SelectionDAG.cpp revision 218893
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13201360Srdivacky
14193323Sed#include "llvm/CodeGen/SelectionDAG.h"
15201360Srdivacky#include "SDNodeOrdering.h"
16205218Srdivacky#include "SDNodeDbgValue.h"
17193323Sed#include "llvm/Constants.h"
18208599Srdivacky#include "llvm/Analysis/DebugInfo.h"
19193323Sed#include "llvm/Analysis/ValueTracking.h"
20198090Srdivacky#include "llvm/Function.h"
21193323Sed#include "llvm/GlobalAlias.h"
22193323Sed#include "llvm/GlobalVariable.h"
23193323Sed#include "llvm/Intrinsics.h"
24193323Sed#include "llvm/DerivedTypes.h"
25193323Sed#include "llvm/Assembly/Writer.h"
26193323Sed#include "llvm/CallingConv.h"
27193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
28193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
29193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
30193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
31193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
32193323Sed#include "llvm/Target/TargetRegisterInfo.h"
33193323Sed#include "llvm/Target/TargetData.h"
34193323Sed#include "llvm/Target/TargetLowering.h"
35208599Srdivacky#include "llvm/Target/TargetSelectionDAGInfo.h"
36193323Sed#include "llvm/Target/TargetOptions.h"
37193323Sed#include "llvm/Target/TargetInstrInfo.h"
38198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
39193323Sed#include "llvm/Target/TargetMachine.h"
40193323Sed#include "llvm/Support/CommandLine.h"
41202375Srdivacky#include "llvm/Support/Debug.h"
42198090Srdivacky#include "llvm/Support/ErrorHandling.h"
43195098Sed#include "llvm/Support/ManagedStatic.h"
44193323Sed#include "llvm/Support/MathExtras.h"
45193323Sed#include "llvm/Support/raw_ostream.h"
46218893Sdim#include "llvm/Support/Mutex.h"
47193323Sed#include "llvm/ADT/SetVector.h"
48193323Sed#include "llvm/ADT/SmallPtrSet.h"
49193323Sed#include "llvm/ADT/SmallSet.h"
50193323Sed#include "llvm/ADT/SmallVector.h"
51193323Sed#include "llvm/ADT/StringExtras.h"
52193323Sed#include <algorithm>
53193323Sed#include <cmath>
54193323Sedusing namespace llvm;
55193323Sed
56193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
57193323Sed/// specified members.
58198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59193323Sed  SDVTList Res = {VTs, NumVTs};
60193323Sed  return Res;
61193323Sed}
62193323Sed
63198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
65198090Srdivacky  default: llvm_unreachable("Unknown FP format");
66193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
67193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
68193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
69193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
70193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71193323Sed  }
72193323Sed}
73193323Sed
74193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75193323Sed
76193323Sed//===----------------------------------------------------------------------===//
77193323Sed//                              ConstantFPSDNode Class
78193323Sed//===----------------------------------------------------------------------===//
79193323Sed
80193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
81193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
83193323Sed/// two floating point values.
84193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85193323Sed  return getValueAPF().bitwiseIsEqual(V);
86193323Sed}
87193323Sed
88198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
89193323Sed                                           const APFloat& Val) {
90193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91193323Sed
92193323Sed  // PPC long double cannot be converted to any other type.
93193323Sed  if (VT == MVT::ppcf128 ||
94193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95193323Sed    return false;
96193323Sed
97193323Sed  // convert modifies in place, so make a copy.
98193323Sed  APFloat Val2 = APFloat(Val);
99193323Sed  bool losesInfo;
100198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101193323Sed                      &losesInfo);
102193323Sed  return !losesInfo;
103193323Sed}
104193323Sed
105193323Sed//===----------------------------------------------------------------------===//
106193323Sed//                              ISD Namespace
107193323Sed//===----------------------------------------------------------------------===//
108193323Sed
109193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
110193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
111193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
112193323Sed  // Look through a bit convert.
113218893Sdim  if (N->getOpcode() == ISD::BITCAST)
114193323Sed    N = N->getOperand(0).getNode();
115193323Sed
116193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117193323Sed
118193323Sed  unsigned i = 0, e = N->getNumOperands();
119193323Sed
120193323Sed  // Skip over all of the undef values.
121193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122193323Sed    ++i;
123193323Sed
124193323Sed  // Do not accept an all-undef vector.
125193323Sed  if (i == e) return false;
126193323Sed
127193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
128193323Sed  // elements.
129193323Sed  SDValue NotZero = N->getOperand(i);
130193323Sed  if (isa<ConstantSDNode>(NotZero)) {
131193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132193323Sed      return false;
133193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
134193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135193323Sed                bitcastToAPInt().isAllOnesValue())
136193323Sed      return false;
137193323Sed  } else
138193323Sed    return false;
139193323Sed
140193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
141193323Sed  // undefs.
142193323Sed  for (++i; i != e; ++i)
143193323Sed    if (N->getOperand(i) != NotZero &&
144193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
145193323Sed      return false;
146193323Sed  return true;
147193323Sed}
148193323Sed
149193323Sed
150193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
151193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
152193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
153193323Sed  // Look through a bit convert.
154218893Sdim  if (N->getOpcode() == ISD::BITCAST)
155193323Sed    N = N->getOperand(0).getNode();
156193323Sed
157193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158193323Sed
159193323Sed  unsigned i = 0, e = N->getNumOperands();
160193323Sed
161193323Sed  // Skip over all of the undef values.
162193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163193323Sed    ++i;
164193323Sed
165193323Sed  // Do not accept an all-undef vector.
166193323Sed  if (i == e) return false;
167193323Sed
168193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
169193323Sed  // elements.
170193323Sed  SDValue Zero = N->getOperand(i);
171193323Sed  if (isa<ConstantSDNode>(Zero)) {
172193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173193323Sed      return false;
174193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
175193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176193323Sed      return false;
177193323Sed  } else
178193323Sed    return false;
179193323Sed
180193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
181193323Sed  // undefs.
182193323Sed  for (++i; i != e; ++i)
183193323Sed    if (N->getOperand(i) != Zero &&
184193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
185193323Sed      return false;
186193323Sed  return true;
187193323Sed}
188193323Sed
189193323Sed/// isScalarToVector - Return true if the specified node is a
190193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191193323Sed/// element is not an undef.
192193323Sedbool ISD::isScalarToVector(const SDNode *N) {
193193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194193323Sed    return true;
195193323Sed
196193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
197193323Sed    return false;
198193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199193323Sed    return false;
200193323Sed  unsigned NumElems = N->getNumOperands();
201218893Sdim  if (NumElems == 1)
202218893Sdim    return false;
203193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
204193323Sed    SDValue V = N->getOperand(i);
205193323Sed    if (V.getOpcode() != ISD::UNDEF)
206193323Sed      return false;
207193323Sed  }
208193323Sed  return true;
209193323Sed}
210193323Sed
211193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212193323Sed/// when given the operation for (X op Y).
213193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214193323Sed  // To perform this operation, we just need to swap the L and G bits of the
215193323Sed  // operation.
216193323Sed  unsigned OldL = (Operation >> 2) & 1;
217193323Sed  unsigned OldG = (Operation >> 1) & 1;
218193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219193323Sed                       (OldL << 1) |       // New G bit
220193323Sed                       (OldG << 2));       // New L bit.
221193323Sed}
222193323Sed
223193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224193323Sed/// 'op' is a valid SetCC operation.
225193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226193323Sed  unsigned Operation = Op;
227193323Sed  if (isInteger)
228193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
229193323Sed  else
230193323Sed    Operation ^= 15;  // Flip all of the condition bits.
231193323Sed
232193323Sed  if (Operation > ISD::SETTRUE2)
233193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
234193323Sed
235193323Sed  return ISD::CondCode(Operation);
236193323Sed}
237193323Sed
238193323Sed
239193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
242193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
243193323Sed  switch (Opcode) {
244198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
245193323Sed  case ISD::SETEQ:
246193323Sed  case ISD::SETNE: return 0;
247193323Sed  case ISD::SETLT:
248193323Sed  case ISD::SETLE:
249193323Sed  case ISD::SETGT:
250193323Sed  case ISD::SETGE: return 1;
251193323Sed  case ISD::SETULT:
252193323Sed  case ISD::SETULE:
253193323Sed  case ISD::SETUGT:
254193323Sed  case ISD::SETUGE: return 2;
255193323Sed  }
256193323Sed}
257193323Sed
258193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
259193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
261193323Sed/// comparison.
262193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263193323Sed                                       bool isInteger) {
264193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266193323Sed    return ISD::SETCC_INVALID;
267193323Sed
268193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269193323Sed
270193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
271193323Sed  // care about orderedness, and is true when ordered.
272193323Sed  if (Op > ISD::SETTRUE2)
273193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
274193323Sed
275193323Sed  // Canonicalize illegal integer setcc's.
276193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277193323Sed    Op = ISD::SETNE;
278193323Sed
279193323Sed  return ISD::CondCode(Op);
280193323Sed}
281193323Sed
282193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
283193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284193323Sed/// function returns zero if it is not possible to represent the resultant
285193323Sed/// comparison.
286193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287193323Sed                                        bool isInteger) {
288193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
290193323Sed    return ISD::SETCC_INVALID;
291193323Sed
292193323Sed  // Combine all of the condition bits.
293193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294193323Sed
295193323Sed  // Canonicalize illegal integer setcc's.
296193323Sed  if (isInteger) {
297193323Sed    switch (Result) {
298193323Sed    default: break;
299193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304193323Sed    }
305193323Sed  }
306193323Sed
307193323Sed  return Result;
308193323Sed}
309193323Sed
310193323Sed//===----------------------------------------------------------------------===//
311193323Sed//                           SDNode Profile Support
312193323Sed//===----------------------------------------------------------------------===//
313193323Sed
314193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315193323Sed///
316193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317193323Sed  ID.AddInteger(OpC);
318193323Sed}
319193323Sed
320193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321193323Sed/// solely with their pointer.
322193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323193323Sed  ID.AddPointer(VTList.VTs);
324193323Sed}
325193323Sed
326193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327193323Sed///
328193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
329193323Sed                              const SDValue *Ops, unsigned NumOps) {
330193323Sed  for (; NumOps; --NumOps, ++Ops) {
331193323Sed    ID.AddPointer(Ops->getNode());
332193323Sed    ID.AddInteger(Ops->getResNo());
333193323Sed  }
334193323Sed}
335193323Sed
336193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337193323Sed///
338193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
339193323Sed                              const SDUse *Ops, unsigned NumOps) {
340193323Sed  for (; NumOps; --NumOps, ++Ops) {
341193323Sed    ID.AddPointer(Ops->getNode());
342193323Sed    ID.AddInteger(Ops->getResNo());
343193323Sed  }
344193323Sed}
345193323Sed
346193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
347193323Sed                          unsigned short OpC, SDVTList VTList,
348193323Sed                          const SDValue *OpList, unsigned N) {
349193323Sed  AddNodeIDOpcode(ID, OpC);
350193323Sed  AddNodeIDValueTypes(ID, VTList);
351193323Sed  AddNodeIDOperands(ID, OpList, N);
352193323Sed}
353193323Sed
354193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355193323Sed/// the NodeID data.
356193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357193323Sed  switch (N->getOpcode()) {
358195098Sed  case ISD::TargetExternalSymbol:
359195098Sed  case ISD::ExternalSymbol:
360198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
361193323Sed  default: break;  // Normal nodes don't need extra info.
362193323Sed  case ISD::TargetConstant:
363193323Sed  case ISD::Constant:
364193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365193323Sed    break;
366193323Sed  case ISD::TargetConstantFP:
367193323Sed  case ISD::ConstantFP: {
368193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369193323Sed    break;
370193323Sed  }
371193323Sed  case ISD::TargetGlobalAddress:
372193323Sed  case ISD::GlobalAddress:
373193323Sed  case ISD::TargetGlobalTLSAddress:
374193323Sed  case ISD::GlobalTLSAddress: {
375193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376193323Sed    ID.AddPointer(GA->getGlobal());
377193323Sed    ID.AddInteger(GA->getOffset());
378195098Sed    ID.AddInteger(GA->getTargetFlags());
379193323Sed    break;
380193323Sed  }
381193323Sed  case ISD::BasicBlock:
382193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383193323Sed    break;
384193323Sed  case ISD::Register:
385193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386193323Sed    break;
387199989Srdivacky
388193323Sed  case ISD::SRCVALUE:
389193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390193323Sed    break;
391193323Sed  case ISD::FrameIndex:
392193323Sed  case ISD::TargetFrameIndex:
393193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394193323Sed    break;
395193323Sed  case ISD::JumpTable:
396193323Sed  case ISD::TargetJumpTable:
397193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399193323Sed    break;
400193323Sed  case ISD::ConstantPool:
401193323Sed  case ISD::TargetConstantPool: {
402193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403193323Sed    ID.AddInteger(CP->getAlignment());
404193323Sed    ID.AddInteger(CP->getOffset());
405193323Sed    if (CP->isMachineConstantPoolEntry())
406193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407193323Sed    else
408193323Sed      ID.AddPointer(CP->getConstVal());
409195098Sed    ID.AddInteger(CP->getTargetFlags());
410193323Sed    break;
411193323Sed  }
412193323Sed  case ISD::LOAD: {
413193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
414193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
415193323Sed    ID.AddInteger(LD->getRawSubclassData());
416193323Sed    break;
417193323Sed  }
418193323Sed  case ISD::STORE: {
419193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
420193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
421193323Sed    ID.AddInteger(ST->getRawSubclassData());
422193323Sed    break;
423193323Sed  }
424193323Sed  case ISD::ATOMIC_CMP_SWAP:
425193323Sed  case ISD::ATOMIC_SWAP:
426193323Sed  case ISD::ATOMIC_LOAD_ADD:
427193323Sed  case ISD::ATOMIC_LOAD_SUB:
428193323Sed  case ISD::ATOMIC_LOAD_AND:
429193323Sed  case ISD::ATOMIC_LOAD_OR:
430193323Sed  case ISD::ATOMIC_LOAD_XOR:
431193323Sed  case ISD::ATOMIC_LOAD_NAND:
432193323Sed  case ISD::ATOMIC_LOAD_MIN:
433193323Sed  case ISD::ATOMIC_LOAD_MAX:
434193323Sed  case ISD::ATOMIC_LOAD_UMIN:
435193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
436193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
438193323Sed    ID.AddInteger(AT->getRawSubclassData());
439193323Sed    break;
440193323Sed  }
441193323Sed  case ISD::VECTOR_SHUFFLE: {
442193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444193323Sed         i != e; ++i)
445193323Sed      ID.AddInteger(SVN->getMaskElt(i));
446193323Sed    break;
447193323Sed  }
448198892Srdivacky  case ISD::TargetBlockAddress:
449198892Srdivacky  case ISD::BlockAddress: {
450199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452198892Srdivacky    break;
453198892Srdivacky  }
454193323Sed  } // end switch (N->getOpcode())
455193323Sed}
456193323Sed
457193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458193323Sed/// data.
459193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
461193323Sed  // Add the return value info.
462193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
463193323Sed  // Add the operand info.
464193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465193323Sed
466193323Sed  // Handle SDNode leafs with special info.
467193323Sed  AddNodeIDCustom(ID, N);
468193323Sed}
469193323Sed
470193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471204642Srdivacky/// the CSE map that carries volatility, temporalness, indexing mode, and
472193323Sed/// extension/truncation information.
473193323Sed///
474193323Sedstatic inline unsigned
475204642SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476204642Srdivacky                     bool isNonTemporal) {
477193323Sed  assert((ConvType & 3) == ConvType &&
478193323Sed         "ConvType may not require more than 2 bits!");
479193323Sed  assert((AM & 7) == AM &&
480193323Sed         "AM may not require more than 3 bits!");
481193323Sed  return ConvType |
482193323Sed         (AM << 2) |
483204642Srdivacky         (isVolatile << 5) |
484204642Srdivacky         (isNonTemporal << 6);
485193323Sed}
486193323Sed
487193323Sed//===----------------------------------------------------------------------===//
488193323Sed//                              SelectionDAG Class
489193323Sed//===----------------------------------------------------------------------===//
490193323Sed
491193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
492193323Sedstatic bool doNotCSE(SDNode *N) {
493218893Sdim  if (N->getValueType(0) == MVT::Glue)
494193323Sed    return true; // Never CSE anything that produces a flag.
495193323Sed
496193323Sed  switch (N->getOpcode()) {
497193323Sed  default: break;
498193323Sed  case ISD::HANDLENODE:
499193323Sed  case ISD::EH_LABEL:
500193323Sed    return true;   // Never CSE these nodes.
501193323Sed  }
502193323Sed
503193323Sed  // Check that remaining values produced are not flags.
504193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505218893Sdim    if (N->getValueType(i) == MVT::Glue)
506193323Sed      return true; // Never CSE anything that produces a flag.
507193323Sed
508193323Sed  return false;
509193323Sed}
510193323Sed
511193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512193323Sed/// SelectionDAG.
513193323Sedvoid SelectionDAG::RemoveDeadNodes() {
514193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
515193323Sed  // to the root node, preventing it from being deleted.
516193323Sed  HandleSDNode Dummy(getRoot());
517193323Sed
518193323Sed  SmallVector<SDNode*, 128> DeadNodes;
519193323Sed
520193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
521193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522193323Sed    if (I->use_empty())
523193323Sed      DeadNodes.push_back(I);
524193323Sed
525193323Sed  RemoveDeadNodes(DeadNodes);
526193323Sed
527193323Sed  // If the root changed (e.g. it was a dead load, update the root).
528193323Sed  setRoot(Dummy.getValue());
529193323Sed}
530193323Sed
531193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532193323Sed/// given list, and any nodes that become unreachable as a result.
533193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534193323Sed                                   DAGUpdateListener *UpdateListener) {
535193323Sed
536193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
537193323Sed  // worklist.
538193323Sed  while (!DeadNodes.empty()) {
539193323Sed    SDNode *N = DeadNodes.pop_back_val();
540193323Sed
541193323Sed    if (UpdateListener)
542193323Sed      UpdateListener->NodeDeleted(N, 0);
543193323Sed
544193323Sed    // Take the node out of the appropriate CSE map.
545193323Sed    RemoveNodeFromCSEMaps(N);
546193323Sed
547193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
548193323Sed    // no cycles in the graph.
549193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550193323Sed      SDUse &Use = *I++;
551193323Sed      SDNode *Operand = Use.getNode();
552193323Sed      Use.set(SDValue());
553193323Sed
554193323Sed      // Now that we removed this operand, see if there are no uses of it left.
555193323Sed      if (Operand->use_empty())
556193323Sed        DeadNodes.push_back(Operand);
557193323Sed    }
558193323Sed
559193323Sed    DeallocateNode(N);
560193323Sed  }
561193323Sed}
562193323Sed
563193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
565193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
566193323Sed}
567193323Sed
568193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
569193323Sed  // First take this out of the appropriate CSE map.
570193323Sed  RemoveNodeFromCSEMaps(N);
571193323Sed
572193323Sed  // Finally, remove uses due to operands of this node, remove from the
573193323Sed  // AllNodes list, and delete the node.
574193323Sed  DeleteNodeNotInCSEMaps(N);
575193323Sed}
576193323Sed
577193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580193323Sed
581193323Sed  // Drop all of the operands and decrement used node's use counts.
582193323Sed  N->DropOperands();
583193323Sed
584193323Sed  DeallocateNode(N);
585193323Sed}
586193323Sed
587193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
588193323Sed  if (N->OperandsNeedDelete)
589193323Sed    delete[] N->OperandList;
590193323Sed
591193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
592193323Sed  // memory is reallocated.
593193323Sed  N->NodeType = ISD::DELETED_NODE;
594193323Sed
595193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
596200581Srdivacky
597200581Srdivacky  // Remove the ordering of this node.
598202878Srdivacky  Ordering->remove(N);
599205218Srdivacky
600206083Srdivacky  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601206083Srdivacky  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602206083Srdivacky  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603206083Srdivacky    DbgVals[i]->setIsInvalidated();
604193323Sed}
605193323Sed
606193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
608193323Sed/// the node.  We don't want future request for structurally identical nodes
609193323Sed/// to return N anymore.
610193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611193323Sed  bool Erased = false;
612193323Sed  switch (N->getOpcode()) {
613193323Sed  case ISD::HANDLENODE: return false;  // noop.
614193323Sed  case ISD::CONDCODE:
615193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616193323Sed           "Cond code doesn't exist!");
617193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619193323Sed    break;
620193323Sed  case ISD::ExternalSymbol:
621193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622193323Sed    break;
623195098Sed  case ISD::TargetExternalSymbol: {
624195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625195098Sed    Erased = TargetExternalSymbols.erase(
626195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627195098Sed                                                    ESN->getTargetFlags()));
628193323Sed    break;
629195098Sed  }
630193323Sed  case ISD::VALUETYPE: {
631198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
632193323Sed    if (VT.isExtended()) {
633193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
634193323Sed    } else {
635198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637193323Sed    }
638193323Sed    break;
639193323Sed  }
640193323Sed  default:
641193323Sed    // Remove it from the CSE Map.
642218893Sdim    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643218893Sdim    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644193323Sed    Erased = CSEMap.RemoveNode(N);
645193323Sed    break;
646193323Sed  }
647193323Sed#ifndef NDEBUG
648193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
649193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
650193323Sed  // not subject to CSE.
651218893Sdim  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
653193323Sed    N->dump(this);
654202375Srdivacky    dbgs() << "\n";
655198090Srdivacky    llvm_unreachable("Node is not in map!");
656193323Sed  }
657193323Sed#endif
658193323Sed  return Erased;
659193323Sed}
660193323Sed
661193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
663193323Sed/// node already exists, in which case transfer all its users to the existing
664193323Sed/// node. This transfer can potentially trigger recursive merging.
665193323Sed///
666193323Sedvoid
667193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668193323Sed                                       DAGUpdateListener *UpdateListener) {
669193323Sed  // For node types that aren't CSE'd, just act as if no identical node
670193323Sed  // already exists.
671193323Sed  if (!doNotCSE(N)) {
672193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673193323Sed    if (Existing != N) {
674193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
675193323Sed      // to replace the dead one with the existing one.  This can cause
676193323Sed      // recursive merging of other unrelated nodes down the line.
677193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
678193323Sed
679193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
680193323Sed      if (UpdateListener)
681193323Sed        UpdateListener->NodeDeleted(N, Existing);
682193323Sed      DeleteNodeNotInCSEMaps(N);
683193323Sed      return;
684193323Sed    }
685193323Sed  }
686193323Sed
687193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
688193323Sed  // it exists.
689193323Sed  if (UpdateListener)
690193323Sed    UpdateListener->NodeUpdated(N);
691193323Sed}
692193323Sed
693193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694193323Sed/// were replaced with those specified.  If this node is never memoized,
695193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
696193323Sed/// node already exists with these operands, the slot will be non-null.
697193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698193323Sed                                           void *&InsertPos) {
699193323Sed  if (doNotCSE(N))
700193323Sed    return 0;
701193323Sed
702193323Sed  SDValue Ops[] = { Op };
703193323Sed  FoldingSetNodeID ID;
704193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705193323Sed  AddNodeIDCustom(ID, N);
706200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707200581Srdivacky  return Node;
708193323Sed}
709193323Sed
710193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711193323Sed/// were replaced with those specified.  If this node is never memoized,
712193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
713193323Sed/// node already exists with these operands, the slot will be non-null.
714193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715193323Sed                                           SDValue Op1, SDValue Op2,
716193323Sed                                           void *&InsertPos) {
717193323Sed  if (doNotCSE(N))
718193323Sed    return 0;
719193323Sed
720193323Sed  SDValue Ops[] = { Op1, Op2 };
721193323Sed  FoldingSetNodeID ID;
722193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723193323Sed  AddNodeIDCustom(ID, N);
724200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725200581Srdivacky  return Node;
726193323Sed}
727193323Sed
728193323Sed
729193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730193323Sed/// were replaced with those specified.  If this node is never memoized,
731193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
732193323Sed/// node already exists with these operands, the slot will be non-null.
733193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734193323Sed                                           const SDValue *Ops,unsigned NumOps,
735193323Sed                                           void *&InsertPos) {
736193323Sed  if (doNotCSE(N))
737193323Sed    return 0;
738193323Sed
739193323Sed  FoldingSetNodeID ID;
740193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741193323Sed  AddNodeIDCustom(ID, N);
742200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743200581Srdivacky  return Node;
744193323Sed}
745193323Sed
746218893Sdim#ifndef NDEBUG
747218893Sdim/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748218893Sdimstatic void VerifyNodeCommon(SDNode *N) {
749193323Sed  switch (N->getOpcode()) {
750193323Sed  default:
751193323Sed    break;
752193323Sed  case ISD::BUILD_PAIR: {
753198090Srdivacky    EVT VT = N->getValueType(0);
754193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
755193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756193323Sed           "Wrong return type!");
757193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759193323Sed           "Mismatched operand types!");
760193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761193323Sed           "Wrong operand type!");
762193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763193323Sed           "Wrong return type size");
764193323Sed    break;
765193323Sed  }
766193323Sed  case ISD::BUILD_VECTOR: {
767193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
768193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
769193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770193323Sed           "Wrong number of operands!");
771198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
772193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773193323Sed      assert((I->getValueType() == EltVT ||
774193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
775193323Sed              EltVT.bitsLE(I->getValueType()))) &&
776193323Sed            "Wrong operand type!");
777193323Sed    break;
778193323Sed  }
779193323Sed  }
780193323Sed}
781193323Sed
782218893Sdim/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783218893Sdimstatic void VerifySDNode(SDNode *N) {
784218893Sdim  // The SDNode allocators cannot be used to allocate nodes with fields that are
785218893Sdim  // not present in an SDNode!
786218893Sdim  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787218893Sdim  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788218893Sdim  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789218893Sdim  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790218893Sdim  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791218893Sdim  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792218893Sdim  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793218893Sdim  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794218893Sdim  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795218893Sdim  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796218893Sdim  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797218893Sdim  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798218893Sdim  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799218893Sdim  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800218893Sdim  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801218893Sdim  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802218893Sdim  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803218893Sdim  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804218893Sdim  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805218893Sdim
806218893Sdim  VerifyNodeCommon(N);
807218893Sdim}
808218893Sdim
809218893Sdim/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810218893Sdim/// invalid.
811218893Sdimstatic void VerifyMachineNode(SDNode *N) {
812218893Sdim  // The MachineNode allocators cannot be used to allocate nodes with fields
813218893Sdim  // that are not present in a MachineNode!
814218893Sdim  // Currently there are no such nodes.
815218893Sdim
816218893Sdim  VerifyNodeCommon(N);
817218893Sdim}
818218893Sdim#endif // NDEBUG
819218893Sdim
820198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
821193323Sed/// given type.
822193323Sed///
823198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824193323Sed  const Type *Ty = VT == MVT::iPTR ?
825198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826198090Srdivacky                   VT.getTypeForEVT(*getContext());
827193323Sed
828193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
829193323Sed}
830193323Sed
831193323Sed// EntryNode could meaningfully have debug info if we can find it...
