeInputChains.
1507    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1508      continue;
1509
1510    SDNode *N = Use->getOperand(i).getNode();
1511    if (N == Def) {
1512      if (Use == ImmedUse || Use == Root)
1513        continue;  // We are not looking for immediate use.
1514      assert(N != Root);
1515      return true;
1516    }
1517
1518    // Traverse up the operand chain.
1519    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1520      return true;
1521  }
1522  return false;
1523}
1524
1525/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1526/// operand node N of U during instruction selection that starts at Root.
1527bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1528                                          SDNode *Root) const {
1529  if (OptLevel == CodeGenOpt::None) return false;
1530  return N.hasOneUse();
1531}
1532
1533/// IsLegalToFold - Returns true if the specific operand node N of
1534/// U can be folded during instruction selection that starts at Root.
1535bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1536                                     CodeGenOpt::Level OptLevel,
1537                                     bool IgnoreChains) {
1538  if (OptLevel == CodeGenOpt::None) return false;
1539
1540  // If Root use can somehow reach N through a path that that doesn't contain
1541  // U then folding N would create a cycle. e.g. In the following
1542  // diagram, Root can reach N through X. If N is folded into into Root, then
1543  // X is both a predecessor and a successor of U.
1544  //
1545  //          [N*]           //
1546  //         ^   ^           //
1547  //        /     \          //
1548  //      [U*]    [X]?       //
1549  //        ^     ^          //
1550  //         \   /           //
1551  //          \ /            //
1552  //         [Root*]         //
1553  //
1554  // * indicates nodes to be folded together.
1555  //
1556  // If Root produces glue, then it gets (even more) interesting. Since it
1557  // will be "glued" together with its glue use in the scheduler, we need to
1558  // check if it might reach N.
1559  //
1560  //          [N*]           //
1561  //         ^   ^           //
1562  //        /     \          //
1563  //      [U*]    [X]?       //
1564  //        ^       ^        //
1565  //         \       \       //
1566  //          \      |       //
1567  //         [Root*] |       //
1568  //          ^      |       //
1569  //          f      |       //
1570  //          |      /       //
1571  //         [Y]    /        //
1572  //           ^   /         //
1573  //           f  /          //
1574  //           | /           //
1575  //          [GU]           //
1576  //
1577  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1578  // (call it Fold), then X is a predecessor of GU and a successor of
1579  // Fold. But since Fold and GU are glued together, this will create
1580  // a cycle in the scheduling graph.
1581
1582  // If the node has glue, walk down the graph to the "lowest" node in the
1583  // glueged set.
1584  EVT VT = Root->getValueType(Root->getNumValues()-1);
1585  while (VT == MVT::Glue) {
1586    SDNode *GU = findGlueUse(Root);
1587    if (GU == NULL)
1588      break;
1589    Root = GU;
1590    VT = Root->getValueType(Root->getNumValues()-1);
1591
1592    // If our query node has a glue result with a use, we've walked up it.  If
1593    // the user (which has already been selected) has a chain or indirectly uses
1594    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1595    // this, we cannot ignore chains in this predicate.
1596    IgnoreChains = false;
1597  }
1598
1599
1600  SmallPtrSet<SDNode*, 16> Visited;
1601  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1602}
1603
1604SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1605  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1606  SelectInlineAsmMemoryOperands(Ops);
1607
1608  EVT VTs[] = { MVT::Other, MVT::Glue };
1609  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1610                                VTs, &Ops[0], Ops.size());
1611  New->setNodeId(-1);
1612  return New.getNode();
1613}
1614
1615SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1616  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1617}
1618
1619/// GetVBR - decode a vbr encoding whose top bit is set.
1620LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1621GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1622  assert(Val >= 128 && "Not a VBR");
1623  Val &= 127;  // Remove first vbr bit.
1624
1625  unsigned Shift = 7;
1626  uint64_t NextBits;
1627  do {
1628    NextBits = MatcherTable[Idx++];
1629    Val |= (NextBits&127) << Shift;
1630    Shift += 7;
1631  } while (NextBits & 128);
1632
1633  return Val;
1634}
1635
1636
1637/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1638/// interior glue and chain results to use the new glue and chain results.
1639void SelectionDAGISel::
1640UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1641                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1642                    SDValue InputGlue,
1643                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1644                    bool isMorphNodeTo) {
1645  SmallVector<SDNode*, 4> NowDeadNodes;
1646
1647  // Now that all the normal results are replaced, we replace the chain and
1648  // glue results if present.
1649  if (!ChainNodesMatched.empty()) {
1650    assert(InputChain.getNode() != 0 &&
1651           "Matched input chains but didn't produce a chain");
1652    // Loop over all of the nodes we matched that produced a chain result.
1653    // Replace all the chain results with the final chain we ended up with.
1654    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1655      SDNode *ChainNode = ChainNodesMatched[i];
1656
1657      // If this node was already deleted, don't look at it.
1658      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1659        continue;
1660
1661      // Don't replace the results of the root node if we're doing a
1662      // MorphNodeTo.
1663      if (ChainNode == NodeToMatch && isMorphNodeTo)
1664        continue;
1665
1666      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1667      if (ChainVal.getValueType() == MVT::Glue)
1668        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1669      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1670      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1671
1672      // If the node became dead and we haven't already seen it, delete it.
1673      if (ChainNode->use_empty() &&
1674          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1675        NowDeadNodes.push_back(ChainNode);
1676    }
1677  }
1678
1679  // If the result produces glue, update any glue results in the matched
1680  // pattern with the glue result.
1681  if (InputGlue.getNode() != 0) {
1682    // Handle any interior nodes explicitly marked.
1683    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1684      SDNode *FRN = GlueResultNodesMatched[i];
1685
1686      // If this node was already deleted, don't look at it.
1687      if (FRN->getOpcode() == ISD::DELETED_NODE)
1688        continue;
1689
1690      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1691             "Doesn't have a glue result");
1692      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1693                                        InputGlue);
1694
1695      // If the node became dead and we haven't already seen it, delete it.
