SelectionDAG.cpp revision 208599
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13201360Srdivacky
14193323Sed#include "llvm/CodeGen/SelectionDAG.h"
15201360Srdivacky#include "SDNodeOrdering.h"
16205218Srdivacky#include "SDNodeDbgValue.h"
17193323Sed#include "llvm/Constants.h"
18208599Srdivacky#include "llvm/Analysis/DebugInfo.h"
19193323Sed#include "llvm/Analysis/ValueTracking.h"
20198090Srdivacky#include "llvm/Function.h"
21193323Sed#include "llvm/GlobalAlias.h"
22193323Sed#include "llvm/GlobalVariable.h"
23193323Sed#include "llvm/Intrinsics.h"
24193323Sed#include "llvm/DerivedTypes.h"
25193323Sed#include "llvm/Assembly/Writer.h"
26193323Sed#include "llvm/CallingConv.h"
27193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
28193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
29193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
30193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
31193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
32193323Sed#include "llvm/Target/TargetRegisterInfo.h"
33193323Sed#include "llvm/Target/TargetData.h"
34200581Srdivacky#include "llvm/Target/TargetFrameInfo.h"
35193323Sed#include "llvm/Target/TargetLowering.h"
36208599Srdivacky#include "llvm/Target/TargetSelectionDAGInfo.h"
37193323Sed#include "llvm/Target/TargetOptions.h"
38193323Sed#include "llvm/Target/TargetInstrInfo.h"
39198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
40193323Sed#include "llvm/Target/TargetMachine.h"
41193323Sed#include "llvm/Support/CommandLine.h"
42202375Srdivacky#include "llvm/Support/Debug.h"
43198090Srdivacky#include "llvm/Support/ErrorHandling.h"
44195098Sed#include "llvm/Support/ManagedStatic.h"
45193323Sed#include "llvm/Support/MathExtras.h"
46193323Sed#include "llvm/Support/raw_ostream.h"
47195098Sed#include "llvm/System/Mutex.h"
48193323Sed#include "llvm/ADT/SetVector.h"
49193323Sed#include "llvm/ADT/SmallPtrSet.h"
50193323Sed#include "llvm/ADT/SmallSet.h"
51193323Sed#include "llvm/ADT/SmallVector.h"
52193323Sed#include "llvm/ADT/StringExtras.h"
53193323Sed#include <algorithm>
54193323Sed#include <cmath>
55193323Sedusing namespace llvm;
56193323Sed
57193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
58193323Sed/// specified members.
59198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60193323Sed  SDVTList Res = {VTs, NumVTs};
61193323Sed  return Res;
62193323Sed}
63193323Sed
64198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
66198090Srdivacky  default: llvm_unreachable("Unknown FP format");
67193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
68193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
69193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
70193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
71193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72193323Sed  }
73193323Sed}
74193323Sed
75193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76193323Sed
77193323Sed//===----------------------------------------------------------------------===//
78193323Sed//                              ConstantFPSDNode Class
79193323Sed//===----------------------------------------------------------------------===//
80193323Sed
81193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
82193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
84193323Sed/// two floating point values.
85193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86193323Sed  return getValueAPF().bitwiseIsEqual(V);
87193323Sed}
88193323Sed
89198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
90193323Sed                                           const APFloat& Val) {
91193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92193323Sed
93193323Sed  // PPC long double cannot be converted to any other type.
94193323Sed  if (VT == MVT::ppcf128 ||
95193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96193323Sed    return false;
97193323Sed
98193323Sed  // convert modifies in place, so make a copy.
99193323Sed  APFloat Val2 = APFloat(Val);
100193323Sed  bool losesInfo;
101198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102193323Sed                      &losesInfo);
103193323Sed  return !losesInfo;
104193323Sed}
105193323Sed
106193323Sed//===----------------------------------------------------------------------===//
107193323Sed//                              ISD Namespace
108193323Sed//===----------------------------------------------------------------------===//
109193323Sed
110193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
111193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
112193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
113193323Sed  // Look through a bit convert.
114193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
115193323Sed    N = N->getOperand(0).getNode();
116193323Sed
117193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118193323Sed
119193323Sed  unsigned i = 0, e = N->getNumOperands();
120193323Sed
121193323Sed  // Skip over all of the undef values.
122193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123193323Sed    ++i;
124193323Sed
125193323Sed  // Do not accept an all-undef vector.
126193323Sed  if (i == e) return false;
127193323Sed
128193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
129193323Sed  // elements.
130193323Sed  SDValue NotZero = N->getOperand(i);
131193323Sed  if (isa<ConstantSDNode>(NotZero)) {
132193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133193323Sed      return false;
134193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
135193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136193323Sed                bitcastToAPInt().isAllOnesValue())
137193323Sed      return false;
138193323Sed  } else
139193323Sed    return false;
140193323Sed
141193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
142193323Sed  // undefs.
143193323Sed  for (++i; i != e; ++i)
144193323Sed    if (N->getOperand(i) != NotZero &&
145193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
146193323Sed      return false;
147193323Sed  return true;
148193323Sed}
149193323Sed
150193323Sed
151193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
152193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
153193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
154193323Sed  // Look through a bit convert.
155193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
156193323Sed    N = N->getOperand(0).getNode();
157193323Sed
158193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159193323Sed
160193323Sed  unsigned i = 0, e = N->getNumOperands();
161193323Sed
162193323Sed  // Skip over all of the undef values.
163193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164193323Sed    ++i;
165193323Sed
166193323Sed  // Do not accept an all-undef vector.
167193323Sed  if (i == e) return false;
168193323Sed
169193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
170193323Sed  // elements.
171193323Sed  SDValue Zero = N->getOperand(i);
172193323Sed  if (isa<ConstantSDNode>(Zero)) {
173193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174193323Sed      return false;
175193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
176193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177193323Sed      return false;
178193323Sed  } else
179193323Sed    return false;
180193323Sed
181193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
182193323Sed  // undefs.
183193323Sed  for (++i; i != e; ++i)
184193323Sed    if (N->getOperand(i) != Zero &&
185193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
186193323Sed      return false;
187193323Sed  return true;
188193323Sed}
189193323Sed
190193323Sed/// isScalarToVector - Return true if the specified node is a
191193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192193323Sed/// element is not an undef.
193193323Sedbool ISD::isScalarToVector(const SDNode *N) {
194193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195193323Sed    return true;
196193323Sed
197193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
198193323Sed    return false;
199193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200193323Sed    return false;
201193323Sed  unsigned NumElems = N->getNumOperands();
202193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
203193323Sed    SDValue V = N->getOperand(i);
204193323Sed    if (V.getOpcode() != ISD::UNDEF)
205193323Sed      return false;
206193323Sed  }
207193323Sed  return true;
208193323Sed}
209193323Sed
210193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211193323Sed/// when given the operation for (X op Y).
212193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213193323Sed  // To perform this operation, we just need to swap the L and G bits of the
214193323Sed  // operation.
215193323Sed  unsigned OldL = (Operation >> 2) & 1;
216193323Sed  unsigned OldG = (Operation >> 1) & 1;
217193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218193323Sed                       (OldL << 1) |       // New G bit
219193323Sed                       (OldG << 2));       // New L bit.
220193323Sed}
221193323Sed
222193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223193323Sed/// 'op' is a valid SetCC operation.
224193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225193323Sed  unsigned Operation = Op;
226193323Sed  if (isInteger)
227193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
228193323Sed  else
229193323Sed    Operation ^= 15;  // Flip all of the condition bits.
230193323Sed
231193323Sed  if (Operation > ISD::SETTRUE2)
232193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
233193323Sed
234193323Sed  return ISD::CondCode(Operation);
235193323Sed}
236193323Sed
237193323Sed
238193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
241193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
242193323Sed  switch (Opcode) {
243198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
244193323Sed  case ISD::SETEQ:
245193323Sed  case ISD::SETNE: return 0;
246193323Sed  case ISD::SETLT:
247193323Sed  case ISD::SETLE:
248193323Sed  case ISD::SETGT:
249193323Sed  case ISD::SETGE: return 1;
250193323Sed  case ISD::SETULT:
251193323Sed  case ISD::SETULE:
252193323Sed  case ISD::SETUGT:
253193323Sed  case ISD::SETUGE: return 2;
254193323Sed  }
255193323Sed}
256193323Sed
257193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
258193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
260193323Sed/// comparison.
261193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262193323Sed                                       bool isInteger) {
263193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265193323Sed    return ISD::SETCC_INVALID;
266193323Sed
267193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268193323Sed
269193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
270193323Sed  // care about orderedness, and is true when ordered.
271193323Sed  if (Op > ISD::SETTRUE2)
272193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
273193323Sed
274193323Sed  // Canonicalize illegal integer setcc's.
275193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276193323Sed    Op = ISD::SETNE;
277193323Sed
278193323Sed  return ISD::CondCode(Op);
279193323Sed}
280193323Sed
281193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
282193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283193323Sed/// function returns zero if it is not possible to represent the resultant
284193323Sed/// comparison.
285193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286193323Sed                                        bool isInteger) {
287193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
289193323Sed    return ISD::SETCC_INVALID;
290193323Sed
291193323Sed  // Combine all of the condition bits.
292193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293193323Sed
294193323Sed  // Canonicalize illegal integer setcc's.
295193323Sed  if (isInteger) {
296193323Sed    switch (Result) {
297193323Sed    default: break;
298193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303193323Sed    }
304193323Sed  }
305193323Sed
306193323Sed  return Result;
307193323Sed}
308193323Sed
309193323Sed//===----------------------------------------------------------------------===//
310193323Sed//                           SDNode Profile Support
311193323Sed//===----------------------------------------------------------------------===//
312193323Sed
313193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314193323Sed///
315193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316193323Sed  ID.AddInteger(OpC);
317193323Sed}
318193323Sed
319193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320193323Sed/// solely with their pointer.
321193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322193323Sed  ID.AddPointer(VTList.VTs);
323193323Sed}
324193323Sed
325193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326193323Sed///
327193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
328193323Sed                              const SDValue *Ops, unsigned NumOps) {
329193323Sed  for (; NumOps; --NumOps, ++Ops) {
330193323Sed    ID.AddPointer(Ops->getNode());
331193323Sed    ID.AddInteger(Ops->getResNo());
332193323Sed  }
333193323Sed}
334193323Sed
335193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336193323Sed///
337193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
338193323Sed                              const SDUse *Ops, unsigned NumOps) {
339193323Sed  for (; NumOps; --NumOps, ++Ops) {
340193323Sed    ID.AddPointer(Ops->getNode());
341193323Sed    ID.AddInteger(Ops->getResNo());
342193323Sed  }
343193323Sed}
344193323Sed
345193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
346193323Sed                          unsigned short OpC, SDVTList VTList,
347193323Sed                          const SDValue *OpList, unsigned N) {
348193323Sed  AddNodeIDOpcode(ID, OpC);
349193323Sed  AddNodeIDValueTypes(ID, VTList);
350193323Sed  AddNodeIDOperands(ID, OpList, N);
351193323Sed}
352193323Sed
353193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354193323Sed/// the NodeID data.
355193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356193323Sed  switch (N->getOpcode()) {
357195098Sed  case ISD::TargetExternalSymbol:
358195098Sed  case ISD::ExternalSymbol:
359198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
360193323Sed  default: break;  // Normal nodes don't need extra info.
361193323Sed  case ISD::TargetConstant:
362193323Sed  case ISD::Constant:
363193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364193323Sed    break;
365193323Sed  case ISD::TargetConstantFP:
366193323Sed  case ISD::ConstantFP: {
367193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368193323Sed    break;
369193323Sed  }
370193323Sed  case ISD::TargetGlobalAddress:
371193323Sed  case ISD::GlobalAddress:
372193323Sed  case ISD::TargetGlobalTLSAddress:
373193323Sed  case ISD::GlobalTLSAddress: {
374193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375193323Sed    ID.AddPointer(GA->getGlobal());
376193323Sed    ID.AddInteger(GA->getOffset());
377195098Sed    ID.AddInteger(GA->getTargetFlags());
378193323Sed    break;
379193323Sed  }
380193323Sed  case ISD::BasicBlock:
381193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382193323Sed    break;
383193323Sed  case ISD::Register:
384193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385193323Sed    break;
386199989Srdivacky
387193323Sed  case ISD::SRCVALUE:
388193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389193323Sed    break;
390193323Sed  case ISD::FrameIndex:
391193323Sed  case ISD::TargetFrameIndex:
392193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393193323Sed    break;
394193323Sed  case ISD::JumpTable:
395193323Sed  case ISD::TargetJumpTable:
396193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398193323Sed    break;
399193323Sed  case ISD::ConstantPool:
400193323Sed  case ISD::TargetConstantPool: {
401193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402193323Sed    ID.AddInteger(CP->getAlignment());
403193323Sed    ID.AddInteger(CP->getOffset());
404193323Sed    if (CP->isMachineConstantPoolEntry())
405193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406193323Sed    else
407193323Sed      ID.AddPointer(CP->getConstVal());
408195098Sed    ID.AddInteger(CP->getTargetFlags());
409193323Sed    break;
410193323Sed  }
411193323Sed  case ISD::LOAD: {
412193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
413193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
414193323Sed    ID.AddInteger(LD->getRawSubclassData());
415193323Sed    break;
416193323Sed  }
417193323Sed  case ISD::STORE: {
418193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
419193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
420193323Sed    ID.AddInteger(ST->getRawSubclassData());
421193323Sed    break;
422193323Sed  }
423193323Sed  case ISD::ATOMIC_CMP_SWAP:
424193323Sed  case ISD::ATOMIC_SWAP:
425193323Sed  case ISD::ATOMIC_LOAD_ADD:
426193323Sed  case ISD::ATOMIC_LOAD_SUB:
427193323Sed  case ISD::ATOMIC_LOAD_AND:
428193323Sed  case ISD::ATOMIC_LOAD_OR:
429193323Sed  case ISD::ATOMIC_LOAD_XOR:
430193323Sed  case ISD::ATOMIC_LOAD_NAND:
431193323Sed  case ISD::ATOMIC_LOAD_MIN:
432193323Sed  case ISD::ATOMIC_LOAD_MAX:
433193323Sed  case ISD::ATOMIC_LOAD_UMIN:
434193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
435193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
437193323Sed    ID.AddInteger(AT->getRawSubclassData());
438193323Sed    break;
439193323Sed  }
440193323Sed  case ISD::VECTOR_SHUFFLE: {
441193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443193323Sed         i != e; ++i)
444193323Sed      ID.AddInteger(SVN->getMaskElt(i));
445193323Sed    break;
446193323Sed  }
447198892Srdivacky  case ISD::TargetBlockAddress:
448198892Srdivacky  case ISD::BlockAddress: {
449199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451198892Srdivacky    break;
452198892Srdivacky  }
453193323Sed  } // end switch (N->getOpcode())
454193323Sed}
455193323Sed
456193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457193323Sed/// data.
458193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
460193323Sed  // Add the return value info.
461193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
462193323Sed  // Add the operand info.
463193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464193323Sed
465193323Sed  // Handle SDNode leafs with special info.
466193323Sed  AddNodeIDCustom(ID, N);
467193323Sed}
468193323Sed
469193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470204642Srdivacky/// the CSE map that carries volatility, temporalness, indexing mode, and
471193323Sed/// extension/truncation information.
472193323Sed///
473193323Sedstatic inline unsigned
474204642SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475204642Srdivacky                     bool isNonTemporal) {
476193323Sed  assert((ConvType & 3) == ConvType &&
477193323Sed         "ConvType may not require more than 2 bits!");
478193323Sed  assert((AM & 7) == AM &&
479193323Sed         "AM may not require more than 3 bits!");
480193323Sed  return ConvType |
481193323Sed         (AM << 2) |
482204642Srdivacky         (isVolatile << 5) |
483204642Srdivacky         (isNonTemporal << 6);
484193323Sed}
485193323Sed
486193323Sed//===----------------------------------------------------------------------===//
487193323Sed//                              SelectionDAG Class
488193323Sed//===----------------------------------------------------------------------===//
489193323Sed
490193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
491193323Sedstatic bool doNotCSE(SDNode *N) {
492193323Sed  if (N->getValueType(0) == MVT::Flag)
493193323Sed    return true; // Never CSE anything that produces a flag.
494193323Sed
495193323Sed  switch (N->getOpcode()) {
496193323Sed  default: break;
497193323Sed  case ISD::HANDLENODE:
498193323Sed  case ISD::EH_LABEL:
499193323Sed    return true;   // Never CSE these nodes.
500193323Sed  }
501193323Sed
502193323Sed  // Check that remaining values produced are not flags.
503193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504193323Sed    if (N->getValueType(i) == MVT::Flag)
505193323Sed      return true; // Never CSE anything that produces a flag.
506193323Sed
507193323Sed  return false;
508193323Sed}
509193323Sed
510193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511193323Sed/// SelectionDAG.
512193323Sedvoid SelectionDAG::RemoveDeadNodes() {
513193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
514193323Sed  // to the root node, preventing it from being deleted.
515193323Sed  HandleSDNode Dummy(getRoot());
516193323Sed
517193323Sed  SmallVector<SDNode*, 128> DeadNodes;
518193323Sed
519193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
520193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521193323Sed    if (I->use_empty())
522193323Sed      DeadNodes.push_back(I);
523193323Sed
524193323Sed  RemoveDeadNodes(DeadNodes);
525193323Sed
526193323Sed  // If the root changed (e.g. it was a dead load, update the root).
527193323Sed  setRoot(Dummy.getValue());
528193323Sed}
529193323Sed
530193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531193323Sed/// given list, and any nodes that become unreachable as a result.
532193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533193323Sed                                   DAGUpdateListener *UpdateListener) {
534193323Sed
535193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
536193323Sed  // worklist.
537193323Sed  while (!DeadNodes.empty()) {
538193323Sed    SDNode *N = DeadNodes.pop_back_val();
539193323Sed
540193323Sed    if (UpdateListener)
541193323Sed      UpdateListener->NodeDeleted(N, 0);
542193323Sed
543193323Sed    // Take the node out of the appropriate CSE map.
544193323Sed    RemoveNodeFromCSEMaps(N);
545193323Sed
546193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
547193323Sed    // no cycles in the graph.
548193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549193323Sed      SDUse &Use = *I++;
550193323Sed      SDNode *Operand = Use.getNode();
551193323Sed      Use.set(SDValue());
552193323Sed
553193323Sed      // Now that we removed this operand, see if there are no uses of it left.