832210299SedSelectionDAG::SelectionDAG(const TargetMachine &tm)
833208599Srdivacky  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834206124Srdivacky    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835200581Srdivacky    Root(getEntryNode()), Ordering(0) {
836193323Sed  AllNodes.push_back(&EntryNode);
837202878Srdivacky  Ordering = new SDNodeOrdering();
838205218Srdivacky  DbgInfo = new SDDbgInfo();
839193323Sed}
840193323Sed
841206274Srdivackyvoid SelectionDAG::init(MachineFunction &mf) {
842193323Sed  MF = &mf;
843198090Srdivacky  Context = &mf.getFunction()->getContext();
844193323Sed}
845193323Sed
846193323SedSelectionDAG::~SelectionDAG() {
847193323Sed  allnodes_clear();
848200581Srdivacky  delete Ordering;
849205218Srdivacky  delete DbgInfo;
850193323Sed}
851193323Sed
852193323Sedvoid SelectionDAG::allnodes_clear() {
853193323Sed  assert(&*AllNodes.begin() == &EntryNode);
854193323Sed  AllNodes.remove(AllNodes.begin());
855193323Sed  while (!AllNodes.empty())
856193323Sed    DeallocateNode(AllNodes.begin());
857193323Sed}
858193323Sed
859193323Sedvoid SelectionDAG::clear() {
860193323Sed  allnodes_clear();
861193323Sed  OperandAllocator.Reset();
862193323Sed  CSEMap.clear();
863193323Sed
864193323Sed  ExtendedValueTypeNodes.clear();
865193323Sed  ExternalSymbols.clear();
866193323Sed  TargetExternalSymbols.clear();
867193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868193323Sed            static_cast<CondCodeSDNode*>(0));
869193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870193323Sed            static_cast<SDNode*>(0));
871193323Sed
872193323Sed  EntryNode.UseList = 0;
873193323Sed  AllNodes.push_back(&EntryNode);
874193323Sed  Root = getEntryNode();
875210299Sed  Ordering->clear();
876206083Srdivacky  DbgInfo->clear();
877193323Sed}
878193323Sed
879198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
881198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
883198090Srdivacky}
884198090Srdivacky
885198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
887198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
889198090Srdivacky}
890198090Srdivacky
891198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892200581Srdivacky  assert(!VT.isVector() &&
893200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
894200581Srdivacky         "the vector type!");
895193323Sed  if (Op.getValueType() == VT) return Op;
896200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
898193323Sed                                   VT.getSizeInBits());
899193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900193323Sed                 getConstant(Imm, Op.getValueType()));
901193323Sed}
902193323Sed
903193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904193323Sed///
905198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906204642Srdivacky  EVT EltVT = VT.getScalarType();
907193323Sed  SDValue NegOne =
908193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910193323Sed}
911193323Sed
912198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913204642Srdivacky  EVT EltVT = VT.getScalarType();
914193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
915193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
917193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918193323Sed}
919193323Sed
920198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922193323Sed}
923193323Sed
924198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
926193323Sed
927204642Srdivacky  EVT EltVT = VT.getScalarType();
928193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929193323Sed         "APInt size does not match type size!");
930193323Sed
931193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932193323Sed  FoldingSetNodeID ID;
933193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934193323Sed  ID.AddPointer(&Val);
935193323Sed  void *IP = 0;
936193323Sed  SDNode *N = NULL;
937201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938193323Sed    if (!VT.isVector())
939193323Sed      return SDValue(N, 0);
940201360Srdivacky
941193323Sed  if (!N) {
942205407Srdivacky    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943193323Sed    CSEMap.InsertNode(N, IP);
944193323Sed    AllNodes.push_back(N);
945193323Sed  }
946193323Sed
947193323Sed  SDValue Result(N, 0);
948193323Sed  if (VT.isVector()) {
949193323Sed    SmallVector<SDValue, 8> Ops;
950193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
951206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952193323Sed  }
953193323Sed  return Result;
954193323Sed}
955193323Sed
956193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
958193323Sed}
959193323Sed
960193323Sed
961198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963193323Sed}
964193323Sed
965198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967193323Sed
968204642Srdivacky  EVT EltVT = VT.getScalarType();
969193323Sed
970193323Sed  // Do the map lookup using the actual bit pattern for the floating point
971193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972193323Sed  // we don't have issues with SNANs.
973193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974193323Sed  FoldingSetNodeID ID;
975193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976193323Sed  ID.AddPointer(&V);
977193323Sed  void *IP = 0;
978193323Sed  SDNode *N = NULL;
979201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980193323Sed    if (!VT.isVector())
981193323Sed      return SDValue(N, 0);
982201360Srdivacky
983193323Sed  if (!N) {
984205407Srdivacky    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985193323Sed    CSEMap.InsertNode(N, IP);
986193323Sed    AllNodes.push_back(N);
987193323Sed  }
988193323Sed
989193323Sed  SDValue Result(N, 0);
990193323Sed  if (VT.isVector()) {
991193323Sed    SmallVector<SDValue, 8> Ops;
992193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
993193323Sed    // FIXME DebugLoc info might be appropriate here
994206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995193323Sed  }
996193323Sed  return Result;
997193323Sed}
998193323Sed
999198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000204642Srdivacky  EVT EltVT = VT.getScalarType();
1001193323Sed  if (EltVT==MVT::f32)
1002193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003208599Srdivacky  else if (EltVT==MVT::f64)
1004193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
1005208599Srdivacky  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006208599Srdivacky    bool ignored;
1007208599Srdivacky    APFloat apf = APFloat(Val);
1008208599Srdivacky    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009208599Srdivacky                &ignored);
1010208599Srdivacky    return getConstantFP(apf, VT, isTarget);
1011208599Srdivacky  } else {
1012208599Srdivacky    assert(0 && "Unsupported type in getConstantFP");
1013208599Srdivacky    return SDValue();
1014208599Srdivacky  }
1015193323Sed}
1016193323Sed
1017210299SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018198090Srdivacky                                       EVT VT, int64_t Offset,
1019195098Sed                                       bool isTargetGA,
1020195098Sed                                       unsigned char TargetFlags) {
1021195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
1022195098Sed         "Cannot set target flags on target-independent globals");
1023198090Srdivacky
1024193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
1025198090Srdivacky  EVT PTy = TLI.getPointerTy();
1026198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
1027193323Sed  if (BitWidth < 64)
1028193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029193323Sed
1030193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031193323Sed  if (!GVar) {
1032193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
1033193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035193323Sed  }
1036193323Sed
1037195098Sed  unsigned Opc;
1038193323Sed  if (GVar && GVar->isThreadLocal())
1039193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040193323Sed  else
1041193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042193323Sed
1043193323Sed  FoldingSetNodeID ID;
1044193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045193323Sed  ID.AddPointer(GV);
1046193323Sed  ID.AddInteger(Offset);
1047195098Sed  ID.AddInteger(TargetFlags);
1048193323Sed  void *IP = 0;
1049201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050193323Sed    return SDValue(E, 0);
1051201360Srdivacky
1052210299Sed  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053205407Srdivacky                                                      Offset, TargetFlags);
1054193323Sed  CSEMap.InsertNode(N, IP);
1055193323Sed  AllNodes.push_back(N);
1056193323Sed  return SDValue(N, 0);
1057193323Sed}
1058193323Sed
1059198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061193323Sed  FoldingSetNodeID ID;
1062193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063193323Sed  ID.AddInteger(FI);
1064193323Sed  void *IP = 0;
1065201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066193323Sed    return SDValue(E, 0);
1067201360Srdivacky
1068205407Srdivacky  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069193323Sed  CSEMap.InsertNode(N, IP);
1070193323Sed  AllNodes.push_back(N);
1071193323Sed  return SDValue(N, 0);
1072193323Sed}
1073193323Sed
1074198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075195098Sed                                   unsigned char TargetFlags) {
1076195098Sed  assert((TargetFlags == 0 || isTarget) &&
1077195098Sed         "Cannot set target flags on target-independent jump tables");
1078193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079193323Sed  FoldingSetNodeID ID;
1080193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081193323Sed  ID.AddInteger(JTI);
1082195098Sed  ID.AddInteger(TargetFlags);
1083193323Sed  void *IP = 0;
1084201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085193323Sed    return SDValue(E, 0);
1086201360Srdivacky
1087205407Srdivacky  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088205407Srdivacky                                                  TargetFlags);
1089193323Sed  CSEMap.InsertNode(N, IP);
1090193323Sed  AllNodes.push_back(N);
1091193323Sed  return SDValue(N, 0);
1092193323Sed}
1093193323Sed
1094207618SrdivackySDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095193323Sed                                      unsigned Alignment, int Offset,
1096198090Srdivacky                                      bool isTarget,
1097195098Sed                                      unsigned char TargetFlags) {
1098195098Sed  assert((TargetFlags == 0 || isTarget) &&
1099195098Sed         "Cannot set target flags on target-independent globals");
1100193323Sed  if (Alignment == 0)
1101193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103193323Sed  FoldingSetNodeID ID;
1104193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105193323Sed  ID.AddInteger(Alignment);
1106193323Sed  ID.AddInteger(Offset);
1107193323Sed  ID.AddPointer(C);
1108195098Sed  ID.AddInteger(TargetFlags);
1109193323Sed  void *IP = 0;
1110201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111193323Sed    return SDValue(E, 0);
1112201360Srdivacky
1113205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114205407Srdivacky                                                     Alignment, TargetFlags);
1115193323Sed  CSEMap.InsertNode(N, IP);
1116193323Sed  AllNodes.push_back(N);
1117193323Sed  return SDValue(N, 0);
1118193323Sed}
1119193323Sed
1120193323Sed
1121198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122193323Sed                                      unsigned Alignment, int Offset,
1123195098Sed                                      bool isTarget,
1124195098Sed                                      unsigned char TargetFlags) {
1125195098Sed  assert((TargetFlags == 0 || isTarget) &&
1126195098Sed         "Cannot set target flags on target-independent globals");
1127193323Sed  if (Alignment == 0)
1128193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130193323Sed  FoldingSetNodeID ID;
1131193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132193323Sed  ID.AddInteger(Alignment);
1133193323Sed  ID.AddInteger(Offset);
1134193323Sed  C->AddSelectionDAGCSEId(ID);
1135195098Sed  ID.AddInteger(TargetFlags);
1136193323Sed  void *IP = 0;
1137201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138193323Sed    return SDValue(E, 0);
1139201360Srdivacky
1140205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141205407Srdivacky                                                     Alignment, TargetFlags);
1142193323Sed  CSEMap.InsertNode(N, IP);
1143193323Sed  AllNodes.push_back(N);
1144193323Sed  return SDValue(N, 0);
1145193323Sed}
1146193323Sed
1147193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148193323Sed  FoldingSetNodeID ID;
1149193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150193323Sed  ID.AddPointer(MBB);
1151193323Sed  void *IP = 0;
1152201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153193323Sed    return SDValue(E, 0);
1154201360Srdivacky
1155205407Srdivacky  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156193323Sed  CSEMap.InsertNode(N, IP);
1157193323Sed  AllNodes.push_back(N);
1158193323Sed  return SDValue(N, 0);
1159193323Sed}
1160193323Sed
1161198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1162198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163198090Srdivacky      ValueTypeNodes.size())
1164198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165193323Sed
1166193323Sed  SDNode *&N = VT.isExtended() ?
1167198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168193323Sed
1169193323Sed  if (N) return SDValue(N, 0);
1170205407Srdivacky  N = new (NodeAllocator) VTSDNode(VT);
1171193323Sed  AllNodes.push_back(N);
1172193323Sed  return SDValue(N, 0);
1173193323Sed}
1174193323Sed
1175198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176193323Sed  SDNode *&N = ExternalSymbols[Sym];
1177193323Sed  if (N) return SDValue(N, 0);
1178205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179193323Sed  AllNodes.push_back(N);
1180193323Sed  return SDValue(N, 0);
1181193323Sed}
1182193323Sed
1183198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184195098Sed                                              unsigned char TargetFlags) {
1185195098Sed  SDNode *&N =
1186195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187195098Sed                                                               TargetFlags)];
1188193323Sed  if (N) return SDValue(N, 0);
1189205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190193323Sed  AllNodes.push_back(N);
1191193323Sed  return SDValue(N, 0);
1192193323Sed}
1193193323Sed
1194193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1196193323Sed    CondCodeNodes.resize(Cond+1);
1197193323Sed
1198193323Sed  if (CondCodeNodes[Cond] == 0) {
1199205407Srdivacky    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200193323Sed    CondCodeNodes[Cond] = N;
1201193323Sed    AllNodes.push_back(N);
1202193323Sed  }
1203201360Srdivacky
1204193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1205193323Sed}
1206193323Sed
1207193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1209193323Sed// N2 to point at N1.
1210193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211193323Sed  std::swap(N1, N2);
1212193323Sed  int NElts = M.size();
1213193323Sed  for (int i = 0; i != NElts; ++i) {
1214193323Sed    if (M[i] >= NElts)
1215193323Sed      M[i] -= NElts;
1216193323Sed    else if (M[i] >= 0)
1217193323Sed      M[i] += NElts;
1218193323Sed  }
1219193323Sed}
1220193323Sed
1221198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222193323Sed                                       SDValue N2, const int *Mask) {
1223193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1225193323Sed         "Vector Shuffle VTs must be a vectors");
1226193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227193323Sed         && "Vector Shuffle VTs must have same element type");
1228193323Sed
1229193323Sed  // Canonicalize shuffle undef, undef -> undef
1230193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231198090Srdivacky    return getUNDEF(VT);
1232193323Sed
1233198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1234193323Sed  // input to the shuffle.
1235193323Sed  unsigned NElts = VT.getVectorNumElements();
1236193323Sed  SmallVector<int, 8> MaskVec;
1237193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1238193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239193323Sed    MaskVec.push_back(Mask[i]);
1240193323Sed  }
1241198090Srdivacky
1242193323Sed  // Canonicalize shuffle v, v -> v, undef
1243193323Sed  if (N1 == N2) {
1244193323Sed    N2 = getUNDEF(VT);
1245193323Sed    for (unsigned i = 0; i != NElts; ++i)
1246193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247193323Sed  }
1248198090Srdivacky
1249193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1251193323Sed    commuteShuffle(N1, N2, MaskVec);
1252198090Srdivacky
1253193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255193323Sed  bool AllLHS = true, AllRHS = true;
1256193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1258193323Sed    if (MaskVec[i] >= (int)NElts) {
1259193323Sed      if (N2Undef)
1260193323Sed        MaskVec[i] = -1;
1261193323Sed      else
1262193323Sed        AllLHS = false;
1263193323Sed    } else if (MaskVec[i] >= 0) {
1264193323Sed      AllRHS = false;
1265193323Sed    }
1266193323Sed  }
1267193323Sed  if (AllLHS && AllRHS)
1268193323Sed    return getUNDEF(VT);
1269193323Sed  if (AllLHS && !N2Undef)
1270193323Sed    N2 = getUNDEF(VT);
1271193323Sed  if (AllRHS) {
1272193323Sed    N1 = getUNDEF(VT);
1273193323Sed    commuteShuffle(N1, N2, MaskVec);
1274193323Sed  }
1275198090Srdivacky
1276193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1277193323Sed  bool AllUndef = true;
1278193323Sed  bool Identity = true;
1279193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1280193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1282193323Sed  }
1283198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284193323Sed    return N1;
1285193323Sed  if (AllUndef)
1286193323Sed    return getUNDEF(VT);
1287193323Sed
1288193323Sed  FoldingSetNodeID ID;
1289193323Sed  SDValue Ops[2] = { N1, N2 };
1290193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291193323Sed  for (unsigned i = 0; i != NElts; ++i)
1292193323Sed    ID.AddInteger(MaskVec[i]);
1293198090Srdivacky
1294193323Sed  void* IP = 0;
1295201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296193323Sed    return SDValue(E, 0);
1297198090Srdivacky
1298193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1301193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303198090Srdivacky
1304205407Srdivacky  ShuffleVectorSDNode *N =
1305205407Srdivacky    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306193323Sed  CSEMap.InsertNode(N, IP);
1307193323Sed  AllNodes.push_back(N);
1308193323Sed  return SDValue(N, 0);
1309193323Sed}
1310193323Sed
1311198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312193323Sed                                       SDValue Val, SDValue DTy,
1313193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314193323Sed                                       ISD::CvtCode Code) {
1315193323Sed  // If the src and dest types are the same and the conversion is between
1316193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1317193323Sed  if (DTy == STy &&
1318193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319193323Sed    return Val;
1320193323Sed
1321193323Sed  FoldingSetNodeID ID;
1322199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324193323Sed  void* IP = 0;
1325201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326193323Sed    return SDValue(E, 0);
1327201360Srdivacky
1328205407Srdivacky  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329205407Srdivacky                                                           Code);
1330193323Sed  CSEMap.InsertNode(N, IP);
1331193323Sed  AllNodes.push_back(N);
1332193323Sed  return SDValue(N, 0);
1333193323Sed}
1334193323Sed
1335198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336193323Sed  FoldingSetNodeID ID;
1337193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338193323Sed  ID.AddInteger(RegNo);
1339193323Sed  void *IP = 0;
1340201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341193323Sed    return SDValue(E, 0);
1342201360Srdivacky
1343205407Srdivacky  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344193323Sed  CSEMap.InsertNode(N, IP);
1345193323Sed  AllNodes.push_back(N);
1346193323Sed  return SDValue(N, 0);
1347193323Sed}
1348193323Sed
1349205218SrdivackySDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350193323Sed  FoldingSetNodeID ID;
1351193323Sed  SDValue Ops[] = { Root };
1352205218Srdivacky  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353205218Srdivacky  ID.AddPointer(Label);
1354193323Sed  void *IP = 0;
1355201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356193323Sed    return SDValue(E, 0);
1357218893Sdim
1358205407Srdivacky  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359193323Sed  CSEMap.InsertNode(N, IP);
1360193323Sed  AllNodes.push_back(N);
1361193323Sed  return SDValue(N, 0);
1362193323Sed}
1363193323Sed
1364205218Srdivacky
1365207618SrdivackySDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366199989Srdivacky                                      bool isTarget,
1367199989Srdivacky                                      unsigned char TargetFlags) {
1368198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369198892Srdivacky
1370198892Srdivacky  FoldingSetNodeID ID;
1371199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372198892Srdivacky  ID.AddPointer(BA);
1373199989Srdivacky  ID.AddInteger(TargetFlags);
1374198892Srdivacky  void *IP = 0;
1375201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376198892Srdivacky    return SDValue(E, 0);
1377201360Srdivacky
1378205407Srdivacky  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379198892Srdivacky  CSEMap.InsertNode(N, IP);
1380198892Srdivacky  AllNodes.push_back(N);
1381198892Srdivacky  return SDValue(N, 0);
1382198892Srdivacky}
1383198892Srdivacky
1384193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1385204642Srdivacky  assert((!V || V->getType()->isPointerTy()) &&
1386193323Sed         "SrcValue is not a pointer?");
1387193323Sed
1388193323Sed  FoldingSetNodeID ID;
1389193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390193323Sed  ID.AddPointer(V);
1391193323Sed
1392193323Sed  void *IP = 0;
1393201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394193323Sed    return SDValue(E, 0);
1395193323Sed
1396205407Srdivacky  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397193323Sed  CSEMap.InsertNode(N, IP);
1398193323Sed  AllNodes.push_back(N);
1399193323Sed  return SDValue(N, 0);
1400193323Sed}
1401193323Sed
1402207618Srdivacky/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403207618SrdivackySDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404207618Srdivacky  FoldingSetNodeID ID;
1405207618Srdivacky  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406207618Srdivacky  ID.AddPointer(MD);
1407218893Sdim
1408207618Srdivacky  void *IP = 0;
1409207618Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410207618Srdivacky    return SDValue(E, 0);
1411218893Sdim
1412207618Srdivacky  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413207618Srdivacky  CSEMap.InsertNode(N, IP);
1414207618Srdivacky  AllNodes.push_back(N);
1415207618Srdivacky  return SDValue(N, 0);
1416207618Srdivacky}
1417207618Srdivacky
1418207618Srdivacky
1419193323Sed/// getShiftAmountOperand - Return the specified value casted to
1420193323Sed/// the target's desired shift amount type.
1421193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1422198090Srdivacky  EVT OpTy = Op.getValueType();
1423193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1424193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425193323Sed
1426193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428193323Sed}
1429193323Sed
1430193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431193323Sed/// specified value type.
1432198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1435198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1436193323Sed  unsigned StackAlign =
1437193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438193323Sed
1439199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441193323Sed}
1442193323Sed
1443193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1444193323Sed/// either of the specified value types.
1445198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447193323Sed                            VT2.getStoreSizeInBits())/8;
1448198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450193323Sed  const TargetData *TD = TLI.getTargetData();
1451193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452193323Sed                            TD->getPrefTypeAlignment(Ty2));
1453193323Sed
1454193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457193323Sed}
1458193323Sed
1459198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461193323Sed  // These setcc operations always fold.
1462193323Sed  switch (Cond) {
1463193323Sed  default: break;
1464193323Sed  case ISD::SETFALSE:
1465193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1466193323Sed  case ISD::SETTRUE:
1467193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1468193323Sed
1469193323Sed  case ISD::SETOEQ:
1470193323Sed  case ISD::SETOGT:
1471193323Sed  case ISD::SETOGE:
1472193323Sed  case ISD::SETOLT:
1473193323Sed  case ISD::SETOLE:
1474193323Sed  case ISD::SETONE:
1475193323Sed  case ISD::SETO:
1476193323Sed  case ISD::SETUO:
1477193323Sed  case ISD::SETUEQ:
1478193323Sed  case ISD::SETUNE:
1479193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480193323Sed    break;
1481193323Sed  }
1482193323Sed
1483193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484193323Sed    const APInt &C2 = N2C->getAPIntValue();
1485193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486193323Sed      const APInt &C1 = N1C->getAPIntValue();
1487193323Sed
1488193323Sed      switch (Cond) {
1489198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1490193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500193323Sed      }
1501193323Sed    }
1502193323Sed  }
1503193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505193323Sed      // No compile time operations on this type yet.
1506193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1507193323Sed        return SDValue();
1508193323Sed
1509193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510193323Sed      switch (Cond) {
1511193323Sed      default: break;
1512193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513193323Sed                          return getUNDEF(VT);
1514193323Sed                        // fall through
1515193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517193323Sed                          return getUNDEF(VT);
1518193323Sed                        // fall through
1519193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520193323Sed                                           R==APFloat::cmpLessThan, VT);
1521193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522193323Sed                          return getUNDEF(VT);
1523193323Sed                        // fall through
1524193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526193323Sed                          return getUNDEF(VT);
1527193323Sed                        // fall through
1528193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530193323Sed                          return getUNDEF(VT);
1531193323Sed                        // fall through
1532193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533193323Sed                                           R==APFloat::cmpEqual, VT);
1534193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535193323Sed                          return getUNDEF(VT);
1536193323Sed                        // fall through
1537193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538193323Sed                                           R==APFloat::cmpEqual, VT);
1539193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542193323Sed                                           R==APFloat::cmpEqual, VT);
1543193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545193323Sed                                           R==APFloat::cmpLessThan, VT);
1546193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547193323Sed                                           R==APFloat::cmpUnordered, VT);
1548193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550193323Sed      }
1551193323Sed    } else {
1552193323Sed      // Ensure that the constant occurs on the RHS.
1553193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554193323Sed    }
1555193323Sed  }
1556193323Sed
1557193323Sed  // Could not fold it.
1558193323Sed  return SDValue();
1559193323Sed}
1560193323Sed
1561193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562193323Sed/// use this predicate to simplify operations downstream.
1563193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564198090Srdivacky  // This predicate is not safe for vector operations.
1565198090Srdivacky  if (Op.getValueType().isVector())
1566198090Srdivacky    return false;
1567198090Srdivacky
1568200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570193323Sed}
1571193323Sed
1572193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1574193323Sed/// for bits that V cannot have.
1575193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576193323Sed                                     unsigned Depth) const {
1577193323Sed  APInt KnownZero, KnownOne;
1578193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580193323Sed  return (KnownZero & Mask) == Mask;
1581193323Sed}
1582193323Sed
1583193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1585193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586193323Sed/// processing.
1587193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1589193323Sed                                     unsigned Depth) const {
1590193323Sed  unsigned BitWidth = Mask.getBitWidth();
1591200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592193323Sed         "Mask size mismatches value type size!");
1593193323Sed
1594193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595193323Sed  if (Depth == 6 || Mask == 0)
1596193323Sed    return;  // Limit search depth.
1597193323Sed
1598193323Sed  APInt KnownZero2, KnownOne2;
1599193323Sed
1600193323Sed  switch (Op.getOpcode()) {
1601193323Sed  case ISD::Constant:
1602193323Sed    // We know all of the bits for a constant!
1603193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604193323Sed    KnownZero = ~KnownOne & Mask;
1605193323Sed    return;
1606193323Sed  case ISD::AND:
1607193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1608193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610193323Sed                      KnownZero2, KnownOne2, Depth+1);
1611193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613193323Sed
1614193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1615193323Sed    KnownOne &= KnownOne2;
1616193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617193323Sed    KnownZero |= KnownZero2;
1618193323Sed    return;
1619193323Sed  case ISD::OR:
1620193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622193323Sed                      KnownZero2, KnownOne2, Depth+1);
1623193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625193323Sed
1626193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627193323Sed    KnownZero &= KnownZero2;
1628193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1629193323Sed    KnownOne |= KnownOne2;
1630193323Sed    return;
1631193323Sed  case ISD::XOR: {
1632193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636193323Sed
1637193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641193323Sed    KnownZero = KnownZeroOut;
1642193323Sed    return;
1643193323Sed  }
1644193323Sed  case ISD::MUL: {
1645193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650193323Sed
1651193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1652193323Sed    // Also compute a conserative estimate for high known-0 bits.
1653193323Sed    // More trickiness is possible, but this is sufficient for the
1654193323Sed    // interesting case of alignment computation.
1655218893Sdim    KnownOne.clearAllBits();
1656193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657193323Sed                      KnownZero2.countTrailingOnes();
1658193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659193323Sed                               KnownZero2.countLeadingOnes(),
1660193323Sed                               BitWidth) - BitWidth;
1661193323Sed
1662193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1663193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1664193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1666193323Sed    KnownZero &= Mask;
1667193323Sed    return;
1668193323Sed  }
1669193323Sed  case ISD::UDIV: {
1670193323Sed    // For the purposes of computing leading zeros we can conservatively
1671193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1672193323Sed    // be less than the denominator.
1673193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674193323Sed    ComputeMaskedBits(Op.getOperand(0),
1675193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677193323Sed
1678218893Sdim    KnownOne2.clearAllBits();
1679218893Sdim    KnownZero2.clearAllBits();
1680193323Sed    ComputeMaskedBits(Op.getOperand(1),
1681193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1684193323Sed      LeadZ = std::min(BitWidth,
1685193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686193323Sed
1687193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688193323Sed    return;
1689193323Sed  }
1690193323Sed  case ISD::SELECT:
1691193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695193323Sed
1696193323Sed    // Only known if known in both the LHS and RHS.
1697193323Sed    KnownOne &= KnownOne2;
1698193323Sed    KnownZero &= KnownZero2;
1699193323Sed    return;
1700193323Sed  case ISD::SELECT_CC:
1701193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705193323Sed
1706193323Sed    // Only known if known in both the LHS and RHS.
1707193323Sed    KnownOne &= KnownOne2;
1708193323Sed    KnownZero &= KnownZero2;
1709193323Sed    return;
1710193323Sed  case ISD::SADDO:
1711193323Sed  case ISD::UADDO:
1712193323Sed  case ISD::SSUBO:
1713193323Sed  case ISD::USUBO:
1714193323Sed  case ISD::SMULO:
1715193323Sed  case ISD::UMULO:
1716193323Sed    if (Op.getResNo() != 1)
1717193323Sed      return;
1718193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1719193323Sed  case ISD::SETCC:
1720193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1721193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722193323Sed        BitWidth > 1)
1723193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724193323Sed    return;
1725193323Sed  case ISD::SHL:
1726193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728193323Sed      unsigned ShAmt = SA->getZExtValue();
1729193323Sed
1730193323Sed      // If the shift count is an invalid immediate, don't do anything.
1731193323Sed      if (ShAmt >= BitWidth)
1732193323Sed        return;
1733193323Sed
1734193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735193323Sed                        KnownZero, KnownOne, Depth+1);
1736193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737193323Sed      KnownZero <<= ShAmt;
1738193323Sed      KnownOne  <<= ShAmt;
1739193323Sed      // low bits known zero.
1740193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741193323Sed    }
1742193323Sed    return;
1743193323Sed  case ISD::SRL:
1744193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746193323Sed      unsigned ShAmt = SA->getZExtValue();
1747193323Sed
1748193323Sed      // If the shift count is an invalid immediate, don't do anything.
1749193323Sed      if (ShAmt >= BitWidth)
1750193323Sed        return;
1751193323Sed
1752193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753193323Sed                        KnownZero, KnownOne, Depth+1);
1754193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1756193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1757193323Sed
1758193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759193323Sed      KnownZero |= HighBits;  // High bits known zero.
1760193323Sed    }
1761193323Sed    return;
1762193323Sed  case ISD::SRA:
1763193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764193323Sed      unsigned ShAmt = SA->getZExtValue();
1765193323Sed
1766193323Sed      // If the shift count is an invalid immediate, don't do anything.
1767193323Sed      if (ShAmt >= BitWidth)
1768193323Sed        return;
1769193323Sed
1770193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1771193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1772193323Sed      // demand the input sign bit.
1773193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774193323Sed      if (HighBits.getBoolValue())
1775193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1776193323Sed
1777193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778193323Sed                        Depth+1);
1779193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1781193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1782193323Sed
1783193323Sed      // Handle the sign bits.
1784193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1785193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786193323Sed
1787193323Sed      if (KnownZero.intersects(SignBit)) {
1788193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1789193323Sed      } else if (KnownOne.intersects(SignBit)) {
1790193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1791193323Sed      }
1792193323Sed    }
1793193323Sed    return;
1794193323Sed  case ISD::SIGN_EXTEND_INREG: {
1795198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796202375Srdivacky    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797193323Sed
1798193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1799193323Sed    // present in the input.
1800193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801193323Sed
1802193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1803193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804193323Sed
1805193323Sed    // If the sign extended bits are demanded, we know that the sign
1806193323Sed    // bit is demanded.