1696      if (FRN->use_empty() &&
1697          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1698        NowDeadNodes.push_back(FRN);
1699    }
1700  }
1701
1702  if (!NowDeadNodes.empty())
1703    CurDAG->RemoveDeadNodes(NowDeadNodes);
1704
1705  DEBUG(dbgs() << "ISEL: Match complete!\n");
1706}
1707
1708enum ChainResult {
1709  CR_Simple,
1710  CR_InducesCycle,
1711  CR_LeadsToInteriorNode
1712};
1713
1714/// WalkChainUsers - Walk down the users of the specified chained node that is
1715/// part of the pattern we're matching, looking at all of the users we find.
1716/// This determines whether something is an interior node, whether we have a
1717/// non-pattern node in between two pattern nodes (which prevent folding because
1718/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1719/// between pattern nodes (in which case the TF becomes part of the pattern).
1720///
1721/// The walk we do here is guaranteed to be small because we quickly get down to
1722/// already selected nodes "below" us.
1723static ChainResult
1724WalkChainUsers(const SDNode *ChainedNode,
1725               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1726               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1727  ChainResult Result = CR_Simple;
1728
1729  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1730         E = ChainedNode->use_end(); UI != E; ++UI) {
1731    // Make sure the use is of the chain, not some other value we produce.
1732    if (UI.getUse().getValueType() != MVT::Other) continue;
1733
1734    SDNode *User = *UI;
1735
1736    // If we see an already-selected machine node, then we've gone beyond the
1737    // pattern that we're selecting down into the already selected chunk of the
1738    // DAG.
1739    if (User->isMachineOpcode() ||
1740        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1741      continue;
1742
1743    unsigned UserOpcode = User->getOpcode();
1744    if (UserOpcode == ISD::CopyToReg ||
1745        UserOpcode == ISD::CopyFromReg ||
1746        UserOpcode == ISD::INLINEASM ||
1747        UserOpcode == ISD::EH_LABEL ||
1748        UserOpcode == ISD::LIFETIME_START ||
1749        UserOpcode == ISD::LIFETIME_END) {
1750      // If their node ID got reset to -1 then they've already been selected.
1751      // Treat them like a MachineOpcode.
1752      if (User->getNodeId() == -1)
1753        continue;
1754    }
1755
1756    // If we have a TokenFactor, we handle it specially.
1757    if (User->getOpcode() != ISD::TokenFactor) {
1758      // If the node isn't a token factor and isn't part of our pattern, then it
1759      // must be a random chained node in between two nodes we're selecting.
1760      // This happens when we have something like:
1761      //   x = load ptr
1762      //   call
1763      //   y = x+4
1764      //   store y -> ptr
1765      // Because we structurally match the load/store as a read/modify/write,
1766      // but the call is chained between them.  We cannot fold in this case
1767      // because it would induce a cycle in the graph.
1768      if (!std::count(ChainedNodesInPattern.begin(),
1769                      ChainedNodesInPattern.end(), User))
1770        return CR_InducesCycle;
1771
1772      // Otherwise we found a node that is part of our pattern.  For example in:
1773      //   x = load ptr
1774      //   y = x+4
1775      //   store y -> ptr
1776      // This would happen when we're scanning down from the load and see the
1777      // store as a user.  Record that there is a use of ChainedNode that is
1778      // part of the pattern and keep scanning uses.
1779      Result = CR_LeadsToInteriorNode;
1780      InteriorChainedNodes.push_back(User);
1781      continue;
1782    }
1783
1784    // If we found a TokenFactor, there are two cases to consider: first if the
1785    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1786    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1787    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1788    //     [Load chain]
1789    //         ^
1790    //         |
1791    //       [Load]
1792    //       ^    ^
1793    //       |    \                    DAG's like cheese
1794    //      /       \                       do you?
1795    //     /         |
1796    // [TokenFactor] [Op]
1797    //     ^          ^
1798    //     |          |
1799    //      \        /
1800    //       \      /
1801    //       [Store]
1802    //
1803    // In this case, the TokenFactor becomes part of our match and we rewrite it
1804    // as a new TokenFactor.
1805    //
1806    // To distinguish these two cases, do a recursive walk down the uses.
1807    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1808    case CR_Simple:
1809      // If the uses of the TokenFactor are just already-selected nodes, ignore
1810      // it, it is "below" our pattern.
1811      continue;
1812    case CR_InducesCycle:
1813      // If the uses of the TokenFactor lead to nodes that are not part of our
1814      // pattern that are not selected, folding would turn this into a cycle,
1815      // bail out now.
1816      return CR_InducesCycle;
1817    case CR_LeadsToInteriorNode:
1818      break;  // Otherwise, keep processing.
1819    }
1820
1821    // Okay, we know we're in the interesting interior case.  The TokenFactor
1822    // is now going to be considered part of the pattern so that we rewrite its
1823    // uses (it may have uses that are not part of the pattern) with the
1824    // ultimate chain result of the generated code.  We will also add its chain
1825    // inputs as inputs to the ultimate TokenFactor we create.
1826    Result = CR_LeadsToInteriorNode;
1827    ChainedNodesInPattern.push_back(User);
1828    InteriorChainedNodes.push_back(User);
1829    continue;
1830  }
1831
1832  return Result;
1833}
1834
1835/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1836/// operation for when the pattern matched at least one node with a chains.  The
1837/// input vector contains a list of all of the chained nodes that we match.  We
1838/// must determine if this is a valid thing to cover (i.e. matching it won't
1839/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1840/// be used as the input node chain for the generated nodes.
1841static SDValue
1842HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1843                       SelectionDAG *CurDAG) {
1844  // Walk all of the chained nodes we've matched, recursively scanning down the
1845  // users of the chain result. This adds any TokenFactor nodes that are caught
1846  // in between chained nodes to the chained and interior nodes list.