554193323Sed      if (Operand->use_empty())
555193323Sed        DeadNodes.push_back(Operand);
556193323Sed    }
557193323Sed
558193323Sed    DeallocateNode(N);
559193323Sed  }
560193323Sed}
561193323Sed
562193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
564193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
565193323Sed}
566193323Sed
567193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
568193323Sed  // First take this out of the appropriate CSE map.
569193323Sed  RemoveNodeFromCSEMaps(N);
570193323Sed
571193323Sed  // Finally, remove uses due to operands of this node, remove from the
572193323Sed  // AllNodes list, and delete the node.
573193323Sed  DeleteNodeNotInCSEMaps(N);
574193323Sed}
575193323Sed
576193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579193323Sed
580193323Sed  // Drop all of the operands and decrement used node's use counts.
581193323Sed  N->DropOperands();
582193323Sed
583193323Sed  DeallocateNode(N);
584193323Sed}
585193323Sed
586193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
587193323Sed  if (N->OperandsNeedDelete)
588193323Sed    delete[] N->OperandList;
589193323Sed
590193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
591193323Sed  // memory is reallocated.
592193323Sed  N->NodeType = ISD::DELETED_NODE;
593193323Sed
594193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
595200581Srdivacky
596200581Srdivacky  // Remove the ordering of this node.
597202878Srdivacky  Ordering->remove(N);
598205218Srdivacky
599206083Srdivacky  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600206083Srdivacky  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601206083Srdivacky  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602206083Srdivacky    DbgVals[i]->setIsInvalidated();
603193323Sed}
604193323Sed
605193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
607193323Sed/// the node.  We don't want future request for structurally identical nodes
608193323Sed/// to return N anymore.
609193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610193323Sed  bool Erased = false;
611193323Sed  switch (N->getOpcode()) {
612193323Sed  case ISD::EntryToken:
613198090Srdivacky    llvm_unreachable("EntryToken should not be in CSEMaps!");
614193323Sed    return false;
615193323Sed  case ISD::HANDLENODE: return false;  // noop.
616193323Sed  case ISD::CONDCODE:
617193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618193323Sed           "Cond code doesn't exist!");
619193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621193323Sed    break;
622193323Sed  case ISD::ExternalSymbol:
623193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624193323Sed    break;
625195098Sed  case ISD::TargetExternalSymbol: {
626195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627195098Sed    Erased = TargetExternalSymbols.erase(
628195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629195098Sed                                                    ESN->getTargetFlags()));
630193323Sed    break;
631195098Sed  }
632193323Sed  case ISD::VALUETYPE: {
633198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
634193323Sed    if (VT.isExtended()) {
635193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
636193323Sed    } else {
637198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639193323Sed    }
640193323Sed    break;
641193323Sed  }
642193323Sed  default:
643193323Sed    // Remove it from the CSE Map.
644193323Sed    Erased = CSEMap.RemoveNode(N);
645193323Sed    break;
646193323Sed  }
647193323Sed#ifndef NDEBUG
648193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
649193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
650193323Sed  // not subject to CSE.
651193323Sed  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
653193323Sed    N->dump(this);
654202375Srdivacky    dbgs() << "\n";
655198090Srdivacky    llvm_unreachable("Node is not in map!");
656193323Sed  }
657193323Sed#endif
658193323Sed  return Erased;
659193323Sed}
660193323Sed
661193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
663193323Sed/// node already exists, in which case transfer all its users to the existing
664193323Sed/// node. This transfer can potentially trigger recursive merging.
665193323Sed///
666193323Sedvoid
667193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668193323Sed                                       DAGUpdateListener *UpdateListener) {
669193323Sed  // For node types that aren't CSE'd, just act as if no identical node
670193323Sed  // already exists.
671193323Sed  if (!doNotCSE(N)) {
672193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673193323Sed    if (Existing != N) {
674193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
675193323Sed      // to replace the dead one with the existing one.  This can cause
676193323Sed      // recursive merging of other unrelated nodes down the line.
677193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
678193323Sed
679193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
680193323Sed      if (UpdateListener)
681193323Sed        UpdateListener->NodeDeleted(N, Existing);
682193323Sed      DeleteNodeNotInCSEMaps(N);
683193323Sed      return;
684193323Sed    }
685193323Sed  }
686193323Sed
687193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
688193323Sed  // it exists.
689193323Sed  if (UpdateListener)
690193323Sed    UpdateListener->NodeUpdated(N);
691193323Sed}
692193323Sed
693193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694193323Sed/// were replaced with those specified.  If this node is never memoized,
695193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
696193323Sed/// node already exists with these operands, the slot will be non-null.
697193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698193323Sed                                           void *&InsertPos) {
699193323Sed  if (doNotCSE(N))
700193323Sed    return 0;
701193323Sed
702193323Sed  SDValue Ops[] = { Op };
703193323Sed  FoldingSetNodeID ID;
704193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705193323Sed  AddNodeIDCustom(ID, N);
706200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707200581Srdivacky  return Node;
708193323Sed}
709193323Sed
710193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711193323Sed/// were replaced with those specified.  If this node is never memoized,
712193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
713193323Sed/// node already exists with these operands, the slot will be non-null.
714193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715193323Sed                                           SDValue Op1, SDValue Op2,
716193323Sed                                           void *&InsertPos) {
717193323Sed  if (doNotCSE(N))
718193323Sed    return 0;
719193323Sed
720193323Sed  SDValue Ops[] = { Op1, Op2 };
721193323Sed  FoldingSetNodeID ID;
722193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723193323Sed  AddNodeIDCustom(ID, N);
724200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725200581Srdivacky  return Node;
726193323Sed}
727193323Sed
728193323Sed
729193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730193323Sed/// were replaced with those specified.  If this node is never memoized,
731193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
732193323Sed/// node already exists with these operands, the slot will be non-null.
733193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734193323Sed                                           const SDValue *Ops,unsigned NumOps,
735193323Sed                                           void *&InsertPos) {
736193323Sed  if (doNotCSE(N))
737193323Sed    return 0;
738193323Sed
739193323Sed  FoldingSetNodeID ID;
740193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741193323Sed  AddNodeIDCustom(ID, N);
742200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743200581Srdivacky  return Node;
744193323Sed}
745193323Sed
746193323Sed/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747193323Sedvoid SelectionDAG::VerifyNode(SDNode *N) {
748193323Sed  switch (N->getOpcode()) {
749193323Sed  default:
750193323Sed    break;
751193323Sed  case ISD::BUILD_PAIR: {
752198090Srdivacky    EVT VT = N->getValueType(0);
753193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
754193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755193323Sed           "Wrong return type!");
756193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758193323Sed           "Mismatched operand types!");
759193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760193323Sed           "Wrong operand type!");
761193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762193323Sed           "Wrong return type size");
763193323Sed    break;
764193323Sed  }
765193323Sed  case ISD::BUILD_VECTOR: {
766193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
767193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
768193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769193323Sed           "Wrong number of operands!");
770198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
771193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772193323Sed      assert((I->getValueType() == EltVT ||
773193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
774193323Sed              EltVT.bitsLE(I->getValueType()))) &&
775193323Sed            "Wrong operand type!");
776193323Sed    break;
777193323Sed  }
778193323Sed  }
779193323Sed}
780193323Sed
781198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
782193323Sed/// given type.
783193323Sed///
784198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785193323Sed  const Type *Ty = VT == MVT::iPTR ?
786198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787198090Srdivacky                   VT.getTypeForEVT(*getContext());
788193323Sed
789193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
790193323Sed}
791193323Sed
792193323Sed// EntryNode could meaningfully have debug info if we can find it...
793207618SrdivackySelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
794208599Srdivacky  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795208599Srdivacky    FLI(fli),
796206124Srdivacky    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
797200581Srdivacky    Root(getEntryNode()), Ordering(0) {
798193323Sed  AllNodes.push_back(&EntryNode);
799202878Srdivacky  Ordering = new SDNodeOrdering();
800205218Srdivacky  DbgInfo = new SDDbgInfo();
801193323Sed}
802193323Sed
803206274Srdivackyvoid SelectionDAG::init(MachineFunction &mf) {
804193323Sed  MF = &mf;
805198090Srdivacky  Context = &mf.getFunction()->getContext();
806193323Sed}
807193323Sed
808193323SedSelectionDAG::~SelectionDAG() {
809193323Sed  allnodes_clear();
810200581Srdivacky  delete Ordering;
811206083Srdivacky  DbgInfo->clear();
812205218Srdivacky  delete DbgInfo;
813193323Sed}
814193323Sed
815193323Sedvoid SelectionDAG::allnodes_clear() {
816193323Sed  assert(&*AllNodes.begin() == &EntryNode);
817193323Sed  AllNodes.remove(AllNodes.begin());
818193323Sed  while (!AllNodes.empty())
819193323Sed    DeallocateNode(AllNodes.begin());
820193323Sed}
821193323Sed
822193323Sedvoid SelectionDAG::clear() {
823193323Sed  allnodes_clear();
824193323Sed  OperandAllocator.Reset();
825193323Sed  CSEMap.clear();
826193323Sed
827193323Sed  ExtendedValueTypeNodes.clear();
828193323Sed  ExternalSymbols.clear();
829193323Sed  TargetExternalSymbols.clear();
830193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831193323Sed            static_cast<CondCodeSDNode*>(0));
832193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833193323Sed            static_cast<SDNode*>(0));
834193323Sed
835193323Sed  EntryNode.UseList = 0;
836193323Sed  AllNodes.push_back(&EntryNode);
837193323Sed  Root = getEntryNode();
838203954Srdivacky  delete Ordering;
839202878Srdivacky  Ordering = new SDNodeOrdering();
840206083Srdivacky  DbgInfo->clear();
841205218Srdivacky  delete DbgInfo;
842205218Srdivacky  DbgInfo = new SDDbgInfo();
843193323Sed}
844193323Sed
845198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
846198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
847198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
848198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
849198090Srdivacky}
850198090Srdivacky
851198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
852198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
853198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
854198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
855198090Srdivacky}
856198090Srdivacky
857198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
858200581Srdivacky  assert(!VT.isVector() &&
859200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
860200581Srdivacky         "the vector type!");
861193323Sed  if (Op.getValueType() == VT) return Op;
862200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
863200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
864193323Sed                                   VT.getSizeInBits());
865193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
866193323Sed                 getConstant(Imm, Op.getValueType()));
867193323Sed}
868193323Sed
869193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
870193323Sed///
871198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
872204642Srdivacky  EVT EltVT = VT.getScalarType();
873193323Sed  SDValue NegOne =
874193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
875193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
876193323Sed}
877193323Sed
878198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
879204642Srdivacky  EVT EltVT = VT.getScalarType();
880193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
881193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
882193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
883193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
884193323Sed}
885193323Sed
886198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
887198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
888193323Sed}
889193323Sed
890198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
891193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
892193323Sed
893204642Srdivacky  EVT EltVT = VT.getScalarType();
894193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
895193323Sed         "APInt size does not match type size!");
896193323Sed
897193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
898193323Sed  FoldingSetNodeID ID;
899193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
900193323Sed  ID.AddPointer(&Val);
901193323Sed  void *IP = 0;
902193323Sed  SDNode *N = NULL;
903201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
904193323Sed    if (!VT.isVector())
905193323Sed      return SDValue(N, 0);
906201360Srdivacky
907193323Sed  if (!N) {
908205407Srdivacky    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
909193323Sed    CSEMap.InsertNode(N, IP);
910193323Sed    AllNodes.push_back(N);
911193323Sed  }
912193323Sed
913193323Sed  SDValue Result(N, 0);
914193323Sed  if (VT.isVector()) {
915193323Sed    SmallVector<SDValue, 8> Ops;
916193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
917206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
918193323Sed  }
919193323Sed  return Result;
920193323Sed}
921193323Sed
922193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
923193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
924193323Sed}
925193323Sed
926193323Sed
927198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
928198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
929193323Sed}
930193323Sed
931198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
932193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
933193323Sed
934204642Srdivacky  EVT EltVT = VT.getScalarType();
935193323Sed
936193323Sed  // Do the map lookup using the actual bit pattern for the floating point
937193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
938193323Sed  // we don't have issues with SNANs.
939193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
940193323Sed  FoldingSetNodeID ID;
941193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
942193323Sed  ID.AddPointer(&V);
943193323Sed  void *IP = 0;
944193323Sed  SDNode *N = NULL;
945201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
946193323Sed    if (!VT.isVector())
947193323Sed      return SDValue(N, 0);
948201360Srdivacky
949193323Sed  if (!N) {
950205407Srdivacky    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
951193323Sed    CSEMap.InsertNode(N, IP);
952193323Sed    AllNodes.push_back(N);
953193323Sed  }
954193323Sed
955193323Sed  SDValue Result(N, 0);
956193323Sed  if (VT.isVector()) {
957193323Sed    SmallVector<SDValue, 8> Ops;
958193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
959193323Sed    // FIXME DebugLoc info might be appropriate here
960206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
961193323Sed  }
962193323Sed  return Result;
963193323Sed}
964193323Sed
965198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
966204642Srdivacky  EVT EltVT = VT.getScalarType();
967193323Sed  if (EltVT==MVT::f32)
968193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
969208599Srdivacky  else if (EltVT==MVT::f64)
970193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
971208599Srdivacky  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
972208599Srdivacky    bool ignored;
973208599Srdivacky    APFloat apf = APFloat(Val);
974208599Srdivacky    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
975208599Srdivacky                &ignored);
976208599Srdivacky    return getConstantFP(apf, VT, isTarget);
977208599Srdivacky  } else {
978208599Srdivacky    assert(0 && "Unsupported type in getConstantFP");
979208599Srdivacky    return SDValue();
980208599Srdivacky  }
981193323Sed}
982193323Sed
983193323SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
984198090Srdivacky                                       EVT VT, int64_t Offset,
985195098Sed                                       bool isTargetGA,
986195098Sed                                       unsigned char TargetFlags) {
987195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
988195098Sed         "Cannot set target flags on target-independent globals");
989198090Srdivacky
990193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
991198090Srdivacky  EVT PTy = TLI.getPointerTy();
992198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
993193323Sed  if (BitWidth < 64)
994193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
995193323Sed
996193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
997193323Sed  if (!GVar) {
998193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
999193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1000193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1001193323Sed  }
1002193323Sed
1003195098Sed  unsigned Opc;
1004193323Sed  if (GVar && GVar->isThreadLocal())
1005193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1006193323Sed  else
1007193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1008193323Sed
1009193323Sed  FoldingSetNodeID ID;
1010193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011193323Sed  ID.AddPointer(GV);
1012193323Sed  ID.AddInteger(Offset);
1013195098Sed  ID.AddInteger(TargetFlags);
1014193323Sed  void *IP = 0;
1015201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1016193323Sed    return SDValue(E, 0);
1017201360Srdivacky
1018205407Srdivacky  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1019205407Srdivacky                                                      Offset, TargetFlags);
1020193323Sed  CSEMap.InsertNode(N, IP);
1021193323Sed  AllNodes.push_back(N);
1022193323Sed  return SDValue(N, 0);
1023193323Sed}
1024193323Sed
1025198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1026193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1027193323Sed  FoldingSetNodeID ID;
1028193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029193323Sed  ID.AddInteger(FI);
1030193323Sed  void *IP = 0;
1031201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032193323Sed    return SDValue(E, 0);
1033201360Srdivacky
1034205407Srdivacky  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1035193323Sed  CSEMap.InsertNode(N, IP);
1036193323Sed  AllNodes.push_back(N);
1037193323Sed  return SDValue(N, 0);
1038193323Sed}
1039193323Sed
1040198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1041195098Sed                                   unsigned char TargetFlags) {
1042195098Sed  assert((TargetFlags == 0 || isTarget) &&
1043195098Sed         "Cannot set target flags on target-independent jump tables");
1044193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1045193323Sed  FoldingSetNodeID ID;
1046193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1047193323Sed  ID.AddInteger(JTI);
1048195098Sed  ID.AddInteger(TargetFlags);
1049193323Sed  void *IP = 0;
1050201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051193323Sed    return SDValue(E, 0);
1052201360Srdivacky
1053205407Srdivacky  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1054205407Srdivacky                                                  TargetFlags);
1055193323Sed  CSEMap.InsertNode(N, IP);
1056193323Sed  AllNodes.push_back(N);
1057193323Sed  return SDValue(N, 0);
1058193323Sed}
1059193323Sed
1060207618SrdivackySDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1061193323Sed                                      unsigned Alignment, int Offset,
1062198090Srdivacky                                      bool isTarget,
1063195098Sed                                      unsigned char TargetFlags) {
1064195098Sed  assert((TargetFlags == 0 || isTarget) &&
1065195098Sed         "Cannot set target flags on target-independent globals");
1066193323Sed  if (Alignment == 0)
1067193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1068193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1069193323Sed  FoldingSetNodeID ID;
1070193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1071193323Sed  ID.AddInteger(Alignment);
1072193323Sed  ID.AddInteger(Offset);
1073193323Sed  ID.AddPointer(C);
1074195098Sed  ID.AddInteger(TargetFlags);
1075193323Sed  void *IP = 0;
1076201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077193323Sed    return SDValue(E, 0);
1078201360Srdivacky
1079205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1080205407Srdivacky                                                     Alignment, TargetFlags);
1081193323Sed  CSEMap.InsertNode(N, IP);
1082193323Sed  AllNodes.push_back(N);
1083193323Sed  return SDValue(N, 0);
1084193323Sed}
1085193323Sed
1086193323Sed
1087198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1088193323Sed                                      unsigned Alignment, int Offset,
1089195098Sed                                      bool isTarget,
1090195098Sed                                      unsigned char TargetFlags) {
1091195098Sed  assert((TargetFlags == 0 || isTarget) &&
1092195098Sed         "Cannot set target flags on target-independent globals");
1093193323Sed  if (Alignment == 0)
1094193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1095193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1096193323Sed  FoldingSetNodeID ID;
1097193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1098193323Sed  ID.AddInteger(Alignment);
1099193323Sed  ID.AddInteger(Offset);
1100193323Sed  C->AddSelectionDAGCSEId(ID);
1101195098Sed  ID.AddInteger(TargetFlags);
1102193323Sed  void *IP = 0;
1103201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1104193323Sed    return SDValue(E, 0);
1105201360Srdivacky
1106205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1107205407Srdivacky                                                     Alignment, TargetFlags);
1108193323Sed  CSEMap.InsertNode(N, IP);
1109193323Sed  AllNodes.push_back(N);
1110193323Sed  return SDValue(N, 0);
1111193323Sed}
1112193323Sed
1113193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1114193323Sed  FoldingSetNodeID ID;
1115193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1116193323Sed  ID.AddPointer(MBB);
1117193323Sed  void *IP = 0;
1118201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1119193323Sed    return SDValue(E, 0);
1120201360Srdivacky
1121205407Srdivacky  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1122193323Sed  CSEMap.InsertNode(N, IP);
1123193323Sed  AllNodes.push_back(N);
1124193323Sed  return SDValue(N, 0);
1125193323Sed}
1126193323Sed
1127198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1128198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1129198090Srdivacky      ValueTypeNodes.size())
1130198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1131193323Sed
1132193323Sed  SDNode *&N = VT.isExtended() ?