1807218893Sdim    InSignBit = InSignBit.zext(BitWidth);
1808193323Sed    if (NewBits.getBoolValue())
1809193323Sed      InputDemandedBits |= InSignBit;
1810193323Sed
1811193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812193323Sed                      KnownZero, KnownOne, Depth+1);
1813193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814193323Sed
1815193323Sed    // If the sign bit of the input is known set or clear, then we know the
1816193323Sed    // top bits of the result.
1817193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818193323Sed      KnownZero |= NewBits;
1819193323Sed      KnownOne  &= ~NewBits;
1820193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821193323Sed      KnownOne  |= NewBits;
1822193323Sed      KnownZero &= ~NewBits;
1823193323Sed    } else {                              // Input sign bit unknown
1824193323Sed      KnownZero &= ~NewBits;
1825193323Sed      KnownOne  &= ~NewBits;
1826193323Sed    }
1827193323Sed    return;
1828193323Sed  }
1829193323Sed  case ISD::CTTZ:
1830193323Sed  case ISD::CTLZ:
1831193323Sed  case ISD::CTPOP: {
1832193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1833193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834218893Sdim    KnownOne.clearAllBits();
1835193323Sed    return;
1836193323Sed  }
1837193323Sed  case ISD::LOAD: {
1838193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1839193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840198090Srdivacky      EVT VT = LD->getMemoryVT();
1841202375Srdivacky      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843193323Sed    }
1844193323Sed    return;
1845193323Sed  }
1846193323Sed  case ISD::ZERO_EXTEND: {
1847198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1848200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850218893Sdim    APInt InMask    = Mask.trunc(InBits);
1851218893Sdim    KnownZero = KnownZero.trunc(InBits);
1852218893Sdim    KnownOne = KnownOne.trunc(InBits);
1853193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854218893Sdim    KnownZero = KnownZero.zext(BitWidth);
1855218893Sdim    KnownOne = KnownOne.zext(BitWidth);
1856193323Sed    KnownZero |= NewBits;
1857193323Sed    return;
1858193323Sed  }
1859193323Sed  case ISD::SIGN_EXTEND: {
1860198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1861200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1863193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864218893Sdim    APInt InMask = Mask.trunc(InBits);
1865193323Sed
1866193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1867193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868193323Sed    if (NewBits.getBoolValue())
1869193323Sed      InMask |= InSignBit;
1870193323Sed
1871218893Sdim    KnownZero = KnownZero.trunc(InBits);
1872218893Sdim    KnownOne = KnownOne.trunc(InBits);
1873193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874193323Sed
1875193323Sed    // Note if the sign bit is known to be zero or one.
1876193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1877193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1878193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879193323Sed           "Sign bit can't be known to be both zero and one!");
1880193323Sed
1881193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1882193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1883193323Sed    // mask and reapply it to the result values.
1884218893Sdim    InMask = Mask.trunc(InBits);
1885193323Sed    KnownZero &= InMask;
1886193323Sed    KnownOne  &= InMask;
1887193323Sed
1888218893Sdim    KnownZero = KnownZero.zext(BitWidth);
1889218893Sdim    KnownOne = KnownOne.zext(BitWidth);
1890193323Sed
1891193323Sed    // If the sign bit is known zero or one, the top bits match.
1892193323Sed    if (SignBitKnownZero)
1893193323Sed      KnownZero |= NewBits;
1894193323Sed    else if (SignBitKnownOne)
1895193323Sed      KnownOne  |= NewBits;
1896193323Sed    return;
1897193323Sed  }
1898193323Sed  case ISD::ANY_EXTEND: {
1899198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1900200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901218893Sdim    APInt InMask = Mask.trunc(InBits);
1902218893Sdim    KnownZero = KnownZero.trunc(InBits);
1903218893Sdim    KnownOne = KnownOne.trunc(InBits);
1904193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905218893Sdim    KnownZero = KnownZero.zext(BitWidth);
1906218893Sdim    KnownOne = KnownOne.zext(BitWidth);
1907193323Sed    return;
1908193323Sed  }
1909193323Sed  case ISD::TRUNCATE: {
1910198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1911200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912218893Sdim    APInt InMask = Mask.zext(InBits);
1913218893Sdim    KnownZero = KnownZero.zext(InBits);
1914218893Sdim    KnownOne = KnownOne.zext(InBits);
1915193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917218893Sdim    KnownZero = KnownZero.trunc(BitWidth);
1918218893Sdim    KnownOne = KnownOne.trunc(BitWidth);
1919193323Sed    break;
1920193323Sed  }
1921193323Sed  case ISD::AssertZext: {
1922198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925193323Sed                      KnownOne, Depth+1);
1926193323Sed    KnownZero |= (~InMask) & Mask;
1927193323Sed    return;
1928193323Sed  }
1929193323Sed  case ISD::FGETSIGN:
1930193323Sed    // All bits are zero except the low bit.
1931193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932193323Sed    return;
1933193323Sed
1934193323Sed  case ISD::SUB: {
1935193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1937193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938193323Sed      // positive if we can prove that X is >= 0 and < 16.
1939193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1940193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941193323Sed        // NLZ can't be BitWidth with no sign bit
1942193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944193323Sed                          Depth+1);
1945193323Sed
1946193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1947193323Sed        // output top bits are zero, because we now know that the output is
1948193323Sed        // from [0-C].
1949193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1950193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951193323Sed          // Top bits known zero.
1952193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953193323Sed        }
1954193323Sed      }
1955193323Sed    }
1956193323Sed  }
1957193323Sed  // fall through
1958218893Sdim  case ISD::ADD:
1959218893Sdim  case ISD::ADDE: {
1960193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1961193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962193323Sed    // low 3 bits clear.
1963207618Srdivacky    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964207618Srdivacky                                       BitWidth - Mask.countLeadingZeros());
1965193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968193323Sed
1969193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1972193323Sed                            KnownZero2.countTrailingOnes());
1973193323Sed
1974218893Sdim    if (Op.getOpcode() == ISD::ADD) {
1975218893Sdim      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976218893Sdim      return;
1977218893Sdim    }
1978218893Sdim
1979218893Sdim    // With ADDE, a carry bit may be added in, so we can only use this
1980218893Sdim    // information if we know (at least) that the low two bits are clear.  We
1981218893Sdim    // then return to the caller that the low bit is unknown but that other bits
1982218893Sdim    // are known zero.
1983218893Sdim    if (KnownZeroOut >= 2) // ADDE
1984218893Sdim      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985193323Sed    return;
1986193323Sed  }
1987193323Sed  case ISD::SREM:
1988193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989203954Srdivacky      const APInt &RA = Rem->getAPIntValue().abs();
1990203954Srdivacky      if (RA.isPowerOf2()) {
1991203954Srdivacky        APInt LowBits = RA - 1;
1992193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994193323Sed
1995203954Srdivacky        // The low bits of the first operand are unchanged by the srem.
1996203954Srdivacky        KnownZero = KnownZero2 & LowBits;
1997203954Srdivacky        KnownOne = KnownOne2 & LowBits;
1998203954Srdivacky
1999203954Srdivacky        // If the first operand is non-negative or has all low bits zero, then
2000203954Srdivacky        // the upper bits are all zero.
2001193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002203954Srdivacky          KnownZero |= ~LowBits;
2003193323Sed
2004203954Srdivacky        // If the first operand is negative and not all low bits are zero, then
2005203954Srdivacky        // the upper bits are all one.
2006203954Srdivacky        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007203954Srdivacky          KnownOne |= ~LowBits;
2008193323Sed
2009203954Srdivacky        KnownZero &= Mask;
2010203954Srdivacky        KnownOne &= Mask;
2011203954Srdivacky
2012193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013193323Sed      }
2014193323Sed    }
2015193323Sed    return;
2016193323Sed  case ISD::UREM: {
2017193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018193323Sed      const APInt &RA = Rem->getAPIntValue();
2019193323Sed      if (RA.isPowerOf2()) {
2020193323Sed        APInt LowBits = (RA - 1);
2021193323Sed        APInt Mask2 = LowBits & Mask;
2022193323Sed        KnownZero |= ~LowBits & Mask;
2023193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025193323Sed        break;
2026193323Sed      }
2027193323Sed    }
2028193323Sed
2029193323Sed    // Since the result is less than or equal to either operand, any leading
2030193323Sed    // zero bits in either operand must also exist in the result.
2031193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033193323Sed                      Depth+1);
2034193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035193323Sed                      Depth+1);
2036193323Sed
2037193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038193323Sed                                KnownZero2.countLeadingOnes());
2039218893Sdim    KnownOne.clearAllBits();
2040193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041193323Sed    return;
2042193323Sed  }
2043218893Sdim  case ISD::FrameIndex:
2044218893Sdim  case ISD::TargetFrameIndex:
2045218893Sdim    if (unsigned Align = InferPtrAlignment(Op)) {
2046218893Sdim      // The low bits are known zero if the pointer is aligned.
2047218893Sdim      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048218893Sdim      return;
2049218893Sdim    }
2050218893Sdim    break;
2051218893Sdim
2052193323Sed  default:
2053193323Sed    // Allow the target to implement this method for its nodes.
2054193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2055193323Sed  case ISD::INTRINSIC_WO_CHAIN:
2056193323Sed  case ISD::INTRINSIC_W_CHAIN:
2057193323Sed  case ISD::INTRINSIC_VOID:
2058198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2059198090Srdivacky                                         Depth);
2060193323Sed    }
2061193323Sed    return;
2062193323Sed  }
2063193323Sed}
2064193323Sed
2065193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
2066193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
2067193323Sed/// is always equal to the sign bit (itself), but other cases can give us
2068193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
2069193323Sed/// the top 3 bits are all equal to each other, so we return 3.
2070193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2071198090Srdivacky  EVT VT = Op.getValueType();
2072193323Sed  assert(VT.isInteger() && "Invalid VT!");
2073200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
2074193323Sed  unsigned Tmp, Tmp2;
2075193323Sed  unsigned FirstAnswer = 1;
2076193323Sed
2077193323Sed  if (Depth == 6)
2078193323Sed    return 1;  // Limit search depth.
2079193323Sed
2080193323Sed  switch (Op.getOpcode()) {
2081193323Sed  default: break;
2082193323Sed  case ISD::AssertSext:
2083193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2084193323Sed    return VTBits-Tmp+1;
2085193323Sed  case ISD::AssertZext:
2086193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2087193323Sed    return VTBits-Tmp;
2088193323Sed
2089193323Sed  case ISD::Constant: {
2090193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2091193323Sed    // If negative, return # leading ones.
2092193323Sed    if (Val.isNegative())
2093193323Sed      return Val.countLeadingOnes();
2094193323Sed
2095193323Sed    // Return # leading zeros.
2096193323Sed    return Val.countLeadingZeros();
2097193323Sed  }
2098193323Sed
2099193323Sed  case ISD::SIGN_EXTEND:
2100200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2101193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2102193323Sed
2103193323Sed  case ISD::SIGN_EXTEND_INREG:
2104193323Sed    // Max of the input and what this extends.
2105202375Srdivacky    Tmp =
2106202375Srdivacky      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2107193323Sed    Tmp = VTBits-Tmp+1;
2108193323Sed
2109193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110193323Sed    return std::max(Tmp, Tmp2);
2111193323Sed
2112193323Sed  case ISD::SRA:
2113193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114193323Sed    // SRA X, C   -> adds C sign bits.
2115193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2116193323Sed      Tmp += C->getZExtValue();
2117193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2118193323Sed    }
2119193323Sed    return Tmp;
2120193323Sed  case ISD::SHL:
2121193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2122193323Sed      // shl destroys sign bits.
2123193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2125193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2126193323Sed      return Tmp - C->getZExtValue();
2127193323Sed    }
2128193323Sed    break;
2129193323Sed  case ISD::AND:
2130193323Sed  case ISD::OR:
2131193323Sed  case ISD::XOR:    // NOT is handled here.
2132193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2133193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134193323Sed    if (Tmp != 1) {
2135193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2136193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2137193323Sed      // We computed what we know about the sign bits as our first
2138193323Sed      // answer. Now proceed to the generic code that uses
2139193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2140193323Sed    }
2141193323Sed    break;
2142193323Sed
2143193323Sed  case ISD::SELECT:
2144193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2145193323Sed    if (Tmp == 1) return 1;  // Early out.
2146193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2147193323Sed    return std::min(Tmp, Tmp2);
2148193323Sed
2149193323Sed  case ISD::SADDO:
2150193323Sed  case ISD::UADDO:
2151193323Sed  case ISD::SSUBO:
2152193323Sed  case ISD::USUBO:
2153193323Sed  case ISD::SMULO:
2154193323Sed  case ISD::UMULO:
2155193323Sed    if (Op.getResNo() != 1)
2156193323Sed      break;
2157193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2158193323Sed  case ISD::SETCC:
2159193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2160193323Sed    if (TLI.getBooleanContents() ==
2161193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2162193323Sed      return VTBits;
2163193323Sed    break;
2164193323Sed  case ISD::ROTL:
2165193323Sed  case ISD::ROTR:
2166193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2167193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2168193323Sed
2169193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2170193323Sed      if (Op.getOpcode() == ISD::ROTR)
2171193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2172193323Sed
2173193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2174193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2175193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2176193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2177193323Sed    }
2178193323Sed    break;
2179193323Sed  case ISD::ADD:
2180193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2181193323Sed    // is, at worst, one more bit than the inputs.
2182193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2183193323Sed    if (Tmp == 1) return 1;  // Early out.
2184193323Sed
2185193323Sed    // Special case decrementing a value (ADD X, -1):
2186193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2187193323Sed      if (CRHS->isAllOnesValue()) {
2188193323Sed        APInt KnownZero, KnownOne;
2189193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2190193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2191193323Sed
2192193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2193193323Sed        // sign bits set.
2194193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2195193323Sed          return VTBits;
2196193323Sed
2197193323Sed        // If we are subtracting one from a positive number, there is no carry
2198193323Sed        // out of the result.
2199193323Sed        if (KnownZero.isNegative())
2200193323Sed          return Tmp;
2201193323Sed      }
2202193323Sed
2203193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2204193323Sed    if (Tmp2 == 1) return 1;
2205193323Sed      return std::min(Tmp, Tmp2)-1;
2206193323Sed    break;
2207193323Sed
2208193323Sed  case ISD::SUB:
2209193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2210193323Sed    if (Tmp2 == 1) return 1;
2211193323Sed
2212193323Sed    // Handle NEG.
2213193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2214193323Sed      if (CLHS->isNullValue()) {
2215193323Sed        APInt KnownZero, KnownOne;
2216193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2217193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2218193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2219193323Sed        // sign bits set.
2220193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2221193323Sed          return VTBits;
2222193323Sed
2223193323Sed        // If the input is known to be positive (the sign bit is known clear),
2224193323Sed        // the output of the NEG has the same number of sign bits as the input.
2225193323Sed        if (KnownZero.isNegative())
2226193323Sed          return Tmp2;
2227193323Sed
2228193323Sed        // Otherwise, we treat this like a SUB.
2229193323Sed      }
2230193323Sed
2231193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2232193323Sed    // is, at worst, one more bit than the inputs.
2233193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2234193323Sed    if (Tmp == 1) return 1;  // Early out.
2235193323Sed      return std::min(Tmp, Tmp2)-1;
2236193323Sed    break;
2237193323Sed  case ISD::TRUNCATE:
2238193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2239193323Sed    // case for targets like X86.
2240193323Sed    break;
2241193323Sed  }
2242193323Sed
2243193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2244193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2245193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2246193323Sed    unsigned ExtType = LD->getExtensionType();
2247193323Sed    switch (ExtType) {
2248193323Sed    default: break;
2249193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2250202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2251193323Sed      return VTBits-Tmp+1;
2252193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2253202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2254193323Sed      return VTBits-Tmp;
2255193323Sed    }
2256193323Sed  }
2257193323Sed
2258193323Sed  // Allow the target to implement this method for its nodes.
2259193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2260193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2261193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2262193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2263193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2264193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2265193323Sed  }
2266193323Sed
2267193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2268193323Sed  // use this information.
2269193323Sed  APInt KnownZero, KnownOne;
2270193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2271193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2272193323Sed
2273193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2274193323Sed    Mask = KnownZero;
2275193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2276193323Sed    Mask = KnownOne;
2277193323Sed  } else {
2278193323Sed    // Nothing known.
2279193323Sed    return FirstAnswer;
2280193323Sed  }
2281193323Sed
2282193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2283193323Sed  // the number of identical bits in the top of the input value.
2284193323Sed  Mask = ~Mask;
2285193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2286193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2287193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2288193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2289193323Sed}
2290193323Sed
2291218893Sdim/// isBaseWithConstantOffset - Return true if the specified operand is an
2292218893Sdim/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2293218893Sdim/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2294218893Sdim/// semantics as an ADD.  This handles the equivalence:
2295218893Sdim///     X|Cst == X+Cst iff X&Cst = 0.
2296218893Sdimbool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2297218893Sdim  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2298218893Sdim      !isa<ConstantSDNode>(Op.getOperand(1)))
2299218893Sdim    return false;
2300218893Sdim
2301218893Sdim  if (Op.getOpcode() == ISD::OR &&
2302218893Sdim      !MaskedValueIsZero(Op.getOperand(0),
2303218893Sdim                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2304218893Sdim    return false;
2305218893Sdim
2306218893Sdim  return true;
2307218893Sdim}
2308218893Sdim
2309218893Sdim
2310198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2311198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2312212904Sdim  if (NoNaNsFPMath)
2313198090Srdivacky    return true;
2314193323Sed
2315198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2316198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2317198090Srdivacky    return !C->getValueAPF().isNaN();
2318198090Srdivacky
2319198090Srdivacky  // TODO: Recognize more cases here.
2320198090Srdivacky
2321198090Srdivacky  return false;
2322198090Srdivacky}
2323198090Srdivacky
2324204642Srdivackybool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2325204642Srdivacky  // If the value is a constant, we can obviously see if it is a zero or not.
2326204642Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2327204642Srdivacky    return !C->isZero();
2328204642Srdivacky
2329204642Srdivacky  // TODO: Recognize more cases here.
2330204642Srdivacky
2331204642Srdivacky  return false;
2332204642Srdivacky}
2333204642Srdivacky
2334204642Srdivackybool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2335204642Srdivacky  // Check the obvious case.
2336204642Srdivacky  if (A == B) return true;
2337204642Srdivacky
2338204642Srdivacky  // For for negative and positive zero.
2339204642Srdivacky  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2340204642Srdivacky    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2341204642Srdivacky      if (CA->isZero() && CB->isZero()) return true;
2342204642Srdivacky
2343204642Srdivacky  // Otherwise they may not be equal.
2344204642Srdivacky  return false;
2345204642Srdivacky}
2346204642Srdivacky
2347193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2348193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2349193323Sed  if (!GA) return false;
2350193323Sed  if (GA->getOffset() != 0) return false;
2351207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2352193323Sed  if (!GV) return false;
2353206274Srdivacky  return MF->getMMI().hasDebugInfo();
2354193323Sed}
2355193323Sed
2356193323Sed
2357193323Sed/// getNode - Gets or creates the specified node.
2358193323Sed///
2359198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2360193323Sed  FoldingSetNodeID ID;
2361193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2362193323Sed  void *IP = 0;
2363201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2364193323Sed    return SDValue(E, 0);
2365201360Srdivacky
2366205407Srdivacky  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2367193323Sed  CSEMap.InsertNode(N, IP);
2368193323Sed
2369193323Sed  AllNodes.push_back(N);
2370193323Sed#ifndef NDEBUG
2371218893Sdim  VerifySDNode(N);
2372193323Sed#endif
2373193323Sed  return SDValue(N, 0);
2374193323Sed}
2375193323Sed
2376193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2377198090Srdivacky                              EVT VT, SDValue Operand) {
2378193323Sed  // Constant fold unary operations with an integer constant operand.
2379193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2380193323Sed    const APInt &Val = C->getAPIntValue();
2381193323Sed    switch (Opcode) {
2382193323Sed    default: break;
2383193323Sed    case ISD::SIGN_EXTEND:
2384218893Sdim      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2385193323Sed    case ISD::ANY_EXTEND:
2386193323Sed    case ISD::ZERO_EXTEND:
2387193323Sed    case ISD::TRUNCATE:
2388218893Sdim      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2389193323Sed    case ISD::UINT_TO_FP:
2390193323Sed    case ISD::SINT_TO_FP: {
2391205218Srdivacky      // No compile time operations on ppcf128.
2392205218Srdivacky      if (VT == MVT::ppcf128) break;
2393218893Sdim      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2394193323Sed      (void)apf.convertFromAPInt(Val,
2395193323Sed                                 Opcode==ISD::SINT_TO_FP,
2396193323Sed                                 APFloat::rmNearestTiesToEven);
2397193323Sed      return getConstantFP(apf, VT);
2398193323Sed    }
2399218893Sdim    case ISD::BITCAST:
2400193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2401193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2402193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2403193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2404193323Sed      break;
2405193323Sed    case ISD::BSWAP:
2406193323Sed      return getConstant(Val.byteSwap(), VT);
2407193323Sed    case ISD::CTPOP:
2408193323Sed      return getConstant(Val.countPopulation(), VT);
2409193323Sed    case ISD::CTLZ:
2410193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2411193323Sed    case ISD::CTTZ:
2412193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2413193323Sed    }
2414193323Sed  }
2415193323Sed
2416193323Sed  // Constant fold unary operations with a floating point constant operand.
2417193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2418193323Sed    APFloat V = C->getValueAPF();    // make copy
2419193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2420193323Sed      switch (Opcode) {
2421193323Sed      case ISD::FNEG:
2422193323Sed        V.changeSign();
2423193323Sed        return getConstantFP(V, VT);
2424193323Sed      case ISD::FABS:
2425193323Sed        V.clearSign();
2426193323Sed        return getConstantFP(V, VT);
2427193323Sed      case ISD::FP_ROUND:
2428193323Sed      case ISD::FP_EXTEND: {
2429193323Sed        bool ignored;
2430193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2431193323Sed        // FIXME need to be more flexible about rounding mode.
2432198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2433193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2434193323Sed        return getConstantFP(V, VT);
2435193323Sed      }
2436193323Sed      case ISD::FP_TO_SINT:
2437193323Sed      case ISD::FP_TO_UINT: {
2438193323Sed        integerPart x[2];
2439193323Sed        bool ignored;
2440193323Sed        assert(integerPartWidth >= 64);
2441193323Sed        // FIXME need to be more flexible about rounding mode.
2442193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2443193323Sed                              Opcode==ISD::FP_TO_SINT,
2444193323Sed                              APFloat::rmTowardZero, &ignored);
2445193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2446193323Sed          break;
2447193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2448193323Sed        return getConstant(api, VT);
2449193323Sed      }
2450218893Sdim      case ISD::BITCAST:
2451193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2452193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2453193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2454193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2455193323Sed        break;
2456193323Sed      }
2457193323Sed    }
2458193323Sed  }
2459193323Sed
2460193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2461193323Sed  switch (Opcode) {
2462193323Sed  case ISD::TokenFactor:
2463193323Sed  case ISD::MERGE_VALUES:
2464193323Sed  case ISD::CONCAT_VECTORS:
2465193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2466198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2467193323Sed  case ISD::FP_EXTEND:
2468193323Sed    assert(VT.isFloatingPoint() &&
2469193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2470193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2471200581Srdivacky    assert((!VT.isVector() ||
2472200581Srdivacky            VT.getVectorNumElements() ==
2473200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2474200581Srdivacky           "Vector element count mismatch!");
2475193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2476193323Sed      return getUNDEF(VT);
2477193323Sed    break;
2478193323Sed  case ISD::SIGN_EXTEND:
2479193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2480193323Sed           "Invalid SIGN_EXTEND!");
2481193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2482200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2483200581Srdivacky           "Invalid sext node, dst < src!");
2484200581Srdivacky    assert((!VT.isVector() ||
2485200581Srdivacky            VT.getVectorNumElements() ==
2486200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2487200581Srdivacky           "Vector element count mismatch!");
2488193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2489193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2490193323Sed    break;
2491193323Sed  case ISD::ZERO_EXTEND:
2492193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2493193323Sed           "Invalid ZERO_EXTEND!");
2494193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2495200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2496200581Srdivacky           "Invalid zext node, dst < src!");
2497200581Srdivacky    assert((!VT.isVector() ||
2498200581Srdivacky            VT.getVectorNumElements() ==
2499200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2500200581Srdivacky           "Vector element count mismatch!");
2501193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2502193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2503193323Sed                     Operand.getNode()->getOperand(0));
2504193323Sed    break;
2505193323Sed  case ISD::ANY_EXTEND:
2506193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2507193323Sed           "Invalid ANY_EXTEND!");
2508193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2509200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2510200581Srdivacky           "Invalid anyext node, dst < src!");
2511200581Srdivacky    assert((!VT.isVector() ||
2512200581Srdivacky            VT.getVectorNumElements() ==
2513200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2514200581Srdivacky           "Vector element count mismatch!");
2515210299Sed
2516210299Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2517210299Sed        OpOpcode == ISD::ANY_EXTEND)
2518193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2519193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2520210299Sed
2521210299Sed    // (ext (trunx x)) -> x
2522210299Sed    if (OpOpcode == ISD::TRUNCATE) {
2523210299Sed      SDValue OpOp = Operand.getNode()->getOperand(0);
2524210299Sed      if (OpOp.getValueType() == VT)
2525210299Sed        return OpOp;
2526210299Sed    }
2527193323Sed    break;
2528193323Sed  case ISD::TRUNCATE:
2529193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2530193323Sed           "Invalid TRUNCATE!");
2531193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2532200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2533200581Srdivacky           "Invalid truncate node, src < dst!");
2534200581Srdivacky    assert((!VT.isVector() ||
2535200581Srdivacky            VT.getVectorNumElements() ==
2536200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2537200581Srdivacky           "Vector element count mismatch!");
2538193323Sed    if (OpOpcode == ISD::TRUNCATE)
2539193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2540193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2541193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2542193323Sed      // If the source is smaller than the dest, we still need an extend.
2543200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2544200581Srdivacky            .bitsLT(VT.getScalarType()))
2545193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2546193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2547193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2548193323Sed      else
2549193323Sed        return Operand.getNode()->getOperand(0);
2550193323Sed    }
2551193323Sed    break;
2552218893Sdim  case ISD::BITCAST:
2553193323Sed    // Basic sanity checking.
2554193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2555218893Sdim           && "Cannot BITCAST between types of different sizes!");
2556193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2557218893Sdim    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2558218893Sdim      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2559193323Sed    if (OpOpcode == ISD::UNDEF)
2560193323Sed      return getUNDEF(VT);
2561193323Sed    break;
2562193323Sed  case ISD::SCALAR_TO_VECTOR:
2563193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2564193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2565193323Sed            (VT.getVectorElementType().isInteger() &&
2566193323Sed             Operand.getValueType().isInteger() &&
2567193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2568193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2569193323Sed    if (OpOpcode == ISD::UNDEF)
2570193323Sed      return getUNDEF(VT);
2571193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2572193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2573193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2574193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2575193323Sed        Operand.getOperand(0).getValueType() == VT)
2576193323Sed      return Operand.getOperand(0);
2577193323Sed    break;
2578193323Sed  case ISD::FNEG:
2579193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2580193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2581193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2582193323Sed                     Operand.getNode()->getOperand(0));
2583193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2584193323Sed      return Operand.getNode()->getOperand(0);
2585193323Sed    break;
2586193323Sed  case ISD::FABS:
2587193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2588193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2589193323Sed    break;
2590193323Sed  }
2591193323Sed
2592193323Sed  SDNode *N;
2593193323Sed  SDVTList VTs = getVTList(VT);
2594218893Sdim  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2595193323Sed    FoldingSetNodeID ID;
2596193323Sed    SDValue Ops[1] = { Operand };
2597193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2598193323Sed    void *IP = 0;
2599201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2600193323Sed      return SDValue(E, 0);
2601201360Srdivacky
2602205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2603193323Sed    CSEMap.InsertNode(N, IP);
2604193323Sed  } else {
2605205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2606193323Sed  }
2607193323Sed
2608193323Sed  AllNodes.push_back(N);
2609193323Sed#ifndef NDEBUG
2610218893Sdim  VerifySDNode(N);
2611193323Sed#endif
2612193323Sed  return SDValue(N, 0);
2613193323Sed}
2614193323Sed
2615193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2616198090Srdivacky                                             EVT VT,
2617193323Sed                                             ConstantSDNode *Cst1,
2618193323Sed                                             ConstantSDNode *Cst2) {
2619193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2620193323Sed
2621193323Sed  switch (Opcode) {
2622193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2623193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2624193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2625193323Sed  case ISD::UDIV:
2626193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2627193323Sed    break;
2628193323Sed  case ISD::UREM:
2629193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2630193323Sed    break;
2631193323Sed  case ISD::SDIV:
2632193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2633193323Sed    break;
2634193323Sed  case ISD::SREM:
2635193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2636193323Sed    break;
2637193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2638193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2639193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2640193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2641193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2642193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2643193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2644193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2645193323Sed  default: break;
2646193323Sed  }
2647193323Sed
2648193323Sed  return SDValue();
2649193323Sed}
2650193323Sed
2651198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2652193323Sed                              SDValue N1, SDValue N2) {
2653193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2654193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2655193323Sed  switch (Opcode) {
2656193323Sed  default: break;
2657193323Sed  case ISD::TokenFactor:
2658193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2659193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2660193323Sed    // Fold trivial token factors.