1847  SmallVector<SDNode*, 3> InteriorChainedNodes;
1848  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1849    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1850                       InteriorChainedNodes) == CR_InducesCycle)
1851      return SDValue(); // Would induce a cycle.
1852  }
1853
1854  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1855  // that we are interested in.  Form our input TokenFactor node.
1856  SmallVector<SDValue, 3> InputChains;
1857  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1858    // Add the input chain of this node to the InputChains list (which will be
1859    // the operands of the generated TokenFactor) if it's not an interior node.
1860    SDNode *N = ChainNodesMatched[i];
1861    if (N->getOpcode() != ISD::TokenFactor) {
1862      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1863        continue;
1864
1865      // Otherwise, add the input chain.
1866      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1867      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1868      InputChains.push_back(InChain);
1869      continue;
1870    }
1871
1872    // If we have a token factor, we want to add all inputs of the token factor
1873    // that are not part of the pattern we're matching.
1874    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1875      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1876                      N->getOperand(op).getNode()))
1877        InputChains.push_back(N->getOperand(op));
1878    }
1879  }
1880
1881  SDValue Res;
1882  if (InputChains.size() == 1)
1883    return InputChains[0];
1884  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1885                         MVT::Other, &InputChains[0], InputChains.size());
1886}
1887
1888/// MorphNode - Handle morphing a node in place for the selector.
1889SDNode *SelectionDAGISel::
1890MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1891          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1892  // It is possible we're using MorphNodeTo to replace a node with no
1893  // normal results with one that has a normal result (or we could be
1894  // adding a chain) and the input could have glue and chains as well.
1895  // In this case we need to shift the operands down.
1896  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1897  // than the old isel though.
1898  int OldGlueResultNo = -1, OldChainResultNo = -1;
1899
1900  unsigned NTMNumResults = Node->getNumValues();
1901  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1902    OldGlueResultNo = NTMNumResults-1;
1903    if (NTMNumResults != 1 &&
1904        Node->getValueType(NTMNumResults-2) == MVT::Other)
1905      OldChainResultNo = NTMNumResults-2;
1906  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1907    OldChainResultNo = NTMNumResults-1;
1908
1909  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1910  // that this deletes operands of the old node that become dead.
1911  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1912
1913  // MorphNodeTo can operate in two ways: if an existing node with the
1914  // specified operands exists, it can just return it.  Otherwise, it
1915  // updates the node in place to have the requested operands.
1916  if (Res == Node) {
1917    // If we updated the node in place, reset the node ID.  To the isel,
1918    // this should be just like a newly allocated machine node.
1919    Res->setNodeId(-1);
1920  }
1921
1922  unsigned ResNumResults = Res->getNumValues();
1923  // Move the glue if needed.
1924  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1925      (unsigned)OldGlueResultNo != ResNumResults-1)
1926    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1927                                      SDValue(Res, ResNumResults-1));
1928
1929  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1930    --ResNumResults;
1931
1932  // Move the chain reference if needed.
1933  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1934      (unsigned)OldChainResultNo != ResNumResults-1)
1935    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1936                                      SDValue(Res, ResNumResults-1));
1937
1938  // Otherwise, no replacement happened because the node already exists. Replace
1939  // Uses of the old node with the new one.
1940  if (Res != Node)
1941    CurDAG->ReplaceAllUsesWith(Node, Res);
1942
1943  return Res;
1944}
1945
1946/// CheckSame - Implements OP_CheckSame.
1947LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1948CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1949          SDValue N,
1950          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1951  // Accept if it is exactly the same as a previously recorded node.
1952  unsigned RecNo = MatcherTable[MatcherIndex++];
1953  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1954  return N == RecordedNodes[RecNo].first;
1955}
1956
1957/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1958LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1959CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1960                      const SelectionDAGISel &SDISel) {
1961  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1962}
1963
1964/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1965LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1966CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1967                   const SelectionDAGISel &SDISel, SDNode *N) {
1968  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1969}
1970
1971LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1972CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1973            SDNode *N) {
1974  uint16_t Opc = MatcherTable[MatcherIndex++];
1975  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1976  return N->getOpcode() == Opc;
1977}
1978
1979LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1980CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1981          SDValue N, const TargetLowering &TLI) {
1982  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1983  if (N.getValueType() == VT) return true;
1984
1985  // Handle the case when VT is iPTR.
1986  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1987}
1988
1989LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1990CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1991               SDValue N, const TargetLowering &TLI,
1992               unsigned ChildNo) {
1993  if (ChildNo >= N.getNumOperands())
1994    return false;  // Match fails if out of range child #.
1995  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1996}
1997
1998
1999LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2000CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2001              SDValue N) {
2002  return cast<CondCodeSDNode>(N)->get() ==
2003      (ISD::CondCode)MatcherTable[MatcherIndex++];
2004}
2005
2006LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2007CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2008               SDValue N, const TargetLowering &TLI) {
2009  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2010  if (cast<VTSDNode>(N)->getVT() == VT)
2011    return true;
2012
2013  // Handle the case when VT is iPTR.
2014  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2015}
2016
2017LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2018CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2019             SDValue N) {
2020  int64_t Val = MatcherTable[MatcherIndex++];
2021  if (Val & 128)
2022    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2023
2024  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2025  return C != 0 && C->getSExtValue() == Val;
2026}
2027
2028LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2029CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2030            SDValue N, const SelectionDAGISel &SDISel) {
2031  int64_t Val = MatcherTable[MatcherIndex++];
2032  if (Val & 128)
2033    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2034
2035  if (N->getOpcode() != ISD::AND) return false;
2036
2037  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2038  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2039}
2040
2041LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2042CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2043           SDValue N, const SelectionDAGISel &SDISel) {
2044  int64_t Val = MatcherTable[MatcherIndex++];
2045  if (Val & 128)
2046    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2047
2048  if (N->getOpcode() != ISD::OR) return false;
2049
2050  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2051  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2052}
2053
2054/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2055/// scope, evaluate the current node.  If the current predicate is known to
2056/// fail, set Result=true and return anything.  If the current predicate is
2057/// known to pass, set Result=false and return the MatcherIndex to continue
2058/// with.  If the current predicate is unknown, set Result=false and return the
2059/// MatcherIndex to continue with.