1133198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1134193323Sed
1135193323Sed  if (N) return SDValue(N, 0);
1136205407Srdivacky  N = new (NodeAllocator) VTSDNode(VT);
1137193323Sed  AllNodes.push_back(N);
1138193323Sed  return SDValue(N, 0);
1139193323Sed}
1140193323Sed
1141198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1142193323Sed  SDNode *&N = ExternalSymbols[Sym];
1143193323Sed  if (N) return SDValue(N, 0);
1144205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1145193323Sed  AllNodes.push_back(N);
1146193323Sed  return SDValue(N, 0);
1147193323Sed}
1148193323Sed
1149198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1150195098Sed                                              unsigned char TargetFlags) {
1151195098Sed  SDNode *&N =
1152195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1153195098Sed                                                               TargetFlags)];
1154193323Sed  if (N) return SDValue(N, 0);
1155205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1156193323Sed  AllNodes.push_back(N);
1157193323Sed  return SDValue(N, 0);
1158193323Sed}
1159193323Sed
1160193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1161193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1162193323Sed    CondCodeNodes.resize(Cond+1);
1163193323Sed
1164193323Sed  if (CondCodeNodes[Cond] == 0) {
1165205407Srdivacky    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1166193323Sed    CondCodeNodes[Cond] = N;
1167193323Sed    AllNodes.push_back(N);
1168193323Sed  }
1169201360Srdivacky
1170193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1171193323Sed}
1172193323Sed
1173193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1174193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1175193323Sed// N2 to point at N1.
1176193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1177193323Sed  std::swap(N1, N2);
1178193323Sed  int NElts = M.size();
1179193323Sed  for (int i = 0; i != NElts; ++i) {
1180193323Sed    if (M[i] >= NElts)
1181193323Sed      M[i] -= NElts;
1182193323Sed    else if (M[i] >= 0)
1183193323Sed      M[i] += NElts;
1184193323Sed  }
1185193323Sed}
1186193323Sed
1187198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1188193323Sed                                       SDValue N2, const int *Mask) {
1189193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1190198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1191193323Sed         "Vector Shuffle VTs must be a vectors");
1192193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1193193323Sed         && "Vector Shuffle VTs must have same element type");
1194193323Sed
1195193323Sed  // Canonicalize shuffle undef, undef -> undef
1196193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1197198090Srdivacky    return getUNDEF(VT);
1198193323Sed
1199198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1200193323Sed  // input to the shuffle.
1201193323Sed  unsigned NElts = VT.getVectorNumElements();
1202193323Sed  SmallVector<int, 8> MaskVec;
1203193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1204193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1205193323Sed    MaskVec.push_back(Mask[i]);
1206193323Sed  }
1207198090Srdivacky
1208193323Sed  // Canonicalize shuffle v, v -> v, undef
1209193323Sed  if (N1 == N2) {
1210193323Sed    N2 = getUNDEF(VT);
1211193323Sed    for (unsigned i = 0; i != NElts; ++i)
1212193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1213193323Sed  }
1214198090Srdivacky
1215193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1216193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1217193323Sed    commuteShuffle(N1, N2, MaskVec);
1218198090Srdivacky
1219193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1220193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1221193323Sed  bool AllLHS = true, AllRHS = true;
1222193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1223193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1224193323Sed    if (MaskVec[i] >= (int)NElts) {
1225193323Sed      if (N2Undef)
1226193323Sed        MaskVec[i] = -1;
1227193323Sed      else
1228193323Sed        AllLHS = false;
1229193323Sed    } else if (MaskVec[i] >= 0) {
1230193323Sed      AllRHS = false;
1231193323Sed    }
1232193323Sed  }
1233193323Sed  if (AllLHS && AllRHS)
1234193323Sed    return getUNDEF(VT);
1235193323Sed  if (AllLHS && !N2Undef)
1236193323Sed    N2 = getUNDEF(VT);
1237193323Sed  if (AllRHS) {
1238193323Sed    N1 = getUNDEF(VT);
1239193323Sed    commuteShuffle(N1, N2, MaskVec);
1240193323Sed  }
1241198090Srdivacky
1242193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1243193323Sed  bool AllUndef = true;
1244193323Sed  bool Identity = true;
1245193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1246193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1247193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1248193323Sed  }
1249198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1250193323Sed    return N1;
1251193323Sed  if (AllUndef)
1252193323Sed    return getUNDEF(VT);
1253193323Sed
1254193323Sed  FoldingSetNodeID ID;
1255193323Sed  SDValue Ops[2] = { N1, N2 };
1256193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1257193323Sed  for (unsigned i = 0; i != NElts; ++i)
1258193323Sed    ID.AddInteger(MaskVec[i]);
1259198090Srdivacky
1260193323Sed  void* IP = 0;
1261201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262193323Sed    return SDValue(E, 0);
1263198090Srdivacky
1264193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1265193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1266193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1267193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1268193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1269198090Srdivacky
1270205407Srdivacky  ShuffleVectorSDNode *N =
1271205407Srdivacky    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1272193323Sed  CSEMap.InsertNode(N, IP);
1273193323Sed  AllNodes.push_back(N);
1274193323Sed  return SDValue(N, 0);
1275193323Sed}
1276193323Sed
1277198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1278193323Sed                                       SDValue Val, SDValue DTy,
1279193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1280193323Sed                                       ISD::CvtCode Code) {
1281193323Sed  // If the src and dest types are the same and the conversion is between
1282193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1283193323Sed  if (DTy == STy &&
1284193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1285193323Sed    return Val;
1286193323Sed
1287193323Sed  FoldingSetNodeID ID;
1288199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1289199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1290193323Sed  void* IP = 0;
1291201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1292193323Sed    return SDValue(E, 0);
1293201360Srdivacky
1294205407Srdivacky  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1295205407Srdivacky                                                           Code);
1296193323Sed  CSEMap.InsertNode(N, IP);
1297193323Sed  AllNodes.push_back(N);
1298193323Sed  return SDValue(N, 0);
1299193323Sed}
1300193323Sed
1301198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1302193323Sed  FoldingSetNodeID ID;
1303193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1304193323Sed  ID.AddInteger(RegNo);
1305193323Sed  void *IP = 0;
1306201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1307193323Sed    return SDValue(E, 0);
1308201360Srdivacky
1309205407Srdivacky  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1310193323Sed  CSEMap.InsertNode(N, IP);
1311193323Sed  AllNodes.push_back(N);
1312193323Sed  return SDValue(N, 0);
1313193323Sed}
1314193323Sed
1315205218SrdivackySDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1316193323Sed  FoldingSetNodeID ID;
1317193323Sed  SDValue Ops[] = { Root };
1318205218Srdivacky  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1319205218Srdivacky  ID.AddPointer(Label);
1320193323Sed  void *IP = 0;
1321201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1322193323Sed    return SDValue(E, 0);
1323205218Srdivacky
1324205407Srdivacky  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1325193323Sed  CSEMap.InsertNode(N, IP);
1326193323Sed  AllNodes.push_back(N);
1327193323Sed  return SDValue(N, 0);
1328193323Sed}
1329193323Sed
1330205218Srdivacky
1331207618SrdivackySDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1332199989Srdivacky                                      bool isTarget,
1333199989Srdivacky                                      unsigned char TargetFlags) {
1334198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1335198892Srdivacky
1336198892Srdivacky  FoldingSetNodeID ID;
1337199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1338198892Srdivacky  ID.AddPointer(BA);
1339199989Srdivacky  ID.AddInteger(TargetFlags);
1340198892Srdivacky  void *IP = 0;
1341201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1342198892Srdivacky    return SDValue(E, 0);
1343201360Srdivacky
1344205407Srdivacky  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1345198892Srdivacky  CSEMap.InsertNode(N, IP);
1346198892Srdivacky  AllNodes.push_back(N);
1347198892Srdivacky  return SDValue(N, 0);
1348198892Srdivacky}
1349198892Srdivacky
1350193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1351204642Srdivacky  assert((!V || V->getType()->isPointerTy()) &&
1352193323Sed         "SrcValue is not a pointer?");
1353193323Sed
1354193323Sed  FoldingSetNodeID ID;
1355193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1356193323Sed  ID.AddPointer(V);
1357193323Sed
1358193323Sed  void *IP = 0;
1359201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1360193323Sed    return SDValue(E, 0);
1361193323Sed
1362205407Srdivacky  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1363193323Sed  CSEMap.InsertNode(N, IP);
1364193323Sed  AllNodes.push_back(N);
1365193323Sed  return SDValue(N, 0);
1366193323Sed}
1367193323Sed
1368207618Srdivacky/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1369207618SrdivackySDValue SelectionDAG::getMDNode(const MDNode *MD) {
1370207618Srdivacky  FoldingSetNodeID ID;
1371207618Srdivacky  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1372207618Srdivacky  ID.AddPointer(MD);
1373207618Srdivacky
1374207618Srdivacky  void *IP = 0;
1375207618Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376207618Srdivacky    return SDValue(E, 0);
1377207618Srdivacky
1378207618Srdivacky  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1379207618Srdivacky  CSEMap.InsertNode(N, IP);
1380207618Srdivacky  AllNodes.push_back(N);
1381207618Srdivacky  return SDValue(N, 0);
1382207618Srdivacky}
1383207618Srdivacky
1384207618Srdivacky
1385193323Sed/// getShiftAmountOperand - Return the specified value casted to
1386193323Sed/// the target's desired shift amount type.
1387193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1388198090Srdivacky  EVT OpTy = Op.getValueType();
1389193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1390193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1391193323Sed
1392193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1393193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1394193323Sed}
1395193323Sed
1396193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1397193323Sed/// specified value type.
1398198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1399193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1400198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1401198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1402193323Sed  unsigned StackAlign =
1403193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1404193323Sed
1405199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1406193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1407193323Sed}
1408193323Sed
1409193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1410193323Sed/// either of the specified value types.
1411198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1412193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1413193323Sed                            VT2.getStoreSizeInBits())/8;
1414198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1415198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1416193323Sed  const TargetData *TD = TLI.getTargetData();
1417193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1418193323Sed                            TD->getPrefTypeAlignment(Ty2));
1419193323Sed
1420193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1421199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1422193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1423193323Sed}
1424193323Sed
1425198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1426193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1427193323Sed  // These setcc operations always fold.
1428193323Sed  switch (Cond) {
1429193323Sed  default: break;
1430193323Sed  case ISD::SETFALSE:
1431193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1432193323Sed  case ISD::SETTRUE:
1433193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1434193323Sed
1435193323Sed  case ISD::SETOEQ:
1436193323Sed  case ISD::SETOGT:
1437193323Sed  case ISD::SETOGE:
1438193323Sed  case ISD::SETOLT:
1439193323Sed  case ISD::SETOLE:
1440193323Sed  case ISD::SETONE:
1441193323Sed  case ISD::SETO:
1442193323Sed  case ISD::SETUO:
1443193323Sed  case ISD::SETUEQ:
1444193323Sed  case ISD::SETUNE:
1445193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1446193323Sed    break;
1447193323Sed  }
1448193323Sed
1449193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1450193323Sed    const APInt &C2 = N2C->getAPIntValue();
1451193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1452193323Sed      const APInt &C1 = N1C->getAPIntValue();
1453193323Sed
1454193323Sed      switch (Cond) {
1455198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1456193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1457193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1458193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1459193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1460193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1461193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1462193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1463193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1464193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1465193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1466193323Sed      }
1467193323Sed    }
1468193323Sed  }
1469193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1470193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1471193323Sed      // No compile time operations on this type yet.
1472193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1473193323Sed        return SDValue();
1474193323Sed
1475193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1476193323Sed      switch (Cond) {
1477193323Sed      default: break;
1478193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1479193323Sed                          return getUNDEF(VT);
1480193323Sed                        // fall through
1481193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1482193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1483193323Sed                          return getUNDEF(VT);
1484193323Sed                        // fall through
1485193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1486193323Sed                                           R==APFloat::cmpLessThan, VT);
1487193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1488193323Sed                          return getUNDEF(VT);
1489193323Sed                        // fall through
1490193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1491193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1492193323Sed                          return getUNDEF(VT);
1493193323Sed                        // fall through
1494193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1495193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1496193323Sed                          return getUNDEF(VT);
1497193323Sed                        // fall through
1498193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1499193323Sed                                           R==APFloat::cmpEqual, VT);
1500193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1501193323Sed                          return getUNDEF(VT);
1502193323Sed                        // fall through
1503193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1504193323Sed                                           R==APFloat::cmpEqual, VT);
1505193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1506193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1507193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1508193323Sed                                           R==APFloat::cmpEqual, VT);
1509193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1510193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1511193323Sed                                           R==APFloat::cmpLessThan, VT);
1512193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1513193323Sed                                           R==APFloat::cmpUnordered, VT);
1514193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1515193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1516193323Sed      }
1517193323Sed    } else {
1518193323Sed      // Ensure that the constant occurs on the RHS.
1519193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1520193323Sed    }
1521193323Sed  }
1522193323Sed
1523193323Sed  // Could not fold it.
1524193323Sed  return SDValue();
1525193323Sed}
1526193323Sed
1527193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1528193323Sed/// use this predicate to simplify operations downstream.
1529193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1530198090Srdivacky  // This predicate is not safe for vector operations.
1531198090Srdivacky  if (Op.getValueType().isVector())
1532198090Srdivacky    return false;
1533198090Srdivacky
1534200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1535193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1536193323Sed}
1537193323Sed
1538193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1539193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1540193323Sed/// for bits that V cannot have.
1541193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1542193323Sed                                     unsigned Depth) const {
1543193323Sed  APInt KnownZero, KnownOne;
1544193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1545193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546193323Sed  return (KnownZero & Mask) == Mask;
1547193323Sed}
1548193323Sed
1549193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1550193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1551193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1552193323Sed/// processing.
1553193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1554193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1555193323Sed                                     unsigned Depth) const {
1556193323Sed  unsigned BitWidth = Mask.getBitWidth();
1557200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1558193323Sed         "Mask size mismatches value type size!");
1559193323Sed
1560193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1561193323Sed  if (Depth == 6 || Mask == 0)
1562193323Sed    return;  // Limit search depth.
1563193323Sed
1564193323Sed  APInt KnownZero2, KnownOne2;
1565193323Sed
1566193323Sed  switch (Op.getOpcode()) {
1567193323Sed  case ISD::Constant:
1568193323Sed    // We know all of the bits for a constant!
1569193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1570193323Sed    KnownZero = ~KnownOne & Mask;
1571193323Sed    return;
1572193323Sed  case ISD::AND:
1573193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1574193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1575193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1576193323Sed                      KnownZero2, KnownOne2, Depth+1);
1577193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579193323Sed
1580193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1581193323Sed    KnownOne &= KnownOne2;
1582193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1583193323Sed    KnownZero |= KnownZero2;
1584193323Sed    return;
1585193323Sed  case ISD::OR:
1586193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1587193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1588193323Sed                      KnownZero2, KnownOne2, Depth+1);
1589193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591193323Sed
1592193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1593193323Sed    KnownZero &= KnownZero2;
1594193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1595193323Sed    KnownOne |= KnownOne2;
1596193323Sed    return;
1597193323Sed  case ISD::XOR: {
1598193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1599193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1600193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1602193323Sed
1603193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1604193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1605193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1606193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1607193323Sed    KnownZero = KnownZeroOut;
1608193323Sed    return;
1609193323Sed  }
1610193323Sed  case ISD::MUL: {
1611193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1612193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1613193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1614193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1616193323Sed
1617193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1618193323Sed    // Also compute a conserative estimate for high known-0 bits.
1619193323Sed    // More trickiness is possible, but this is sufficient for the
1620193323Sed    // interesting case of alignment computation.
1621193323Sed    KnownOne.clear();
1622193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1623193323Sed                      KnownZero2.countTrailingOnes();
1624193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1625193323Sed                               KnownZero2.countLeadingOnes(),
1626193323Sed                               BitWidth) - BitWidth;
1627193323Sed
1628193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1629193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1630193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1631193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1632193323Sed    KnownZero &= Mask;
1633193323Sed    return;
1634193323Sed  }
1635193323Sed  case ISD::UDIV: {
1636193323Sed    // For the purposes of computing leading zeros we can conservatively
1637193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1638193323Sed    // be less than the denominator.
1639193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1640193323Sed    ComputeMaskedBits(Op.getOperand(0),
1641193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1642193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1643193323Sed
1644193323Sed    KnownOne2.clear();
1645193323Sed    KnownZero2.clear();
1646193323Sed    ComputeMaskedBits(Op.getOperand(1),
1647193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1648193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1649193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1650193323Sed      LeadZ = std::min(BitWidth,
1651193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1652193323Sed
1653193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1654193323Sed    return;
1655193323Sed  }
1656193323Sed  case ISD::SELECT:
1657193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1658193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1659193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1661193323Sed
1662193323Sed    // Only known if known in both the LHS and RHS.
1663193323Sed    KnownOne &= KnownOne2;
1664193323Sed    KnownZero &= KnownZero2;
1665193323Sed    return;
1666193323Sed  case ISD::SELECT_CC:
1667193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1668193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1669193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1670193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1671193323Sed
1672193323Sed    // Only known if known in both the LHS and RHS.