2661193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2662193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2663193323Sed    if (N1 == N2) return N1;
2664193323Sed    break;
2665193323Sed  case ISD::CONCAT_VECTORS:
2666193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2667193323Sed    // one big BUILD_VECTOR.
2668193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2669193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2670212904Sdim      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2671212904Sdim                                    N1.getNode()->op_end());
2672210299Sed      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2673193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2674193323Sed    }
2675193323Sed    break;
2676193323Sed  case ISD::AND:
2677208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2678208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2679193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2680193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2681193323Sed    // worth handling here.
2682193323Sed    if (N2C && N2C->isNullValue())
2683193323Sed      return N2;
2684193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2685193323Sed      return N1;
2686193323Sed    break;
2687193323Sed  case ISD::OR:
2688193323Sed  case ISD::XOR:
2689193323Sed  case ISD::ADD:
2690193323Sed  case ISD::SUB:
2691208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2692208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2693193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2694193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2695193323Sed    // it's worth handling here.
2696193323Sed    if (N2C && N2C->isNullValue())
2697193323Sed      return N1;
2698193323Sed    break;
2699193323Sed  case ISD::UDIV:
2700193323Sed  case ISD::UREM:
2701193323Sed  case ISD::MULHU:
2702193323Sed  case ISD::MULHS:
2703193323Sed  case ISD::MUL:
2704193323Sed  case ISD::SDIV:
2705193323Sed  case ISD::SREM:
2706193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2707208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2708208599Srdivacky           N1.getValueType() == VT && "Binary operator types must match!");
2709208599Srdivacky    break;
2710193323Sed  case ISD::FADD:
2711193323Sed  case ISD::FSUB:
2712193323Sed  case ISD::FMUL:
2713193323Sed  case ISD::FDIV:
2714193323Sed  case ISD::FREM:
2715193323Sed    if (UnsafeFPMath) {
2716193323Sed      if (Opcode == ISD::FADD) {
2717193323Sed        // 0+x --> x
2718193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2719193323Sed          if (CFP->getValueAPF().isZero())
2720193323Sed            return N2;
2721193323Sed        // x+0 --> x
2722193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2723193323Sed          if (CFP->getValueAPF().isZero())
2724193323Sed            return N1;
2725193323Sed      } else if (Opcode == ISD::FSUB) {
2726193323Sed        // x-0 --> x
2727193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2728193323Sed          if (CFP->getValueAPF().isZero())
2729193323Sed            return N1;
2730193323Sed      }
2731193323Sed    }
2732208599Srdivacky    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2733193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2734193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2735193323Sed    break;
2736193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2737193323Sed    assert(N1.getValueType() == VT &&
2738193323Sed           N1.getValueType().isFloatingPoint() &&
2739193323Sed           N2.getValueType().isFloatingPoint() &&
2740193323Sed           "Invalid FCOPYSIGN!");
2741193323Sed    break;
2742193323Sed  case ISD::SHL:
2743193323Sed  case ISD::SRA:
2744193323Sed  case ISD::SRL:
2745193323Sed  case ISD::ROTL:
2746193323Sed  case ISD::ROTR:
2747193323Sed    assert(VT == N1.getValueType() &&
2748193323Sed           "Shift operators return type must be the same as their first arg");
2749193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2750193323Sed           "Shifts only work on integers");
2751218893Sdim    // Verify that the shift amount VT is bit enough to hold valid shift
2752218893Sdim    // amounts.  This catches things like trying to shift an i1024 value by an
2753218893Sdim    // i8, which is easy to fall into in generic code that uses
2754218893Sdim    // TLI.getShiftAmount().
2755218893Sdim    assert(N2.getValueType().getSizeInBits() >=
2756218893Sdim                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2757218893Sdim           "Invalid use of small shift amount with oversized value!");
2758193323Sed
2759193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2760193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2761193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2762193323Sed    if (VT == MVT::i1)
2763193323Sed      return N1;
2764202375Srdivacky    if (N2C && N2C->isNullValue())
2765202375Srdivacky      return N1;
2766193323Sed    break;
2767193323Sed  case ISD::FP_ROUND_INREG: {
2768198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2769193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2770193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2771193323Sed           "Cannot FP_ROUND_INREG integer types");
2772202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2773202375Srdivacky           "FP_ROUND_INREG type should be vector iff the operand "
2774202375Srdivacky           "type is vector!");
2775202375Srdivacky    assert((!EVT.isVector() ||
2776202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2777202375Srdivacky           "Vector element counts must match in FP_ROUND_INREG");
2778193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2779193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2780193323Sed    break;
2781193323Sed  }
2782193323Sed  case ISD::FP_ROUND:
2783193323Sed    assert(VT.isFloatingPoint() &&
2784193323Sed           N1.getValueType().isFloatingPoint() &&
2785193323Sed           VT.bitsLE(N1.getValueType()) &&
2786193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2787193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2788193323Sed    break;
2789193323Sed  case ISD::AssertSext:
2790193323Sed  case ISD::AssertZext: {
2791198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2792193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2793193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2794193323Sed           "Cannot *_EXTEND_INREG FP types");
2795200581Srdivacky    assert(!EVT.isVector() &&
2796200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2797200581Srdivacky           "rather than the vector type!");
2798193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2799193323Sed    if (VT == EVT) return N1; // noop assertion.
2800193323Sed    break;
2801193323Sed  }
2802193323Sed  case ISD::SIGN_EXTEND_INREG: {
2803198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2804193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2805193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2806193323Sed           "Cannot *_EXTEND_INREG FP types");
2807202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2808202375Srdivacky           "SIGN_EXTEND_INREG type should be vector iff the operand "
2809202375Srdivacky           "type is vector!");
2810202375Srdivacky    assert((!EVT.isVector() ||
2811202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2812202375Srdivacky           "Vector element counts must match in SIGN_EXTEND_INREG");
2813202375Srdivacky    assert(EVT.bitsLE(VT) && "Not extending!");
2814193323Sed    if (EVT == VT) return N1;  // Not actually extending
2815193323Sed
2816193323Sed    if (N1C) {
2817193323Sed      APInt Val = N1C->getAPIntValue();
2818202375Srdivacky      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2819193323Sed      Val <<= Val.getBitWidth()-FromBits;
2820193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2821193323Sed      return getConstant(Val, VT);
2822193323Sed    }
2823193323Sed    break;
2824193323Sed  }
2825193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2826193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2827193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2828193323Sed      return getUNDEF(VT);
2829193323Sed
2830193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2831193323Sed    // expanding copies of large vectors from registers.
2832193323Sed    if (N2C &&
2833193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2834193323Sed        N1.getNumOperands() > 0) {
2835193323Sed      unsigned Factor =
2836193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2837193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2838193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2839193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2840193323Sed                                 N2.getValueType()));
2841193323Sed    }
2842193323Sed
2843193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2844193323Sed    // expanding large vector constants.
2845193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2846193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2847198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2848198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2849193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2850193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2851198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2852193323Sed      }
2853198090Srdivacky      if (VT != VEltTy) {
2854198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2855198090Srdivacky        // result is implicitly extended.
2856198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2857198090Srdivacky      }
2858193323Sed      return Elt;
2859193323Sed    }
2860193323Sed
2861193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2862193323Sed    // operations are lowered to scalars.
2863193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2864203954Srdivacky      // If the indices are the same, return the inserted element else
2865203954Srdivacky      // if the indices are known different, extract the element from
2866193323Sed      // the original vector.
2867207618Srdivacky      SDValue N1Op2 = N1.getOperand(2);
2868207618Srdivacky      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2869207618Srdivacky
2870207618Srdivacky      if (N1Op2C && N2C) {
2871207618Srdivacky        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2872207618Srdivacky          if (VT == N1.getOperand(1).getValueType())
2873207618Srdivacky            return N1.getOperand(1);
2874207618Srdivacky          else
2875207618Srdivacky            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2876207618Srdivacky        }
2877207618Srdivacky
2878193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2879207618Srdivacky      }
2880193323Sed    }
2881193323Sed    break;
2882193323Sed  case ISD::EXTRACT_ELEMENT:
2883193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2884193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2885193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2886193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2887193323Sed
2888193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2889193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2890193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2891193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2892193323Sed      return N1.getOperand(N2C->getZExtValue());
2893193323Sed
2894193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2895193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2896193323Sed      unsigned ElementSize = VT.getSizeInBits();
2897193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2898193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2899193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2900193323Sed    }
2901193323Sed    break;
2902218893Sdim  case ISD::EXTRACT_SUBVECTOR: {
2903218893Sdim    SDValue Index = N2;
2904218893Sdim    if (VT.isSimple() && N1.getValueType().isSimple()) {
2905218893Sdim      assert(VT.isVector() && N1.getValueType().isVector() &&
2906218893Sdim             "Extract subvector VTs must be a vectors!");
2907218893Sdim      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2908218893Sdim             "Extract subvector VTs must have the same element type!");
2909218893Sdim      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2910218893Sdim             "Extract subvector must be from larger vector to smaller vector!");
2911218893Sdim
2912218893Sdim      if (isa<ConstantSDNode>(Index.getNode())) {
2913218893Sdim        assert((VT.getVectorNumElements() +
2914218893Sdim                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2915218893Sdim                <= N1.getValueType().getVectorNumElements())
2916218893Sdim               && "Extract subvector overflow!");
2917218893Sdim      }
2918218893Sdim
2919218893Sdim      // Trivial extraction.
2920218893Sdim      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2921218893Sdim        return N1;
2922218893Sdim    }
2923193323Sed    break;
2924193323Sed  }
2925218893Sdim  }
2926193323Sed
2927193323Sed  if (N1C) {
2928193323Sed    if (N2C) {
2929193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2930193323Sed      if (SV.getNode()) return SV;
2931193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2932193323Sed      if (isCommutativeBinOp(Opcode)) {
2933193323Sed        std::swap(N1C, N2C);
2934193323Sed        std::swap(N1, N2);
2935193323Sed      }
2936193323Sed    }
2937193323Sed  }
2938193323Sed
2939193323Sed  // Constant fold FP operations.
2940193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2941193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2942193323Sed  if (N1CFP) {
2943193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2944193323Sed      // Cannonicalize constant to RHS if commutative
2945193323Sed      std::swap(N1CFP, N2CFP);
2946193323Sed      std::swap(N1, N2);
2947193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2948193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2949193323Sed      APFloat::opStatus s;
2950193323Sed      switch (Opcode) {
2951193323Sed      case ISD::FADD:
2952193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2953193323Sed        if (s != APFloat::opInvalidOp)
2954193323Sed          return getConstantFP(V1, VT);
2955193323Sed        break;
2956193323Sed      case ISD::FSUB:
2957193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2958193323Sed        if (s!=APFloat::opInvalidOp)
2959193323Sed          return getConstantFP(V1, VT);
2960193323Sed        break;
2961193323Sed      case ISD::FMUL:
2962193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2963193323Sed        if (s!=APFloat::opInvalidOp)
2964193323Sed          return getConstantFP(V1, VT);
2965193323Sed        break;
2966193323Sed      case ISD::FDIV:
2967193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2968193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2969193323Sed          return getConstantFP(V1, VT);
2970193323Sed        break;
2971193323Sed      case ISD::FREM :
2972193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2973193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2974193323Sed          return getConstantFP(V1, VT);
2975193323Sed        break;
2976193323Sed      case ISD::FCOPYSIGN:
2977193323Sed        V1.copySign(V2);
2978193323Sed        return getConstantFP(V1, VT);
2979193323Sed      default: break;
2980193323Sed      }
2981193323Sed    }
2982193323Sed  }
2983193323Sed
2984193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2985193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2986193323Sed    if (isCommutativeBinOp(Opcode)) {
2987193323Sed      std::swap(N1, N2);
2988193323Sed    } else {
2989193323Sed      switch (Opcode) {
2990193323Sed      case ISD::FP_ROUND_INREG:
2991193323Sed      case ISD::SIGN_EXTEND_INREG:
2992193323Sed      case ISD::SUB:
2993193323Sed      case ISD::FSUB:
2994193323Sed      case ISD::FDIV:
2995193323Sed      case ISD::FREM:
2996193323Sed      case ISD::SRA:
2997193323Sed        return N1;     // fold op(undef, arg2) -> undef
2998193323Sed      case ISD::UDIV:
2999193323Sed      case ISD::SDIV:
3000193323Sed      case ISD::UREM:
3001193323Sed      case ISD::SREM:
3002193323Sed      case ISD::SRL:
3003193323Sed      case ISD::SHL:
3004193323Sed        if (!VT.isVector())
3005193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3006193323Sed        // For vectors, we can't easily build an all zero vector, just return
3007193323Sed        // the LHS.
3008193323Sed        return N2;
3009193323Sed      }
3010193323Sed    }
3011193323Sed  }
3012193323Sed
3013193323Sed  // Fold a bunch of operators when the RHS is undef.
3014193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
3015193323Sed    switch (Opcode) {
3016193323Sed    case ISD::XOR:
3017193323Sed      if (N1.getOpcode() == ISD::UNDEF)
3018193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
3019193323Sed        // idiom (misuse).
3020193323Sed        return getConstant(0, VT);
3021193323Sed      // fallthrough
3022193323Sed    case ISD::ADD:
3023193323Sed    case ISD::ADDC:
3024193323Sed    case ISD::ADDE:
3025193323Sed    case ISD::SUB:
3026193574Sed    case ISD::UDIV:
3027193574Sed    case ISD::SDIV:
3028193574Sed    case ISD::UREM:
3029193574Sed    case ISD::SREM:
3030193574Sed      return N2;       // fold op(arg1, undef) -> undef
3031193323Sed    case ISD::FADD:
3032193323Sed    case ISD::FSUB:
3033193323Sed    case ISD::FMUL:
3034193323Sed    case ISD::FDIV:
3035193323Sed    case ISD::FREM:
3036193574Sed      if (UnsafeFPMath)
3037193574Sed        return N2;
3038193574Sed      break;
3039193323Sed    case ISD::MUL:
3040193323Sed    case ISD::AND:
3041193323Sed    case ISD::SRL:
3042193323Sed    case ISD::SHL:
3043193323Sed      if (!VT.isVector())
3044193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3045193323Sed      // For vectors, we can't easily build an all zero vector, just return
3046193323Sed      // the LHS.
3047193323Sed      return N1;
3048193323Sed    case ISD::OR:
3049193323Sed      if (!VT.isVector())
3050193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3051193323Sed      // For vectors, we can't easily build an all one vector, just return
3052193323Sed      // the LHS.
3053193323Sed      return N1;
3054193323Sed    case ISD::SRA:
3055193323Sed      return N1;
3056193323Sed    }
3057193323Sed  }
3058193323Sed
3059193323Sed  // Memoize this node if possible.
3060193323Sed  SDNode *N;
3061193323Sed  SDVTList VTs = getVTList(VT);
3062218893Sdim  if (VT != MVT::Glue) {
3063193323Sed    SDValue Ops[] = { N1, N2 };
3064193323Sed    FoldingSetNodeID ID;
3065193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3066193323Sed    void *IP = 0;
3067201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3068193323Sed      return SDValue(E, 0);
3069201360Srdivacky
3070205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3071193323Sed    CSEMap.InsertNode(N, IP);
3072193323Sed  } else {
3073205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3074193323Sed  }
3075193323Sed
3076193323Sed  AllNodes.push_back(N);
3077193323Sed#ifndef NDEBUG
3078218893Sdim  VerifySDNode(N);
3079193323Sed#endif
3080193323Sed  return SDValue(N, 0);
3081193323Sed}
3082193323Sed
3083198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3084193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
3085193323Sed  // Perform various simplifications.
3086193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3087193323Sed  switch (Opcode) {
3088193323Sed  case ISD::CONCAT_VECTORS:
3089193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3090193323Sed    // one big BUILD_VECTOR.
3091193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3092193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
3093193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
3094212904Sdim      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3095212904Sdim                                    N1.getNode()->op_end());
3096210299Sed      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3097210299Sed      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3098193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3099193323Sed    }
3100193323Sed    break;
3101193323Sed  case ISD::SETCC: {
3102193323Sed    // Use FoldSetCC to simplify SETCC's.
3103193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3104193323Sed    if (Simp.getNode()) return Simp;
3105193323Sed    break;
3106193323Sed  }
3107193323Sed  case ISD::SELECT:
3108193323Sed    if (N1C) {
3109193323Sed     if (N1C->getZExtValue())
3110193323Sed        return N2;             // select true, X, Y -> X
3111193323Sed      else
3112193323Sed        return N3;             // select false, X, Y -> Y
3113193323Sed    }
3114193323Sed
3115193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
3116193323Sed    break;
3117193323Sed  case ISD::VECTOR_SHUFFLE:
3118198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
3119193323Sed    break;
3120218893Sdim  case ISD::INSERT_SUBVECTOR: {
3121218893Sdim    SDValue Index = N3;
3122218893Sdim    if (VT.isSimple() && N1.getValueType().isSimple()
3123218893Sdim        && N2.getValueType().isSimple()) {
3124218893Sdim      assert(VT.isVector() && N1.getValueType().isVector() &&
3125218893Sdim             N2.getValueType().isVector() &&
3126218893Sdim             "Insert subvector VTs must be a vectors");
3127218893Sdim      assert(VT == N1.getValueType() &&
3128218893Sdim             "Dest and insert subvector source types must match!");
3129218893Sdim      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3130218893Sdim             "Insert subvector must be from smaller vector to larger vector!");
3131218893Sdim      if (isa<ConstantSDNode>(Index.getNode())) {
3132218893Sdim        assert((N2.getValueType().getVectorNumElements() +
3133218893Sdim                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3134218893Sdim                <= VT.getVectorNumElements())
3135218893Sdim               && "Insert subvector overflow!");
3136218893Sdim      }
3137218893Sdim
3138218893Sdim      // Trivial insertion.
3139218893Sdim      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3140218893Sdim        return N2;
3141218893Sdim    }
3142218893Sdim    break;
3143218893Sdim  }
3144218893Sdim  case ISD::BITCAST:
3145193323Sed    // Fold bit_convert nodes from a type to themselves.
3146193323Sed    if (N1.getValueType() == VT)
3147193323Sed      return N1;
3148193323Sed    break;
3149193323Sed  }
3150193323Sed
3151193323Sed  // Memoize node if it doesn't produce a flag.
3152193323Sed  SDNode *N;
3153193323Sed  SDVTList VTs = getVTList(VT);
3154218893Sdim  if (VT != MVT::Glue) {
3155193323Sed    SDValue Ops[] = { N1, N2, N3 };
3156193323Sed    FoldingSetNodeID ID;
3157193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3158193323Sed    void *IP = 0;
3159201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3160193323Sed      return SDValue(E, 0);
3161201360Srdivacky
3162205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3163193323Sed    CSEMap.InsertNode(N, IP);
3164193323Sed  } else {
3165205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3166193323Sed  }
3167200581Srdivacky
3168193323Sed  AllNodes.push_back(N);
3169193323Sed#ifndef NDEBUG
3170218893Sdim  VerifySDNode(N);
3171193323Sed#endif
3172193323Sed  return SDValue(N, 0);
3173193323Sed}
3174193323Sed
3175198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3176193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3177193323Sed                              SDValue N4) {
3178193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3179193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3180193323Sed}
3181193323Sed
3182198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3183193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3184193323Sed                              SDValue N4, SDValue N5) {
3185193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3186193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3187193323Sed}
3188193323Sed
3189198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3190198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3191198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3192198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3193198090Srdivacky
3194198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3195198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3196198090Srdivacky  // CALLSEQ_BEGIN node.
3197198090Srdivacky  ArgChains.push_back(Chain);
3198198090Srdivacky
3199198090Srdivacky  // Add a chain value for each stack argument.
3200198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3201198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3202198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3203198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3204198090Srdivacky        if (FI->getIndex() < 0)
3205198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3206198090Srdivacky
3207198090Srdivacky  // Build a tokenfactor for all the chains.
3208198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3209198090Srdivacky                 &ArgChains[0], ArgChains.size());
3210198090Srdivacky}
3211198090Srdivacky
3212218893Sdim/// SplatByte - Distribute ByteVal over NumBits bits.
3213218893Sdimstatic APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3214218893Sdim  APInt Val = APInt(NumBits, ByteVal);
3215218893Sdim  unsigned Shift = 8;
3216218893Sdim  for (unsigned i = NumBits; i > 8; i >>= 1) {
3217218893Sdim    Val = (Val << Shift) | Val;
3218218893Sdim    Shift <<= 1;
3219218893Sdim  }
3220218893Sdim  return Val;
3221218893Sdim}
3222218893Sdim
3223193323Sed/// getMemsetValue - Vectorized representation of the memset value
3224193323Sed/// operand.
3225198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3226193323Sed                              DebugLoc dl) {
3227206124Srdivacky  assert(Value.getOpcode() != ISD::UNDEF);
3228206124Srdivacky
3229204642Srdivacky  unsigned NumBits = VT.getScalarType().getSizeInBits();
3230193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3231218893Sdim    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3232193323Sed    if (VT.isInteger())
3233193323Sed      return DAG.getConstant(Val, VT);
3234193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3235193323Sed  }
3236193323Sed
3237193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3238218893Sdim  if (NumBits > 8) {
3239218893Sdim    // Use a multiplication with 0x010101... to extend the input to the
3240218893Sdim    // required length.
3241218893Sdim    APInt Magic = SplatByte(NumBits, 0x01);
3242218893Sdim    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3243193323Sed  }
3244193323Sed
3245193323Sed  return Value;
3246193323Sed}
3247193323Sed
3248193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3249193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3250193323Sed/// string ptr.
3251198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3252198090Srdivacky                                  const TargetLowering &TLI,
3253198090Srdivacky                                  std::string &Str, unsigned Offset) {
3254193323Sed  // Handle vector with all elements zero.
3255193323Sed  if (Str.empty()) {
3256193323Sed    if (VT.isInteger())
3257193323Sed      return DAG.getConstant(0, VT);
3258218893Sdim    else if (VT == MVT::f32 || VT == MVT::f64)
3259206083Srdivacky      return DAG.getConstantFP(0.0, VT);
3260206083Srdivacky    else if (VT.isVector()) {
3261206083Srdivacky      unsigned NumElts = VT.getVectorNumElements();
3262206083Srdivacky      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3263218893Sdim      return DAG.getNode(ISD::BITCAST, dl, VT,
3264206083Srdivacky                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3265206083Srdivacky                                                             EltVT, NumElts)));
3266206083Srdivacky    } else
3267206083Srdivacky      llvm_unreachable("Expected type!");
3268193323Sed  }
3269193323Sed
3270193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3271193323Sed  unsigned NumBits = VT.getSizeInBits();
3272193323Sed  unsigned MSB = NumBits / 8;
3273193323Sed  uint64_t Val = 0;
3274193323Sed  if (TLI.isLittleEndian())
3275193323Sed    Offset = Offset + MSB - 1;
3276193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3277193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3278193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3279193323Sed  }
3280193323Sed  return DAG.getConstant(Val, VT);
3281193323Sed}
3282193323Sed
3283193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3284193323Sed///
3285193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3286193323Sed                                      SelectionDAG &DAG) {
3287198090Srdivacky  EVT VT = Base.getValueType();
3288193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3289193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3290193323Sed}
3291193323Sed
3292193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3293193323Sed///
3294193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3295193323Sed  unsigned SrcDelta = 0;
3296193323Sed  GlobalAddressSDNode *G = NULL;
3297193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3298193323Sed    G = cast<GlobalAddressSDNode>(Src);
3299193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3300193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3301193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3302193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3303193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3304193323Sed  }
3305193323Sed  if (!G)
3306193323Sed    return false;
3307193323Sed
3308207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3309193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3310193323Sed    return true;
3311193323Sed
3312193323Sed  return false;
3313193323Sed}
3314193323Sed
3315206083Srdivacky/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3316206083Srdivacky/// to replace the memset / memcpy. Return true if the number of memory ops
3317206083Srdivacky/// is below the threshold. It returns the types of the sequence of
3318206083Srdivacky/// memory ops to perform memset / memcpy by reference.
3319206083Srdivackystatic bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3320206083Srdivacky                                     unsigned Limit, uint64_t Size,
3321206083Srdivacky                                     unsigned DstAlign, unsigned SrcAlign,
3322206124Srdivacky                                     bool NonScalarIntSafe,
3323207618Srdivacky                                     bool MemcpyStrSrc,
3324206083Srdivacky                                     SelectionDAG &DAG,
3325206083Srdivacky                                     const TargetLowering &TLI) {
3326206083Srdivacky  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3327206083Srdivacky         "Expecting memcpy / memset source to meet alignment requirement!");
3328206083Srdivacky  // If 'SrcAlign' is zero, that means the memory operation does not need load
3329206083Srdivacky  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3330206083Srdivacky  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3331206083Srdivacky  // specified alignment of the memory operation. If it is zero, that means
3332207618Srdivacky  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3333207618Srdivacky  // indicates whether the memcpy source is constant so it does not need to be
3334207618Srdivacky  // loaded.
3335206124Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3336207618Srdivacky                                   NonScalarIntSafe, MemcpyStrSrc,
3337207618Srdivacky                                   DAG.getMachineFunction());
3338193323Sed
3339204961Srdivacky  if (VT == MVT::Other) {
3340206274Srdivacky    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3341206083Srdivacky        TLI.allowsUnalignedMemoryAccesses(VT)) {
3342206274Srdivacky      VT = TLI.getPointerTy();
3343193323Sed    } else {
3344206083Srdivacky      switch (DstAlign & 7) {
3345193323Sed      case 0:  VT = MVT::i64; break;
3346193323Sed      case 4:  VT = MVT::i32; break;
3347193323Sed      case 2:  VT = MVT::i16; break;
3348193323Sed      default: VT = MVT::i8;  break;
3349193323Sed      }
3350193323Sed    }
3351193323Sed
3352193323Sed    MVT LVT = MVT::i64;
3353193323Sed    while (!TLI.isTypeLegal(LVT))
3354198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3355193323Sed    assert(LVT.isInteger());
3356193323Sed
3357193323Sed    if (VT.bitsGT(LVT))
3358193323Sed      VT = LVT;
3359193323Sed  }
3360193323Sed
3361193323Sed  unsigned NumMemOps = 0;
3362193323Sed  while (Size != 0) {
3363193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3364193323Sed    while (VTSize > Size) {
3365193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3366206083Srdivacky      if (VT.isVector() || VT.isFloatingPoint()) {
3367193323Sed        VT = MVT::i64;
3368193323Sed        while (!TLI.isTypeLegal(VT))
3369198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3370193323Sed        VTSize = VT.getSizeInBits() / 8;
3371193323Sed      } else {
3372194710Sed        // This can result in a type that is not legal on the target, e.g.
3373194710Sed        // 1 or 2 bytes on PPC.
3374198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3375193323Sed        VTSize >>= 1;
3376193323Sed      }
3377193323Sed    }
3378193323Sed
3379193323Sed    if (++NumMemOps > Limit)
3380193323Sed      return false;
3381193323Sed    MemOps.push_back(VT);
3382193323Sed    Size -= VTSize;
3383193323Sed  }
3384193323Sed
3385193323Sed  return true;
3386193323Sed}
3387193323Sed
3388193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3389206083Srdivacky                                       SDValue Chain, SDValue Dst,
3390206083Srdivacky                                       SDValue Src, uint64_t Size,
3391206274Srdivacky                                       unsigned Align, bool isVol,
3392206274Srdivacky                                       bool AlwaysInline,
3393218893Sdim                                       MachinePointerInfo DstPtrInfo,
3394218893Sdim                                       MachinePointerInfo SrcPtrInfo) {
3395206124Srdivacky  // Turn a memcpy of undef to nop.
3396206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3397206124Srdivacky    return Chain;
3398193323Sed
3399193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3400193323Sed  // below a certain threshold.
3401218893Sdim  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3402218893Sdim  // rather than maybe a humongous number of loads and stores.