2060static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2061                                       unsigned Index, SDValue N,
2062                                       bool &Result,
2063                                       const SelectionDAGISel &SDISel,
2064                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2065  switch (Table[Index++]) {
2066  default:
2067    Result = false;
2068    return Index-1;  // Could not evaluate this predicate.
2069  case SelectionDAGISel::OPC_CheckSame:
2070    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2071    return Index;
2072  case SelectionDAGISel::OPC_CheckPatternPredicate:
2073    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2074    return Index;
2075  case SelectionDAGISel::OPC_CheckPredicate:
2076    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2077    return Index;
2078  case SelectionDAGISel::OPC_CheckOpcode:
2079    Result = !::CheckOpcode(Table, Index, N.getNode());
2080    return Index;
2081  case SelectionDAGISel::OPC_CheckType:
2082    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2083    return Index;
2084  case SelectionDAGISel::OPC_CheckChild0Type:
2085  case SelectionDAGISel::OPC_CheckChild1Type:
2086  case SelectionDAGISel::OPC_CheckChild2Type:
2087  case SelectionDAGISel::OPC_CheckChild3Type:
2088  case SelectionDAGISel::OPC_CheckChild4Type:
2089  case SelectionDAGISel::OPC_CheckChild5Type:
2090  case SelectionDAGISel::OPC_CheckChild6Type:
2091  case SelectionDAGISel::OPC_CheckChild7Type:
2092    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2093                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2094    return Index;
2095  case SelectionDAGISel::OPC_CheckCondCode:
2096    Result = !::CheckCondCode(Table, Index, N);
2097    return Index;
2098  case SelectionDAGISel::OPC_CheckValueType:
2099    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2100    return Index;
2101  case SelectionDAGISel::OPC_CheckInteger:
2102    Result = !::CheckInteger(Table, Index, N);
2103    return Index;
2104  case SelectionDAGISel::OPC_CheckAndImm:
2105    Result = !::CheckAndImm(Table, Index, N, SDISel);
2106    return Index;
2107  case SelectionDAGISel::OPC_CheckOrImm:
2108    Result = !::CheckOrImm(Table, Index, N, SDISel);
2109    return Index;
2110  }
2111}
2112
2113namespace {
2114
2115struct MatchScope {
2116  /// FailIndex - If this match fails, this is the index to continue with.
2117  unsigned FailIndex;
2118
2119  /// NodeStack - The node stack when the scope was formed.
2120  SmallVector<SDValue, 4> NodeStack;
2121
2122  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2123  unsigned NumRecordedNodes;
2124
2125  /// NumMatchedMemRefs - The number of matched memref entries.
2126  unsigned NumMatchedMemRefs;
2127
2128  /// InputChain/InputGlue - The current chain/glue
2129  SDValue InputChain, InputGlue;
2130
2131  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2132  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2133};
2134
2135}
2136
2137SDNode *SelectionDAGISel::
2138SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2139                 unsigned TableSize) {
2140  // FIXME: Should these even be selected?  Handle these cases in the caller?
2141  switch (NodeToMatch->getOpcode()) {
2142  default:
2143    break;
2144  case ISD::EntryToken:       // These nodes remain the same.
2145  case ISD::BasicBlock:
2146  case ISD::Register:
2147  case ISD::RegisterMask:
2148  //case ISD::VALUETYPE:
2149  //case ISD::CONDCODE:
2150  case ISD::HANDLENODE:
2151  case ISD::MDNODE_SDNODE:
2152  case ISD::TargetConstant:
2153  case ISD::TargetConstantFP:
2154  case ISD::TargetConstantPool:
2155  case ISD::TargetFrameIndex:
2156  case ISD::TargetExternalSymbol:
2157  case ISD::TargetBlockAddress:
2158  case ISD::TargetJumpTable:
2159  case ISD::TargetGlobalTLSAddress:
2160  case ISD::TargetGlobalAddress:
2161  case ISD::TokenFactor:
2162  case ISD::CopyFromReg:
2163  case ISD::CopyToReg:
2164  case ISD::EH_LABEL:
2165  case ISD::LIFETIME_START:
2166  case ISD::LIFETIME_END:
2167    NodeToMatch->setNodeId(-1); // Mark selected.
2168    return 0;
2169  case ISD::AssertSext:
2170  case ISD::AssertZext:
2171    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2172                                      NodeToMatch->getOperand(0));
2173    return 0;
2174  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2175  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2176  }
2177
2178  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2179
2180  // Set up the node stack with NodeToMatch as the only node on the stack.
2181  SmallVector<SDValue, 8> NodeStack;
2182  SDValue N = SDValue(NodeToMatch, 0);
2183  NodeStack.push_back(N);
2184
2185  // MatchScopes - Scopes used when matching, if a match failure happens, this
2186  // indicates where to continue checking.
2187  SmallVector<MatchScope, 8> MatchScopes;
2188
2189  // RecordedNodes - This is the set of nodes that have been recorded by the
2190  // state machine.  The second value is the parent of the node, or null if the
2191  // root is recorded.
2192  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2193
2194  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2195  // pattern.
2196  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2197
2198  // These are the current input chain and glue for use when generating nodes.
2199  // Various Emit operations change these.  For example, emitting a copytoreg
2200  // uses and updates these.
2201  SDValue InputChain, InputGlue;
2202
2203  // ChainNodesMatched - If a pattern matches nodes that have input/output
2204  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2205  // which ones they are.  The result is captured into this list so that we can
2206  // update the chain results when the pattern is complete.
2207  SmallVector<SDNode*, 3> ChainNodesMatched;
2208  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2209
2210  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2211        NodeToMatch->dump(CurDAG);
2212        dbgs() << '\n');
2213
2214  // Determine where to start the interpreter.  Normally we start at opcode #0,
2215  // but if the state machine starts with an OPC_SwitchOpcode, then we
2216  // accelerate the first lookup (which is guaranteed to be hot) with the
2217  // OpcodeOffset table.