1673193323Sed    KnownOne &= KnownOne2;
1674193323Sed    KnownZero &= KnownZero2;
1675193323Sed    return;
1676193323Sed  case ISD::SADDO:
1677193323Sed  case ISD::UADDO:
1678193323Sed  case ISD::SSUBO:
1679193323Sed  case ISD::USUBO:
1680193323Sed  case ISD::SMULO:
1681193323Sed  case ISD::UMULO:
1682193323Sed    if (Op.getResNo() != 1)
1683193323Sed      return;
1684193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1685193323Sed  case ISD::SETCC:
1686193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1687193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1688193323Sed        BitWidth > 1)
1689193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1690193323Sed    return;
1691193323Sed  case ISD::SHL:
1692193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1693193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694193323Sed      unsigned ShAmt = SA->getZExtValue();
1695193323Sed
1696193323Sed      // If the shift count is an invalid immediate, don't do anything.
1697193323Sed      if (ShAmt >= BitWidth)
1698193323Sed        return;
1699193323Sed
1700193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1701193323Sed                        KnownZero, KnownOne, Depth+1);
1702193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703193323Sed      KnownZero <<= ShAmt;
1704193323Sed      KnownOne  <<= ShAmt;
1705193323Sed      // low bits known zero.
1706193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1707193323Sed    }
1708193323Sed    return;
1709193323Sed  case ISD::SRL:
1710193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1711193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712193323Sed      unsigned ShAmt = SA->getZExtValue();
1713193323Sed
1714193323Sed      // If the shift count is an invalid immediate, don't do anything.
1715193323Sed      if (ShAmt >= BitWidth)
1716193323Sed        return;
1717193323Sed
1718193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1719193323Sed                        KnownZero, KnownOne, Depth+1);
1720193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1722193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1723193323Sed
1724193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1725193323Sed      KnownZero |= HighBits;  // High bits known zero.
1726193323Sed    }
1727193323Sed    return;
1728193323Sed  case ISD::SRA:
1729193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730193323Sed      unsigned ShAmt = SA->getZExtValue();
1731193323Sed
1732193323Sed      // If the shift count is an invalid immediate, don't do anything.
1733193323Sed      if (ShAmt >= BitWidth)
1734193323Sed        return;
1735193323Sed
1736193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1737193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1738193323Sed      // demand the input sign bit.
1739193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1740193323Sed      if (HighBits.getBoolValue())
1741193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1742193323Sed
1743193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1744193323Sed                        Depth+1);
1745193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1746193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1747193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1748193323Sed
1749193323Sed      // Handle the sign bits.
1750193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1751193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1752193323Sed
1753193323Sed      if (KnownZero.intersects(SignBit)) {
1754193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1755193323Sed      } else if (KnownOne.intersects(SignBit)) {
1756193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1757193323Sed      }
1758193323Sed    }
1759193323Sed    return;
1760193323Sed  case ISD::SIGN_EXTEND_INREG: {
1761198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1762202375Srdivacky    unsigned EBits = EVT.getScalarType().getSizeInBits();
1763193323Sed
1764193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1765193323Sed    // present in the input.
1766193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1767193323Sed
1768193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1769193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1770193323Sed
1771193323Sed    // If the sign extended bits are demanded, we know that the sign
1772193323Sed    // bit is demanded.
1773193323Sed    InSignBit.zext(BitWidth);
1774193323Sed    if (NewBits.getBoolValue())
1775193323Sed      InputDemandedBits |= InSignBit;
1776193323Sed
1777193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1778193323Sed                      KnownZero, KnownOne, Depth+1);
1779193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780193323Sed
1781193323Sed    // If the sign bit of the input is known set or clear, then we know the
1782193323Sed    // top bits of the result.
1783193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1784193323Sed      KnownZero |= NewBits;
1785193323Sed      KnownOne  &= ~NewBits;
1786193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1787193323Sed      KnownOne  |= NewBits;
1788193323Sed      KnownZero &= ~NewBits;
1789193323Sed    } else {                              // Input sign bit unknown
1790193323Sed      KnownZero &= ~NewBits;
1791193323Sed      KnownOne  &= ~NewBits;
1792193323Sed    }
1793193323Sed    return;
1794193323Sed  }
1795193323Sed  case ISD::CTTZ:
1796193323Sed  case ISD::CTLZ:
1797193323Sed  case ISD::CTPOP: {
1798193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1799193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1800193323Sed    KnownOne.clear();
1801193323Sed    return;
1802193323Sed  }
1803193323Sed  case ISD::LOAD: {
1804193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1805193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1806198090Srdivacky      EVT VT = LD->getMemoryVT();
1807202375Srdivacky      unsigned MemBits = VT.getScalarType().getSizeInBits();
1808193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1809193323Sed    }
1810193323Sed    return;
1811193323Sed  }
1812193323Sed  case ISD::ZERO_EXTEND: {
1813198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1814200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1815193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1816193323Sed    APInt InMask    = Mask;
1817193323Sed    InMask.trunc(InBits);
1818193323Sed    KnownZero.trunc(InBits);
1819193323Sed    KnownOne.trunc(InBits);
1820193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1821193323Sed    KnownZero.zext(BitWidth);
1822193323Sed    KnownOne.zext(BitWidth);
1823193323Sed    KnownZero |= NewBits;
1824193323Sed    return;
1825193323Sed  }
1826193323Sed  case ISD::SIGN_EXTEND: {
1827198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1828200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1829193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1830193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1831193323Sed    APInt InMask = Mask;
1832193323Sed    InMask.trunc(InBits);
1833193323Sed
1834193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1835193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1836193323Sed    if (NewBits.getBoolValue())
1837193323Sed      InMask |= InSignBit;
1838193323Sed
1839193323Sed    KnownZero.trunc(InBits);
1840193323Sed    KnownOne.trunc(InBits);
1841193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1842193323Sed
1843193323Sed    // Note if the sign bit is known to be zero or one.
1844193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1845193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1846193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1847193323Sed           "Sign bit can't be known to be both zero and one!");
1848193323Sed
1849193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1850193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1851193323Sed    // mask and reapply it to the result values.
1852193323Sed    InMask = Mask;
1853193323Sed    InMask.trunc(InBits);
1854193323Sed    KnownZero &= InMask;
1855193323Sed    KnownOne  &= InMask;
1856193323Sed
1857193323Sed    KnownZero.zext(BitWidth);
1858193323Sed    KnownOne.zext(BitWidth);
1859193323Sed
1860193323Sed    // If the sign bit is known zero or one, the top bits match.
1861193323Sed    if (SignBitKnownZero)
1862193323Sed      KnownZero |= NewBits;
1863193323Sed    else if (SignBitKnownOne)
1864193323Sed      KnownOne  |= NewBits;
1865193323Sed    return;
1866193323Sed  }
1867193323Sed  case ISD::ANY_EXTEND: {
1868198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1869200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1870193323Sed    APInt InMask = Mask;
1871193323Sed    InMask.trunc(InBits);
1872193323Sed    KnownZero.trunc(InBits);
1873193323Sed    KnownOne.trunc(InBits);
1874193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875193323Sed    KnownZero.zext(BitWidth);
1876193323Sed    KnownOne.zext(BitWidth);
1877193323Sed    return;
1878193323Sed  }
1879193323Sed  case ISD::TRUNCATE: {
1880198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1881200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1882193323Sed    APInt InMask = Mask;
1883193323Sed    InMask.zext(InBits);
1884193323Sed    KnownZero.zext(InBits);
1885193323Sed    KnownOne.zext(InBits);
1886193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1887193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1888193323Sed    KnownZero.trunc(BitWidth);
1889193323Sed    KnownOne.trunc(BitWidth);
1890193323Sed    break;
1891193323Sed  }
1892193323Sed  case ISD::AssertZext: {
1893198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1894193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1895193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1896193323Sed                      KnownOne, Depth+1);
1897193323Sed    KnownZero |= (~InMask) & Mask;
1898193323Sed    return;
1899193323Sed  }
1900193323Sed  case ISD::FGETSIGN:
1901193323Sed    // All bits are zero except the low bit.
1902193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1903193323Sed    return;
1904193323Sed
1905193323Sed  case ISD::SUB: {
1906193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1907193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1908193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1909193323Sed      // positive if we can prove that X is >= 0 and < 16.
1910193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1911193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1912193323Sed        // NLZ can't be BitWidth with no sign bit
1913193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1914193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1915193323Sed                          Depth+1);
1916193323Sed
1917193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1918193323Sed        // output top bits are zero, because we now know that the output is
1919193323Sed        // from [0-C].
1920193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1921193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1922193323Sed          // Top bits known zero.
1923193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1924193323Sed        }
1925193323Sed      }
1926193323Sed    }
1927193323Sed  }
1928193323Sed  // fall through
1929193323Sed  case ISD::ADD: {
1930193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1931193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1932193323Sed    // low 3 bits clear.
1933207618Srdivacky    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1934207618Srdivacky                                       BitWidth - Mask.countLeadingZeros());
1935193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1936193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1937193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1938193323Sed
1939193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1940193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1941193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1942193323Sed                            KnownZero2.countTrailingOnes());
1943193323Sed
1944193323Sed    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1945193323Sed    return;
1946193323Sed  }
1947193323Sed  case ISD::SREM:
1948193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949203954Srdivacky      const APInt &RA = Rem->getAPIntValue().abs();
1950203954Srdivacky      if (RA.isPowerOf2()) {
1951203954Srdivacky        APInt LowBits = RA - 1;
1952193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1953193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1954193323Sed
1955203954Srdivacky        // The low bits of the first operand are unchanged by the srem.
1956203954Srdivacky        KnownZero = KnownZero2 & LowBits;
1957203954Srdivacky        KnownOne = KnownOne2 & LowBits;
1958203954Srdivacky
1959203954Srdivacky        // If the first operand is non-negative or has all low bits zero, then
1960203954Srdivacky        // the upper bits are all zero.
1961193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1962203954Srdivacky          KnownZero |= ~LowBits;
1963193323Sed
1964203954Srdivacky        // If the first operand is negative and not all low bits are zero, then
1965203954Srdivacky        // the upper bits are all one.
1966203954Srdivacky        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1967203954Srdivacky          KnownOne |= ~LowBits;
1968193323Sed
1969203954Srdivacky        KnownZero &= Mask;
1970203954Srdivacky        KnownOne &= Mask;
1971203954Srdivacky
1972193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1973193323Sed      }
1974193323Sed    }
1975193323Sed    return;
1976193323Sed  case ISD::UREM: {
1977193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1978193323Sed      const APInt &RA = Rem->getAPIntValue();
1979193323Sed      if (RA.isPowerOf2()) {
1980193323Sed        APInt LowBits = (RA - 1);
1981193323Sed        APInt Mask2 = LowBits & Mask;
1982193323Sed        KnownZero |= ~LowBits & Mask;
1983193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1984193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1985193323Sed        break;
1986193323Sed      }
1987193323Sed    }
1988193323Sed
1989193323Sed    // Since the result is less than or equal to either operand, any leading
1990193323Sed    // zero bits in either operand must also exist in the result.
1991193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1992193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1993193323Sed                      Depth+1);
1994193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1995193323Sed                      Depth+1);
1996193323Sed
1997193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1998193323Sed                                KnownZero2.countLeadingOnes());
1999193323Sed    KnownOne.clear();
2000193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2001193323Sed    return;
2002193323Sed  }
2003193323Sed  default:
2004193323Sed    // Allow the target to implement this method for its nodes.
2005193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2006193323Sed  case ISD::INTRINSIC_WO_CHAIN:
2007193323Sed  case ISD::INTRINSIC_W_CHAIN:
2008193323Sed  case ISD::INTRINSIC_VOID:
2009198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2010198090Srdivacky                                         Depth);
2011193323Sed    }
2012193323Sed    return;
2013193323Sed  }
2014193323Sed}
2015193323Sed
2016193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
2017193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
2018193323Sed/// is always equal to the sign bit (itself), but other cases can give us
2019193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
2020193323Sed/// the top 3 bits are all equal to each other, so we return 3.
2021193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2022198090Srdivacky  EVT VT = Op.getValueType();
2023193323Sed  assert(VT.isInteger() && "Invalid VT!");
2024200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
2025193323Sed  unsigned Tmp, Tmp2;
2026193323Sed  unsigned FirstAnswer = 1;
2027193323Sed
2028193323Sed  if (Depth == 6)
2029193323Sed    return 1;  // Limit search depth.
2030193323Sed
2031193323Sed  switch (Op.getOpcode()) {
2032193323Sed  default: break;
2033193323Sed  case ISD::AssertSext:
2034193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2035193323Sed    return VTBits-Tmp+1;
2036193323Sed  case ISD::AssertZext:
2037193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2038193323Sed    return VTBits-Tmp;
2039193323Sed
2040193323Sed  case ISD::Constant: {
2041193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2042193323Sed    // If negative, return # leading ones.
2043193323Sed    if (Val.isNegative())
2044193323Sed      return Val.countLeadingOnes();
2045193323Sed
2046193323Sed    // Return # leading zeros.
2047193323Sed    return Val.countLeadingZeros();
2048193323Sed  }
2049193323Sed
2050193323Sed  case ISD::SIGN_EXTEND:
2051200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2052193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2053193323Sed
2054193323Sed  case ISD::SIGN_EXTEND_INREG:
2055193323Sed    // Max of the input and what this extends.
2056202375Srdivacky    Tmp =
2057202375Srdivacky      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2058193323Sed    Tmp = VTBits-Tmp+1;
2059193323Sed
2060193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2061193323Sed    return std::max(Tmp, Tmp2);
2062193323Sed
2063193323Sed  case ISD::SRA:
2064193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065193323Sed    // SRA X, C   -> adds C sign bits.
2066193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2067193323Sed      Tmp += C->getZExtValue();
2068193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2069193323Sed    }
2070193323Sed    return Tmp;
2071193323Sed  case ISD::SHL:
2072193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2073193323Sed      // shl destroys sign bits.
2074193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2076193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2077193323Sed      return Tmp - C->getZExtValue();
2078193323Sed    }
2079193323Sed    break;
2080193323Sed  case ISD::AND:
2081193323Sed  case ISD::OR:
2082193323Sed  case ISD::XOR:    // NOT is handled here.
2083193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2084193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2085193323Sed    if (Tmp != 1) {
2086193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2087193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2088193323Sed      // We computed what we know about the sign bits as our first
2089193323Sed      // answer. Now proceed to the generic code that uses
2090193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2091193323Sed    }
2092193323Sed    break;
2093193323Sed
2094193323Sed  case ISD::SELECT:
2095193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2096193323Sed    if (Tmp == 1) return 1;  // Early out.
2097193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2098193323Sed    return std::min(Tmp, Tmp2);
2099193323Sed
2100193323Sed  case ISD::SADDO:
2101193323Sed  case ISD::UADDO:
2102193323Sed  case ISD::SSUBO:
2103193323Sed  case ISD::USUBO:
2104193323Sed  case ISD::SMULO:
2105193323Sed  case ISD::UMULO:
2106193323Sed    if (Op.getResNo() != 1)
2107193323Sed      break;
2108193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2109193323Sed  case ISD::SETCC:
2110193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2111193323Sed    if (TLI.getBooleanContents() ==
2112193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2113193323Sed      return VTBits;
2114193323Sed    break;
2115193323Sed  case ISD::ROTL:
2116193323Sed  case ISD::ROTR:
2117193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2119193323Sed
2120193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2121193323Sed      if (Op.getOpcode() == ISD::ROTR)
2122193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2123193323Sed
2124193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2125193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2126193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2128193323Sed    }
2129193323Sed    break;
2130193323Sed  case ISD::ADD:
2131193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2132193323Sed    // is, at worst, one more bit than the inputs.
2133193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134193323Sed    if (Tmp == 1) return 1;  // Early out.
2135193323Sed
2136193323Sed    // Special case decrementing a value (ADD X, -1):
2137193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2138193323Sed      if (CRHS->isAllOnesValue()) {
2139193323Sed        APInt KnownZero, KnownOne;
2140193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2141193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2142193323Sed
2143193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2144193323Sed        // sign bits set.
2145193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2146193323Sed          return VTBits;
2147193323Sed
2148193323Sed        // If we are subtracting one from a positive number, there is no carry
2149193323Sed        // out of the result.
2150193323Sed        if (KnownZero.isNegative())
2151193323Sed          return Tmp;
2152193323Sed      }
2153193323Sed
2154193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155193323Sed    if (Tmp2 == 1) return 1;
2156193323Sed      return std::min(Tmp, Tmp2)-1;
2157193323Sed    break;
2158193323Sed
2159193323Sed  case ISD::SUB:
2160193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2161193323Sed    if (Tmp2 == 1) return 1;
2162193323Sed
2163193323Sed    // Handle NEG.
2164193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2165193323Sed      if (CLHS->isNullValue()) {
2166193323Sed        APInt KnownZero, KnownOne;
2167193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2168193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2169193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2170193323Sed        // sign bits set.
2171193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2172193323Sed          return VTBits;
2173193323Sed
2174193323Sed        // If the input is known to be positive (the sign bit is known clear),
2175193323Sed        // the output of the NEG has the same number of sign bits as the input.
2176193323Sed        if (KnownZero.isNegative())
2177193323Sed          return Tmp2;
2178193323Sed
2179193323Sed        // Otherwise, we treat this like a SUB.
2180193323Sed      }
2181193323Sed
2182193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2183193323Sed    // is, at worst, one more bit than the inputs.
2184193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2185193323Sed    if (Tmp == 1) return 1;  // Early out.
2186193323Sed      return std::min(Tmp, Tmp2)-1;
2187193323Sed    break;
2188193323Sed  case ISD::TRUNCATE:
2189193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2190193323Sed    // case for targets like X86.
2191193323Sed    break;
2192193323Sed  }
2193193323Sed
2194193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2195193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2196193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2197193323Sed    unsigned ExtType = LD->getExtensionType();
2198193323Sed    switch (ExtType) {
2199193323Sed    default: break;
2200193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2201202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2202193323Sed      return VTBits-Tmp+1;
2203193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2204202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2205193323Sed      return VTBits-Tmp;
2206193323Sed    }
2207193323Sed  }
2208193323Sed
2209193323Sed  // Allow the target to implement this method for its nodes.
2210193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2211193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2212193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2213193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2214193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2215193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2216193323Sed  }
2217193323Sed
2218193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2219193323Sed  // use this information.
2220193323Sed  APInt KnownZero, KnownOne;
2221193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2222193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2223193323Sed
2224193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2225193323Sed    Mask = KnownZero;
2226193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2227193323Sed    Mask = KnownOne;
2228193323Sed  } else {
2229193323Sed    // Nothing known.