3403206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3404198090Srdivacky  std::vector<EVT> MemOps;
3405206083Srdivacky  bool DstAlignCanChange = false;
3406218893Sdim  MachineFunction &MF = DAG.getMachineFunction();
3407218893Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
3408218893Sdim  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3409206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3410206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3411206083Srdivacky    DstAlignCanChange = true;
3412206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3413206083Srdivacky  if (Align > SrcAlign)
3414206083Srdivacky    SrcAlign = Align;
3415193323Sed  std::string Str;
3416206083Srdivacky  bool CopyFromStr = isMemSrcFromString(Src, Str);
3417206083Srdivacky  bool isZeroStr = CopyFromStr && Str.empty();
3418218893Sdim  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3419218893Sdim
3420206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3421206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3422207618Srdivacky                                (isZeroStr ? 0 : SrcAlign),
3423207618Srdivacky                                true, CopyFromStr, DAG, TLI))
3424193323Sed    return SDValue();
3425193323Sed
3426206083Srdivacky  if (DstAlignCanChange) {
3427206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3428206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3429206083Srdivacky    if (NewAlign > Align) {
3430206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3431206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3432206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3433206083Srdivacky      Align = NewAlign;
3434206083Srdivacky    }
3435206083Srdivacky  }
3436193323Sed
3437193323Sed  SmallVector<SDValue, 8> OutChains;
3438193323Sed  unsigned NumMemOps = MemOps.size();
3439193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3440198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3441198090Srdivacky    EVT VT = MemOps[i];
3442193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3443193323Sed    SDValue Value, Store;
3444193323Sed
3445206083Srdivacky    if (CopyFromStr &&
3446206083Srdivacky        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3447193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3448193323Sed      // instruction. It would require a load from a constantpool first.
3449206083Srdivacky      // We only handle zero vectors here.
3450193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3451193323Sed      // a single instruction.
3452193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3453193323Sed      Store = DAG.getStore(Chain, dl, Value,
3454193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3455218893Sdim                           DstPtrInfo.getWithOffset(DstOff), isVol,
3456218893Sdim                           false, Align);
3457193323Sed    } else {
3458194710Sed      // The type might not be legal for the target.  This should only happen
3459194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3460195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3461195098Sed      // to Load/Store if NVT==VT.
3462194710Sed      // FIXME does the case above also need this?
3463198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3464195098Sed      assert(NVT.bitsGE(VT));
3465218893Sdim      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3466195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3467218893Sdim                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3468206083Srdivacky                             MinAlign(SrcAlign, SrcOff));
3469195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3470203954Srdivacky                                getMemBasePlusOffset(Dst, DstOff, DAG),
3471218893Sdim                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3472218893Sdim                                false, Align);
3473193323Sed    }
3474193323Sed    OutChains.push_back(Store);
3475193323Sed    SrcOff += VTSize;
3476193323Sed    DstOff += VTSize;
3477193323Sed  }
3478193323Sed
3479193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3480193323Sed                     &OutChains[0], OutChains.size());
3481193323Sed}
3482193323Sed
3483193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3484206083Srdivacky                                        SDValue Chain, SDValue Dst,
3485206083Srdivacky                                        SDValue Src, uint64_t Size,
3486206274Srdivacky                                        unsigned Align,  bool isVol,
3487206274Srdivacky                                        bool AlwaysInline,
3488218893Sdim                                        MachinePointerInfo DstPtrInfo,
3489218893Sdim                                        MachinePointerInfo SrcPtrInfo) {
3490206124Srdivacky  // Turn a memmove of undef to nop.
3491206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3492206124Srdivacky    return Chain;
3493193323Sed
3494193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3495193323Sed  // below a certain threshold.
3496206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3497198090Srdivacky  std::vector<EVT> MemOps;
3498206083Srdivacky  bool DstAlignCanChange = false;
3499218893Sdim  MachineFunction &MF = DAG.getMachineFunction();
3500218893Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
3501218893Sdim  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3502206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3503206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3504206083Srdivacky    DstAlignCanChange = true;
3505206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3506206083Srdivacky  if (Align > SrcAlign)
3507206083Srdivacky    SrcAlign = Align;
3508218893Sdim  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3509206083Srdivacky
3510206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3511206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3512207618Srdivacky                                SrcAlign, true, false, DAG, TLI))
3513193323Sed    return SDValue();
3514193323Sed
3515206083Srdivacky  if (DstAlignCanChange) {
3516206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3517206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3518206083Srdivacky    if (NewAlign > Align) {
3519206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3520206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3521206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3522206083Srdivacky      Align = NewAlign;
3523206083Srdivacky    }
3524206083Srdivacky  }
3525206083Srdivacky
3526193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3527193323Sed  SmallVector<SDValue, 8> LoadValues;
3528193323Sed  SmallVector<SDValue, 8> LoadChains;
3529193323Sed  SmallVector<SDValue, 8> OutChains;
3530193323Sed  unsigned NumMemOps = MemOps.size();
3531193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3532198090Srdivacky    EVT VT = MemOps[i];
3533193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3534193323Sed    SDValue Value, Store;
3535193323Sed
3536193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3537193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3538218893Sdim                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3539218893Sdim                        false, SrcAlign);
3540193323Sed    LoadValues.push_back(Value);
3541193323Sed    LoadChains.push_back(Value.getValue(1));
3542193323Sed    SrcOff += VTSize;
3543193323Sed  }
3544193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3545193323Sed                      &LoadChains[0], LoadChains.size());
3546193323Sed  OutChains.clear();
3547193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3548198090Srdivacky    EVT VT = MemOps[i];
3549193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3550193323Sed    SDValue Value, Store;
3551193323Sed
3552193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3553193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3554218893Sdim                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3555193323Sed    OutChains.push_back(Store);
3556193323Sed    DstOff += VTSize;
3557193323Sed  }
3558193323Sed
3559193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3560193323Sed                     &OutChains[0], OutChains.size());
3561193323Sed}
3562193323Sed
3563193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3564206083Srdivacky                               SDValue Chain, SDValue Dst,
3565206083Srdivacky                               SDValue Src, uint64_t Size,
3566206274Srdivacky                               unsigned Align, bool isVol,
3567218893Sdim                               MachinePointerInfo DstPtrInfo) {
3568206124Srdivacky  // Turn a memset of undef to nop.
3569206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3570206124Srdivacky    return Chain;
3571193323Sed
3572193323Sed  // Expand memset to a series of load/store ops if the size operand
3573193323Sed  // falls below a certain threshold.
3574206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3575198090Srdivacky  std::vector<EVT> MemOps;
3576206083Srdivacky  bool DstAlignCanChange = false;
3577218893Sdim  MachineFunction &MF = DAG.getMachineFunction();
3578218893Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
3579218893Sdim  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3580206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3581206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3582206083Srdivacky    DstAlignCanChange = true;
3583206124Srdivacky  bool NonScalarIntSafe =
3584206124Srdivacky    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3585218893Sdim  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3586206083Srdivacky                                Size, (DstAlignCanChange ? 0 : Align), 0,
3587207618Srdivacky                                NonScalarIntSafe, false, DAG, TLI))
3588193323Sed    return SDValue();
3589193323Sed
3590206083Srdivacky  if (DstAlignCanChange) {
3591206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3592206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3593206083Srdivacky    if (NewAlign > Align) {
3594206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3595206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3596206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3597206083Srdivacky      Align = NewAlign;
3598206083Srdivacky    }
3599206083Srdivacky  }
3600206083Srdivacky
3601193323Sed  SmallVector<SDValue, 8> OutChains;
3602193323Sed  uint64_t DstOff = 0;
3603193323Sed  unsigned NumMemOps = MemOps.size();
3604218893Sdim
3605218893Sdim  // Find the largest store and generate the bit pattern for it.
3606218893Sdim  EVT LargestVT = MemOps[0];
3607218893Sdim  for (unsigned i = 1; i < NumMemOps; i++)
3608218893Sdim    if (MemOps[i].bitsGT(LargestVT))
3609218893Sdim      LargestVT = MemOps[i];
3610218893Sdim  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3611218893Sdim
3612193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3613198090Srdivacky    EVT VT = MemOps[i];
3614218893Sdim
3615218893Sdim    // If this store is smaller than the largest store see whether we can get
3616218893Sdim    // the smaller value for free with a truncate.
3617218893Sdim    SDValue Value = MemSetValue;
3618218893Sdim    if (VT.bitsLT(LargestVT)) {
3619218893Sdim      if (!LargestVT.isVector() && !VT.isVector() &&
3620218893Sdim          TLI.isTruncateFree(LargestVT, VT))
3621218893Sdim        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3622218893Sdim      else
3623218893Sdim        Value = getMemsetValue(Src, VT, DAG, dl);
3624218893Sdim    }
3625218893Sdim    assert(Value.getValueType() == VT && "Value with wrong type.");
3626193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3627193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3628218893Sdim                                 DstPtrInfo.getWithOffset(DstOff),
3629218893Sdim                                 isVol, false, Align);
3630193323Sed    OutChains.push_back(Store);
3631218893Sdim    DstOff += VT.getSizeInBits() / 8;
3632193323Sed  }
3633193323Sed
3634193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3635193323Sed                     &OutChains[0], OutChains.size());
3636193323Sed}
3637193323Sed
3638193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3639193323Sed                                SDValue Src, SDValue Size,
3640206274Srdivacky                                unsigned Align, bool isVol, bool AlwaysInline,
3641218893Sdim                                MachinePointerInfo DstPtrInfo,
3642218893Sdim                                MachinePointerInfo SrcPtrInfo) {
3643193323Sed
3644193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3645193323Sed  // For cases within the target-specified limits, this is the best choice.
3646193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3647193323Sed  if (ConstantSize) {
3648193323Sed    // Memcpy with size zero? Just return the original chain.
3649193323Sed    if (ConstantSize->isNullValue())
3650193323Sed      return Chain;
3651193323Sed
3652206083Srdivacky    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3653206083Srdivacky                                             ConstantSize->getZExtValue(),Align,
3654218893Sdim                                isVol, false, DstPtrInfo, SrcPtrInfo);
3655193323Sed    if (Result.getNode())
3656193323Sed      return Result;
3657193323Sed  }
3658193323Sed
3659193323Sed  // Then check to see if we should lower the memcpy with target-specific
3660193323Sed  // code. If the target chooses to do this, this is the next best.
3661193323Sed  SDValue Result =
3662208599Srdivacky    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3663206274Srdivacky                                isVol, AlwaysInline,
3664218893Sdim                                DstPtrInfo, SrcPtrInfo);
3665193323Sed  if (Result.getNode())
3666193323Sed    return Result;
3667193323Sed
3668193323Sed  // If we really need inline code and the target declined to provide it,
3669193323Sed  // use a (potentially long) sequence of loads and stores.
3670193323Sed  if (AlwaysInline) {
3671193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3672193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3673206274Srdivacky                                   ConstantSize->getZExtValue(), Align, isVol,
3674218893Sdim                                   true, DstPtrInfo, SrcPtrInfo);
3675193323Sed  }
3676193323Sed
3677206274Srdivacky  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3678206274Srdivacky  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3679206274Srdivacky  // respect volatile, so they may do things like read or write memory
3680206274Srdivacky  // beyond the given memory regions. But fixing this isn't easy, and most
3681206274Srdivacky  // people don't care.
3682206274Srdivacky
3683193323Sed  // Emit a library call.
3684193323Sed  TargetLowering::ArgListTy Args;
3685193323Sed  TargetLowering::ArgListEntry Entry;
3686198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3687193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3688193323Sed  Entry.Node = Src; Args.push_back(Entry);
3689193323Sed  Entry.Node = Size; Args.push_back(Entry);
3690193323Sed  // FIXME: pass in DebugLoc
3691193323Sed  std::pair<SDValue,SDValue> CallResult =
3692198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3693198090Srdivacky                    false, false, false, false, 0,
3694198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3695198090Srdivacky                    /*isReturnValueUsed=*/false,
3696198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3697198090Srdivacky                                      TLI.getPointerTy()),
3698204642Srdivacky                    Args, *this, dl);
3699193323Sed  return CallResult.second;
3700193323Sed}
3701193323Sed
3702193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3703193323Sed                                 SDValue Src, SDValue Size,
3704206274Srdivacky                                 unsigned Align, bool isVol,
3705218893Sdim                                 MachinePointerInfo DstPtrInfo,
3706218893Sdim                                 MachinePointerInfo SrcPtrInfo) {
3707193323Sed
3708193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3709193323Sed  // For cases within the target-specified limits, this is the best choice.
3710193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3711193323Sed  if (ConstantSize) {
3712193323Sed    // Memmove with size zero? Just return the original chain.
3713193323Sed    if (ConstantSize->isNullValue())
3714193323Sed      return Chain;
3715193323Sed
3716193323Sed    SDValue Result =
3717193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3718206274Srdivacky                               ConstantSize->getZExtValue(), Align, isVol,
3719218893Sdim                               false, DstPtrInfo, SrcPtrInfo);
3720193323Sed    if (Result.getNode())
3721193323Sed      return Result;
3722193323Sed  }
3723193323Sed
3724193323Sed  // Then check to see if we should lower the memmove with target-specific
3725193323Sed  // code. If the target chooses to do this, this is the next best.
3726193323Sed  SDValue Result =
3727208599Srdivacky    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3728218893Sdim                                 DstPtrInfo, SrcPtrInfo);
3729193323Sed  if (Result.getNode())
3730193323Sed    return Result;
3731193323Sed
3732207618Srdivacky  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3733207618Srdivacky  // not be safe.  See memcpy above for more details.
3734207618Srdivacky
3735193323Sed  // Emit a library call.
3736193323Sed  TargetLowering::ArgListTy Args;
3737193323Sed  TargetLowering::ArgListEntry Entry;
3738198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3739193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3740193323Sed  Entry.Node = Src; Args.push_back(Entry);
3741193323Sed  Entry.Node = Size; Args.push_back(Entry);
3742193323Sed  // FIXME:  pass in DebugLoc
3743193323Sed  std::pair<SDValue,SDValue> CallResult =
3744198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3745198090Srdivacky                    false, false, false, false, 0,
3746198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3747198090Srdivacky                    /*isReturnValueUsed=*/false,
3748198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3749198090Srdivacky                                      TLI.getPointerTy()),
3750204642Srdivacky                    Args, *this, dl);
3751193323Sed  return CallResult.second;
3752193323Sed}
3753193323Sed
3754193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3755193323Sed                                SDValue Src, SDValue Size,
3756206274Srdivacky                                unsigned Align, bool isVol,
3757218893Sdim                                MachinePointerInfo DstPtrInfo) {
3758193323Sed
3759193323Sed  // Check to see if we should lower the memset to stores first.
3760193323Sed  // For cases within the target-specified limits, this is the best choice.
3761193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3762193323Sed  if (ConstantSize) {
3763193323Sed    // Memset with size zero? Just return the original chain.
3764193323Sed    if (ConstantSize->isNullValue())
3765193323Sed      return Chain;
3766193323Sed
3767206274Srdivacky    SDValue Result =
3768206274Srdivacky      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3769218893Sdim                      Align, isVol, DstPtrInfo);
3770206274Srdivacky
3771193323Sed    if (Result.getNode())
3772193323Sed      return Result;
3773193323Sed  }
3774193323Sed
3775193323Sed  // Then check to see if we should lower the memset with target-specific
3776193323Sed  // code. If the target chooses to do this, this is the next best.
3777193323Sed  SDValue Result =
3778208599Srdivacky    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3779218893Sdim                                DstPtrInfo);
3780193323Sed  if (Result.getNode())
3781193323Sed    return Result;
3782193323Sed
3783218893Sdim  // Emit a library call.
3784198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3785193323Sed  TargetLowering::ArgListTy Args;
3786193323Sed  TargetLowering::ArgListEntry Entry;
3787193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3788193323Sed  Args.push_back(Entry);
3789193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3790193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3791193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3792193323Sed  else
3793193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3794198090Srdivacky  Entry.Node = Src;
3795198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3796198090Srdivacky  Entry.isSExt = true;
3797193323Sed  Args.push_back(Entry);
3798198090Srdivacky  Entry.Node = Size;
3799198090Srdivacky  Entry.Ty = IntPtrTy;
3800198090Srdivacky  Entry.isSExt = false;
3801193323Sed  Args.push_back(Entry);
3802193323Sed  // FIXME: pass in DebugLoc
3803193323Sed  std::pair<SDValue,SDValue> CallResult =
3804198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3805198090Srdivacky                    false, false, false, false, 0,
3806198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3807198090Srdivacky                    /*isReturnValueUsed=*/false,
3808198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3809198090Srdivacky                                      TLI.getPointerTy()),
3810204642Srdivacky                    Args, *this, dl);
3811193323Sed  return CallResult.second;
3812193323Sed}
3813193323Sed
3814198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3815218893Sdim                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3816218893Sdim                                SDValue Swp, MachinePointerInfo PtrInfo,
3817193323Sed                                unsigned Alignment) {
3818198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3819198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3820198090Srdivacky
3821198090Srdivacky  MachineFunction &MF = getMachineFunction();
3822198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3823198090Srdivacky
3824198090Srdivacky  // For now, atomics are considered to be volatile always.
3825198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3826198090Srdivacky
3827198090Srdivacky  MachineMemOperand *MMO =
3828218893Sdim    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3829198090Srdivacky
3830198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3831198090Srdivacky}
3832198090Srdivacky
3833198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3834198090Srdivacky                                SDValue Chain,
3835198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3836198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3837193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3838193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3839193323Sed
3840198090Srdivacky  EVT VT = Cmp.getValueType();
3841193323Sed
3842193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3843193323Sed  FoldingSetNodeID ID;
3844193323Sed  ID.AddInteger(MemVT.getRawBits());
3845193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3846193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3847193323Sed  void* IP = 0;
3848198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3849198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3850193323Sed    return SDValue(E, 0);
3851198090Srdivacky  }
3852205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3853205407Srdivacky                                               Ptr, Cmp, Swp, MMO);
3854193323Sed  CSEMap.InsertNode(N, IP);
3855193323Sed  AllNodes.push_back(N);
3856193323Sed  return SDValue(N, 0);
3857193323Sed}
3858193323Sed
3859198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3860193323Sed                                SDValue Chain,
3861193323Sed                                SDValue Ptr, SDValue Val,
3862193323Sed                                const Value* PtrVal,
3863193323Sed                                unsigned Alignment) {
3864198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3865198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3866198090Srdivacky
3867198090Srdivacky  MachineFunction &MF = getMachineFunction();
3868198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3869198090Srdivacky
3870198090Srdivacky  // For now, atomics are considered to be volatile always.
3871198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3872198090Srdivacky
3873198090Srdivacky  MachineMemOperand *MMO =
3874218893Sdim    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3875198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3876198090Srdivacky
3877198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3878198090Srdivacky}
3879198090Srdivacky
3880198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3881198090Srdivacky                                SDValue Chain,
3882198090Srdivacky                                SDValue Ptr, SDValue Val,
3883198090Srdivacky                                MachineMemOperand *MMO) {
3884193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3885193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3886193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3887193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3888193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3889193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3890193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3891193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3892193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3893193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3894193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3895193323Sed         "Invalid Atomic Op");
3896193323Sed
3897198090Srdivacky  EVT VT = Val.getValueType();
3898193323Sed
3899193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3900193323Sed  FoldingSetNodeID ID;
3901193323Sed  ID.AddInteger(MemVT.getRawBits());
3902193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3903193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3904193323Sed  void* IP = 0;
3905198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3906198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3907193323Sed    return SDValue(E, 0);
3908198090Srdivacky  }
3909205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3910205407Srdivacky                                               Ptr, Val, MMO);
3911193323Sed  CSEMap.InsertNode(N, IP);
3912193323Sed  AllNodes.push_back(N);
3913193323Sed  return SDValue(N, 0);
3914193323Sed}
3915193323Sed
3916193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3917193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3918193323Sed                                     DebugLoc dl) {
3919193323Sed  if (NumOps == 1)
3920193323Sed    return Ops[0];
3921193323Sed
3922198090Srdivacky  SmallVector<EVT, 4> VTs;
3923193323Sed  VTs.reserve(NumOps);
3924193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3925193323Sed    VTs.push_back(Ops[i].getValueType());
3926193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3927193323Sed                 Ops, NumOps);
3928193323Sed}
3929193323Sed
3930193323SedSDValue
3931193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3932198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3933193323Sed                                  const SDValue *Ops, unsigned NumOps,
3934218893Sdim                                  EVT MemVT, MachinePointerInfo PtrInfo,
3935193323Sed                                  unsigned Align, bool Vol,
3936193323Sed                                  bool ReadMem, bool WriteMem) {
3937193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3938218893Sdim                             MemVT, PtrInfo, Align, Vol,
3939193323Sed                             ReadMem, WriteMem);
3940193323Sed}
3941193323Sed
3942193323SedSDValue
3943193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3944193323Sed                                  const SDValue *Ops, unsigned NumOps,
3945218893Sdim                                  EVT MemVT, MachinePointerInfo PtrInfo,
3946193323Sed                                  unsigned Align, bool Vol,
3947193323Sed                                  bool ReadMem, bool WriteMem) {
3948198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3949198090Srdivacky    Align = getEVTAlignment(MemVT);
3950198090Srdivacky
3951198090Srdivacky  MachineFunction &MF = getMachineFunction();
3952198090Srdivacky  unsigned Flags = 0;
3953198090Srdivacky  if (WriteMem)
3954198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3955198090Srdivacky  if (ReadMem)
3956198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3957198090Srdivacky  if (Vol)
3958198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3959198090Srdivacky  MachineMemOperand *MMO =
3960218893Sdim    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3961198090Srdivacky
3962198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3963198090Srdivacky}
3964198090Srdivacky
3965198090SrdivackySDValue
3966198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3967198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3968198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3969198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3970198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3971218893Sdim          Opcode == ISD::PREFETCH ||
3972198090Srdivacky          (Opcode <= INT_MAX &&
3973198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3974198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3975198090Srdivacky
3976193323Sed  // Memoize the node unless it returns a flag.
3977193323Sed  MemIntrinsicSDNode *N;
3978218893Sdim  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3979193323Sed    FoldingSetNodeID ID;
3980193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3981193323Sed    void *IP = 0;
3982198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3983198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3984193323Sed      return SDValue(E, 0);
3985198090Srdivacky    }
3986193323Sed
3987205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3988205407Srdivacky                                               MemVT, MMO);
3989193323Sed    CSEMap.InsertNode(N, IP);
3990193323Sed  } else {
3991205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3992205407Srdivacky                                               MemVT, MMO);
3993193323Sed  }
3994193323Sed  AllNodes.push_back(N);
3995193323Sed  return SDValue(N, 0);
3996193323Sed}
3997193323Sed
3998218893Sdim/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3999218893Sdim/// MachinePointerInfo record from it.  This is particularly useful because the
4000218893Sdim/// code generator has many cases where it doesn't bother passing in a
4001218893Sdim/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4002218893Sdimstatic MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4003218893Sdim  // If this is FI+Offset, we can model it.
4004218893Sdim  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4005218893Sdim    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4006218893Sdim
4007218893Sdim  // If this is (FI+Offset1)+Offset2, we can model it.
4008218893Sdim  if (Ptr.getOpcode() != ISD::ADD ||
4009218893Sdim      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4010218893Sdim      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4011218893Sdim    return MachinePointerInfo();
4012218893Sdim
4013218893Sdim  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4014218893Sdim  return MachinePointerInfo::getFixedStack(FI, Offset+
4015218893Sdim                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4016218893Sdim}
4017218893Sdim
4018218893Sdim/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4019218893Sdim/// MachinePointerInfo record from it.  This is particularly useful because the
4020218893Sdim/// code generator has many cases where it doesn't bother passing in a
4021218893Sdim/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4022218893Sdimstatic MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4023218893Sdim  // If the 'Offset' value isn't a constant, we can't handle this.
4024218893Sdim  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4025218893Sdim    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4026218893Sdim  if (OffsetOp.getOpcode() == ISD::UNDEF)
4027218893Sdim    return InferPointerInfo(Ptr);
4028218893Sdim  return MachinePointerInfo();
4029218893Sdim}
4030218893Sdim
4031218893Sdim
4032193323SedSDValue
4033210299SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4034210299Sed                      EVT VT, DebugLoc dl, SDValue Chain,
4035193323Sed                      SDValue Ptr, SDValue Offset,
4036218893Sdim                      MachinePointerInfo PtrInfo, EVT MemVT,
4037203954Srdivacky                      bool isVolatile, bool isNonTemporal,
4038218893Sdim                      unsigned Alignment, const MDNode *TBAAInfo) {
4039193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4040198090Srdivacky    Alignment = getEVTAlignment(VT);
4041193323Sed
4042198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
4043198090Srdivacky  if (isVolatile)
4044198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4045203954Srdivacky  if (isNonTemporal)
4046203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4047218893Sdim
4048218893Sdim  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4049218893Sdim  // clients.
4050218893Sdim  if (PtrInfo.V == 0)
4051218893Sdim    PtrInfo = InferPointerInfo(Ptr, Offset);
4052218893Sdim
4053218893Sdim  MachineFunction &MF = getMachineFunction();
4054198090Srdivacky  MachineMemOperand *MMO =
4055218893Sdim    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4056218893Sdim                            TBAAInfo);
4057210299Sed  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4058198090Srdivacky}
4059198090Srdivacky
4060198090SrdivackySDValue
4061218893SdimSelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4062210299Sed                      EVT VT, DebugLoc dl, SDValue Chain,
4063198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
4064198090Srdivacky                      MachineMemOperand *MMO) {
4065198090Srdivacky  if (VT == MemVT) {
4066193323Sed    ExtType = ISD::NON_EXTLOAD;
4067193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
4068198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
4069193323Sed  } else {
4070193323Sed    // Extending load.
4071200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4072200581Srdivacky           "Should only be an extending load, not truncating!");
4073198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
4074193323Sed           "Cannot convert from FP to Int or Int -> FP!");
4075200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
4076200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
4077200581Srdivacky    assert((!VT.isVector() ||
4078200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4079200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
4080193323Sed  }
4081193323Sed
4082193323Sed  bool Indexed = AM != ISD::UNINDEXED;
4083193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4084193323Sed         "Unindexed load with an offset!");
4085193323Sed
4086193323Sed  SDVTList VTs = Indexed ?