2218  unsigned MatcherIndex = 0;
2219
2220  if (!OpcodeOffset.empty()) {
2221    // Already computed the OpcodeOffset table, just index into it.
2222    if (N.getOpcode() < OpcodeOffset.size())
2223      MatcherIndex = OpcodeOffset[N.getOpcode()];
2224    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2225
2226  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2227    // Otherwise, the table isn't computed, but the state machine does start
2228    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2229    // is the first time we're selecting an instruction.
2230    unsigned Idx = 1;
2231    while (1) {
2232      // Get the size of this case.
2233      unsigned CaseSize = MatcherTable[Idx++];
2234      if (CaseSize & 128)
2235        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2236      if (CaseSize == 0) break;
2237
2238      // Get the opcode, add the index to the table.
2239      uint16_t Opc = MatcherTable[Idx++];
2240      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2241      if (Opc >= OpcodeOffset.size())
2242        OpcodeOffset.resize((Opc+1)*2);
2243      OpcodeOffset[Opc] = Idx;
2244      Idx += CaseSize;
2245    }
2246
2247    // Okay, do the lookup for the first opcode.
2248    if (N.getOpcode() < OpcodeOffset.size())
2249      MatcherIndex = OpcodeOffset[N.getOpcode()];
2250  }
2251
2252  while (1) {
2253    assert(MatcherIndex < TableSize && "Invalid index");
2254#ifndef NDEBUG
2255    unsigned CurrentOpcodeIndex = MatcherIndex;
2256#endif
2257    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2258    switch (Opcode) {
2259    case OPC_Scope: {
2260      // Okay, the semantics of this operation are that we should push a scope
2261      // then evaluate the first child.  However, pushing a scope only to have
2262      // the first check fail (which then pops it) is inefficient.  If we can
2263      // determine immediately that the first check (or first several) will
2264      // immediately fail, don't even bother pushing a scope for them.
2265      unsigned FailIndex;
2266
2267      while (1) {
2268        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2269        if (NumToSkip & 128)
2270          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2271        // Found the end of the scope with no match.
2272        if (NumToSkip == 0) {
2273          FailIndex = 0;
2274          break;
2275        }
2276
2277        FailIndex = MatcherIndex+NumToSkip;
2278
2279        unsigned MatcherIndexOfPredicate = MatcherIndex;
2280        (void)MatcherIndexOfPredicate; // silence warning.
2281
2282        // If we can't evaluate this predicate without pushing a scope (e.g. if
2283        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2284        // push the scope and evaluate the full predicate chain.
2285        bool Result;
2286        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2287                                              Result, *this, RecordedNodes);
2288        if (!Result)
2289          break;
2290
2291        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2292                     << "index " << MatcherIndexOfPredicate
2293                     << ", continuing at " << FailIndex << "\n");
2294        ++NumDAGIselRetries;
2295
2296        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2297        // move to the next case.
2298        MatcherIndex = FailIndex;
2299      }
2300
2301      // If the whole scope failed to match, bail.
2302      if (FailIndex == 0) break;
2303
2304      // Push a MatchScope which indicates where to go if the first child fails
2305      // to match.
2306      MatchScope NewEntry;
2307      NewEntry.FailIndex = FailIndex;
2308      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2309      NewEntry.NumRecordedNodes = RecordedNodes.size();
2310      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2311      NewEntry.InputChain = InputChain;
2312      NewEntry.InputGlue = InputGlue;
2313      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2314      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2315      MatchScopes.push_back(NewEntry);
2316      continue;
2317    }
2318    case OPC_RecordNode: {
2319      // Remember this node, it may end up being an operand in the pattern.
2320      SDNode *Parent = 0;
2321      if (NodeStack.size() > 1)
2322        Parent = NodeStack[NodeStack.size()-2].getNode();
2323      RecordedNodes.push_back(std::make_pair(N, Parent));
2324      continue;
2325    }
2326
2327    case OPC_RecordChild0: case OPC_RecordChild1:
2328    case OPC_RecordChild2: case OPC_RecordChild3:
2329    case OPC_RecordChild4: case OPC_RecordChild5:
2330    case OPC_RecordChild6: case OPC_RecordChild7: {
2331      unsigned ChildNo = Opcode-OPC_RecordChild0;
2332      if (ChildNo >= N.getNumOperands())
2333        break;  // Match fails if out of range child #.
2334
2335      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2336                                             N.getNode()));
2337      continue;
2338    }
2339    case OPC_RecordMemRef:
2340      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2341      continue;
2342
2343    case OPC_CaptureGlueInput:
2344      // If the current node has an input glue, capture it in InputGlue.
2345      if (N->getNumOperands() != 0 &&
2346          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2347        InputGlue = N->getOperand(N->getNumOperands()-1);
2348      continue;
2349
2350    case OPC_MoveChild: {
2351      unsigned ChildNo = MatcherTable[MatcherIndex++];
2352      if (ChildNo >= N.getNumOperands())
2353        break;  // Match fails if out of range child #.
2354      N = N.getOperand(ChildNo);
2355      NodeStack.push_back(N);
2356      continue;
2357    }
2358
2359    case OPC_MoveParent:
2360      // Pop the current node off the NodeStack.
2361      NodeStack.pop_back();
2362      assert(!NodeStack.empty() && "Node stack imbalance!");
2363      N = NodeStack.back();
2364      continue;
2365
2366    case OPC_CheckSame:
2367      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2368      continue;
2369    case OPC_CheckPatternPredicate:
2370      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2371      continue;
2372    case OPC_CheckPredicate:
2373      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2374                                N.getNode()))
2375        break;
2376      continue;
2377    case OPC_CheckComplexPat: {
2378      unsigned CPNum = MatcherTable[MatcherIndex++];
2379      unsigned RecNo = MatcherTable[MatcherIndex++];
2380      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2381      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2382                               RecordedNodes[RecNo].first, CPNum,
2383                               RecordedNodes))
2384        break;
2385      continue;
2386    }
2387    case OPC_CheckOpcode:
2388      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2389      continue;
2390
2391    case OPC_CheckType:
2392      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2393      continue;
2394
2395    case OPC_SwitchOpcode: {
2396      unsigned CurNodeOpcode = N.getOpcode();
2397      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2398      unsigned CaseSize;
2399      while (1) {
2400        // Get the size of this case.