2230193323Sed    return FirstAnswer;
2231193323Sed  }
2232193323Sed
2233193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2234193323Sed  // the number of identical bits in the top of the input value.
2235193323Sed  Mask = ~Mask;
2236193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2237193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2238193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2239193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2240193323Sed}
2241193323Sed
2242198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2243198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2244198090Srdivacky  if (FiniteOnlyFPMath())
2245198090Srdivacky    return true;
2246193323Sed
2247198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2248198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2249198090Srdivacky    return !C->getValueAPF().isNaN();
2250198090Srdivacky
2251198090Srdivacky  // TODO: Recognize more cases here.
2252198090Srdivacky
2253198090Srdivacky  return false;
2254198090Srdivacky}
2255198090Srdivacky
2256204642Srdivackybool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2257204642Srdivacky  // If the value is a constant, we can obviously see if it is a zero or not.
2258204642Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2259204642Srdivacky    return !C->isZero();
2260204642Srdivacky
2261204642Srdivacky  // TODO: Recognize more cases here.
2262204642Srdivacky
2263204642Srdivacky  return false;
2264204642Srdivacky}
2265204642Srdivacky
2266204642Srdivackybool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2267204642Srdivacky  // Check the obvious case.
2268204642Srdivacky  if (A == B) return true;
2269204642Srdivacky
2270204642Srdivacky  // For for negative and positive zero.
2271204642Srdivacky  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2272204642Srdivacky    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2273204642Srdivacky      if (CA->isZero() && CB->isZero()) return true;
2274204642Srdivacky
2275204642Srdivacky  // Otherwise they may not be equal.
2276204642Srdivacky  return false;
2277204642Srdivacky}
2278204642Srdivacky
2279193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2280193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2281193323Sed  if (!GA) return false;
2282193323Sed  if (GA->getOffset() != 0) return false;
2283207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2284193323Sed  if (!GV) return false;
2285206274Srdivacky  return MF->getMMI().hasDebugInfo();
2286193323Sed}
2287193323Sed
2288193323Sed
2289193323Sed/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2290193323Sed/// element of the result of the vector shuffle.
2291193323SedSDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2292193323Sed                                          unsigned i) {
2293198090Srdivacky  EVT VT = N->getValueType(0);
2294193323Sed  DebugLoc dl = N->getDebugLoc();
2295193323Sed  if (N->getMaskElt(i) < 0)
2296193323Sed    return getUNDEF(VT.getVectorElementType());
2297193323Sed  unsigned Index = N->getMaskElt(i);
2298193323Sed  unsigned NumElems = VT.getVectorNumElements();
2299193323Sed  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2300193323Sed  Index %= NumElems;
2301193323Sed
2302193323Sed  if (V.getOpcode() == ISD::BIT_CONVERT) {
2303193323Sed    V = V.getOperand(0);
2304198090Srdivacky    EVT VVT = V.getValueType();
2305193323Sed    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2306193323Sed      return SDValue();
2307193323Sed  }
2308193323Sed  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2309193323Sed    return (Index == 0) ? V.getOperand(0)
2310193323Sed                      : getUNDEF(VT.getVectorElementType());
2311193323Sed  if (V.getOpcode() == ISD::BUILD_VECTOR)
2312193323Sed    return V.getOperand(Index);
2313193323Sed  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2314193323Sed    return getShuffleScalarElt(SVN, Index);
2315193323Sed  return SDValue();
2316193323Sed}
2317193323Sed
2318193323Sed
2319193323Sed/// getNode - Gets or creates the specified node.
2320193323Sed///
2321198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2322193323Sed  FoldingSetNodeID ID;
2323193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2324193323Sed  void *IP = 0;
2325201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2326193323Sed    return SDValue(E, 0);
2327201360Srdivacky
2328205407Srdivacky  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2329193323Sed  CSEMap.InsertNode(N, IP);
2330193323Sed
2331193323Sed  AllNodes.push_back(N);
2332193323Sed#ifndef NDEBUG
2333193323Sed  VerifyNode(N);
2334193323Sed#endif
2335193323Sed  return SDValue(N, 0);
2336193323Sed}
2337193323Sed
2338193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2339198090Srdivacky                              EVT VT, SDValue Operand) {
2340193323Sed  // Constant fold unary operations with an integer constant operand.
2341193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2342193323Sed    const APInt &Val = C->getAPIntValue();
2343193323Sed    switch (Opcode) {
2344193323Sed    default: break;
2345193323Sed    case ISD::SIGN_EXTEND:
2346205218Srdivacky      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2347193323Sed    case ISD::ANY_EXTEND:
2348193323Sed    case ISD::ZERO_EXTEND:
2349193323Sed    case ISD::TRUNCATE:
2350205218Srdivacky      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2351193323Sed    case ISD::UINT_TO_FP:
2352193323Sed    case ISD::SINT_TO_FP: {
2353193323Sed      const uint64_t zero[] = {0, 0};
2354205218Srdivacky      // No compile time operations on ppcf128.
2355205218Srdivacky      if (VT == MVT::ppcf128) break;
2356205218Srdivacky      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2357193323Sed      (void)apf.convertFromAPInt(Val,
2358193323Sed                                 Opcode==ISD::SINT_TO_FP,
2359193323Sed                                 APFloat::rmNearestTiesToEven);
2360193323Sed      return getConstantFP(apf, VT);
2361193323Sed    }
2362193323Sed    case ISD::BIT_CONVERT:
2363193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2364193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2365193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2366193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2367193323Sed      break;
2368193323Sed    case ISD::BSWAP:
2369193323Sed      return getConstant(Val.byteSwap(), VT);
2370193323Sed    case ISD::CTPOP:
2371193323Sed      return getConstant(Val.countPopulation(), VT);
2372193323Sed    case ISD::CTLZ:
2373193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2374193323Sed    case ISD::CTTZ:
2375193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2376193323Sed    }
2377193323Sed  }
2378193323Sed
2379193323Sed  // Constant fold unary operations with a floating point constant operand.
2380193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2381193323Sed    APFloat V = C->getValueAPF();    // make copy
2382193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2383193323Sed      switch (Opcode) {
2384193323Sed      case ISD::FNEG:
2385193323Sed        V.changeSign();
2386193323Sed        return getConstantFP(V, VT);
2387193323Sed      case ISD::FABS:
2388193323Sed        V.clearSign();
2389193323Sed        return getConstantFP(V, VT);
2390193323Sed      case ISD::FP_ROUND:
2391193323Sed      case ISD::FP_EXTEND: {
2392193323Sed        bool ignored;
2393193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2394193323Sed        // FIXME need to be more flexible about rounding mode.
2395198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2396193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2397193323Sed        return getConstantFP(V, VT);
2398193323Sed      }
2399193323Sed      case ISD::FP_TO_SINT:
2400193323Sed      case ISD::FP_TO_UINT: {
2401193323Sed        integerPart x[2];
2402193323Sed        bool ignored;
2403193323Sed        assert(integerPartWidth >= 64);
2404193323Sed        // FIXME need to be more flexible about rounding mode.
2405193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2406193323Sed                              Opcode==ISD::FP_TO_SINT,
2407193323Sed                              APFloat::rmTowardZero, &ignored);
2408193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2409193323Sed          break;
2410193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2411193323Sed        return getConstant(api, VT);
2412193323Sed      }
2413193323Sed      case ISD::BIT_CONVERT:
2414193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2415193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2416193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2417193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2418193323Sed        break;
2419193323Sed      }
2420193323Sed    }
2421193323Sed  }
2422193323Sed
2423193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2424193323Sed  switch (Opcode) {
2425193323Sed  case ISD::TokenFactor:
2426193323Sed  case ISD::MERGE_VALUES:
2427193323Sed  case ISD::CONCAT_VECTORS:
2428193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2429198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2430193323Sed  case ISD::FP_EXTEND:
2431193323Sed    assert(VT.isFloatingPoint() &&
2432193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2433193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2434200581Srdivacky    assert((!VT.isVector() ||
2435200581Srdivacky            VT.getVectorNumElements() ==
2436200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2437200581Srdivacky           "Vector element count mismatch!");
2438193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2439193323Sed      return getUNDEF(VT);
2440193323Sed    break;
2441193323Sed  case ISD::SIGN_EXTEND:
2442193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443193323Sed           "Invalid SIGN_EXTEND!");
2444193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446200581Srdivacky           "Invalid sext node, dst < src!");
2447200581Srdivacky    assert((!VT.isVector() ||
2448200581Srdivacky            VT.getVectorNumElements() ==
2449200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2450200581Srdivacky           "Vector element count mismatch!");
2451193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2452193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453193323Sed    break;
2454193323Sed  case ISD::ZERO_EXTEND:
2455193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2456193323Sed           "Invalid ZERO_EXTEND!");
2457193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2458200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2459200581Srdivacky           "Invalid zext node, dst < src!");
2460200581Srdivacky    assert((!VT.isVector() ||
2461200581Srdivacky            VT.getVectorNumElements() ==
2462200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2463200581Srdivacky           "Vector element count mismatch!");
2464193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2465193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2466193323Sed                     Operand.getNode()->getOperand(0));
2467193323Sed    break;
2468193323Sed  case ISD::ANY_EXTEND:
2469193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2470193323Sed           "Invalid ANY_EXTEND!");
2471193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2472200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2473200581Srdivacky           "Invalid anyext node, dst < src!");
2474200581Srdivacky    assert((!VT.isVector() ||
2475200581Srdivacky            VT.getVectorNumElements() ==
2476200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2477200581Srdivacky           "Vector element count mismatch!");
2478193323Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2479193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2480193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2481193323Sed    break;
2482193323Sed  case ISD::TRUNCATE:
2483193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2484193323Sed           "Invalid TRUNCATE!");
2485193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2486200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2487200581Srdivacky           "Invalid truncate node, src < dst!");
2488200581Srdivacky    assert((!VT.isVector() ||
2489200581Srdivacky            VT.getVectorNumElements() ==
2490200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2491200581Srdivacky           "Vector element count mismatch!");
2492193323Sed    if (OpOpcode == ISD::TRUNCATE)
2493193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2494193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2495193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2496193323Sed      // If the source is smaller than the dest, we still need an extend.
2497200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2498200581Srdivacky            .bitsLT(VT.getScalarType()))
2499193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2500193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2501193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2502193323Sed      else
2503193323Sed        return Operand.getNode()->getOperand(0);
2504193323Sed    }
2505193323Sed    break;
2506193323Sed  case ISD::BIT_CONVERT:
2507193323Sed    // Basic sanity checking.
2508193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2509193323Sed           && "Cannot BIT_CONVERT between types of different sizes!");
2510193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2511193323Sed    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2512193323Sed      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2513193323Sed    if (OpOpcode == ISD::UNDEF)
2514193323Sed      return getUNDEF(VT);
2515193323Sed    break;
2516193323Sed  case ISD::SCALAR_TO_VECTOR:
2517193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2518193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2519193323Sed            (VT.getVectorElementType().isInteger() &&
2520193323Sed             Operand.getValueType().isInteger() &&
2521193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2522193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2523193323Sed    if (OpOpcode == ISD::UNDEF)
2524193323Sed      return getUNDEF(VT);
2525193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2526193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2527193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2528193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2529193323Sed        Operand.getOperand(0).getValueType() == VT)
2530193323Sed      return Operand.getOperand(0);
2531193323Sed    break;
2532193323Sed  case ISD::FNEG:
2533193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2534193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2535193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2536193323Sed                     Operand.getNode()->getOperand(0));
2537193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2538193323Sed      return Operand.getNode()->getOperand(0);
2539193323Sed    break;
2540193323Sed  case ISD::FABS:
2541193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2542193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2543193323Sed    break;
2544193323Sed  }
2545193323Sed
2546193323Sed  SDNode *N;
2547193323Sed  SDVTList VTs = getVTList(VT);
2548193323Sed  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2549193323Sed    FoldingSetNodeID ID;
2550193323Sed    SDValue Ops[1] = { Operand };
2551193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2552193323Sed    void *IP = 0;
2553201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2554193323Sed      return SDValue(E, 0);
2555201360Srdivacky
2556205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2557193323Sed    CSEMap.InsertNode(N, IP);
2558193323Sed  } else {
2559205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2560193323Sed  }
2561193323Sed
2562193323Sed  AllNodes.push_back(N);
2563193323Sed#ifndef NDEBUG
2564193323Sed  VerifyNode(N);
2565193323Sed#endif
2566193323Sed  return SDValue(N, 0);
2567193323Sed}
2568193323Sed
2569193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2570198090Srdivacky                                             EVT VT,
2571193323Sed                                             ConstantSDNode *Cst1,
2572193323Sed                                             ConstantSDNode *Cst2) {
2573193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2574193323Sed
2575193323Sed  switch (Opcode) {
2576193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2577193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2578193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2579193323Sed  case ISD::UDIV:
2580193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2581193323Sed    break;
2582193323Sed  case ISD::UREM:
2583193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2584193323Sed    break;
2585193323Sed  case ISD::SDIV:
2586193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2587193323Sed    break;
2588193323Sed  case ISD::SREM:
2589193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2590193323Sed    break;
2591193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2592193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2593193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2594193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2595193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2596193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2597193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2598193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2599193323Sed  default: break;
2600193323Sed  }
2601193323Sed
2602193323Sed  return SDValue();
2603193323Sed}
2604193323Sed
2605198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2606193323Sed                              SDValue N1, SDValue N2) {
2607193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2608193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2609193323Sed  switch (Opcode) {
2610193323Sed  default: break;
2611193323Sed  case ISD::TokenFactor:
2612193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2613193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2614193323Sed    // Fold trivial token factors.
2615193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2616193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2617193323Sed    if (N1 == N2) return N1;
2618193323Sed    break;
2619193323Sed  case ISD::CONCAT_VECTORS:
2620193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2621193323Sed    // one big BUILD_VECTOR.
2622193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2623193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2624193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2625193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2626193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2627193323Sed    }
2628193323Sed    break;
2629193323Sed  case ISD::AND:
2630208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2631208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2632193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2633193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2634193323Sed    // worth handling here.
2635193323Sed    if (N2C && N2C->isNullValue())
2636193323Sed      return N2;
2637193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2638193323Sed      return N1;
2639193323Sed    break;
2640193323Sed  case ISD::OR:
2641193323Sed  case ISD::XOR:
2642193323Sed  case ISD::ADD:
2643193323Sed  case ISD::SUB:
2644208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2645208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2646193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2647193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2648193323Sed    // it's worth handling here.
2649193323Sed    if (N2C && N2C->isNullValue())
2650193323Sed      return N1;
2651193323Sed    break;
2652193323Sed  case ISD::UDIV:
2653193323Sed  case ISD::UREM:
2654193323Sed  case ISD::MULHU:
2655193323Sed  case ISD::MULHS:
2656193323Sed  case ISD::MUL:
2657193323Sed  case ISD::SDIV:
2658193323Sed  case ISD::SREM:
2659193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2660208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2661208599Srdivacky           N1.getValueType() == VT && "Binary operator types must match!");
2662208599Srdivacky    break;
2663193323Sed  case ISD::FADD:
2664193323Sed  case ISD::FSUB:
2665193323Sed  case ISD::FMUL:
2666193323Sed  case ISD::FDIV:
2667193323Sed  case ISD::FREM:
2668193323Sed    if (UnsafeFPMath) {
2669193323Sed      if (Opcode == ISD::FADD) {
2670193323Sed        // 0+x --> x
2671193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2672193323Sed          if (CFP->getValueAPF().isZero())
2673193323Sed            return N2;
2674193323Sed        // x+0 --> x
2675193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2676193323Sed          if (CFP->getValueAPF().isZero())
2677193323Sed            return N1;
2678193323Sed      } else if (Opcode == ISD::FSUB) {
2679193323Sed        // x-0 --> x
2680193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2681193323Sed          if (CFP->getValueAPF().isZero())
2682193323Sed            return N1;
2683193323Sed      }
2684193323Sed    }
2685208599Srdivacky    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2686193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2687193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2688193323Sed    break;
2689193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2690193323Sed    assert(N1.getValueType() == VT &&
2691193323Sed           N1.getValueType().isFloatingPoint() &&
2692193323Sed           N2.getValueType().isFloatingPoint() &&
2693193323Sed           "Invalid FCOPYSIGN!");
2694193323Sed    break;
2695193323Sed  case ISD::SHL:
2696193323Sed  case ISD::SRA:
2697193323Sed  case ISD::SRL:
2698193323Sed  case ISD::ROTL:
2699193323Sed  case ISD::ROTR:
2700193323Sed    assert(VT == N1.getValueType() &&
2701193323Sed           "Shift operators return type must be the same as their first arg");
2702193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2703193323Sed           "Shifts only work on integers");
2704193323Sed
2705193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2706193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2707193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2708193323Sed    if (VT == MVT::i1)
2709193323Sed      return N1;
2710202375Srdivacky    if (N2C && N2C->isNullValue())
2711202375Srdivacky      return N1;
2712193323Sed    break;
2713193323Sed  case ISD::FP_ROUND_INREG: {
2714198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2715193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2716193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2717193323Sed           "Cannot FP_ROUND_INREG integer types");
2718202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2719202375Srdivacky           "FP_ROUND_INREG type should be vector iff the operand "
2720202375Srdivacky           "type is vector!");
2721202375Srdivacky    assert((!EVT.isVector() ||
2722202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2723202375Srdivacky           "Vector element counts must match in FP_ROUND_INREG");
2724193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2725193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2726193323Sed    break;
2727193323Sed  }
2728193323Sed  case ISD::FP_ROUND:
2729193323Sed    assert(VT.isFloatingPoint() &&
2730193323Sed           N1.getValueType().isFloatingPoint() &&
2731193323Sed           VT.bitsLE(N1.getValueType()) &&
2732193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2733193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2734193323Sed    break;
2735193323Sed  case ISD::AssertSext:
2736193323Sed  case ISD::AssertZext: {
2737198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2738193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2739193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2740193323Sed           "Cannot *_EXTEND_INREG FP types");
2741200581Srdivacky    assert(!EVT.isVector() &&
2742200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2743200581Srdivacky           "rather than the vector type!");
2744193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2745193323Sed    if (VT == EVT) return N1; // noop assertion.