4087193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4088193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
4089193323Sed  FoldingSetNodeID ID;
4090193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4091198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
4092204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4093204642Srdivacky                                     MMO->isNonTemporal()));
4094193323Sed  void *IP = 0;
4095198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4096198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
4097193323Sed    return SDValue(E, 0);
4098198090Srdivacky  }
4099205407Srdivacky  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4100205407Srdivacky                                             MemVT, MMO);
4101193323Sed  CSEMap.InsertNode(N, IP);
4102193323Sed  AllNodes.push_back(N);
4103193323Sed  return SDValue(N, 0);
4104193323Sed}
4105193323Sed
4106198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4107193323Sed                              SDValue Chain, SDValue Ptr,
4108218893Sdim                              MachinePointerInfo PtrInfo,
4109203954Srdivacky                              bool isVolatile, bool isNonTemporal,
4110218893Sdim                              unsigned Alignment, const MDNode *TBAAInfo) {
4111193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4112210299Sed  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4113218893Sdim                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4114193323Sed}
4115193323Sed
4116218893SdimSDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4117193323Sed                                 SDValue Chain, SDValue Ptr,
4118218893Sdim                                 MachinePointerInfo PtrInfo, EVT MemVT,
4119203954Srdivacky                                 bool isVolatile, bool isNonTemporal,
4120218893Sdim                                 unsigned Alignment, const MDNode *TBAAInfo) {
4121193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4122210299Sed  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4123218893Sdim                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4124218893Sdim                 TBAAInfo);
4125193323Sed}
4126193323Sed
4127218893Sdim
4128193323SedSDValue
4129193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4130193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
4131193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4132193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4133193323Sed         "Load is already a indexed load!");
4134210299Sed  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4135218893Sdim                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4136218893Sdim                 LD->getMemoryVT(),
4137203954Srdivacky                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4138193323Sed}
4139193323Sed
4140193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4141218893Sdim                               SDValue Ptr, MachinePointerInfo PtrInfo,
4142203954Srdivacky                               bool isVolatile, bool isNonTemporal,
4143218893Sdim                               unsigned Alignment, const MDNode *TBAAInfo) {
4144193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4145198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
4146193323Sed
4147198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4148198090Srdivacky  if (isVolatile)
4149198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4150203954Srdivacky  if (isNonTemporal)
4151203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4152218893Sdim
4153218893Sdim  if (PtrInfo.V == 0)
4154218893Sdim    PtrInfo = InferPointerInfo(Ptr);
4155218893Sdim
4156218893Sdim  MachineFunction &MF = getMachineFunction();
4157198090Srdivacky  MachineMemOperand *MMO =
4158218893Sdim    MF.getMachineMemOperand(PtrInfo, Flags,
4159218893Sdim                            Val.getValueType().getStoreSize(), Alignment,
4160218893Sdim                            TBAAInfo);
4161198090Srdivacky
4162198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
4163198090Srdivacky}
4164198090Srdivacky
4165198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4166198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
4167198090Srdivacky  EVT VT = Val.getValueType();
4168193323Sed  SDVTList VTs = getVTList(MVT::Other);
4169193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4170193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4171193323Sed  FoldingSetNodeID ID;
4172193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4173193323Sed  ID.AddInteger(VT.getRawBits());
4174204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4175204642Srdivacky                                     MMO->isNonTemporal()));
4176193323Sed  void *IP = 0;
4177198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4178198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4179193323Sed    return SDValue(E, 0);
4180198090Srdivacky  }
4181205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4182205407Srdivacky                                              false, VT, MMO);
4183193323Sed  CSEMap.InsertNode(N, IP);
4184193323Sed  AllNodes.push_back(N);
4185193323Sed  return SDValue(N, 0);
4186193323Sed}
4187193323Sed
4188193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4189218893Sdim                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4190218893Sdim                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4191218893Sdim                                    unsigned Alignment,
4192218893Sdim                                    const MDNode *TBAAInfo) {
4193198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4194198090Srdivacky    Alignment = getEVTAlignment(SVT);
4195193323Sed
4196198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4197198090Srdivacky  if (isVolatile)
4198198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4199203954Srdivacky  if (isNonTemporal)
4200203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4201218893Sdim
4202218893Sdim  if (PtrInfo.V == 0)
4203218893Sdim    PtrInfo = InferPointerInfo(Ptr);
4204218893Sdim
4205218893Sdim  MachineFunction &MF = getMachineFunction();
4206198090Srdivacky  MachineMemOperand *MMO =
4207218893Sdim    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4208218893Sdim                            TBAAInfo);
4209198090Srdivacky
4210198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4211198090Srdivacky}
4212198090Srdivacky
4213198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4214198090Srdivacky                                    SDValue Ptr, EVT SVT,
4215198090Srdivacky                                    MachineMemOperand *MMO) {
4216198090Srdivacky  EVT VT = Val.getValueType();
4217198090Srdivacky
4218193323Sed  if (VT == SVT)
4219198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
4220193323Sed
4221200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4222200581Srdivacky         "Should only be a truncating store, not extending!");
4223193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
4224193323Sed         "Can't do FP-INT conversion!");
4225200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
4226200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
4227200581Srdivacky  assert((!VT.isVector() ||
4228200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4229200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
4230193323Sed
4231193323Sed  SDVTList VTs = getVTList(MVT::Other);
4232193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4233193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4234193323Sed  FoldingSetNodeID ID;
4235193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4236193323Sed  ID.AddInteger(SVT.getRawBits());
4237204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4238204642Srdivacky                                     MMO->isNonTemporal()));
4239193323Sed  void *IP = 0;
4240198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4241198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4242193323Sed    return SDValue(E, 0);
4243198090Srdivacky  }
4244205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4245205407Srdivacky                                              true, SVT, MMO);
4246193323Sed  CSEMap.InsertNode(N, IP);
4247193323Sed  AllNodes.push_back(N);
4248193323Sed  return SDValue(N, 0);
4249193323Sed}
4250193323Sed
4251193323SedSDValue
4252193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4253193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
4254193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4255193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4256193323Sed         "Store is already a indexed store!");
4257193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4258193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4259193323Sed  FoldingSetNodeID ID;
4260193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4261193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
4262193323Sed  ID.AddInteger(ST->getRawSubclassData());
4263193323Sed  void *IP = 0;
4264201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4265193323Sed    return SDValue(E, 0);
4266201360Srdivacky
4267205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4268205407Srdivacky                                              ST->isTruncatingStore(),
4269205407Srdivacky                                              ST->getMemoryVT(),
4270205407Srdivacky                                              ST->getMemOperand());
4271193323Sed  CSEMap.InsertNode(N, IP);
4272193323Sed  AllNodes.push_back(N);
4273193323Sed  return SDValue(N, 0);
4274193323Sed}
4275193323Sed
4276198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4277193323Sed                               SDValue Chain, SDValue Ptr,
4278210299Sed                               SDValue SV,
4279210299Sed                               unsigned Align) {
4280210299Sed  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4281210299Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4282193323Sed}
4283193323Sed
4284198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4285193323Sed                              const SDUse *Ops, unsigned NumOps) {
4286193323Sed  switch (NumOps) {
4287193323Sed  case 0: return getNode(Opcode, DL, VT);
4288193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4289193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4290193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4291193323Sed  default: break;
4292193323Sed  }
4293193323Sed
4294193323Sed  // Copy from an SDUse array into an SDValue array for use with
4295193323Sed  // the regular getNode logic.
4296193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4297193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4298193323Sed}
4299193323Sed
4300198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4301193323Sed                              const SDValue *Ops, unsigned NumOps) {
4302193323Sed  switch (NumOps) {
4303193323Sed  case 0: return getNode(Opcode, DL, VT);
4304193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4305193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4306193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4307193323Sed  default: break;
4308193323Sed  }
4309193323Sed
4310193323Sed  switch (Opcode) {
4311193323Sed  default: break;
4312193323Sed  case ISD::SELECT_CC: {
4313193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4314193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4315193323Sed           "LHS and RHS of condition must have same type!");
4316193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4317193323Sed           "True and False arms of SelectCC must have same type!");
4318193323Sed    assert(Ops[2].getValueType() == VT &&
4319193323Sed           "select_cc node must be of same type as true and false value!");
4320193323Sed    break;
4321193323Sed  }
4322193323Sed  case ISD::BR_CC: {
4323193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4324193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4325193323Sed           "LHS/RHS of comparison should match types!");
4326193323Sed    break;
4327193323Sed  }
4328193323Sed  }
4329193323Sed
4330193323Sed  // Memoize nodes.
4331193323Sed  SDNode *N;
4332193323Sed  SDVTList VTs = getVTList(VT);
4333193323Sed
4334218893Sdim  if (VT != MVT::Glue) {
4335193323Sed    FoldingSetNodeID ID;
4336193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4337193323Sed    void *IP = 0;
4338193323Sed
4339201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4340193323Sed      return SDValue(E, 0);
4341193323Sed
4342205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4343193323Sed    CSEMap.InsertNode(N, IP);
4344193323Sed  } else {
4345205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4346193323Sed  }
4347193323Sed
4348193323Sed  AllNodes.push_back(N);
4349193323Sed#ifndef NDEBUG
4350218893Sdim  VerifySDNode(N);
4351193323Sed#endif
4352193323Sed  return SDValue(N, 0);
4353193323Sed}
4354193323Sed
4355193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4356198090Srdivacky                              const std::vector<EVT> &ResultTys,
4357193323Sed                              const SDValue *Ops, unsigned NumOps) {
4358193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4359193323Sed                 Ops, NumOps);
4360193323Sed}
4361193323Sed
4362193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4363198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4364193323Sed                              const SDValue *Ops, unsigned NumOps) {
4365193323Sed  if (NumVTs == 1)
4366193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4367193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4368193323Sed}
4369193323Sed
4370193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4371193323Sed                              const SDValue *Ops, unsigned NumOps) {
4372193323Sed  if (VTList.NumVTs == 1)
4373193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4374193323Sed
4375198090Srdivacky#if 0
4376193323Sed  switch (Opcode) {
4377193323Sed  // FIXME: figure out how to safely handle things like
4378193323Sed  // int foo(int x) { return 1 << (x & 255); }
4379193323Sed  // int bar() { return foo(256); }
4380193323Sed  case ISD::SRA_PARTS:
4381193323Sed  case ISD::SRL_PARTS:
4382193323Sed  case ISD::SHL_PARTS:
4383193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4384193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4385193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4386193323Sed    else if (N3.getOpcode() == ISD::AND)
4387193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4388193323Sed        // If the and is only masking out bits that cannot effect the shift,
4389193323Sed        // eliminate the and.
4390202375Srdivacky        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4391193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4392193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4393193323Sed      }
4394193323Sed    break;
4395198090Srdivacky  }
4396193323Sed#endif
4397193323Sed
4398193323Sed  // Memoize the node unless it returns a flag.
4399193323Sed  SDNode *N;
4400218893Sdim  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4401193323Sed    FoldingSetNodeID ID;
4402193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4403193323Sed    void *IP = 0;
4404201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4405193323Sed      return SDValue(E, 0);
4406201360Srdivacky
4407193323Sed    if (NumOps == 1) {
4408205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4409193323Sed    } else if (NumOps == 2) {
4410205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4411193323Sed    } else if (NumOps == 3) {
4412205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4413205407Srdivacky                                            Ops[2]);
4414193323Sed    } else {
4415205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4416193323Sed    }
4417193323Sed    CSEMap.InsertNode(N, IP);
4418193323Sed  } else {
4419193323Sed    if (NumOps == 1) {
4420205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4421193323Sed    } else if (NumOps == 2) {
4422205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4423193323Sed    } else if (NumOps == 3) {
4424205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4425205407Srdivacky                                            Ops[2]);
4426193323Sed    } else {
4427205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4428193323Sed    }
4429193323Sed  }
4430193323Sed  AllNodes.push_back(N);
4431193323Sed#ifndef NDEBUG
4432218893Sdim  VerifySDNode(N);
4433193323Sed#endif
4434193323Sed  return SDValue(N, 0);
4435193323Sed}
4436193323Sed
4437193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4438193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4439193323Sed}
4440193323Sed
4441193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4442193323Sed                              SDValue N1) {
4443193323Sed  SDValue Ops[] = { N1 };
4444193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4445193323Sed}
4446193323Sed
4447193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4448193323Sed                              SDValue N1, SDValue N2) {
4449193323Sed  SDValue Ops[] = { N1, N2 };
4450193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4451193323Sed}
4452193323Sed
4453193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4454193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4455193323Sed  SDValue Ops[] = { N1, N2, N3 };
4456193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4457193323Sed}
4458193323Sed
4459193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4460193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4461193323Sed                              SDValue N4) {
4462193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4463193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4464193323Sed}
4465193323Sed
4466193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4467193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4468193323Sed                              SDValue N4, SDValue N5) {
4469193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4470193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4471193323Sed}
4472193323Sed
4473198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4474193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4475193323Sed}
4476193323Sed
4477198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4478193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4479193323Sed       E = VTList.rend(); I != E; ++I)
4480193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4481193323Sed      return *I;
4482193323Sed
4483198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4484193323Sed  Array[0] = VT1;
4485193323Sed  Array[1] = VT2;
4486193323Sed  SDVTList Result = makeVTList(Array, 2);
4487193323Sed  VTList.push_back(Result);
4488193323Sed  return Result;
4489193323Sed}
4490193323Sed
4491198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4492193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4493193323Sed       E = VTList.rend(); I != E; ++I)
4494193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4495193323Sed                          I->VTs[2] == VT3)
4496193323Sed      return *I;
4497193323Sed
4498198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4499193323Sed  Array[0] = VT1;
4500193323Sed  Array[1] = VT2;
4501193323Sed  Array[2] = VT3;
4502193323Sed  SDVTList Result = makeVTList(Array, 3);
4503193323Sed  VTList.push_back(Result);
4504193323Sed  return Result;
4505193323Sed}
4506193323Sed
4507198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4508193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4509193323Sed       E = VTList.rend(); I != E; ++I)
4510193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4511193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4512193323Sed      return *I;
4513193323Sed
4514200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4515193323Sed  Array[0] = VT1;
4516193323Sed  Array[1] = VT2;
4517193323Sed  Array[2] = VT3;
4518193323Sed  Array[3] = VT4;
4519193323Sed  SDVTList Result = makeVTList(Array, 4);
4520193323Sed  VTList.push_back(Result);
4521193323Sed  return Result;
4522193323Sed}
4523193323Sed
4524198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4525193323Sed  switch (NumVTs) {
4526198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4527193323Sed    case 1: return getVTList(VTs[0]);
4528193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4529193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4530201360Srdivacky    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4531193323Sed    default: break;
4532193323Sed  }
4533193323Sed
4534193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4535193323Sed       E = VTList.rend(); I != E; ++I) {
4536193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4537193323Sed      continue;
4538193323Sed
4539193323Sed    bool NoMatch = false;
4540193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4541193323Sed      if (VTs[i] != I->VTs[i]) {
4542193323Sed        NoMatch = true;
4543193323Sed        break;
4544193323Sed      }
4545193323Sed    if (!NoMatch)
4546193323Sed      return *I;
4547193323Sed  }
4548193323Sed
4549198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4550193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4551193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4552193323Sed  VTList.push_back(Result);
4553193323Sed  return Result;
4554193323Sed}
4555193323Sed
4556193323Sed
4557193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4558193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4559193323Sed/// this does not modify the specified node, instead it returns the node that
4560193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4561193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4562193323Sed/// input operands as the node already has, the input node is returned.
4563210299SedSDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4564193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4565193323Sed
4566193323Sed  // Check to see if there is no change.
4567210299Sed  if (Op == N->getOperand(0)) return N;
4568193323Sed
4569193323Sed  // See if the modified node already exists.
4570193323Sed  void *InsertPos = 0;
4571193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4572210299Sed    return Existing;
4573193323Sed
4574193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4575193323Sed  if (InsertPos)
4576193323Sed    if (!RemoveNodeFromCSEMaps(N))
4577193323Sed      InsertPos = 0;
4578193323Sed
4579193323Sed  // Now we update the operands.
4580193323Sed  N->OperandList[0].set(Op);
4581193323Sed
4582193323Sed  // If this gets put into a CSE map, add it.
4583193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4584210299Sed  return N;
4585193323Sed}
4586193323Sed
4587210299SedSDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4588193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4589193323Sed
4590193323Sed  // Check to see if there is no change.
4591193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4592210299Sed    return N;   // No operands changed, just return the input node.
4593193323Sed
4594193323Sed  // See if the modified node already exists.
4595193323Sed  void *InsertPos = 0;
4596193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4597210299Sed    return Existing;
4598193323Sed
4599193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4600193323Sed  if (InsertPos)
4601193323Sed    if (!RemoveNodeFromCSEMaps(N))
4602193323Sed      InsertPos = 0;
4603193323Sed
4604193323Sed  // Now we update the operands.
4605193323Sed  if (N->OperandList[0] != Op1)
4606193323Sed    N->OperandList[0].set(Op1);
4607193323Sed  if (N->OperandList[1] != Op2)
4608193323Sed    N->OperandList[1].set(Op2);
4609193323Sed
4610193323Sed  // If this gets put into a CSE map, add it.
4611193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4612210299Sed  return N;
4613193323Sed}
4614193323Sed
4615210299SedSDNode *SelectionDAG::
4616210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4617193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4618193323Sed  return UpdateNodeOperands(N, Ops, 3);
4619193323Sed}
4620193323Sed
4621210299SedSDNode *SelectionDAG::
4622210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4623193323Sed                   SDValue Op3, SDValue Op4) {
4624193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4625193323Sed  return UpdateNodeOperands(N, Ops, 4);
4626193323Sed}
4627193323Sed
4628210299SedSDNode *SelectionDAG::
4629210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4630193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4631193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4632193323Sed  return UpdateNodeOperands(N, Ops, 5);
4633193323Sed}
4634193323Sed
4635210299SedSDNode *SelectionDAG::
4636210299SedUpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4637193323Sed  assert(N->getNumOperands() == NumOps &&
4638193323Sed         "Update with wrong number of operands");
4639193323Sed
4640193323Sed  // Check to see if there is no change.
4641193323Sed  bool AnyChange = false;
4642193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4643193323Sed    if (Ops[i] != N->getOperand(i)) {
4644193323Sed      AnyChange = true;
4645193323Sed      break;
4646193323Sed    }
4647193323Sed  }
4648193323Sed
4649193323Sed  // No operands changed, just return the input node.
4650210299Sed  if (!AnyChange) return N;
4651193323Sed
4652193323Sed  // See if the modified node already exists.
4653193323Sed  void *InsertPos = 0;
4654193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4655210299Sed    return Existing;
4656193323Sed
4657193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4658193323Sed  if (InsertPos)
4659193323Sed    if (!RemoveNodeFromCSEMaps(N))
4660193323Sed      InsertPos = 0;
4661193323Sed
4662193323Sed  // Now we update the operands.
4663193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4664193323Sed    if (N->OperandList[i] != Ops[i])
4665193323Sed      N->OperandList[i].set(Ops[i]);
4666193323Sed
4667193323Sed  // If this gets put into a CSE map, add it.
4668193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4669210299Sed  return N;
4670193323Sed}
4671193323Sed
4672193323Sed/// DropOperands - Release the operands and set this node to have
4673193323Sed/// zero operands.
4674193323Sedvoid SDNode::DropOperands() {
4675193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4676193323Sed  // watch for dead nodes here.
4677193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4678193323Sed    SDUse &Use = *I++;
4679193323Sed    Use.set(SDValue());
4680193323Sed  }
4681193323Sed}
4682193323Sed
4683193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4684193323Sed/// machine opcode.
4685193323Sed///
4686193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4687198090Srdivacky                                   EVT VT) {
4688193323Sed  SDVTList VTs = getVTList(VT);
4689193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4690193323Sed}
4691193323Sed
4692193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4693198090Srdivacky                                   EVT VT, SDValue Op1) {
4694193323Sed  SDVTList VTs = getVTList(VT);
4695193323Sed  SDValue Ops[] = { Op1 };
4696193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4697193323Sed}
4698193323Sed
4699193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4700198090Srdivacky                                   EVT VT, SDValue Op1,
4701193323Sed                                   SDValue Op2) {
4702193323Sed  SDVTList VTs = getVTList(VT);
4703193323Sed  SDValue Ops[] = { Op1, Op2 };
4704193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4705193323Sed}
4706193323Sed
4707193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4708198090Srdivacky                                   EVT VT, SDValue Op1,
4709193323Sed                                   SDValue Op2, SDValue Op3) {
4710193323Sed  SDVTList VTs = getVTList(VT);
4711193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4712193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4713193323Sed}
4714193323Sed
4715193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4716198090Srdivacky                                   EVT VT, const SDValue *Ops,
4717193323Sed                                   unsigned NumOps) {
4718193323Sed  SDVTList VTs = getVTList(VT);
4719193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4720193323Sed}
4721193323Sed
4722193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4723198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4724193323Sed                                   unsigned NumOps) {
4725193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4726193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4727193323Sed}
4728193323Sed
4729193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4730198090Srdivacky                                   EVT VT1, EVT VT2) {
4731193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4732193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4733193323Sed}
4734193323Sed
4735193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4736198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4737193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4738193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4739193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4740193323Sed}
4741193323Sed
4742193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4743198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4744193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4745193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4746193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4747193323Sed}
4748193323Sed
4749193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4750198090Srdivacky                                   EVT VT1, EVT VT2,
4751193323Sed                                   SDValue Op1) {
4752193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4753193323Sed  SDValue Ops[] = { Op1 };
4754193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4755193323Sed}
4756193323Sed
4757193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4758198090Srdivacky                                   EVT VT1, EVT VT2,
4759193323Sed                                   SDValue Op1, SDValue Op2) {
4760193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4761193323Sed  SDValue Ops[] = { Op1, Op2 };
4762193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4763193323Sed}
4764193323Sed
4765193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4766198090Srdivacky                                   EVT VT1, EVT VT2,
4767193323Sed                                   SDValue Op1, SDValue Op2,
4768193323Sed                                   SDValue Op3) {
4769193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4770193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4771193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4772193323Sed}
4773193323Sed
4774193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4775198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4776193323Sed                                   SDValue Op1, SDValue Op2,
4777193323Sed                                   SDValue Op3) {
4778193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4779193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4780193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4781193323Sed}
4782193323Sed
4783193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4784193323Sed                                   SDVTList VTs, const SDValue *Ops,
4785193323Sed                                   unsigned NumOps) {
4786204642Srdivacky  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4787204642Srdivacky  // Reset the NodeID to -1.
4788204642Srdivacky  N->setNodeId(-1);
4789204642Srdivacky  return N;
4790193323Sed}
4791193323Sed
4792204642Srdivacky/// MorphNodeTo - This *mutates* the specified node to have the specified
4793193323Sed/// return type, opcode, and operands.
4794193323Sed///
4795193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4796193323Sed/// node of the specified opcode and operands, it returns that node instead of
4797193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4798193323Sed///
4799193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4800193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4801193323Sed/// node, and because it doesn't require CSE recalculation for any of
4802193323Sed/// the node's users.
4803193323Sed///
4804193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4805193323Sed                                  SDVTList VTs, const SDValue *Ops,
4806193323Sed                                  unsigned NumOps) {
4807193323Sed  // If an identical node already exists, use it.
4808193323Sed  void *IP = 0;
4809218893Sdim  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4810193323Sed    FoldingSetNodeID ID;
4811193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4812201360Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4813193323Sed      return ON;
4814193323Sed  }
4815193323Sed
4816193323Sed  if (!RemoveNodeFromCSEMaps(N))
4817193323Sed    IP = 0;
4818193323Sed
4819193323Sed  // Start the morphing.
4820193323Sed  N->NodeType = Opc;
4821193323Sed  N->ValueList = VTs.VTs;
4822193323Sed  N->NumValues = VTs.NumVTs;
4823193323Sed
4824193323Sed  // Clear the operands list, updating used nodes to remove this from their
4825193323Sed  // use list.  Keep track of any operands that become dead as a result.
4826193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4827193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4828193323Sed    SDUse &Use = *I++;
4829193323Sed    SDNode *Used = Use.getNode();
4830193323Sed    Use.set(SDValue());
4831193323Sed    if (Used->use_empty())
4832193323Sed      DeadNodeSet.insert(Used);
4833193323Sed  }
4834193323Sed
4835198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4836198090Srdivacky    // Initialize the memory references information.
4837198090Srdivacky    MN->setMemRefs(0, 0);
4838198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4839198090Srdivacky    // MachineSDNode, reallocate the operand list.
4840198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4841198090Srdivacky      if (MN->OperandsNeedDelete)
4842198090Srdivacky        delete[] MN->OperandList;
4843198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4844198090Srdivacky        // We're creating a final node that will live unmorphed for the
4845198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4846198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4847198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4848205407Srdivacky                         Ops, NumOps);
4849198090Srdivacky      else
4850198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4851198090Srdivacky      MN->OperandsNeedDelete = false;
4852198090Srdivacky    } else
4853198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4854198090Srdivacky  } else {
4855198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4856198090Srdivacky    // the operand list.
4857198090Srdivacky    if (NumOps > N->NumOperands) {
4858198090Srdivacky      if (N->OperandsNeedDelete)
4859198090Srdivacky        delete[] N->OperandList;
4860198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4861193323Sed      N->OperandsNeedDelete = true;
4862198090Srdivacky    } else
4863198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4864193323Sed  }
4865193323Sed
4866193323Sed  // Delete any nodes that are still dead after adding the uses for the
4867193323Sed  // new operands.
4868204642Srdivacky  if (!DeadNodeSet.empty()) {
4869204642Srdivacky    SmallVector<SDNode *, 16> DeadNodes;
4870204642Srdivacky    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4871204642Srdivacky         E = DeadNodeSet.end(); I != E; ++I)
4872204642Srdivacky      if ((*I)->use_empty())
4873204642Srdivacky        DeadNodes.push_back(*I);
4874204642Srdivacky    RemoveDeadNodes(DeadNodes);
4875204642Srdivacky  }
4876193323Sed
4877193323Sed  if (IP)
4878193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4879193323Sed  return N;
4880193323Sed}
4881193323Sed
4882193323Sed
4883198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4884198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4885193323Sed///
4886198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4887193323Sed/// node of the specified opcode and operands, it returns that node instead of
4888193323Sed/// the current one.
4889198090SrdivackyMachineSDNode *
4890198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4891198090Srdivacky  SDVTList VTs = getVTList(VT);
4892198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4893193323Sed}
4894193323Sed
4895198090SrdivackyMachineSDNode *
4896198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4897198090Srdivacky  SDVTList VTs = getVTList(VT);
4898198090Srdivacky  SDValue Ops[] = { Op1 };
4899198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4900193323Sed}
4901193323Sed
4902198090SrdivackyMachineSDNode *
4903198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4904198090Srdivacky                             SDValue Op1, SDValue Op2) {
4905198090Srdivacky  SDVTList VTs = getVTList(VT);
4906198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4907198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4908193323Sed}
4909193323Sed
4910198090SrdivackyMachineSDNode *
4911198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4912198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4913198090Srdivacky  SDVTList VTs = getVTList(VT);
4914198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4915198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4916193323Sed}
4917193323Sed
4918198090SrdivackyMachineSDNode *
4919198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4920198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4921198090Srdivacky  SDVTList VTs = getVTList(VT);
4922198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4923193323Sed}
4924193323Sed
4925198090SrdivackyMachineSDNode *
4926198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4927193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4928198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4929193323Sed}
4930193323Sed
4931198090SrdivackyMachineSDNode *
4932198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4933198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4934193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4935198090Srdivacky  SDValue Ops[] = { Op1 };
4936198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4937193323Sed}
4938193323Sed
4939198090SrdivackyMachineSDNode *
4940198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4941198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4942193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4943193323Sed  SDValue Ops[] = { Op1, Op2 };
4944198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4945193323Sed}
4946193323Sed
4947198090SrdivackyMachineSDNode *
4948198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4949198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4950198090Srdivacky                             SDValue Op2, SDValue Op3) {
4951193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4952193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4953198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4954193323Sed}
4955193323Sed
4956198090SrdivackyMachineSDNode *
4957198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4958198090Srdivacky                             EVT VT1, EVT VT2,
4959198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4960193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4961198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4962193323Sed}
4963193323Sed
4964198090SrdivackyMachineSDNode *
4965198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4966198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4967198090Srdivacky                             SDValue Op1, SDValue Op2) {
4968193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4969193323Sed  SDValue Ops[] = { Op1, Op2 };
4970198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4971193323Sed}
4972193323Sed
4973198090SrdivackyMachineSDNode *
4974198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4975198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4976198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4977193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4978193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4979198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4980193323Sed}
4981193323Sed
4982198090SrdivackyMachineSDNode *
4983198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4984198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4985198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4986193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4987198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4988193323Sed}
4989193323Sed
4990198090SrdivackyMachineSDNode *
4991198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4992198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4993198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4994193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4995198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4996193323Sed}
4997193323Sed
4998198090SrdivackyMachineSDNode *
4999198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5000198090Srdivacky                             const std::vector<EVT> &ResultTys,
5001198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
5002198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5003198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5004193323Sed}
5005193323Sed
5006198090SrdivackyMachineSDNode *
5007198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5008198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
5009218893Sdim  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5010198090Srdivacky  MachineSDNode *N;
5011218893Sdim  void *IP = 0;
5012198090Srdivacky
5013198090Srdivacky  if (DoCSE) {
5014198090Srdivacky    FoldingSetNodeID ID;
5015198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5016198090Srdivacky    IP = 0;
5017201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5018198090Srdivacky      return cast<MachineSDNode>(E);
5019198090Srdivacky  }
5020198090Srdivacky
5021198090Srdivacky  // Allocate a new MachineSDNode.
5022205407Srdivacky  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5023198090Srdivacky
5024198090Srdivacky  // Initialize the operands list.
5025198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
5026198090Srdivacky    // We're creating a final node that will live unmorphed for the
5027198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
5028198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
5029198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5030198090Srdivacky                    Ops, NumOps);
5031198090Srdivacky  else
5032198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
5033198090Srdivacky  N->OperandsNeedDelete = false;
5034198090Srdivacky
5035198090Srdivacky  if (DoCSE)
5036198090Srdivacky    CSEMap.InsertNode(N, IP);
5037198090Srdivacky
5038198090Srdivacky  AllNodes.push_back(N);
5039198090Srdivacky#ifndef NDEBUG
5040218893Sdim  VerifyMachineNode(N);
5041198090Srdivacky#endif
5042198090Srdivacky  return N;
5043198090Srdivacky}
5044198090Srdivacky
5045198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
5046203954Srdivacky/// TargetOpcode::EXTRACT_SUBREG nodes.
5047198090SrdivackySDValue
5048198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5049198090Srdivacky                                     SDValue Operand) {
5050198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5051203954Srdivacky  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5052198090Srdivacky                                  VT, Operand, SRIdxVal);
5053198090Srdivacky  return SDValue(Subreg, 0);
5054198090Srdivacky}
5055198090Srdivacky
5056198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
5057203954Srdivacky/// TargetOpcode::INSERT_SUBREG nodes.
5058198090SrdivackySDValue
5059198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5060198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
5061198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5062203954Srdivacky  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5063198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
5064198090Srdivacky  return SDValue(Result, 0);
5065198090Srdivacky}
5066198090Srdivacky
5067193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
5068193323Sed/// else return NULL.
5069193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5070193323Sed                                      const SDValue *Ops, unsigned NumOps) {
5071218893Sdim  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5072193323Sed    FoldingSetNodeID ID;
5073193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5074193323Sed    void *IP = 0;
5075201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5076193323Sed      return E;
5077193323Sed  }
5078193323Sed  return NULL;
5079193323Sed}
5080193323Sed
5081206083Srdivacky/// getDbgValue - Creates a SDDbgValue node.