2401        CaseSize = MatcherTable[MatcherIndex++];
2402        if (CaseSize & 128)
2403          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2404        if (CaseSize == 0) break;
2405
2406        uint16_t Opc = MatcherTable[MatcherIndex++];
2407        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2408
2409        // If the opcode matches, then we will execute this case.
2410        if (CurNodeOpcode == Opc)
2411          break;
2412
2413        // Otherwise, skip over this case.
2414        MatcherIndex += CaseSize;
2415      }
2416
2417      // If no cases matched, bail out.
2418      if (CaseSize == 0) break;
2419
2420      // Otherwise, execute the case we found.
2421      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2422                   << " to " << MatcherIndex << "\n");
2423      continue;
2424    }
2425
2426    case OPC_SwitchType: {
2427      MVT CurNodeVT = N.getValueType().getSimpleVT();
2428      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2429      unsigned CaseSize;
2430      while (1) {
2431        // Get the size of this case.
2432        CaseSize = MatcherTable[MatcherIndex++];
2433        if (CaseSize & 128)
2434          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2435        if (CaseSize == 0) break;
2436
2437        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2438        if (CaseVT == MVT::iPTR)
2439          CaseVT = TLI.getPointerTy();
2440
2441        // If the VT matches, then we will execute this case.
2442        if (CurNodeVT == CaseVT)
2443          break;
2444
2445        // Otherwise, skip over this case.
2446        MatcherIndex += CaseSize;
2447      }
2448
2449      // If no cases matched, bail out.
2450      if (CaseSize == 0) break;
2451
2452      // Otherwise, execute the case we found.
2453      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2454                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2455      continue;
2456    }
2457    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2458    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2459    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2460    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2461      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2462                            Opcode-OPC_CheckChild0Type))
2463        break;
2464      continue;
2465    case OPC_CheckCondCode:
2466      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2467      continue;
2468    case OPC_CheckValueType:
2469      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2470      continue;
2471    case OPC_CheckInteger:
2472      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2473      continue;
2474    case OPC_CheckAndImm:
2475      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2476      continue;
2477    case OPC_CheckOrImm:
2478      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2479      continue;
2480
2481    case OPC_CheckFoldableChainNode: {
2482      assert(NodeStack.size() != 1 && "No parent node");
2483      // Verify that all intermediate nodes between the root and this one have
2484      // a single use.
2485      bool HasMultipleUses = false;
2486      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2487        if (!NodeStack[i].hasOneUse()) {
2488          HasMultipleUses = true;
2489          break;
2490        }
2491      if (HasMultipleUses) break;
2492
2493      // Check to see that the target thinks this is profitable to fold and that
2494      // we can fold it without inducing cycles in the graph.
2495      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2496                              NodeToMatch) ||
2497          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2498                         NodeToMatch, OptLevel,
2499                         true/*We validate our own chains*/))
2500        break;
2501
2502      continue;
2503    }
2504    case OPC_EmitInteger: {
2505      MVT::SimpleValueType VT =
2506        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2507      int64_t Val = MatcherTable[MatcherIndex++];
2508      if (Val & 128)
2509        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2510      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2511                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2512      continue;
2513    }
2514    case OPC_EmitRegister: {
2515      MVT::SimpleValueType VT =
2516        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2517      unsigned RegNo = MatcherTable[MatcherIndex++];
2518      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2519                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2520      continue;
2521    }
2522    case OPC_EmitRegister2: {
2523      // For targets w/ more than 256 register names, the register enum
2524      // values are stored in two bytes in the matcher table (just like
2525      // opcodes).
2526      MVT::SimpleValueType VT =
2527        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2528      unsigned RegNo = MatcherTable[MatcherIndex++];
2529      RegNo |= MatcherTable[MatcherIndex++] << 8;
2530      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2531                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2532      continue;
2533    }
2534
2535    case OPC_EmitConvertToTarget:  {
2536      // Convert from IMM/FPIMM to target version.
2537      unsigned RecNo = MatcherTable[MatcherIndex++];
2538      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2539      SDValue Imm = RecordedNodes[RecNo].first;
2540
2541      if (Imm->getOpcode() == ISD::Constant) {
2542        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2543        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2544      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2545        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2546        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2547      }
2548
2549      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2550      continue;
2551    }
2552
2553    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2554    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2555      // These are space-optimized forms of OPC_EmitMergeInputChains.
2556      assert(InputChain.getNode() == 0 &&
2557             "EmitMergeInputChains should be the first chain producing node");
2558      assert(ChainNodesMatched.empty() &&
2559             "Should only have one EmitMergeInputChains per match");
2560
2561      // Read all of the chained nodes.
2562      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2563      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2564      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2565
2566      // FIXME: What if other value results of the node have uses not matched
2567      // by this pattern?
2568      if (ChainNodesMatched.back() != NodeToMatch &&
2569          !RecordedNodes[RecNo].first.hasOneUse()) {
2570        ChainNodesMatched.clear();
2571        break;
2572      }
2573
2574      // Merge the input chains if they are not intra-pattern references.
2575      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2576
2577      if (InputChain.getNode() == 0)
2578        break;  // Failed to merge.
2579      continue;
2580    }
2581
2582    case OPC_EmitMergeInputChains: {
2583      assert(InputChain.getNode() == 0 &&
2584             "EmitMergeInputChains should be the first chain producing node");
2585      // This node gets a list of nodes we matched in the input that have
2586      // chains.  We want to token factor all of the input chains to these nodes
2587      // together.  However, if any of the input chains is actually one of the
2588      // nodes matched in this pattern, then we have an intra-match reference.