2746193323Sed    break;
2747193323Sed  }
2748193323Sed  case ISD::SIGN_EXTEND_INREG: {
2749198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2750193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2751193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2752193323Sed           "Cannot *_EXTEND_INREG FP types");
2753202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2754202375Srdivacky           "SIGN_EXTEND_INREG type should be vector iff the operand "
2755202375Srdivacky           "type is vector!");
2756202375Srdivacky    assert((!EVT.isVector() ||
2757202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2758202375Srdivacky           "Vector element counts must match in SIGN_EXTEND_INREG");
2759202375Srdivacky    assert(EVT.bitsLE(VT) && "Not extending!");
2760193323Sed    if (EVT == VT) return N1;  // Not actually extending
2761193323Sed
2762193323Sed    if (N1C) {
2763193323Sed      APInt Val = N1C->getAPIntValue();
2764202375Srdivacky      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2765193323Sed      Val <<= Val.getBitWidth()-FromBits;
2766193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2767193323Sed      return getConstant(Val, VT);
2768193323Sed    }
2769193323Sed    break;
2770193323Sed  }
2771193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2772193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2773193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2774193323Sed      return getUNDEF(VT);
2775193323Sed
2776193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2777193323Sed    // expanding copies of large vectors from registers.
2778193323Sed    if (N2C &&
2779193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2780193323Sed        N1.getNumOperands() > 0) {
2781193323Sed      unsigned Factor =
2782193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2783193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2784193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2785193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2786193323Sed                                 N2.getValueType()));
2787193323Sed    }
2788193323Sed
2789193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2790193323Sed    // expanding large vector constants.
2791193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2792193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2793198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2794198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2795193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2796193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2797198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2798193323Sed      }
2799198090Srdivacky      if (VT != VEltTy) {
2800198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2801198090Srdivacky        // result is implicitly extended.
2802198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2803198090Srdivacky      }
2804193323Sed      return Elt;
2805193323Sed    }
2806193323Sed
2807193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2808193323Sed    // operations are lowered to scalars.
2809193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2810203954Srdivacky      // If the indices are the same, return the inserted element else
2811203954Srdivacky      // if the indices are known different, extract the element from
2812193323Sed      // the original vector.
2813207618Srdivacky      SDValue N1Op2 = N1.getOperand(2);
2814207618Srdivacky      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2815207618Srdivacky
2816207618Srdivacky      if (N1Op2C && N2C) {
2817207618Srdivacky        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2818207618Srdivacky          if (VT == N1.getOperand(1).getValueType())
2819207618Srdivacky            return N1.getOperand(1);
2820207618Srdivacky          else
2821207618Srdivacky            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2822207618Srdivacky        }
2823207618Srdivacky
2824193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2825207618Srdivacky      }
2826193323Sed    }
2827193323Sed    break;
2828193323Sed  case ISD::EXTRACT_ELEMENT:
2829193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2830193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2831193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2832193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2833193323Sed
2834193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2835193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2836193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2837193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2838193323Sed      return N1.getOperand(N2C->getZExtValue());
2839193323Sed
2840193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2841193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2842193323Sed      unsigned ElementSize = VT.getSizeInBits();
2843193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2844193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2845193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2846193323Sed    }
2847193323Sed    break;
2848193323Sed  case ISD::EXTRACT_SUBVECTOR:
2849193323Sed    if (N1.getValueType() == VT) // Trivial extraction.
2850193323Sed      return N1;
2851193323Sed    break;
2852193323Sed  }
2853193323Sed
2854193323Sed  if (N1C) {
2855193323Sed    if (N2C) {
2856193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2857193323Sed      if (SV.getNode()) return SV;
2858193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2859193323Sed      if (isCommutativeBinOp(Opcode)) {
2860193323Sed        std::swap(N1C, N2C);
2861193323Sed        std::swap(N1, N2);
2862193323Sed      }
2863193323Sed    }
2864193323Sed  }
2865193323Sed
2866193323Sed  // Constant fold FP operations.
2867193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2868193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2869193323Sed  if (N1CFP) {
2870193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2871193323Sed      // Cannonicalize constant to RHS if commutative
2872193323Sed      std::swap(N1CFP, N2CFP);
2873193323Sed      std::swap(N1, N2);
2874193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2875193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2876193323Sed      APFloat::opStatus s;
2877193323Sed      switch (Opcode) {
2878193323Sed      case ISD::FADD:
2879193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2880193323Sed        if (s != APFloat::opInvalidOp)
2881193323Sed          return getConstantFP(V1, VT);
2882193323Sed        break;
2883193323Sed      case ISD::FSUB:
2884193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2885193323Sed        if (s!=APFloat::opInvalidOp)
2886193323Sed          return getConstantFP(V1, VT);
2887193323Sed        break;
2888193323Sed      case ISD::FMUL:
2889193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2890193323Sed        if (s!=APFloat::opInvalidOp)
2891193323Sed          return getConstantFP(V1, VT);
2892193323Sed        break;
2893193323Sed      case ISD::FDIV:
2894193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2895193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2896193323Sed          return getConstantFP(V1, VT);
2897193323Sed        break;
2898193323Sed      case ISD::FREM :
2899193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2900193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2901193323Sed          return getConstantFP(V1, VT);
2902193323Sed        break;
2903193323Sed      case ISD::FCOPYSIGN:
2904193323Sed        V1.copySign(V2);
2905193323Sed        return getConstantFP(V1, VT);
2906193323Sed      default: break;
2907193323Sed      }
2908193323Sed    }
2909193323Sed  }
2910193323Sed
2911193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2912193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2913193323Sed    if (isCommutativeBinOp(Opcode)) {
2914193323Sed      std::swap(N1, N2);
2915193323Sed    } else {
2916193323Sed      switch (Opcode) {
2917193323Sed      case ISD::FP_ROUND_INREG:
2918193323Sed      case ISD::SIGN_EXTEND_INREG:
2919193323Sed      case ISD::SUB:
2920193323Sed      case ISD::FSUB:
2921193323Sed      case ISD::FDIV:
2922193323Sed      case ISD::FREM:
2923193323Sed      case ISD::SRA:
2924193323Sed        return N1;     // fold op(undef, arg2) -> undef
2925193323Sed      case ISD::UDIV:
2926193323Sed      case ISD::SDIV:
2927193323Sed      case ISD::UREM:
2928193323Sed      case ISD::SREM:
2929193323Sed      case ISD::SRL:
2930193323Sed      case ISD::SHL:
2931193323Sed        if (!VT.isVector())
2932193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2933193323Sed        // For vectors, we can't easily build an all zero vector, just return
2934193323Sed        // the LHS.
2935193323Sed        return N2;
2936193323Sed      }
2937193323Sed    }
2938193323Sed  }
2939193323Sed
2940193323Sed  // Fold a bunch of operators when the RHS is undef.
2941193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
2942193323Sed    switch (Opcode) {
2943193323Sed    case ISD::XOR:
2944193323Sed      if (N1.getOpcode() == ISD::UNDEF)
2945193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
2946193323Sed        // idiom (misuse).
2947193323Sed        return getConstant(0, VT);
2948193323Sed      // fallthrough
2949193323Sed    case ISD::ADD:
2950193323Sed    case ISD::ADDC:
2951193323Sed    case ISD::ADDE:
2952193323Sed    case ISD::SUB:
2953193574Sed    case ISD::UDIV:
2954193574Sed    case ISD::SDIV:
2955193574Sed    case ISD::UREM:
2956193574Sed    case ISD::SREM:
2957193574Sed      return N2;       // fold op(arg1, undef) -> undef
2958193323Sed    case ISD::FADD:
2959193323Sed    case ISD::FSUB:
2960193323Sed    case ISD::FMUL:
2961193323Sed    case ISD::FDIV:
2962193323Sed    case ISD::FREM:
2963193574Sed      if (UnsafeFPMath)
2964193574Sed        return N2;
2965193574Sed      break;
2966193323Sed    case ISD::MUL:
2967193323Sed    case ISD::AND:
2968193323Sed    case ISD::SRL:
2969193323Sed    case ISD::SHL:
2970193323Sed      if (!VT.isVector())
2971193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2972193323Sed      // For vectors, we can't easily build an all zero vector, just return
2973193323Sed      // the LHS.
2974193323Sed      return N1;
2975193323Sed    case ISD::OR:
2976193323Sed      if (!VT.isVector())
2977193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2978193323Sed      // For vectors, we can't easily build an all one vector, just return
2979193323Sed      // the LHS.
2980193323Sed      return N1;
2981193323Sed    case ISD::SRA:
2982193323Sed      return N1;
2983193323Sed    }
2984193323Sed  }
2985193323Sed
2986193323Sed  // Memoize this node if possible.
2987193323Sed  SDNode *N;
2988193323Sed  SDVTList VTs = getVTList(VT);
2989193323Sed  if (VT != MVT::Flag) {
2990193323Sed    SDValue Ops[] = { N1, N2 };
2991193323Sed    FoldingSetNodeID ID;
2992193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2993193323Sed    void *IP = 0;
2994201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2995193323Sed      return SDValue(E, 0);
2996201360Srdivacky
2997205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2998193323Sed    CSEMap.InsertNode(N, IP);
2999193323Sed  } else {
3000205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3001193323Sed  }
3002193323Sed
3003193323Sed  AllNodes.push_back(N);
3004193323Sed#ifndef NDEBUG
3005193323Sed  VerifyNode(N);
3006193323Sed#endif
3007193323Sed  return SDValue(N, 0);
3008193323Sed}
3009193323Sed
3010198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3011193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
3012193323Sed  // Perform various simplifications.
3013193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3014193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3015193323Sed  switch (Opcode) {
3016193323Sed  case ISD::CONCAT_VECTORS:
3017193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3018193323Sed    // one big BUILD_VECTOR.
3019193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3020193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
3021193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
3022193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3023193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3024193323Sed      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3025193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3026193323Sed    }
3027193323Sed    break;
3028193323Sed  case ISD::SETCC: {
3029193323Sed    // Use FoldSetCC to simplify SETCC's.
3030193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3031193323Sed    if (Simp.getNode()) return Simp;
3032193323Sed    break;
3033193323Sed  }
3034193323Sed  case ISD::SELECT:
3035193323Sed    if (N1C) {
3036193323Sed     if (N1C->getZExtValue())
3037193323Sed        return N2;             // select true, X, Y -> X
3038193323Sed      else
3039193323Sed        return N3;             // select false, X, Y -> Y
3040193323Sed    }
3041193323Sed
3042193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
3043193323Sed    break;
3044193323Sed  case ISD::BRCOND:
3045193323Sed    if (N2C) {
3046193323Sed      if (N2C->getZExtValue()) // Unconditional branch
3047193323Sed        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3048193323Sed      else
3049193323Sed        return N1;         // Never-taken branch
3050193323Sed    }
3051193323Sed    break;
3052193323Sed  case ISD::VECTOR_SHUFFLE:
3053198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
3054193323Sed    break;
3055193323Sed  case ISD::BIT_CONVERT:
3056193323Sed    // Fold bit_convert nodes from a type to themselves.
3057193323Sed    if (N1.getValueType() == VT)
3058193323Sed      return N1;
3059193323Sed    break;
3060193323Sed  }
3061193323Sed
3062193323Sed  // Memoize node if it doesn't produce a flag.
3063193323Sed  SDNode *N;
3064193323Sed  SDVTList VTs = getVTList(VT);
3065193323Sed  if (VT != MVT::Flag) {
3066193323Sed    SDValue Ops[] = { N1, N2, N3 };
3067193323Sed    FoldingSetNodeID ID;
3068193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3069193323Sed    void *IP = 0;
3070201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3071193323Sed      return SDValue(E, 0);
3072201360Srdivacky
3073205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3074193323Sed    CSEMap.InsertNode(N, IP);
3075193323Sed  } else {
3076205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3077193323Sed  }
3078200581Srdivacky
3079193323Sed  AllNodes.push_back(N);
3080193323Sed#ifndef NDEBUG
3081193323Sed  VerifyNode(N);
3082193323Sed#endif
3083193323Sed  return SDValue(N, 0);
3084193323Sed}
3085193323Sed
3086198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3087193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3088193323Sed                              SDValue N4) {
3089193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3090193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3091193323Sed}
3092193323Sed
3093198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3094193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3095193323Sed                              SDValue N4, SDValue N5) {
3096193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3097193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3098193323Sed}
3099193323Sed
3100198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3101198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3102198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3103198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3104198090Srdivacky
3105198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3106198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3107198090Srdivacky  // CALLSEQ_BEGIN node.
3108198090Srdivacky  ArgChains.push_back(Chain);
3109198090Srdivacky
3110198090Srdivacky  // Add a chain value for each stack argument.
3111198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3112198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3113198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3114198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3115198090Srdivacky        if (FI->getIndex() < 0)
3116198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3117198090Srdivacky
3118198090Srdivacky  // Build a tokenfactor for all the chains.
3119198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3120198090Srdivacky                 &ArgChains[0], ArgChains.size());
3121198090Srdivacky}
3122198090Srdivacky
3123193323Sed/// getMemsetValue - Vectorized representation of the memset value
3124193323Sed/// operand.
3125198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3126193323Sed                              DebugLoc dl) {
3127206124Srdivacky  assert(Value.getOpcode() != ISD::UNDEF);
3128206124Srdivacky
3129204642Srdivacky  unsigned NumBits = VT.getScalarType().getSizeInBits();
3130193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3131193323Sed    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3132193323Sed    unsigned Shift = 8;
3133193323Sed    for (unsigned i = NumBits; i > 8; i >>= 1) {
3134193323Sed      Val = (Val << Shift) | Val;
3135193323Sed      Shift <<= 1;
3136193323Sed    }
3137193323Sed    if (VT.isInteger())
3138193323Sed      return DAG.getConstant(Val, VT);
3139193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3140193323Sed  }
3141193323Sed
3142193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3143193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3144193323Sed  unsigned Shift = 8;
3145193323Sed  for (unsigned i = NumBits; i > 8; i >>= 1) {
3146193323Sed    Value = DAG.getNode(ISD::OR, dl, VT,
3147193323Sed                        DAG.getNode(ISD::SHL, dl, VT, Value,
3148193323Sed                                    DAG.getConstant(Shift,
3149193323Sed                                                    TLI.getShiftAmountTy())),
3150193323Sed                        Value);
3151193323Sed    Shift <<= 1;
3152193323Sed  }
3153193323Sed
3154193323Sed  return Value;
3155193323Sed}
3156193323Sed
3157193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3158193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3159193323Sed/// string ptr.
3160198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3161198090Srdivacky                                  const TargetLowering &TLI,
3162198090Srdivacky                                  std::string &Str, unsigned Offset) {
3163193323Sed  // Handle vector with all elements zero.
3164193323Sed  if (Str.empty()) {
3165193323Sed    if (VT.isInteger())
3166193323Sed      return DAG.getConstant(0, VT);
3167206083Srdivacky    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3168206083Srdivacky             VT.getSimpleVT().SimpleTy == MVT::f64)
3169206083Srdivacky      return DAG.getConstantFP(0.0, VT);
3170206083Srdivacky    else if (VT.isVector()) {
3171206083Srdivacky      unsigned NumElts = VT.getVectorNumElements();
3172206083Srdivacky      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3173206083Srdivacky      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3174206083Srdivacky                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3175206083Srdivacky                                                             EltVT, NumElts)));
3176206083Srdivacky    } else
3177206083Srdivacky      llvm_unreachable("Expected type!");
3178193323Sed  }
3179193323Sed
3180193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3181193323Sed  unsigned NumBits = VT.getSizeInBits();
3182193323Sed  unsigned MSB = NumBits / 8;
3183193323Sed  uint64_t Val = 0;
3184193323Sed  if (TLI.isLittleEndian())
3185193323Sed    Offset = Offset + MSB - 1;
3186193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3187193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3188193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3189193323Sed  }
3190193323Sed  return DAG.getConstant(Val, VT);
3191193323Sed}
3192193323Sed
3193193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3194193323Sed///
3195193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3196193323Sed                                      SelectionDAG &DAG) {
3197198090Srdivacky  EVT VT = Base.getValueType();
3198193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3199193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3200193323Sed}
3201193323Sed
3202193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3203193323Sed///
3204193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3205193323Sed  unsigned SrcDelta = 0;
3206193323Sed  GlobalAddressSDNode *G = NULL;
3207193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3208193323Sed    G = cast<GlobalAddressSDNode>(Src);
3209193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3210193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3211193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3212193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3213193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3214193323Sed  }
3215193323Sed  if (!G)
3216193323Sed    return false;
3217193323Sed
3218207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3219193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3220193323Sed    return true;
3221193323Sed
3222193323Sed  return false;
3223193323Sed}
3224193323Sed
3225206083Srdivacky/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3226206083Srdivacky/// to replace the memset / memcpy. Return true if the number of memory ops
3227206083Srdivacky/// is below the threshold. It returns the types of the sequence of
3228206083Srdivacky/// memory ops to perform memset / memcpy by reference.
3229206083Srdivackystatic bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3230206083Srdivacky                                     unsigned Limit, uint64_t Size,
3231206083Srdivacky                                     unsigned DstAlign, unsigned SrcAlign,
3232206124Srdivacky                                     bool NonScalarIntSafe,
3233207618Srdivacky                                     bool MemcpyStrSrc,
3234206083Srdivacky                                     SelectionDAG &DAG,
3235206083Srdivacky                                     const TargetLowering &TLI) {
3236206083Srdivacky  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3237206083Srdivacky         "Expecting memcpy / memset source to meet alignment requirement!");
3238206083Srdivacky  // If 'SrcAlign' is zero, that means the memory operation does not need load
3239206083Srdivacky  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3240206083Srdivacky  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3241206083Srdivacky  // specified alignment of the memory operation. If it is zero, that means
3242207618Srdivacky  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3243207618Srdivacky  // indicates whether the memcpy source is constant so it does not need to be
3244207618Srdivacky  // loaded.