5082206083Srdivacky///
5083206083SrdivackySDDbgValue *
5084206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5085206083Srdivacky                          DebugLoc DL, unsigned O) {
5086206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5087206083Srdivacky}
5088206083Srdivacky
5089206083SrdivackySDDbgValue *
5090207618SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5091206083Srdivacky                          DebugLoc DL, unsigned O) {
5092206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5093206083Srdivacky}
5094206083Srdivacky
5095206083SrdivackySDDbgValue *
5096206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5097206083Srdivacky                          DebugLoc DL, unsigned O) {
5098206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5099206083Srdivacky}
5100206083Srdivacky
5101204792Srdivackynamespace {
5102204792Srdivacky
5103204792Srdivacky/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5104204792Srdivacky/// pointed to by a use iterator is deleted, increment the use iterator
5105204792Srdivacky/// so that it doesn't dangle.
5106204792Srdivacky///
5107204792Srdivacky/// This class also manages a "downlink" DAGUpdateListener, to forward
5108204792Srdivacky/// messages to ReplaceAllUsesWith's callers.
5109204792Srdivacky///
5110204792Srdivackyclass RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5111204792Srdivacky  SelectionDAG::DAGUpdateListener *DownLink;
5112204792Srdivacky  SDNode::use_iterator &UI;
5113204792Srdivacky  SDNode::use_iterator &UE;
5114204792Srdivacky
5115204792Srdivacky  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5116204792Srdivacky    // Increment the iterator as needed.
5117204792Srdivacky    while (UI != UE && N == *UI)
5118204792Srdivacky      ++UI;
5119204792Srdivacky
5120204792Srdivacky    // Then forward the message.
5121204792Srdivacky    if (DownLink) DownLink->NodeDeleted(N, E);
5122204792Srdivacky  }
5123204792Srdivacky
5124204792Srdivacky  virtual void NodeUpdated(SDNode *N) {
5125204792Srdivacky    // Just forward the message.
5126204792Srdivacky    if (DownLink) DownLink->NodeUpdated(N);
5127204792Srdivacky  }
5128204792Srdivacky
5129204792Srdivackypublic:
5130204792Srdivacky  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5131204792Srdivacky                     SDNode::use_iterator &ui,
5132204792Srdivacky                     SDNode::use_iterator &ue)
5133204792Srdivacky    : DownLink(dl), UI(ui), UE(ue) {}
5134204792Srdivacky};
5135204792Srdivacky
5136204792Srdivacky}
5137204792Srdivacky
5138193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5139193323Sed/// This can cause recursive merging of nodes in the DAG.
5140193323Sed///
5141193323Sed/// This version assumes From has a single result value.
5142193323Sed///
5143193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5144193323Sed                                      DAGUpdateListener *UpdateListener) {
5145193323Sed  SDNode *From = FromN.getNode();
5146193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5147193323Sed         "Cannot replace with this method!");
5148193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
5149193323Sed
5150193323Sed  // Iterate over all the existing uses of From. New uses will be added
5151193323Sed  // to the beginning of the use list, which we avoid visiting.
5152193323Sed  // This specifically avoids visiting uses of From that arise while the
5153193323Sed  // replacement is happening, because any such uses would be the result
5154193323Sed  // of CSE: If an existing node looks like From after one of its operands
5155193323Sed  // is replaced by To, we don't want to replace of all its users with To
5156193323Sed  // too. See PR3018 for more info.
5157193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5158204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5159193323Sed  while (UI != UE) {
5160193323Sed    SDNode *User = *UI;
5161193323Sed
5162193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5163193323Sed    RemoveNodeFromCSEMaps(User);
5164193323Sed
5165193323Sed    // A user can appear in a use list multiple times, and when this
5166193323Sed    // happens the uses are usually next to each other in the list.
5167193323Sed    // To help reduce the number of CSE recomputations, process all
5168193323Sed    // the uses of this user that we can find this way.
5169193323Sed    do {
5170193323Sed      SDUse &Use = UI.getUse();
5171193323Sed      ++UI;
5172193323Sed      Use.set(To);
5173193323Sed    } while (UI != UE && *UI == User);
5174193323Sed
5175193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5176193323Sed    // already exists there, recursively merge the results together.
5177204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5178193323Sed  }
5179193323Sed}
5180193323Sed
5181193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5182193323Sed/// This can cause recursive merging of nodes in the DAG.
5183193323Sed///
5184193323Sed/// This version assumes that for each value of From, there is a
5185193323Sed/// corresponding value in To in the same position with the same type.
5186193323Sed///
5187193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5188193323Sed                                      DAGUpdateListener *UpdateListener) {
5189193323Sed#ifndef NDEBUG
5190193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5191193323Sed    assert((!From->hasAnyUseOfValue(i) ||
5192193323Sed            From->getValueType(i) == To->getValueType(i)) &&
5193193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
5194193323Sed#endif
5195193323Sed
5196193323Sed  // Handle the trivial case.
5197193323Sed  if (From == To)
5198193323Sed    return;
5199193323Sed
5200193323Sed  // Iterate over just the existing users of From. See the comments in
5201193323Sed  // the ReplaceAllUsesWith above.
5202193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5203204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5204193323Sed  while (UI != UE) {
5205193323Sed    SDNode *User = *UI;
5206193323Sed
5207193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5208193323Sed    RemoveNodeFromCSEMaps(User);
5209193323Sed
5210193323Sed    // A user can appear in a use list multiple times, and when this
5211193323Sed    // happens the uses are usually next to each other in the list.
5212193323Sed    // To help reduce the number of CSE recomputations, process all
5213193323Sed    // the uses of this user that we can find this way.
5214193323Sed    do {
5215193323Sed      SDUse &Use = UI.getUse();
5216193323Sed      ++UI;
5217193323Sed      Use.setNode(To);
5218193323Sed    } while (UI != UE && *UI == User);
5219193323Sed
5220193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5221193323Sed    // already exists there, recursively merge the results together.
5222204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5223193323Sed  }
5224193323Sed}
5225193323Sed
5226193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5227193323Sed/// This can cause recursive merging of nodes in the DAG.
5228193323Sed///
5229193323Sed/// This version can replace From with any result values.  To must match the
5230193323Sed/// number and types of values returned by From.
5231193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5232193323Sed                                      const SDValue *To,
5233193323Sed                                      DAGUpdateListener *UpdateListener) {
5234193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5235193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5236193323Sed
5237193323Sed  // Iterate over just the existing users of From. See the comments in
5238193323Sed  // the ReplaceAllUsesWith above.
5239193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5240204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5241193323Sed  while (UI != UE) {
5242193323Sed    SDNode *User = *UI;
5243193323Sed
5244193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5245193323Sed    RemoveNodeFromCSEMaps(User);
5246193323Sed
5247193323Sed    // A user can appear in a use list multiple times, and when this
5248193323Sed    // happens the uses are usually next to each other in the list.
5249193323Sed    // To help reduce the number of CSE recomputations, process all
5250193323Sed    // the uses of this user that we can find this way.
5251193323Sed    do {
5252193323Sed      SDUse &Use = UI.getUse();
5253193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5254193323Sed      ++UI;
5255193323Sed      Use.set(ToOp);
5256193323Sed    } while (UI != UE && *UI == User);
5257193323Sed
5258193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5259193323Sed    // already exists there, recursively merge the results together.
5260204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5261193323Sed  }
5262193323Sed}
5263193323Sed
5264193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5265193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5266193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5267193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5268193323Sed                                             DAGUpdateListener *UpdateListener){
5269193323Sed  // Handle the really simple, really trivial case efficiently.
5270193323Sed  if (From == To) return;
5271193323Sed
5272193323Sed  // Handle the simple, trivial, case efficiently.
5273193323Sed  if (From.getNode()->getNumValues() == 1) {
5274193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5275193323Sed    return;
5276193323Sed  }
5277193323Sed
5278193323Sed  // Iterate over just the existing users of From. See the comments in
5279193323Sed  // the ReplaceAllUsesWith above.
5280193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5281193323Sed                       UE = From.getNode()->use_end();
5282204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5283193323Sed  while (UI != UE) {
5284193323Sed    SDNode *User = *UI;
5285193323Sed    bool UserRemovedFromCSEMaps = false;
5286193323Sed
5287193323Sed    // A user can appear in a use list multiple times, and when this
5288193323Sed    // happens the uses are usually next to each other in the list.
5289193323Sed    // To help reduce the number of CSE recomputations, process all
5290193323Sed    // the uses of this user that we can find this way.
5291193323Sed    do {
5292193323Sed      SDUse &Use = UI.getUse();
5293193323Sed
5294193323Sed      // Skip uses of different values from the same node.
5295193323Sed      if (Use.getResNo() != From.getResNo()) {
5296193323Sed        ++UI;
5297193323Sed        continue;
5298193323Sed      }
5299193323Sed
5300193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5301193323Sed      // so remove its old self from the CSE maps.
5302193323Sed      if (!UserRemovedFromCSEMaps) {
5303193323Sed        RemoveNodeFromCSEMaps(User);
5304193323Sed        UserRemovedFromCSEMaps = true;
5305193323Sed      }
5306193323Sed
5307193323Sed      ++UI;
5308193323Sed      Use.set(To);
5309193323Sed    } while (UI != UE && *UI == User);
5310193323Sed
5311193323Sed    // We are iterating over all uses of the From node, so if a use
5312193323Sed    // doesn't use the specific value, no changes are made.
5313193323Sed    if (!UserRemovedFromCSEMaps)
5314193323Sed      continue;
5315193323Sed
5316193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5317193323Sed    // already exists there, recursively merge the results together.
5318204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5319193323Sed  }
5320193323Sed}
5321193323Sed
5322193323Sednamespace {
5323193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5324193323Sed  /// to record information about a use.
5325193323Sed  struct UseMemo {
5326193323Sed    SDNode *User;
5327193323Sed    unsigned Index;
5328193323Sed    SDUse *Use;
5329193323Sed  };
5330193323Sed
5331193323Sed  /// operator< - Sort Memos by User.
5332193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5333193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5334193323Sed  }
5335193323Sed}
5336193323Sed
5337193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5338193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5339193323Sed/// may appear in both the From and To list.  The Deleted vector is
5340193323Sed/// handled the same way as for ReplaceAllUsesWith.
5341193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5342193323Sed                                              const SDValue *To,
5343193323Sed                                              unsigned Num,
5344193323Sed                                              DAGUpdateListener *UpdateListener){
5345193323Sed  // Handle the simple, trivial case efficiently.
5346193323Sed  if (Num == 1)
5347193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5348193323Sed
5349193323Sed  // Read up all the uses and make records of them. This helps
5350193323Sed  // processing new uses that are introduced during the
5351193323Sed  // replacement process.
5352193323Sed  SmallVector<UseMemo, 4> Uses;
5353193323Sed  for (unsigned i = 0; i != Num; ++i) {
5354193323Sed    unsigned FromResNo = From[i].getResNo();
5355193323Sed    SDNode *FromNode = From[i].getNode();
5356193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5357193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5358193323Sed      SDUse &Use = UI.getUse();
5359193323Sed      if (Use.getResNo() == FromResNo) {
5360193323Sed        UseMemo Memo = { *UI, i, &Use };
5361193323Sed        Uses.push_back(Memo);
5362193323Sed      }
5363193323Sed    }
5364193323Sed  }
5365193323Sed
5366193323Sed  // Sort the uses, so that all the uses from a given User are together.
5367193323Sed  std::sort(Uses.begin(), Uses.end());
5368193323Sed
5369193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5370193323Sed       UseIndex != UseIndexEnd; ) {
5371193323Sed    // We know that this user uses some value of From.  If it is the right
5372193323Sed    // value, update it.
5373193323Sed    SDNode *User = Uses[UseIndex].User;
5374193323Sed
5375193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5376193323Sed    RemoveNodeFromCSEMaps(User);
5377193323Sed
5378193323Sed    // The Uses array is sorted, so all the uses for a given User
5379193323Sed    // are next to each other in the list.
5380193323Sed    // To help reduce the number of CSE recomputations, process all
5381193323Sed    // the uses of this user that we can find this way.
5382193323Sed    do {
5383193323Sed      unsigned i = Uses[UseIndex].Index;
5384193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5385193323Sed      ++UseIndex;
5386193323Sed
5387193323Sed      Use.set(To[i]);
5388193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5389193323Sed
5390193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5391193323Sed    // already exists there, recursively merge the results together.
5392193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5393193323Sed  }
5394193323Sed}
5395193323Sed
5396193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5397193323Sed/// based on their topological order. It returns the maximum id and a vector
5398193323Sed/// of the SDNodes* in assigned order by reference.
5399193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5400193323Sed
5401193323Sed  unsigned DAGSize = 0;
5402193323Sed
5403193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5404193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5405193323Sed  // it is at the end of the list.
5406193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5407193323Sed
5408193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5409193323Sed  // the list immediately. Annotate nodes that do have operands with their
5410193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5411193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5412193323Sed  // before SortedPos will contain the topological sort index, and the
5413193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5414193323Sed  // count of outstanding operands.
5415193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5416193323Sed    SDNode *N = I++;
5417202878Srdivacky    checkForCycles(N);
5418193323Sed    unsigned Degree = N->getNumOperands();
5419193323Sed    if (Degree == 0) {
5420193323Sed      // A node with no uses, add it to the result array immediately.
5421193323Sed      N->setNodeId(DAGSize++);
5422193323Sed      allnodes_iterator Q = N;
5423193323Sed      if (Q != SortedPos)
5424193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5425202878Srdivacky      assert(SortedPos != AllNodes.end() && "Overran node list");
5426193323Sed      ++SortedPos;
5427193323Sed    } else {
5428193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5429193323Sed      N->setNodeId(Degree);
5430193323Sed    }
5431193323Sed  }
5432193323Sed
5433193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5434193323Sed  // such that by the time the end is reached all nodes will be sorted.
5435193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5436193323Sed    SDNode *N = I;
5437202878Srdivacky    checkForCycles(N);
5438202878Srdivacky    // N is in sorted position, so all its uses have one less operand
5439202878Srdivacky    // that needs to be sorted.
5440193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5441193323Sed         UI != UE; ++UI) {
5442193323Sed      SDNode *P = *UI;
5443193323Sed      unsigned Degree = P->getNodeId();
5444202878Srdivacky      assert(Degree != 0 && "Invalid node degree");
5445193323Sed      --Degree;
5446193323Sed      if (Degree == 0) {
5447193323Sed        // All of P's operands are sorted, so P may sorted now.
5448193323Sed        P->setNodeId(DAGSize++);
5449193323Sed        if (P != SortedPos)
5450193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5451202878Srdivacky        assert(SortedPos != AllNodes.end() && "Overran node list");
5452193323Sed        ++SortedPos;
5453193323Sed      } else {
5454193323Sed        // Update P's outstanding operand count.
5455193323Sed        P->setNodeId(Degree);
5456193323Sed      }
5457193323Sed    }
5458202878Srdivacky    if (I == SortedPos) {
5459203954Srdivacky#ifndef NDEBUG
5460203954Srdivacky      SDNode *S = ++I;
5461203954Srdivacky      dbgs() << "Overran sorted position:\n";
5462202878Srdivacky      S->dumprFull();
5463203954Srdivacky#endif
5464203954Srdivacky      llvm_unreachable(0);
5465202878Srdivacky    }
5466193323Sed  }
5467193323Sed
5468193323Sed  assert(SortedPos == AllNodes.end() &&
5469193323Sed         "Topological sort incomplete!");
5470193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5471193323Sed         "First node in topological sort is not the entry token!");
5472193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5473193323Sed         "First node in topological sort has non-zero id!");
5474193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5475193323Sed         "First node in topological sort has operands!");
5476193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5477193323Sed         "Last node in topologic sort has unexpected id!");
5478193323Sed  assert(AllNodes.back().use_empty() &&
5479193323Sed         "Last node in topologic sort has users!");
5480193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5481193323Sed  return DAGSize;
5482193323Sed}
5483193323Sed
5484201360Srdivacky/// AssignOrdering - Assign an order to the SDNode.
5485203954Srdivackyvoid SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5486201360Srdivacky  assert(SD && "Trying to assign an order to a null node!");
5487202878Srdivacky  Ordering->add(SD, Order);
5488201360Srdivacky}
5489193323Sed
5490201360Srdivacky/// GetOrdering - Get the order for the SDNode.
5491201360Srdivackyunsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5492201360Srdivacky  assert(SD && "Trying to get the order of a null node!");
5493202878Srdivacky  return Ordering->getOrder(SD);
5494201360Srdivacky}
5495193323Sed
5496206083Srdivacky/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5497206083Srdivacky/// value is produced by SD.
5498207618Srdivackyvoid SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5499207618Srdivacky  DbgInfo->add(DB, SD, isParameter);
5500206083Srdivacky  if (SD)
5501206083Srdivacky    SD->setHasDebugValue(true);
5502205218Srdivacky}
5503201360Srdivacky
5504218893Sdim/// TransferDbgValues - Transfer SDDbgValues.
5505218893Sdimvoid SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5506218893Sdim  if (From == To || !From.getNode()->getHasDebugValue())
5507218893Sdim    return;
5508218893Sdim  SDNode *FromNode = From.getNode();
5509218893Sdim  SDNode *ToNode = To.getNode();
5510218893Sdim  SmallVector<SDDbgValue *, 2> &DVs = GetDbgValues(FromNode);
5511218893Sdim  SmallVector<SDDbgValue *, 2> ClonedDVs;
5512218893Sdim  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5513218893Sdim       I != E; ++I) {
5514218893Sdim    SDDbgValue *Dbg = *I;
5515218893Sdim    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5516218893Sdim      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5517218893Sdim                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5518218893Sdim                                      Dbg->getOrder());
5519218893Sdim      ClonedDVs.push_back(Clone);
5520218893Sdim    }
5521218893Sdim  }
5522218893Sdim  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5523218893Sdim         E = ClonedDVs.end(); I != E; ++I)
5524218893Sdim    AddDbgValue(*I, ToNode, false);
5525218893Sdim}
5526218893Sdim
5527193323Sed//===----------------------------------------------------------------------===//
5528193323Sed//                              SDNode Class
5529193323Sed//===----------------------------------------------------------------------===//
5530193323Sed
5531193323SedHandleSDNode::~HandleSDNode() {
5532193323Sed  DropOperands();
5533193323Sed}
5534193323Sed
5535210299SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5536210299Sed                                         const GlobalValue *GA,
5537198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5538210299Sed  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5539207618Srdivacky  TheGlobal = GA;
5540193323Sed}
5541193323Sed
5542198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5543198090Srdivacky                     MachineMemOperand *mmo)
5544198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5545204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5546204642Srdivacky                                      MMO->isNonTemporal());
5547198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5548204642Srdivacky  assert(isNonTemporal() == MMO->isNonTemporal() &&
5549204642Srdivacky         "Non-temporal encoding error!");
5550198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5551193323Sed}
5552193323Sed
5553193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5554218893Sdim                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5555198090Srdivacky                     MachineMemOperand *mmo)
5556193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5557198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5558204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5559204642Srdivacky                                      MMO->isNonTemporal());
5560198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5561198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5562193323Sed}
5563193323Sed
5564193323Sed/// Profile - Gather unique data for the node.
5565193323Sed///
5566193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5567193323Sed  AddNodeIDNode(ID, this);
5568193323Sed}
5569193323Sed
5570198090Srdivackynamespace {
5571198090Srdivacky  struct EVTArray {
5572198090Srdivacky    std::vector<EVT> VTs;
5573218893Sdim
5574198090Srdivacky    EVTArray() {
5575198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5576198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5577198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5578198090Srdivacky    }
5579198090Srdivacky  };
5580198090Srdivacky}
5581198090Srdivacky
5582198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5583198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5584195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5585195098Sed
5586193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5587193323Sed///
5588198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5589193323Sed  if (VT.isExtended()) {
5590198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5591195098Sed    return &(*EVTs->insert(VT).first);
5592193323Sed  } else {
5593218893Sdim    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5594208599Srdivacky           "Value type out of range!");
5595198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5596193323Sed  }
5597193323Sed}
5598193323Sed
5599193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5600193323Sed/// indicated value.  This method ignores uses of other values defined by this
5601193323Sed/// operation.
5602193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5603193323Sed  assert(Value < getNumValues() && "Bad value!");
5604193323Sed
5605193323Sed  // TODO: Only iterate over uses of a given value of the node
5606193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5607193323Sed    if (UI.getUse().getResNo() == Value) {
5608193323Sed      if (NUses == 0)
5609193323Sed        return false;
5610193323Sed      --NUses;
5611193323Sed    }
5612193323Sed  }
5613193323Sed
5614193323Sed  // Found exactly the right number of uses?
5615193323Sed  return NUses == 0;
5616193323Sed}
5617193323Sed
5618193323Sed
5619193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5620193323Sed/// value. This method ignores uses of other values defined by this operation.
5621193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5622193323Sed  assert(Value < getNumValues() && "Bad value!");
5623193323Sed
5624193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5625193323Sed    if (UI.getUse().getResNo() == Value)
5626193323Sed      return true;
5627193323Sed
5628193323Sed  return false;
5629193323Sed}
5630193323Sed
5631193323Sed
5632193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5633193323Sed///
5634193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5635193323Sed  bool Seen = false;
5636193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5637193323Sed    SDNode *User = *I;
5638193323Sed    if (User == this)
5639193323Sed      Seen = true;
5640193323Sed    else
5641193323Sed      return false;
5642193323Sed  }
5643193323Sed
5644193323Sed  return Seen;
5645193323Sed}
5646193323Sed
5647193323Sed/// isOperand - Return true if this node is an operand of N.
5648193323Sed///
5649193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5650193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5651193323Sed    if (*this == N->getOperand(i))
5652193323Sed      return true;
5653193323Sed  return false;
5654193323Sed}
5655193323Sed
5656193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5657193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5658193323Sed    if (this == N->OperandList[i].getNode())
5659193323Sed      return true;
5660193323Sed  return false;
5661193323Sed}
5662193323Sed
5663193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5664193323Sed/// be a chain) reaches the specified operand without crossing any
5665218893Sdim/// side-effecting instructions on any chain path.  In practice, this looks
5666218893Sdim/// through token factors and non-volatile loads.  In order to remain efficient,
5667218893Sdim/// this only looks a couple of nodes in, it does not do an exhaustive search.
5668193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5669193323Sed                                               unsigned Depth) const {
5670193323Sed  if (*this == Dest) return true;
5671193323Sed
5672193323Sed  // Don't search too deeply, we just want to be able to see through
5673193323Sed  // TokenFactor's etc.
5674193323Sed  if (Depth == 0) return false;
5675193323Sed
5676193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5677218893Sdim  // of the operands of the TF does not reach dest, then we cannot do the xform.
5678193323Sed  if (getOpcode() == ISD::TokenFactor) {
5679193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5680218893Sdim      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5681218893Sdim        return false;
5682218893Sdim    return true;
5683193323Sed  }
5684193323Sed
5685193323Sed  // Loads don't have side effects, look through them.
5686193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5687193323Sed    if (!Ld->isVolatile())
5688193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5689193323Sed  }
5690193323Sed  return false;
5691193323Sed}
5692193323Sed
5693193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5694198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5695193323Sed/// NOTE: this is an expensive method. Use it carefully.
5696193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5697193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5698198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5699198892Srdivacky  Worklist.push_back(N);
5700198892Srdivacky
5701198892Srdivacky  do {
5702198892Srdivacky    N = Worklist.pop_back_val();
5703198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5704198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5705198892Srdivacky      if (Op == this)
5706198892Srdivacky        return true;
5707198892Srdivacky      if (Visited.insert(Op))
5708198892Srdivacky        Worklist.push_back(Op);
5709198892Srdivacky    }
5710198892Srdivacky  } while (!Worklist.empty());
5711198892Srdivacky
5712198892Srdivacky  return false;
5713193323Sed}
5714193323Sed
5715193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5716193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5717193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5718193323Sed}
5719193323Sed
5720193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5721193323Sed  switch (getOpcode()) {
5722193323Sed  default:
5723193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5724193323Sed      return "<<Unknown DAG Node>>";
5725193323Sed    if (isMachineOpcode()) {
5726193323Sed      if (G)
5727193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5728193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5729193323Sed            return TII->get(getMachineOpcode()).getName();
5730204642Srdivacky      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5731193323Sed    }
5732193323Sed    if (G) {
5733193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5734193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5735193323Sed      if (Name) return Name;
5736204642Srdivacky      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5737193323Sed    }
5738204642Srdivacky    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5739193323Sed
5740193323Sed#ifndef NDEBUG
5741193323Sed  case ISD::DELETED_NODE:
5742193323Sed    return "<<Deleted Node!>>";
5743193323Sed#endif
5744193323Sed  case ISD::PREFETCH:      return "Prefetch";
5745193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5746193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5747193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5748193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5749193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5750193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5751193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5752193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5753193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5754193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5755193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5756193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5757193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5758193323Sed  case ISD::PCMARKER:      return "PCMarker";
5759193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5760193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5761207618Srdivacky  case ISD::MDNODE_SDNODE: return "MDNode";
5762193323Sed  case ISD::EntryToken:    return "EntryToken";
5763193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5764193323Sed  case ISD::AssertSext:    return "AssertSext";
5765193323Sed  case ISD::AssertZext:    return "AssertZext";
5766193323Sed
5767193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5768193323Sed  case ISD::VALUETYPE:     return "ValueType";
5769193323Sed  case ISD::Register:      return "Register";
5770193323Sed
5771193323Sed  case ISD::Constant:      return "Constant";
5772193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5773193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5774193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5775193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5776193323Sed  case ISD::JumpTable:     return "JumpTable";
5777193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5778193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5779193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5780193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5781193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5782198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5783193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5784193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5785208599Srdivacky  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5786208599Srdivacky  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5787218893Sdim  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5788193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5789193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5790198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5791198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5792193323Sed  case ISD::INTRINSIC_VOID:
5793193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5794198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5795198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5796198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5797198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5798198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5799198396Srdivacky      return TII->getName(IID);
5800198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5801193323Sed  }
5802193323Sed
5803193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5804193323Sed  case ISD::TargetConstant: return "TargetConstant";
5805193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5806193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5807193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5808193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5809193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5810193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5811193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5812198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5813193323Sed
5814193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5815193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5816193323Sed  case ISD::UNDEF:         return "undef";
5817193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5818193323Sed  case ISD::INLINEASM:     return "inlineasm";
5819193323Sed  case ISD::EH_LABEL:      return "eh_label";
5820193323Sed  case ISD::HANDLENODE:    return "handlenode";
5821193323Sed
5822193323Sed  // Unary operators
5823193323Sed  case ISD::FABS:   return "fabs";
5824193323Sed  case ISD::FNEG:   return "fneg";
5825193323Sed  case ISD::FSQRT:  return "fsqrt";
5826193323Sed  case ISD::FSIN:   return "fsin";
5827193323Sed  case ISD::FCOS:   return "fcos";
5828193323Sed  case ISD::FTRUNC: return "ftrunc";
5829193323Sed  case ISD::FFLOOR: return "ffloor";
5830193323Sed  case ISD::FCEIL:  return "fceil";
5831193323Sed  case ISD::FRINT:  return "frint";
5832193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5833210299Sed  case ISD::FEXP:   return "fexp";
5834210299Sed  case ISD::FEXP2:  return "fexp2";
5835210299Sed  case ISD::FLOG:   return "flog";
5836210299Sed  case ISD::FLOG2:  return "flog2";
5837210299Sed  case ISD::FLOG10: return "flog10";
5838193323Sed
5839193323Sed  // Binary operators
5840193323Sed  case ISD::ADD:    return "add";
5841193323Sed  case ISD::SUB:    return "sub";
5842193323Sed  case ISD::MUL:    return "mul";
5843193323Sed  case ISD::MULHU:  return "mulhu";
5844193323Sed  case ISD::MULHS:  return "mulhs";
5845193323Sed  case ISD::SDIV:   return "sdiv";
5846193323Sed  case ISD::UDIV:   return "udiv";
5847193323Sed  case ISD::SREM:   return "srem";
5848193323Sed  case ISD::UREM:   return "urem";
5849193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5850193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5851193323Sed  case ISD::SDIVREM:    return "sdivrem";
5852193323Sed  case ISD::UDIVREM:    return "udivrem";
5853193323Sed  case ISD::AND:    return "and";
5854193323Sed  case ISD::OR:     return "or";
5855193323Sed  case ISD::XOR:    return "xor";
5856193323Sed  case ISD::SHL:    return "shl";
5857193323Sed  case ISD::SRA:    return "sra";
5858193323Sed  case ISD::SRL:    return "srl";
5859193323Sed  case ISD::ROTL:   return "rotl";
5860193323Sed  case ISD::ROTR:   return "rotr";
5861193323Sed  case ISD::FADD:   return "fadd";
5862193323Sed  case ISD::FSUB:   return "fsub";
5863193323Sed  case ISD::FMUL:   return "fmul";
5864193323Sed  case ISD::FDIV:   return "fdiv";
5865193323Sed  case ISD::FREM:   return "frem";
5866193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5867193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5868210299Sed  case ISD::FPOW:   return "fpow";
5869193323Sed
5870210299Sed  case ISD::FPOWI:  return "fpowi";
5871193323Sed  case ISD::SETCC:       return "setcc";
5872193323Sed  case ISD::VSETCC:      return "vsetcc";
5873193323Sed  case ISD::SELECT:      return "select";
5874193323Sed  case ISD::SELECT_CC:   return "select_cc";
5875193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5876193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5877193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5878218893Sdim  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5879193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5880193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5881193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5882193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5883193323Sed  case ISD::ADDC:        return "addc";
5884193323Sed  case ISD::ADDE:        return "adde";
5885193323Sed  case ISD::SADDO:       return "saddo";
5886193323Sed  case ISD::UADDO:       return "uaddo";
5887193323Sed  case ISD::SSUBO:       return "ssubo";
5888193323Sed  case ISD::USUBO:       return "usubo";
5889193323Sed  case ISD::SMULO:       return "smulo";
5890193323Sed  case ISD::UMULO:       return "umulo";
5891193323Sed  case ISD::SUBC:        return "subc";
5892193323Sed  case ISD::SUBE:        return "sube";
5893193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5894193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5895193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5896193323Sed
5897193323Sed  // Conversion operators.