2589      // Ignore these because the newly token factored chain should not refer to
2590      // the old nodes.
2591      unsigned NumChains = MatcherTable[MatcherIndex++];
2592      assert(NumChains != 0 && "Can't TF zero chains");
2593
2594      assert(ChainNodesMatched.empty() &&
2595             "Should only have one EmitMergeInputChains per match");
2596
2597      // Read all of the chained nodes.
2598      for (unsigned i = 0; i != NumChains; ++i) {
2599        unsigned RecNo = MatcherTable[MatcherIndex++];
2600        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2601        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2602
2603        // FIXME: What if other value results of the node have uses not matched
2604        // by this pattern?
2605        if (ChainNodesMatched.back() != NodeToMatch &&
2606            !RecordedNodes[RecNo].first.hasOneUse()) {
2607          ChainNodesMatched.clear();
2608          break;
2609        }
2610      }
2611
2612      // If the inner loop broke out, the match fails.
2613      if (ChainNodesMatched.empty())
2614        break;
2615
2616      // Merge the input chains if they are not intra-pattern references.
2617      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2618
2619      if (InputChain.getNode() == 0)
2620        break;  // Failed to merge.
2621
2622      continue;
2623    }
2624
2625    case OPC_EmitCopyToReg: {
2626      unsigned RecNo = MatcherTable[MatcherIndex++];
2627      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2628      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2629
2630      if (InputChain.getNode() == 0)
2631        InputChain = CurDAG->getEntryNode();
2632
2633      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2634                                        DestPhysReg, RecordedNodes[RecNo].first,
2635                                        InputGlue);
2636
2637      InputGlue = InputChain.getValue(1);
2638      continue;
2639    }
2640
2641    case OPC_EmitNodeXForm: {
2642      unsigned XFormNo = MatcherTable[MatcherIndex++];
2643      unsigned RecNo = MatcherTable[MatcherIndex++];
2644      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2645      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2646      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2647      continue;
2648    }
2649
2650    case OPC_EmitNode:
2651    case OPC_MorphNodeTo: {
2652      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2653      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2654      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2655      // Get the result VT list.
2656      unsigned NumVTs = MatcherTable[MatcherIndex++];
2657      SmallVector<EVT, 4> VTs;
2658      for (unsigned i = 0; i != NumVTs; ++i) {
2659        MVT::SimpleValueType VT =
2660          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2661        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2662        VTs.push_back(VT);
2663      }
2664
2665      if (EmitNodeInfo & OPFL_Chain)
2666        VTs.push_back(MVT::Other);
2667      if (EmitNodeInfo & OPFL_GlueOutput)
2668        VTs.push_back(MVT::Glue);
2669
2670      // This is hot code, so optimize the two most common cases of 1 and 2
2671      // results.
2672      SDVTList VTList;
2673      if (VTs.size() == 1)
2674        VTList = CurDAG->getVTList(VTs[0]);
2675      else if (VTs.size() == 2)
2676        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2677      else
2678        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2679
2680      // Get the operand list.
2681      unsigned NumOps = MatcherTable[MatcherIndex++];
2682      SmallVector<SDValue, 8> Ops;
2683      for (unsigned i = 0; i != NumOps; ++i) {
2684        unsigned RecNo = MatcherTable[MatcherIndex++];
2685        if (RecNo & 128)
2686          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2687
2688        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2689        Ops.push_back(RecordedNodes[RecNo].first);
2690      }
2691
2692      // If there are variadic operands to add, handle them now.
2693      if (EmitNodeInfo & OPFL_VariadicInfo) {
2694        // Determine the start index to copy from.
2695        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2696        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2697        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2698               "Invalid variadic node");
2699        // Copy all of the variadic operands, not including a potential glue
2700        // input.
2701        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2702             i != e; ++i) {
2703          SDValue V = NodeToMatch->getOperand(i);
2704          if (V.getValueType() == MVT::Glue) break;
2705          Ops.push_back(V);
2706        }
2707      }
2708
2709      // If this has chain/glue inputs, add them.
2710      if (EmitNodeInfo & OPFL_Chain)
2711        Ops.push_back(InputChain);
2712      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2713        Ops.push_back(InputGlue);
2714
2715      // Create the node.
2716      SDNode *Res = 0;
2717      if (Opcode != OPC_MorphNodeTo) {
2718        // If this is a normal EmitNode command, just create the new node and
2719        // add the results to the RecordedNodes list.
2720        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2721                                     VTList, Ops);
2722
2723        // Add all the non-glue/non-chain results to the RecordedNodes list.
2724        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2725          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2726          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2727                                                             (SDNode*) 0));
2728        }
2729
2730      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2731        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2732                        EmitNodeInfo);
2733      } else {
2734        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2735        // We will visit the equivalent node later.
2736        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2737        return 0;
2738      }
2739
2740      // If the node had chain/glue results, update our notion of the current
2741      // chain and glue.
2742      if (EmitNodeInfo & OPFL_GlueOutput) {
2743        InputGlue = SDValue(Res, VTs.size()-1);
2744        if (EmitNodeInfo & OPFL_Chain)
2745          InputChain = SDValue(Res, VTs.size()-2);
2746      } else if (EmitNodeInfo & OPFL_Chain)
2747        InputChain = SDValue(Res, VTs.size()-1);
2748
2749      // If the OPFL_MemRefs glue is set on this node, slap all of the
2750      // accumulated memrefs onto it.
2751      //
2752      // FIXME: This is vastly incorrect for patterns with multiple outputs
2753      // instructions that access memory and for ComplexPatterns that match
2754      // loads.
2755      if (EmitNodeInfo & OPFL_MemRefs) {
2756        // Only attach load or store memory operands if the generated
2757        // instruction may load or store.