3245206124Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3246207618Srdivacky                                   NonScalarIntSafe, MemcpyStrSrc,
3247207618Srdivacky                                   DAG.getMachineFunction());
3248193323Sed
3249204961Srdivacky  if (VT == MVT::Other) {
3250206274Srdivacky    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3251206083Srdivacky        TLI.allowsUnalignedMemoryAccesses(VT)) {
3252206274Srdivacky      VT = TLI.getPointerTy();
3253193323Sed    } else {
3254206083Srdivacky      switch (DstAlign & 7) {
3255193323Sed      case 0:  VT = MVT::i64; break;
3256193323Sed      case 4:  VT = MVT::i32; break;
3257193323Sed      case 2:  VT = MVT::i16; break;
3258193323Sed      default: VT = MVT::i8;  break;
3259193323Sed      }
3260193323Sed    }
3261193323Sed
3262193323Sed    MVT LVT = MVT::i64;
3263193323Sed    while (!TLI.isTypeLegal(LVT))
3264198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3265193323Sed    assert(LVT.isInteger());
3266193323Sed
3267193323Sed    if (VT.bitsGT(LVT))
3268193323Sed      VT = LVT;
3269193323Sed  }
3270193323Sed
3271193323Sed  unsigned NumMemOps = 0;
3272193323Sed  while (Size != 0) {
3273193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3274193323Sed    while (VTSize > Size) {
3275193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3276206083Srdivacky      if (VT.isVector() || VT.isFloatingPoint()) {
3277193323Sed        VT = MVT::i64;
3278193323Sed        while (!TLI.isTypeLegal(VT))
3279198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3280193323Sed        VTSize = VT.getSizeInBits() / 8;
3281193323Sed      } else {
3282194710Sed        // This can result in a type that is not legal on the target, e.g.
3283194710Sed        // 1 or 2 bytes on PPC.
3284198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3285193323Sed        VTSize >>= 1;
3286193323Sed      }
3287193323Sed    }
3288193323Sed
3289193323Sed    if (++NumMemOps > Limit)
3290193323Sed      return false;
3291193323Sed    MemOps.push_back(VT);
3292193323Sed    Size -= VTSize;
3293193323Sed  }
3294193323Sed
3295193323Sed  return true;
3296193323Sed}
3297193323Sed
3298193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3299206083Srdivacky                                       SDValue Chain, SDValue Dst,
3300206083Srdivacky                                       SDValue Src, uint64_t Size,
3301206274Srdivacky                                       unsigned Align, bool isVol,
3302206274Srdivacky                                       bool AlwaysInline,
3303206083Srdivacky                                       const Value *DstSV, uint64_t DstSVOff,
3304206083Srdivacky                                       const Value *SrcSV, uint64_t SrcSVOff) {
3305206124Srdivacky  // Turn a memcpy of undef to nop.
3306206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3307206124Srdivacky    return Chain;
3308193323Sed
3309193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3310193323Sed  // below a certain threshold.
3311206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312198090Srdivacky  std::vector<EVT> MemOps;
3313206083Srdivacky  bool DstAlignCanChange = false;
3314206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3315206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3316206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3317206083Srdivacky    DstAlignCanChange = true;
3318206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3319206083Srdivacky  if (Align > SrcAlign)
3320206083Srdivacky    SrcAlign = Align;
3321193323Sed  std::string Str;
3322206083Srdivacky  bool CopyFromStr = isMemSrcFromString(Src, Str);
3323206083Srdivacky  bool isZeroStr = CopyFromStr && Str.empty();
3324207618Srdivacky  uint64_t Limit = -1ULL;
3325207618Srdivacky  if (!AlwaysInline)
3326207618Srdivacky    Limit = TLI.getMaxStoresPerMemcpy();
3327206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3328206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3329207618Srdivacky                                (isZeroStr ? 0 : SrcAlign),
3330207618Srdivacky                                true, CopyFromStr, DAG, TLI))
3331193323Sed    return SDValue();
3332193323Sed
3333206083Srdivacky  if (DstAlignCanChange) {
3334206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3335206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3336206083Srdivacky    if (NewAlign > Align) {
3337206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3338206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3339206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3340206083Srdivacky      Align = NewAlign;
3341206083Srdivacky    }
3342206083Srdivacky  }
3343193323Sed
3344193323Sed  SmallVector<SDValue, 8> OutChains;
3345193323Sed  unsigned NumMemOps = MemOps.size();
3346193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3347198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3348198090Srdivacky    EVT VT = MemOps[i];
3349193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3350193323Sed    SDValue Value, Store;
3351193323Sed
3352206083Srdivacky    if (CopyFromStr &&
3353206083Srdivacky        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3354193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3355193323Sed      // instruction. It would require a load from a constantpool first.
3356206083Srdivacky      // We only handle zero vectors here.
3357193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3358193323Sed      // a single instruction.
3359193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3360193323Sed      Store = DAG.getStore(Chain, dl, Value,
3361193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3362206274Srdivacky                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3363193323Sed    } else {
3364194710Sed      // The type might not be legal for the target.  This should only happen
3365194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3366195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3367195098Sed      // to Load/Store if NVT==VT.
3368194710Sed      // FIXME does the case above also need this?
3369198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3370195098Sed      assert(NVT.bitsGE(VT));
3371195098Sed      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3372195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3373206274Srdivacky                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3374206083Srdivacky                             MinAlign(SrcAlign, SrcOff));
3375195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3376203954Srdivacky                                getMemBasePlusOffset(Dst, DstOff, DAG),
3377206274Srdivacky                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3378206083Srdivacky                                Align);
3379193323Sed    }
3380193323Sed    OutChains.push_back(Store);
3381193323Sed    SrcOff += VTSize;
3382193323Sed    DstOff += VTSize;
3383193323Sed  }
3384193323Sed
3385193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3386193323Sed                     &OutChains[0], OutChains.size());
3387193323Sed}
3388193323Sed
3389193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3390206083Srdivacky                                        SDValue Chain, SDValue Dst,
3391206083Srdivacky                                        SDValue Src, uint64_t Size,
3392206274Srdivacky                                        unsigned Align,  bool isVol,
3393206274Srdivacky                                        bool AlwaysInline,
3394206083Srdivacky                                        const Value *DstSV, uint64_t DstSVOff,
3395206083Srdivacky                                        const Value *SrcSV, uint64_t SrcSVOff) {
3396206124Srdivacky  // Turn a memmove of undef to nop.
3397206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3398206124Srdivacky    return Chain;
3399193323Sed
3400193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3401193323Sed  // below a certain threshold.
3402206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403198090Srdivacky  std::vector<EVT> MemOps;
3404193323Sed  uint64_t Limit = -1ULL;
3405193323Sed  if (!AlwaysInline)
3406193323Sed    Limit = TLI.getMaxStoresPerMemmove();
3407206083Srdivacky  bool DstAlignCanChange = false;
3408206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3409206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3410206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3411206083Srdivacky    DstAlignCanChange = true;
3412206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3413206083Srdivacky  if (Align > SrcAlign)
3414206083Srdivacky    SrcAlign = Align;
3415206083Srdivacky
3416206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3417206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3418207618Srdivacky                                SrcAlign, true, false, DAG, TLI))
3419193323Sed    return SDValue();
3420193323Sed
3421206083Srdivacky  if (DstAlignCanChange) {
3422206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3423206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3424206083Srdivacky    if (NewAlign > Align) {
3425206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3426206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3427206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3428206083Srdivacky      Align = NewAlign;
3429206083Srdivacky    }
3430206083Srdivacky  }
3431206083Srdivacky
3432193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3433193323Sed  SmallVector<SDValue, 8> LoadValues;
3434193323Sed  SmallVector<SDValue, 8> LoadChains;
3435193323Sed  SmallVector<SDValue, 8> OutChains;
3436193323Sed  unsigned NumMemOps = MemOps.size();
3437193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3438198090Srdivacky    EVT VT = MemOps[i];
3439193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3440193323Sed    SDValue Value, Store;
3441193323Sed
3442193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3443193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3444206274Srdivacky                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3445193323Sed    LoadValues.push_back(Value);
3446193323Sed    LoadChains.push_back(Value.getValue(1));
3447193323Sed    SrcOff += VTSize;
3448193323Sed  }
3449193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3450193323Sed                      &LoadChains[0], LoadChains.size());
3451193323Sed  OutChains.clear();
3452193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3453198090Srdivacky    EVT VT = MemOps[i];
3454193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3455193323Sed    SDValue Value, Store;
3456193323Sed
3457193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3458193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3459206274Srdivacky                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3460193323Sed    OutChains.push_back(Store);
3461193323Sed    DstOff += VTSize;
3462193323Sed  }
3463193323Sed
3464193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3465193323Sed                     &OutChains[0], OutChains.size());
3466193323Sed}
3467193323Sed
3468193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3469206083Srdivacky                               SDValue Chain, SDValue Dst,
3470206083Srdivacky                               SDValue Src, uint64_t Size,
3471206274Srdivacky                               unsigned Align, bool isVol,
3472206083Srdivacky                               const Value *DstSV, uint64_t DstSVOff) {
3473206124Srdivacky  // Turn a memset of undef to nop.
3474206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3475206124Srdivacky    return Chain;
3476193323Sed
3477193323Sed  // Expand memset to a series of load/store ops if the size operand
3478193323Sed  // falls below a certain threshold.
3479206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480198090Srdivacky  std::vector<EVT> MemOps;
3481206083Srdivacky  bool DstAlignCanChange = false;
3482206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3483206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3484206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3485206083Srdivacky    DstAlignCanChange = true;
3486206124Srdivacky  bool NonScalarIntSafe =
3487206124Srdivacky    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3488206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3489206083Srdivacky                                Size, (DstAlignCanChange ? 0 : Align), 0,
3490207618Srdivacky                                NonScalarIntSafe, false, DAG, TLI))
3491193323Sed    return SDValue();
3492193323Sed
3493206083Srdivacky  if (DstAlignCanChange) {
3494206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3495206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3496206083Srdivacky    if (NewAlign > Align) {
3497206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3498206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3499206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3500206083Srdivacky      Align = NewAlign;
3501206083Srdivacky    }
3502206083Srdivacky  }
3503206083Srdivacky
3504193323Sed  SmallVector<SDValue, 8> OutChains;
3505193323Sed  uint64_t DstOff = 0;
3506193323Sed  unsigned NumMemOps = MemOps.size();
3507193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3508198090Srdivacky    EVT VT = MemOps[i];
3509193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3510193323Sed    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3511193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3512193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3513206274Srdivacky                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3514193323Sed    OutChains.push_back(Store);
3515193323Sed    DstOff += VTSize;
3516193323Sed  }
3517193323Sed
3518193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3519193323Sed                     &OutChains[0], OutChains.size());
3520193323Sed}
3521193323Sed
3522193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3523193323Sed                                SDValue Src, SDValue Size,
3524206274Srdivacky                                unsigned Align, bool isVol, bool AlwaysInline,
3525193323Sed                                const Value *DstSV, uint64_t DstSVOff,
3526193323Sed                                const Value *SrcSV, uint64_t SrcSVOff) {
3527193323Sed
3528193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3529193323Sed  // For cases within the target-specified limits, this is the best choice.
3530193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3531193323Sed  if (ConstantSize) {
3532193323Sed    // Memcpy with size zero? Just return the original chain.
3533193323Sed    if (ConstantSize->isNullValue())
3534193323Sed      return Chain;
3535193323Sed
3536206083Srdivacky    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3537206083Srdivacky                                             ConstantSize->getZExtValue(),Align,
3538206274Srdivacky                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3539193323Sed    if (Result.getNode())
3540193323Sed      return Result;
3541193323Sed  }
3542193323Sed
3543193323Sed  // Then check to see if we should lower the memcpy with target-specific
3544193323Sed  // code. If the target chooses to do this, this is the next best.
3545193323Sed  SDValue Result =
3546208599Srdivacky    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3547206274Srdivacky                                isVol, AlwaysInline,
3548193323Sed                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3549193323Sed  if (Result.getNode())
3550193323Sed    return Result;
3551193323Sed
3552193323Sed  // If we really need inline code and the target declined to provide it,
3553193323Sed  // use a (potentially long) sequence of loads and stores.
3554193323Sed  if (AlwaysInline) {
3555193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3556193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3557206274Srdivacky                                   ConstantSize->getZExtValue(), Align, isVol,
3558206274Srdivacky                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3559193323Sed  }
3560193323Sed
3561206274Srdivacky  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3562206274Srdivacky  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3563206274Srdivacky  // respect volatile, so they may do things like read or write memory
3564206274Srdivacky  // beyond the given memory regions. But fixing this isn't easy, and most
3565206274Srdivacky  // people don't care.
3566206274Srdivacky
3567193323Sed  // Emit a library call.
3568193323Sed  TargetLowering::ArgListTy Args;
3569193323Sed  TargetLowering::ArgListEntry Entry;
3570198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3571193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3572193323Sed  Entry.Node = Src; Args.push_back(Entry);
3573193323Sed  Entry.Node = Size; Args.push_back(Entry);
3574193323Sed  // FIXME: pass in DebugLoc
3575193323Sed  std::pair<SDValue,SDValue> CallResult =
3576198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3577198090Srdivacky                    false, false, false, false, 0,
3578198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3579198090Srdivacky                    /*isReturnValueUsed=*/false,
3580198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3581198090Srdivacky                                      TLI.getPointerTy()),
3582204642Srdivacky                    Args, *this, dl);
3583193323Sed  return CallResult.second;
3584193323Sed}
3585193323Sed
3586193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3587193323Sed                                 SDValue Src, SDValue Size,
3588206274Srdivacky                                 unsigned Align, bool isVol,
3589193323Sed                                 const Value *DstSV, uint64_t DstSVOff,
3590193323Sed                                 const Value *SrcSV, uint64_t SrcSVOff) {
3591193323Sed
3592193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3593193323Sed  // For cases within the target-specified limits, this is the best choice.
3594193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3595193323Sed  if (ConstantSize) {
3596193323Sed    // Memmove with size zero? Just return the original chain.
3597193323Sed    if (ConstantSize->isNullValue())
3598193323Sed      return Chain;
3599193323Sed
3600193323Sed    SDValue Result =
3601193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3602206274Srdivacky                               ConstantSize->getZExtValue(), Align, isVol,
3603206274Srdivacky                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3604193323Sed    if (Result.getNode())
3605193323Sed      return Result;
3606193323Sed  }
3607193323Sed
3608193323Sed  // Then check to see if we should lower the memmove with target-specific
3609193323Sed  // code. If the target chooses to do this, this is the next best.
3610193323Sed  SDValue Result =
3611208599Srdivacky    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3612193323Sed                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3613193323Sed  if (Result.getNode())
3614193323Sed    return Result;
3615193323Sed
3616207618Srdivacky  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3617207618Srdivacky  // not be safe.  See memcpy above for more details.
3618207618Srdivacky
3619193323Sed  // Emit a library call.
3620193323Sed  TargetLowering::ArgListTy Args;
3621193323Sed  TargetLowering::ArgListEntry Entry;
3622198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3623193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3624193323Sed  Entry.Node = Src; Args.push_back(Entry);
3625193323Sed  Entry.Node = Size; Args.push_back(Entry);
3626193323Sed  // FIXME:  pass in DebugLoc
3627193323Sed  std::pair<SDValue,SDValue> CallResult =
3628198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3629198090Srdivacky                    false, false, false, false, 0,
3630198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3631198090Srdivacky                    /*isReturnValueUsed=*/false,
3632198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3633198090Srdivacky                                      TLI.getPointerTy()),
3634204642Srdivacky                    Args, *this, dl);
3635193323Sed  return CallResult.second;
3636193323Sed}
3637193323Sed
3638193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3639193323Sed                                SDValue Src, SDValue Size,
3640206274Srdivacky                                unsigned Align, bool isVol,
3641193323Sed                                const Value *DstSV, uint64_t DstSVOff) {
3642193323Sed
3643193323Sed  // Check to see if we should lower the memset to stores first.
3644193323Sed  // For cases within the target-specified limits, this is the best choice.
3645193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3646193323Sed  if (ConstantSize) {
3647193323Sed    // Memset with size zero? Just return the original chain.
3648193323Sed    if (ConstantSize->isNullValue())
3649193323Sed      return Chain;
3650193323Sed
3651206274Srdivacky    SDValue Result =
3652206274Srdivacky      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3653206274Srdivacky                      Align, isVol, DstSV, DstSVOff);
3654206274Srdivacky
3655193323Sed    if (Result.getNode())
3656193323Sed      return Result;
3657193323Sed  }
3658193323Sed
3659193323Sed  // Then check to see if we should lower the memset with target-specific
3660193323Sed  // code. If the target chooses to do this, this is the next best.
3661193323Sed  SDValue Result =
3662208599Srdivacky    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3663193323Sed                                DstSV, DstSVOff);
3664193323Sed  if (Result.getNode())
3665193323Sed    return Result;
3666193323Sed
3667207618Srdivacky  // Emit a library call.
3668198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3669193323Sed  TargetLowering::ArgListTy Args;
3670193323Sed  TargetLowering::ArgListEntry Entry;
3671193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3672193323Sed  Args.push_back(Entry);
3673193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3674193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3675193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3676193323Sed  else
3677193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3678198090Srdivacky  Entry.Node = Src;
3679198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3680198090Srdivacky  Entry.isSExt = true;
3681193323Sed  Args.push_back(Entry);
3682198090Srdivacky  Entry.Node = Size;
3683198090Srdivacky  Entry.Ty = IntPtrTy;
3684198090Srdivacky  Entry.isSExt = false;
3685193323Sed  Args.push_back(Entry);
3686193323Sed  // FIXME: pass in DebugLoc
3687193323Sed  std::pair<SDValue,SDValue> CallResult =
3688198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3689198090Srdivacky                    false, false, false, false, 0,
3690198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3691198090Srdivacky                    /*isReturnValueUsed=*/false,
3692198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3693198090Srdivacky                                      TLI.getPointerTy()),
3694204642Srdivacky                    Args, *this, dl);
3695193323Sed  return CallResult.second;
3696193323Sed}
3697193323Sed
3698198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3699193323Sed                                SDValue Chain,
3700193323Sed                                SDValue Ptr, SDValue Cmp,
3701193323Sed                                SDValue Swp, const Value* PtrVal,
3702193323Sed                                unsigned Alignment) {
3703198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3704198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3705198090Srdivacky
3706198090Srdivacky  // Check if the memory reference references a frame index
3707198090Srdivacky  if (!PtrVal)
3708198090Srdivacky    if (const FrameIndexSDNode *FI =
3709198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3710198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3711198090Srdivacky
3712198090Srdivacky  MachineFunction &MF = getMachineFunction();
3713198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3714198090Srdivacky
3715198090Srdivacky  // For now, atomics are considered to be volatile always.