5898193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5899193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5900193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5901193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5902193323Sed  case ISD::TRUNCATE:    return "truncate";
5903193323Sed  case ISD::FP_ROUND:    return "fp_round";
5904193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5905193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5906193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5907193323Sed
5908193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5909193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5910193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5911193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5912218893Sdim  case ISD::BITCAST:     return "bit_convert";
5913205218Srdivacky  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5914205218Srdivacky  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5915193323Sed
5916193323Sed  case ISD::CONVERT_RNDSAT: {
5917193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5918198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5919193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5920193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5921193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5922193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5923193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5924193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5925193323Sed    case ISD::CVT_SU:  return "cvt_su";
5926193323Sed    case ISD::CVT_US:  return "cvt_us";
5927193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5928193323Sed    }
5929193323Sed  }
5930193323Sed
5931193323Sed    // Control flow instructions
5932193323Sed  case ISD::BR:      return "br";
5933193323Sed  case ISD::BRIND:   return "brind";
5934193323Sed  case ISD::BR_JT:   return "br_jt";
5935193323Sed  case ISD::BRCOND:  return "brcond";
5936193323Sed  case ISD::BR_CC:   return "br_cc";
5937193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5938193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5939193323Sed
5940193323Sed    // Other operators
5941193323Sed  case ISD::LOAD:               return "load";
5942193323Sed  case ISD::STORE:              return "store";
5943193323Sed  case ISD::VAARG:              return "vaarg";
5944193323Sed  case ISD::VACOPY:             return "vacopy";
5945193323Sed  case ISD::VAEND:              return "vaend";
5946193323Sed  case ISD::VASTART:            return "vastart";
5947193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5948193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5949193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5950193323Sed  case ISD::STACKSAVE:          return "stacksave";
5951193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5952193323Sed  case ISD::TRAP:               return "trap";
5953193323Sed
5954193323Sed  // Bit manipulation
5955193323Sed  case ISD::BSWAP:   return "bswap";
5956193323Sed  case ISD::CTPOP:   return "ctpop";
5957193323Sed  case ISD::CTTZ:    return "cttz";
5958193323Sed  case ISD::CTLZ:    return "ctlz";
5959193323Sed
5960193323Sed  // Trampolines
5961193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5962193323Sed
5963193323Sed  case ISD::CONDCODE:
5964193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5965198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5966193323Sed    case ISD::SETOEQ:  return "setoeq";
5967193323Sed    case ISD::SETOGT:  return "setogt";
5968193323Sed    case ISD::SETOGE:  return "setoge";
5969193323Sed    case ISD::SETOLT:  return "setolt";
5970193323Sed    case ISD::SETOLE:  return "setole";
5971193323Sed    case ISD::SETONE:  return "setone";
5972193323Sed
5973193323Sed    case ISD::SETO:    return "seto";
5974193323Sed    case ISD::SETUO:   return "setuo";
5975193323Sed    case ISD::SETUEQ:  return "setue";
5976193323Sed    case ISD::SETUGT:  return "setugt";
5977193323Sed    case ISD::SETUGE:  return "setuge";
5978193323Sed    case ISD::SETULT:  return "setult";
5979193323Sed    case ISD::SETULE:  return "setule";
5980193323Sed    case ISD::SETUNE:  return "setune";
5981193323Sed
5982193323Sed    case ISD::SETEQ:   return "seteq";
5983193323Sed    case ISD::SETGT:   return "setgt";
5984193323Sed    case ISD::SETGE:   return "setge";
5985193323Sed    case ISD::SETLT:   return "setlt";
5986193323Sed    case ISD::SETLE:   return "setle";
5987193323Sed    case ISD::SETNE:   return "setne";
5988193323Sed    }
5989193323Sed  }
5990193323Sed}
5991193323Sed
5992193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5993193323Sed  switch (AM) {
5994193323Sed  default:
5995193323Sed    return "";
5996193323Sed  case ISD::PRE_INC:
5997193323Sed    return "<pre-inc>";
5998193323Sed  case ISD::PRE_DEC:
5999193323Sed    return "<pre-dec>";
6000193323Sed  case ISD::POST_INC:
6001193323Sed    return "<post-inc>";
6002193323Sed  case ISD::POST_DEC:
6003193323Sed    return "<post-dec>";
6004193323Sed  }
6005193323Sed}
6006193323Sed
6007193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
6008193323Sed  std::string S = "< ";
6009193323Sed
6010193323Sed  if (isZExt())
6011193323Sed    S += "zext ";
6012193323Sed  if (isSExt())
6013193323Sed    S += "sext ";
6014193323Sed  if (isInReg())
6015193323Sed    S += "inreg ";
6016193323Sed  if (isSRet())
6017193323Sed    S += "sret ";
6018193323Sed  if (isByVal())
6019193323Sed    S += "byval ";
6020193323Sed  if (isNest())
6021193323Sed    S += "nest ";
6022193323Sed  if (getByValAlign())
6023193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
6024193323Sed  if (getOrigAlign())
6025193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6026193323Sed  if (getByValSize())
6027193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
6028193323Sed  return S + ">";
6029193323Sed}
6030193323Sed
6031193323Sedvoid SDNode::dump() const { dump(0); }
6032193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
6033202375Srdivacky  print(dbgs(), G);
6034212904Sdim  dbgs() << '\n';
6035193323Sed}
6036193323Sed
6037193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6038193323Sed  OS << (void*)this << ": ";
6039193323Sed
6040193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6041193323Sed    if (i) OS << ",";
6042193323Sed    if (getValueType(i) == MVT::Other)
6043193323Sed      OS << "ch";
6044193323Sed    else
6045198090Srdivacky      OS << getValueType(i).getEVTString();
6046193323Sed  }
6047193323Sed  OS << " = " << getOperationName(G);
6048193323Sed}
6049193323Sed
6050193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6051198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6052198090Srdivacky    if (!MN->memoperands_empty()) {
6053198090Srdivacky      OS << "<";
6054198090Srdivacky      OS << "Mem:";
6055198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6056198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
6057198090Srdivacky        OS << **i;
6058212904Sdim        if (llvm::next(i) != e)
6059198090Srdivacky          OS << " ";
6060198090Srdivacky      }
6061198090Srdivacky      OS << ">";
6062198090Srdivacky    }
6063198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
6064198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
6065193323Sed    OS << "<";
6066193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6067193323Sed      int Idx = SVN->getMaskElt(i);
6068193323Sed      if (i) OS << ",";
6069193323Sed      if (Idx < 0)
6070193323Sed        OS << "u";
6071193323Sed      else
6072193323Sed        OS << Idx;
6073193323Sed    }
6074193323Sed    OS << ">";
6075198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6076193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
6077193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6078193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6079193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6080193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6081193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6082193323Sed    else {
6083193323Sed      OS << "<APFloat(";
6084193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
6085193323Sed      OS << ")>";
6086193323Sed    }
6087193323Sed  } else if (const GlobalAddressSDNode *GADN =
6088193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
6089193323Sed    int64_t offset = GADN->getOffset();
6090193323Sed    OS << '<';
6091193323Sed    WriteAsOperand(OS, GADN->getGlobal());
6092193323Sed    OS << '>';
6093193323Sed    if (offset > 0)
6094193323Sed      OS << " + " << offset;
6095193323Sed    else
6096193323Sed      OS << " " << offset;
6097198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
6098195098Sed      OS << " [TF=" << TF << ']';
6099193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6100193323Sed    OS << "<" << FIDN->getIndex() << ">";
6101193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6102193323Sed    OS << "<" << JTDN->getIndex() << ">";
6103198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
6104195098Sed      OS << " [TF=" << TF << ']';
6105193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6106193323Sed    int offset = CP->getOffset();
6107193323Sed    if (CP->isMachineConstantPoolEntry())
6108193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
6109193323Sed    else
6110193323Sed      OS << "<" << *CP->getConstVal() << ">";
6111193323Sed    if (offset > 0)
6112193323Sed      OS << " + " << offset;
6113193323Sed    else
6114193323Sed      OS << " " << offset;
6115198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
6116195098Sed      OS << " [TF=" << TF << ']';
6117193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6118193323Sed    OS << "<";
6119193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6120193323Sed    if (LBB)
6121193323Sed      OS << LBB->getName() << " ";
6122193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
6123193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6124218893Sdim    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6125193323Sed  } else if (const ExternalSymbolSDNode *ES =
6126193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
6127193323Sed    OS << "'" << ES->getSymbol() << "'";
6128198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
6129195098Sed      OS << " [TF=" << TF << ']';
6130193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6131193323Sed    if (M->getValue())
6132193323Sed      OS << "<" << M->getValue() << ">";
6133193323Sed    else
6134193323Sed      OS << "<null>";
6135207618Srdivacky  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6136207618Srdivacky    if (MD->getMD())
6137207618Srdivacky      OS << "<" << MD->getMD() << ">";
6138207618Srdivacky    else
6139207618Srdivacky      OS << "<null>";
6140193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6141198090Srdivacky    OS << ":" << N->getVT().getEVTString();
6142193323Sed  }
6143193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6144198892Srdivacky    OS << "<" << *LD->getMemOperand();
6145193323Sed
6146193323Sed    bool doExt = true;
6147193323Sed    switch (LD->getExtensionType()) {
6148193323Sed    default: doExt = false; break;
6149198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
6150198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
6151198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
6152193323Sed    }
6153193323Sed    if (doExt)
6154198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
6155193323Sed
6156193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
6157193323Sed    if (*AM)
6158198090Srdivacky      OS << ", " << AM;
6159198090Srdivacky
6160198090Srdivacky    OS << ">";
6161193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6162198892Srdivacky    OS << "<" << *ST->getMemOperand();
6163193323Sed
6164193323Sed    if (ST->isTruncatingStore())
6165198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6166193323Sed
6167193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
6168193323Sed    if (*AM)
6169198090Srdivacky      OS << ", " << AM;
6170218893Sdim
6171198090Srdivacky    OS << ">";
6172198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6173198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
6174198892Srdivacky  } else if (const BlockAddressSDNode *BA =
6175198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
6176198892Srdivacky    OS << "<";
6177198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6178198892Srdivacky    OS << ", ";
6179198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6180198892Srdivacky    OS << ">";
6181199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
6182199989Srdivacky      OS << " [TF=" << TF << ']';
6183193323Sed  }
6184201360Srdivacky
6185201360Srdivacky  if (G)
6186201360Srdivacky    if (unsigned Order = G->GetOrdering(this))
6187201360Srdivacky      OS << " [ORD=" << Order << ']';
6188205218Srdivacky
6189204642Srdivacky  if (getNodeId() != -1)
6190204642Srdivacky    OS << " [ID=" << getNodeId() << ']';
6191208599Srdivacky
6192208599Srdivacky  DebugLoc dl = getDebugLoc();
6193208599Srdivacky  if (G && !dl.isUnknown()) {
6194208599Srdivacky    DIScope
6195208599Srdivacky      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6196208599Srdivacky    OS << " dbg:";
6197208599Srdivacky    // Omit the directory, since it's usually long and uninteresting.
6198208599Srdivacky    if (Scope.Verify())
6199208599Srdivacky      OS << Scope.getFilename();
6200208599Srdivacky    else
6201208599Srdivacky      OS << "<unknown>";
6202208599Srdivacky    OS << ':' << dl.getLine();
6203208599Srdivacky    if (dl.getCol() != 0)
6204208599Srdivacky      OS << ':' << dl.getCol();
6205208599Srdivacky  }
6206193323Sed}
6207193323Sed
6208193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6209193323Sed  print_types(OS, G);
6210193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6211199481Srdivacky    if (i) OS << ", "; else OS << " ";
6212193323Sed    OS << (void*)getOperand(i).getNode();
6213193323Sed    if (unsigned RN = getOperand(i).getResNo())
6214193323Sed      OS << ":" << RN;
6215193323Sed  }
6216193323Sed  print_details(OS, G);
6217193323Sed}
6218193323Sed
6219202878Srdivackystatic void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6220202878Srdivacky                                  const SelectionDAG *G, unsigned depth,
6221218893Sdim                                  unsigned indent)
6222202878Srdivacky{
6223202878Srdivacky  if (depth == 0)
6224202878Srdivacky    return;
6225202878Srdivacky
6226202878Srdivacky  OS.indent(indent);
6227202878Srdivacky
6228202878Srdivacky  N->print(OS, G);
6229202878Srdivacky
6230202878Srdivacky  if (depth < 1)
6231202878Srdivacky    return;
6232202878Srdivacky
6233202878Srdivacky  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6234202878Srdivacky    OS << '\n';
6235202878Srdivacky    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6236202878Srdivacky  }
6237202878Srdivacky}
6238202878Srdivacky
6239202878Srdivackyvoid SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6240202878Srdivacky                            unsigned depth) const {
6241202878Srdivacky  printrWithDepthHelper(OS, this, G, depth, 0);
6242218893Sdim}
6243202878Srdivacky
6244202878Srdivackyvoid SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6245202878Srdivacky  // Don't print impossibly deep things.
6246202878Srdivacky  printrWithDepth(OS, G, 100);
6247202878Srdivacky}
6248202878Srdivacky
6249202878Srdivackyvoid SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6250202878Srdivacky  printrWithDepth(dbgs(), G, depth);
6251202878Srdivacky}
6252202878Srdivacky
6253202878Srdivackyvoid SDNode::dumprFull(const SelectionDAG *G) const {
6254202878Srdivacky  // Don't print impossibly deep things.
6255202878Srdivacky  dumprWithDepth(G, 100);
6256218893Sdim}
6257202878Srdivacky
6258193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6259193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6260193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
6261193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6262193323Sed    else
6263202375Srdivacky      dbgs() << "\n" << std::string(indent+2, ' ')
6264202375Srdivacky           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6265193323Sed
6266193323Sed
6267202375Srdivacky  dbgs() << "\n";
6268202375Srdivacky  dbgs().indent(indent);
6269193323Sed  N->dump(G);
6270193323Sed}
6271193323Sed
6272199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6273199989Srdivacky  assert(N->getNumValues() == 1 &&
6274199989Srdivacky         "Can't unroll a vector with multiple results!");
6275199989Srdivacky
6276199989Srdivacky  EVT VT = N->getValueType(0);
6277199989Srdivacky  unsigned NE = VT.getVectorNumElements();
6278199989Srdivacky  EVT EltVT = VT.getVectorElementType();
6279199989Srdivacky  DebugLoc dl = N->getDebugLoc();
6280199989Srdivacky
6281199989Srdivacky  SmallVector<SDValue, 8> Scalars;
6282199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6283199989Srdivacky
6284199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
6285199989Srdivacky  if (ResNE == 0)
6286199989Srdivacky    ResNE = NE;
6287199989Srdivacky  else if (NE > ResNE)
6288199989Srdivacky    NE = ResNE;
6289199989Srdivacky
6290199989Srdivacky  unsigned i;
6291199989Srdivacky  for (i= 0; i != NE; ++i) {
6292207618Srdivacky    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6293199989Srdivacky      SDValue Operand = N->getOperand(j);
6294199989Srdivacky      EVT OperandVT = Operand.getValueType();
6295199989Srdivacky      if (OperandVT.isVector()) {
6296199989Srdivacky        // A vector operand; extract a single element.
6297199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
6298199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6299199989Srdivacky                              OperandEltVT,
6300199989Srdivacky                              Operand,
6301199989Srdivacky                              getConstant(i, MVT::i32));
6302199989Srdivacky      } else {
6303199989Srdivacky        // A scalar operand; just use it as is.
6304199989Srdivacky        Operands[j] = Operand;
6305199989Srdivacky      }
6306199989Srdivacky    }
6307199989Srdivacky
6308199989Srdivacky    switch (N->getOpcode()) {
6309199989Srdivacky    default:
6310199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6311199989Srdivacky                                &Operands[0], Operands.size()));
6312199989Srdivacky      break;
6313199989Srdivacky    case ISD::SHL:
6314199989Srdivacky    case ISD::SRA:
6315199989Srdivacky    case ISD::SRL:
6316199989Srdivacky    case ISD::ROTL:
6317199989Srdivacky    case ISD::ROTR:
6318199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6319199989Srdivacky                                getShiftAmountOperand(Operands[1])));
6320199989Srdivacky      break;
6321202375Srdivacky    case ISD::SIGN_EXTEND_INREG:
6322202375Srdivacky    case ISD::FP_ROUND_INREG: {
6323202375Srdivacky      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6324202375Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6325202375Srdivacky                                Operands[0],
6326202375Srdivacky                                getValueType(ExtVT)));
6327199989Srdivacky    }
6328202375Srdivacky    }
6329199989Srdivacky  }
6330199989Srdivacky
6331199989Srdivacky  for (; i < ResNE; ++i)
6332199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
6333199989Srdivacky
6334199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
6335199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6336199989Srdivacky                 &Scalars[0], Scalars.size());
6337199989Srdivacky}
6338199989Srdivacky
6339200581Srdivacky
6340218893Sdim/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6341218893Sdim/// location that is 'Dist' units away from the location that the 'Base' load
6342200581Srdivacky/// is loading from.
6343218893Sdimbool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6344200581Srdivacky                                     unsigned Bytes, int Dist) const {
6345200581Srdivacky  if (LD->getChain() != Base->getChain())
6346200581Srdivacky    return false;
6347200581Srdivacky  EVT VT = LD->getValueType(0);
6348200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
6349200581Srdivacky    return false;
6350200581Srdivacky
6351200581Srdivacky  SDValue Loc = LD->getOperand(1);
6352200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
6353200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
6354200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6355200581Srdivacky      return false;
6356200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6357200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6358200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6359200581Srdivacky    int FS  = MFI->getObjectSize(FI);
6360200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
6361200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6362200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6363200581Srdivacky  }
6364200581Srdivacky
6365218893Sdim  // Handle X+C
6366218893Sdim  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6367218893Sdim      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6368218893Sdim    return true;
6369218893Sdim
6370207618Srdivacky  const GlobalValue *GV1 = NULL;
6371207618Srdivacky  const GlobalValue *GV2 = NULL;
6372200581Srdivacky  int64_t Offset1 = 0;
6373200581Srdivacky  int64_t Offset2 = 0;
6374200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6375200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6376200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6377200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6378200581Srdivacky  return false;
6379200581Srdivacky}
6380200581Srdivacky
6381200581Srdivacky
6382200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6383200581Srdivacky/// it cannot be inferred.
6384200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6385200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6386207618Srdivacky  const GlobalValue *GV;
6387200581Srdivacky  int64_t GVOffset = 0;
6388206083Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6389206083Srdivacky    // If GV has specified alignment, then use it. Otherwise, use the preferred
6390206083Srdivacky    // alignment.
6391206083Srdivacky    unsigned Align = GV->getAlignment();
6392206083Srdivacky    if (!Align) {
6393207618Srdivacky      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6394206083Srdivacky        if (GVar->hasInitializer()) {
6395206083Srdivacky          const TargetData *TD = TLI.getTargetData();
6396206083Srdivacky          Align = TD->getPreferredAlignment(GVar);
6397206083Srdivacky        }
6398206083Srdivacky      }
6399206083Srdivacky    }
6400206083Srdivacky    return MinAlign(Align, GVOffset);
6401206083Srdivacky  }
6402200581Srdivacky
6403200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6404200581Srdivacky  // stack slot's alignment.
6405200581Srdivacky  int FrameIdx = 1 << 31;
6406200581Srdivacky  int64_t FrameOffset = 0;
6407200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6408200581Srdivacky    FrameIdx = FI->getIndex();
6409218893Sdim  } else if (isBaseWithConstantOffset(Ptr) &&
6410200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6411218893Sdim    // Handle FI+Cst
6412200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6413200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6414200581Srdivacky  }
6415200581Srdivacky
6416200581Srdivacky  if (FrameIdx != (1 << 31)) {
6417200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6418200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6419200581Srdivacky                                    FrameOffset);
6420200581Srdivacky    return FIInfoAlign;
6421200581Srdivacky  }
6422200581Srdivacky
6423200581Srdivacky  return 0;
6424200581Srdivacky}
6425200581Srdivacky
6426193323Sedvoid SelectionDAG::dump() const {
6427202375Srdivacky  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6428193323Sed
6429193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6430193323Sed       I != E; ++I) {
6431193323Sed    const SDNode *N = I;
6432193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6433193323Sed      DumpNodes(N, 2, this);
6434193323Sed  }
6435193323Sed
6436193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6437193323Sed
6438202375Srdivacky  dbgs() << "\n\n";
6439193323Sed}
6440193323Sed
6441193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6442193323Sed  print_types(OS, G);
6443193323Sed  print_details(OS, G);
6444193323Sed}
6445193323Sed
6446193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6447193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6448193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6449193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6450193323Sed    return;
6451201360Srdivacky
6452193323Sed  // Dump the current SDNode, but don't end the line yet.
6453193323Sed  OS << std::string(indent, ' ');
6454193323Sed  N->printr(OS, G);
6455201360Srdivacky
6456193323Sed  // Having printed this SDNode, walk the children:
6457193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6458193323Sed    const SDNode *child = N->getOperand(i).getNode();
6459201360Srdivacky
6460193323Sed    if (i) OS << ",";
6461193323Sed    OS << " ";
6462201360Srdivacky
6463193323Sed    if (child->getNumOperands() == 0) {
6464193323Sed      // This child has no grandchildren; print it inline right here.
6465193323Sed      child->printr(OS, G);
6466193323Sed      once.insert(child);
6467201360Srdivacky    } else {         // Just the address. FIXME: also print the child's opcode.
6468193323Sed      OS << (void*)child;
6469193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6470193323Sed        OS << ":" << RN;
6471193323Sed    }
6472193323Sed  }
6473201360Srdivacky
6474193323Sed  OS << "\n";
6475201360Srdivacky
6476193323Sed  // Dump children that have grandchildren on their own line(s).
6477193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6478193323Sed    const SDNode *child = N->getOperand(i).getNode();
6479193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6480193323Sed  }
6481193323Sed}
6482193323Sed
6483193323Sedvoid SDNode::dumpr() const {
6484193323Sed  VisitedSDNodeSet once;
6485202375Srdivacky  DumpNodesr(dbgs(), this, 0, 0, once);
6486193323Sed}
6487193323Sed
6488198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6489198090Srdivacky  VisitedSDNodeSet once;
6490202375Srdivacky  DumpNodesr(dbgs(), this, 0, G, once);
6491198090Srdivacky}
6492193323Sed
6493198090Srdivacky
6494193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6495193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6496193323Sed  return getGlobal()->getType()->getAddressSpace();
6497193323Sed}
6498193323Sed
6499193323Sed
6500193323Sedconst Type *ConstantPoolSDNode::getType() const {
6501193323Sed  if (isMachineConstantPoolEntry())
6502193323Sed    return Val.MachineCPVal->getType();
6503193323Sed  return Val.ConstVal->getType();
6504193323Sed}
6505193323Sed
6506193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6507193323Sed                                        APInt &SplatUndef,
6508193323Sed                                        unsigned &SplatBitSize,
6509193323Sed                                        bool &HasAnyUndefs,
6510199481Srdivacky                                        unsigned MinSplatBits,
6511199481Srdivacky                                        bool isBigEndian) {
6512198090Srdivacky  EVT VT = getValueType(0);
6513193323Sed  assert(VT.isVector() && "Expected a vector type");
6514193323Sed  unsigned sz = VT.getSizeInBits();
6515193323Sed  if (MinSplatBits > sz)
6516193323Sed    return false;
6517193323Sed
6518193323Sed  SplatValue = APInt(sz, 0);
6519193323Sed  SplatUndef = APInt(sz, 0);
6520193323Sed
6521193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6522193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6523193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6524193323Sed  // false.
6525193323Sed  unsigned int nOps = getNumOperands();
6526193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6527193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6528199481Srdivacky
6529199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6530199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6531193323Sed    SDValue OpVal = getOperand(i);
6532199481Srdivacky    unsigned BitPos = j * EltBitSize;
6533193323Sed
6534193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6535199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6536193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6537218893Sdim      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6538207618Srdivacky                    zextOrTrunc(sz) << BitPos;
6539193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6540193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6541193323Sed     else
6542193323Sed      return false;
6543193323Sed  }
6544193323Sed
6545193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6546193323Sed  // size that splats the vector.
6547193323Sed
6548193323Sed  HasAnyUndefs = (SplatUndef != 0);
6549193323Sed  while (sz > 8) {
6550193323Sed
6551193323Sed    unsigned HalfSize = sz / 2;
6552218893Sdim    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6553218893Sdim    APInt LowValue = SplatValue.trunc(HalfSize);
6554218893Sdim    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6555218893Sdim    APInt LowUndef = SplatUndef.trunc(HalfSize);
6556193323Sed
6557193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6558193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6559193323Sed        MinSplatBits > HalfSize)
6560193323Sed      break;
6561193323Sed
6562193323Sed    SplatValue = HighValue | LowValue;
6563193323Sed    SplatUndef = HighUndef & LowUndef;
6564198090Srdivacky
6565193323Sed    sz = HalfSize;
6566193323Sed  }
6567193323Sed
6568193323Sed  SplatBitSize = sz;
6569193323Sed  return true;
6570193323Sed}
6571193323Sed
6572198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6573193323Sed  // Find the first non-undef value in the shuffle mask.
6574193323Sed  unsigned i, e;
6575193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6576193323Sed    /* search */;
6577193323Sed
6578193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6579198090Srdivacky
6580193323Sed  // Make sure all remaining elements are either undef or the same as the first
6581193323Sed  // non-undef value.
6582193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6583193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6584193323Sed      return false;
6585193323Sed  return true;
6586193323Sed}
6587202878Srdivacky
6588204642Srdivacky#ifdef XDEBUG
6589202878Srdivackystatic void checkForCyclesHelper(const SDNode *N,
6590204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Visited,
6591204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6592204642Srdivacky  // If this node has already been checked, don't check it again.
6593204642Srdivacky  if (Checked.count(N))
6594204642Srdivacky    return;
6595218893Sdim
6596204642Srdivacky  // If a node has already been visited on this depth-first walk, reject it as
6597204642Srdivacky  // a cycle.
6598204642Srdivacky  if (!Visited.insert(N)) {
6599202878Srdivacky    dbgs() << "Offending node:\n";
6600202878Srdivacky    N->dumprFull();
6601204642Srdivacky    errs() << "Detected cycle in SelectionDAG\n";
6602204642Srdivacky    abort();
6603202878Srdivacky  }
6604218893Sdim
6605204642Srdivacky  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6606204642Srdivacky    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6607218893Sdim
6608204642Srdivacky  Checked.insert(N);
6609204642Srdivacky  Visited.erase(N);
6610202878Srdivacky}
6611204642Srdivacky#endif
6612202878Srdivacky
6613202878Srdivackyvoid llvm::checkForCycles(const llvm::SDNode *N) {
6614202878Srdivacky#ifdef XDEBUG
6615202878Srdivacky  assert(N && "Checking nonexistant SDNode");
6616204642Srdivacky  SmallPtrSet<const SDNode*, 32> visited;
6617204642Srdivacky  SmallPtrSet<const SDNode*, 32> checked;
6618204642Srdivacky  checkForCyclesHelper(N, visited, checked);
6619202878Srdivacky#endif
6620202878Srdivacky}
6621202878Srdivacky
6622202878Srdivackyvoid llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6623202878Srdivacky  checkForCycles(DAG->getRoot().getNode());
6624202878Srdivacky}
6625