2758        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2759        bool mayLoad = MCID.mayLoad();
2760        bool mayStore = MCID.mayStore();
2761
2762        unsigned NumMemRefs = 0;
2763        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2764             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2765          if ((*I)->isLoad()) {
2766            if (mayLoad)
2767              ++NumMemRefs;
2768          } else if ((*I)->isStore()) {
2769            if (mayStore)
2770              ++NumMemRefs;
2771          } else {
2772            ++NumMemRefs;
2773          }
2774        }
2775
2776        MachineSDNode::mmo_iterator MemRefs =
2777          MF->allocateMemRefsArray(NumMemRefs);
2778
2779        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2780        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2781             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2782          if ((*I)->isLoad()) {
2783            if (mayLoad)
2784              *MemRefsPos++ = *I;
2785          } else if ((*I)->isStore()) {
2786            if (mayStore)
2787              *MemRefsPos++ = *I;
2788          } else {
2789            *MemRefsPos++ = *I;
2790          }
2791        }
2792
2793        cast<MachineSDNode>(Res)
2794          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2795      }
2796
2797      DEBUG(dbgs() << "  "
2798                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2799                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2800
2801      // If this was a MorphNodeTo then we're completely done!
2802      if (Opcode == OPC_MorphNodeTo) {
2803        // Update chain and glue uses.
2804        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2805                            InputGlue, GlueResultNodesMatched, true);
2806        return Res;
2807      }
2808
2809      continue;
2810    }
2811
2812    case OPC_MarkGlueResults: {
2813      unsigned NumNodes = MatcherTable[MatcherIndex++];
2814
2815      // Read and remember all the glue-result nodes.
2816      for (unsigned i = 0; i != NumNodes; ++i) {
2817        unsigned RecNo = MatcherTable[MatcherIndex++];
2818        if (RecNo & 128)
2819          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2820
2821        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2822        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2823      }
2824      continue;
2825    }
2826
2827    case OPC_CompleteMatch: {
2828      // The match has been completed, and any new nodes (if any) have been
2829      // created.  Patch up references to the matched dag to use the newly
2830      // created nodes.
2831      unsigned NumResults = MatcherTable[MatcherIndex++];
2832
2833      for (unsigned i = 0; i != NumResults; ++i) {
2834        unsigned ResSlot = MatcherTable[MatcherIndex++];
2835        if (ResSlot & 128)
2836          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2837
2838        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2839        SDValue Res = RecordedNodes[ResSlot].first;
2840
2841        assert(i < NodeToMatch->getNumValues() &&
2842               NodeToMatch->getValueType(i) != MVT::Other &&
2843               NodeToMatch->getValueType(i) != MVT::Glue &&
2844               "Invalid number of results to complete!");
2845        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2846                NodeToMatch->getValueType(i) == MVT::iPTR ||
2847                Res.getValueType() == MVT::iPTR ||
2848                NodeToMatch->getValueType(i).getSizeInBits() ==
2849                    Res.getValueType().getSizeInBits()) &&
2850               "invalid replacement");
2851        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2852      }
2853
2854      // If the root node defines glue, add it to the glue nodes to update list.
2855      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2856        GlueResultNodesMatched.push_back(NodeToMatch);
2857
2858      // Update chain and glue uses.
2859      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2860                          InputGlue, GlueResultNodesMatched, false);
2861
2862      assert(NodeToMatch->use_empty() &&
2863             "Didn't replace all uses of the node?");
2864
2865      // FIXME: We just return here, which interacts correctly with SelectRoot
2866      // above.  We should fix this to not return an SDNode* anymore.
2867      return 0;
2868    }
2869    }
2870
2871    // If the code reached this point, then the match failed.  See if there is
2872    // another child to try in the current 'Scope', otherwise pop it until we
2873    // find a case to check.
2874    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2875    ++NumDAGIselRetries;
2876    while (1) {
2877      if (MatchScopes.empty()) {
2878        CannotYetSelect(NodeToMatch);
2879        return 0;
2880      }
2881
2882      // Restore the interpreter state back to the point where the scope was
2883      // formed.
2884      MatchScope &LastScope = MatchScopes.back();
2885      RecordedNodes.resize(LastScope.NumRecordedNodes);
2886      NodeStack.clear();
2887      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2888      N = NodeStack.back();
2889
2890      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2891        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2892      MatcherIndex = LastScope.FailIndex;
2893
2894      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
2895
2896      InputChain = LastScope.InputChain;
2897      InputGlue = LastScope.InputGlue;
2898      if (!LastScope.HasChainNodesMatched)
2899        ChainNodesMatched.clear();
2900      if (!LastScope.HasGlueResultNodesMatched)
2901        GlueResultNodesMatched.clear();
2902
2903      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2904      // we have reached the end of this scope, otherwise we have another child
2905      // in the current scope to try.
2906      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2907      if (NumToSkip & 128)
2908        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2909
2910      // If we have another child in this scope to match, update FailIndex and
2911      // try it.
2912      if (NumToSkip != 0) {
2913        LastScope.FailIndex = MatcherIndex+NumToSkip;
2914        break;
2915      }
2916
2917      // End of this scope, pop it and try the next child in the containing
2918      // scope.
2919      MatchScopes.pop_back();
2920    }
2921  }
2922}
2923
2924
2925
2926void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2927  std::string msg;
2928  raw_string_ostream Msg(msg);
2929  Msg << "Cannot select: ";
2930
2931  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2932      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2933      N->getOpcode() != ISD::INTRINSIC_VOID) {
2934    N->printrFull(Msg, CurDAG);
2935    Msg << "\nIn function: " << MF->getName();
2936  } else {
2937    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2938    unsigned iid =
2939      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2940    if (iid < Intrinsic::num_intrinsics)
2941      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2942    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2943      Msg << "target intrinsic %" << TII->getName(iid);
2944    else
2945      Msg << "unknown intrinsic #" << iid;
2946  }
2947  report_fatal_error(Msg.str());
2948}
2949
2950char SelectionDAGISel::ID = 0;
2951