3716198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3717198090Srdivacky
3718198090Srdivacky  MachineMemOperand *MMO =
3719198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3720198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3721198090Srdivacky
3722198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3723198090Srdivacky}
3724198090Srdivacky
3725198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3726198090Srdivacky                                SDValue Chain,
3727198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3728198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3729193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3730193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3731193323Sed
3732198090Srdivacky  EVT VT = Cmp.getValueType();
3733193323Sed
3734193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3735193323Sed  FoldingSetNodeID ID;
3736193323Sed  ID.AddInteger(MemVT.getRawBits());
3737193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3738193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3739193323Sed  void* IP = 0;
3740198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3741198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3742193323Sed    return SDValue(E, 0);
3743198090Srdivacky  }
3744205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3745205407Srdivacky                                               Ptr, Cmp, Swp, MMO);
3746193323Sed  CSEMap.InsertNode(N, IP);
3747193323Sed  AllNodes.push_back(N);
3748193323Sed  return SDValue(N, 0);
3749193323Sed}
3750193323Sed
3751198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3752193323Sed                                SDValue Chain,
3753193323Sed                                SDValue Ptr, SDValue Val,
3754193323Sed                                const Value* PtrVal,
3755193323Sed                                unsigned Alignment) {
3756198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3757198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3758198090Srdivacky
3759198090Srdivacky  // Check if the memory reference references a frame index
3760198090Srdivacky  if (!PtrVal)
3761198090Srdivacky    if (const FrameIndexSDNode *FI =
3762198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3763198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3764198090Srdivacky
3765198090Srdivacky  MachineFunction &MF = getMachineFunction();
3766198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3767198090Srdivacky
3768198090Srdivacky  // For now, atomics are considered to be volatile always.
3769198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3770198090Srdivacky
3771198090Srdivacky  MachineMemOperand *MMO =
3772198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3773198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3774198090Srdivacky
3775198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3776198090Srdivacky}
3777198090Srdivacky
3778198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3779198090Srdivacky                                SDValue Chain,
3780198090Srdivacky                                SDValue Ptr, SDValue Val,
3781198090Srdivacky                                MachineMemOperand *MMO) {
3782193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3783193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3784193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3785193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3786193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3787193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3788193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3789193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3790193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3791193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3792193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3793193323Sed         "Invalid Atomic Op");
3794193323Sed
3795198090Srdivacky  EVT VT = Val.getValueType();
3796193323Sed
3797193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3798193323Sed  FoldingSetNodeID ID;
3799193323Sed  ID.AddInteger(MemVT.getRawBits());
3800193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3801193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3802193323Sed  void* IP = 0;
3803198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3804198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3805193323Sed    return SDValue(E, 0);
3806198090Srdivacky  }
3807205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3808205407Srdivacky                                               Ptr, Val, MMO);
3809193323Sed  CSEMap.InsertNode(N, IP);
3810193323Sed  AllNodes.push_back(N);
3811193323Sed  return SDValue(N, 0);
3812193323Sed}
3813193323Sed
3814193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3815193323Sed/// Allowed to return something different (and simpler) if Simplify is true.
3816193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3817193323Sed                                     DebugLoc dl) {
3818193323Sed  if (NumOps == 1)
3819193323Sed    return Ops[0];
3820193323Sed
3821198090Srdivacky  SmallVector<EVT, 4> VTs;
3822193323Sed  VTs.reserve(NumOps);
3823193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3824193323Sed    VTs.push_back(Ops[i].getValueType());
3825193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3826193323Sed                 Ops, NumOps);
3827193323Sed}
3828193323Sed
3829193323SedSDValue
3830193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3831198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3832193323Sed                                  const SDValue *Ops, unsigned NumOps,
3833198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3834193323Sed                                  unsigned Align, bool Vol,
3835193323Sed                                  bool ReadMem, bool WriteMem) {
3836193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3837193323Sed                             MemVT, srcValue, SVOff, Align, Vol,
3838193323Sed                             ReadMem, WriteMem);
3839193323Sed}
3840193323Sed
3841193323SedSDValue
3842193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3843193323Sed                                  const SDValue *Ops, unsigned NumOps,
3844198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3845193323Sed                                  unsigned Align, bool Vol,
3846193323Sed                                  bool ReadMem, bool WriteMem) {
3847198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3848198090Srdivacky    Align = getEVTAlignment(MemVT);
3849198090Srdivacky
3850198090Srdivacky  MachineFunction &MF = getMachineFunction();
3851198090Srdivacky  unsigned Flags = 0;
3852198090Srdivacky  if (WriteMem)
3853198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3854198090Srdivacky  if (ReadMem)
3855198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3856198090Srdivacky  if (Vol)
3857198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3858198090Srdivacky  MachineMemOperand *MMO =
3859198090Srdivacky    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3860198090Srdivacky                            MemVT.getStoreSize(), Align);
3861198090Srdivacky
3862198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3863198090Srdivacky}
3864198090Srdivacky
3865198090SrdivackySDValue
3866198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3867198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3868198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3869198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3870198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3871198090Srdivacky          (Opcode <= INT_MAX &&
3872198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3873198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3874198090Srdivacky
3875193323Sed  // Memoize the node unless it returns a flag.
3876193323Sed  MemIntrinsicSDNode *N;
3877193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3878193323Sed    FoldingSetNodeID ID;
3879193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3880193323Sed    void *IP = 0;
3881198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3882198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3883193323Sed      return SDValue(E, 0);
3884198090Srdivacky    }
3885193323Sed
3886205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3887205407Srdivacky                                               MemVT, MMO);
3888193323Sed    CSEMap.InsertNode(N, IP);
3889193323Sed  } else {
3890205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3891205407Srdivacky                                               MemVT, MMO);
3892193323Sed  }
3893193323Sed  AllNodes.push_back(N);
3894193323Sed  return SDValue(N, 0);
3895193323Sed}
3896193323Sed
3897193323SedSDValue
3898193323SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3899198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3900193323Sed                      SDValue Ptr, SDValue Offset,
3901198090Srdivacky                      const Value *SV, int SVOffset, EVT MemVT,
3902203954Srdivacky                      bool isVolatile, bool isNonTemporal,
3903203954Srdivacky                      unsigned Alignment) {
3904193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3905198090Srdivacky    Alignment = getEVTAlignment(VT);
3906193323Sed
3907198090Srdivacky  // Check if the memory reference references a frame index
3908198090Srdivacky  if (!SV)
3909198090Srdivacky    if (const FrameIndexSDNode *FI =
3910198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3911198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3912198090Srdivacky
3913198090Srdivacky  MachineFunction &MF = getMachineFunction();
3914198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
3915198090Srdivacky  if (isVolatile)
3916198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3917203954Srdivacky  if (isNonTemporal)
3918203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
3919198090Srdivacky  MachineMemOperand *MMO =
3920198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3921198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3922198090Srdivacky  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3923198090Srdivacky}
3924198090Srdivacky
3925198090SrdivackySDValue
3926198090SrdivackySelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3927198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3928198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
3929198090Srdivacky                      MachineMemOperand *MMO) {
3930198090Srdivacky  if (VT == MemVT) {
3931193323Sed    ExtType = ISD::NON_EXTLOAD;
3932193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
3933198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
3934193323Sed  } else {
3935193323Sed    // Extending load.
3936200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3937200581Srdivacky           "Should only be an extending load, not truncating!");
3938198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
3939193323Sed           "Cannot convert from FP to Int or Int -> FP!");
3940200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
3941200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
3942200581Srdivacky    assert((!VT.isVector() ||
3943200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3944200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
3945193323Sed  }
3946193323Sed
3947193323Sed  bool Indexed = AM != ISD::UNINDEXED;
3948193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3949193323Sed         "Unindexed load with an offset!");
3950193323Sed
3951193323Sed  SDVTList VTs = Indexed ?
3952193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3953193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
3954193323Sed  FoldingSetNodeID ID;
3955193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3956198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
3957204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3958204642Srdivacky                                     MMO->isNonTemporal()));
3959193323Sed  void *IP = 0;
3960198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3961198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
3962193323Sed    return SDValue(E, 0);
3963198090Srdivacky  }
3964205407Srdivacky  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3965205407Srdivacky                                             MemVT, MMO);
3966193323Sed  CSEMap.InsertNode(N, IP);
3967193323Sed  AllNodes.push_back(N);
3968193323Sed  return SDValue(N, 0);
3969193323Sed}
3970193323Sed
3971198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3972193323Sed                              SDValue Chain, SDValue Ptr,
3973193323Sed                              const Value *SV, int SVOffset,
3974203954Srdivacky                              bool isVolatile, bool isNonTemporal,
3975203954Srdivacky                              unsigned Alignment) {
3976193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3977193323Sed  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3978203954Srdivacky                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3979193323Sed}
3980193323Sed
3981198090SrdivackySDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3982193323Sed                                 SDValue Chain, SDValue Ptr,
3983193323Sed                                 const Value *SV,
3984198090Srdivacky                                 int SVOffset, EVT MemVT,
3985203954Srdivacky                                 bool isVolatile, bool isNonTemporal,
3986203954Srdivacky                                 unsigned Alignment) {
3987193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3988193323Sed  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3989203954Srdivacky                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3990193323Sed}
3991193323Sed
3992193323SedSDValue
3993193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3994193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
3995193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3996193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3997193323Sed         "Load is already a indexed load!");
3998193323Sed  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3999193323Sed                 LD->getChain(), Base, Offset, LD->getSrcValue(),
4000193323Sed                 LD->getSrcValueOffset(), LD->getMemoryVT(),
4001203954Srdivacky                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4002193323Sed}
4003193323Sed
4004193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4005193323Sed                               SDValue Ptr, const Value *SV, int SVOffset,
4006203954Srdivacky                               bool isVolatile, bool isNonTemporal,
4007203954Srdivacky                               unsigned Alignment) {
4008193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4009198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
4010193323Sed
4011198090Srdivacky  // Check if the memory reference references a frame index
4012198090Srdivacky  if (!SV)
4013198090Srdivacky    if (const FrameIndexSDNode *FI =
4014198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4015198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4016198090Srdivacky
4017198090Srdivacky  MachineFunction &MF = getMachineFunction();
4018198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4019198090Srdivacky  if (isVolatile)
4020198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4021203954Srdivacky  if (isNonTemporal)
4022203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4023198090Srdivacky  MachineMemOperand *MMO =
4024198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
4025198090Srdivacky                            Val.getValueType().getStoreSize(), Alignment);
4026198090Srdivacky
4027198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
4028198090Srdivacky}
4029198090Srdivacky
4030198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4031198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
4032198090Srdivacky  EVT VT = Val.getValueType();
4033193323Sed  SDVTList VTs = getVTList(MVT::Other);
4034193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4035193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4036193323Sed  FoldingSetNodeID ID;
4037193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4038193323Sed  ID.AddInteger(VT.getRawBits());
4039204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4040204642Srdivacky                                     MMO->isNonTemporal()));
4041193323Sed  void *IP = 0;
4042198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4043198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4044193323Sed    return SDValue(E, 0);
4045198090Srdivacky  }
4046205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4047205407Srdivacky                                              false, VT, MMO);
4048193323Sed  CSEMap.InsertNode(N, IP);
4049193323Sed  AllNodes.push_back(N);
4050193323Sed  return SDValue(N, 0);
4051193323Sed}
4052193323Sed
4053193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4054193323Sed                                    SDValue Ptr, const Value *SV,
4055198090Srdivacky                                    int SVOffset, EVT SVT,
4056203954Srdivacky                                    bool isVolatile, bool isNonTemporal,
4057203954Srdivacky                                    unsigned Alignment) {
4058198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4059198090Srdivacky    Alignment = getEVTAlignment(SVT);
4060193323Sed
4061198090Srdivacky  // Check if the memory reference references a frame index
4062198090Srdivacky  if (!SV)
4063198090Srdivacky    if (const FrameIndexSDNode *FI =
4064198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4065198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4066198090Srdivacky
4067198090Srdivacky  MachineFunction &MF = getMachineFunction();
4068198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4069198090Srdivacky  if (isVolatile)
4070198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4071203954Srdivacky  if (isNonTemporal)
4072203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4073198090Srdivacky  MachineMemOperand *MMO =
4074198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4075198090Srdivacky
4076198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4077198090Srdivacky}
4078198090Srdivacky
4079198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4080198090Srdivacky                                    SDValue Ptr, EVT SVT,
4081198090Srdivacky                                    MachineMemOperand *MMO) {
4082198090Srdivacky  EVT VT = Val.getValueType();
4083198090Srdivacky
4084193323Sed  if (VT == SVT)
4085198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
4086193323Sed
4087200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4088200581Srdivacky         "Should only be a truncating store, not extending!");
4089193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
4090193323Sed         "Can't do FP-INT conversion!");
4091200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
4092200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
4093200581Srdivacky  assert((!VT.isVector() ||
4094200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4095200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
4096193323Sed
4097193323Sed  SDVTList VTs = getVTList(MVT::Other);
4098193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4099193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4100193323Sed  FoldingSetNodeID ID;
4101193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4102193323Sed  ID.AddInteger(SVT.getRawBits());
4103204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4104204642Srdivacky                                     MMO->isNonTemporal()));
4105193323Sed  void *IP = 0;
4106198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4107198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4108193323Sed    return SDValue(E, 0);
4109198090Srdivacky  }
4110205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4111205407Srdivacky                                              true, SVT, MMO);
4112193323Sed  CSEMap.InsertNode(N, IP);
4113193323Sed  AllNodes.push_back(N);
4114193323Sed  return SDValue(N, 0);
4115193323Sed}
4116193323Sed
4117193323SedSDValue
4118193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4119193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
4120193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4121193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4122193323Sed         "Store is already a indexed store!");
4123193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4124193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4125193323Sed  FoldingSetNodeID ID;
4126193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4127193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
4128193323Sed  ID.AddInteger(ST->getRawSubclassData());
4129193323Sed  void *IP = 0;
4130201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4131193323Sed    return SDValue(E, 0);
4132201360Srdivacky
4133205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4134205407Srdivacky                                              ST->isTruncatingStore(),
4135205407Srdivacky                                              ST->getMemoryVT(),
4136205407Srdivacky                                              ST->getMemOperand());
4137193323Sed  CSEMap.InsertNode(N, IP);
4138193323Sed  AllNodes.push_back(N);
4139193323Sed  return SDValue(N, 0);
4140193323Sed}
4141193323Sed
4142198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4143193323Sed                               SDValue Chain, SDValue Ptr,
4144193323Sed                               SDValue SV) {
4145193323Sed  SDValue Ops[] = { Chain, Ptr, SV };
4146193323Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4147193323Sed}
4148193323Sed
4149198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4150193323Sed                              const SDUse *Ops, unsigned NumOps) {
4151193323Sed  switch (NumOps) {
4152193323Sed  case 0: return getNode(Opcode, DL, VT);
4153193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4154193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4155193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4156193323Sed  default: break;
4157193323Sed  }
4158193323Sed
4159193323Sed  // Copy from an SDUse array into an SDValue array for use with
4160193323Sed  // the regular getNode logic.
4161193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4162193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4163193323Sed}
4164193323Sed
4165198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4166193323Sed                              const SDValue *Ops, unsigned NumOps) {
4167193323Sed  switch (NumOps) {
4168193323Sed  case 0: return getNode(Opcode, DL, VT);
4169193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4170193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4171193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4172193323Sed  default: break;
4173193323Sed  }
4174193323Sed
4175193323Sed  switch (Opcode) {
4176193323Sed  default: break;
4177193323Sed  case ISD::SELECT_CC: {
4178193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4179193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4180193323Sed           "LHS and RHS of condition must have same type!");
4181193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4182193323Sed           "True and False arms of SelectCC must have same type!");
4183193323Sed    assert(Ops[2].getValueType() == VT &&
4184193323Sed           "select_cc node must be of same type as true and false value!");
4185193323Sed    break;
4186193323Sed  }
4187193323Sed  case ISD::BR_CC: {
4188193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4189193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4190193323Sed           "LHS/RHS of comparison should match types!");
4191193323Sed    break;
4192193323Sed  }
4193193323Sed  }
4194193323Sed
4195193323Sed  // Memoize nodes.
4196193323Sed  SDNode *N;
4197193323Sed  SDVTList VTs = getVTList(VT);
4198193323Sed
4199193323Sed  if (VT != MVT::Flag) {
4200193323Sed    FoldingSetNodeID ID;
4201193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4202193323Sed    void *IP = 0;
4203193323Sed
4204201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4205193323Sed      return SDValue(E, 0);
4206193323Sed
4207205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4208193323Sed    CSEMap.InsertNode(N, IP);
4209193323Sed  } else {
4210205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4211193323Sed  }
4212193323Sed
4213193323Sed  AllNodes.push_back(N);
4214193323Sed#ifndef NDEBUG
4215193323Sed  VerifyNode(N);
4216193323Sed#endif
4217193323Sed  return SDValue(N, 0);
4218193323Sed}
4219193323Sed
4220193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4221198090Srdivacky                              const std::vector<EVT> &ResultTys,
4222193323Sed                              const SDValue *Ops, unsigned NumOps) {
4223193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4224193323Sed                 Ops, NumOps);
4225193323Sed}
4226193323Sed
4227193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4228198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4229193323Sed                              const SDValue *Ops, unsigned NumOps) {
4230193323Sed  if (NumVTs == 1)
4231193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4232193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4233193323Sed}
4234193323Sed
4235193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4236193323Sed                              const SDValue *Ops, unsigned NumOps) {
4237193323Sed  if (VTList.NumVTs == 1)
4238193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4239193323Sed
4240198090Srdivacky#if 0
4241193323Sed  switch (Opcode) {
4242193323Sed  // FIXME: figure out how to safely handle things like
4243193323Sed  // int foo(int x) { return 1 << (x & 255); }
4244193323Sed  // int bar() { return foo(256); }
4245193323Sed  case ISD::SRA_PARTS:
4246193323Sed  case ISD::SRL_PARTS:
4247193323Sed  case ISD::SHL_PARTS:
4248193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4249193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4250193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4251193323Sed    else if (N3.getOpcode() == ISD::AND)
4252193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4253193323Sed        // If the and is only masking out bits that cannot effect the shift,
4254193323Sed        // eliminate the and.
4255202375Srdivacky        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4256193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4257193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4258193323Sed      }
4259193323Sed    break;
4260198090Srdivacky  }
4261193323Sed#endif
4262193323Sed
4263193323Sed  // Memoize the node unless it returns a flag.
4264193323Sed  SDNode *N;
4265193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4266193323Sed    FoldingSetNodeID ID;
4267193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4268193323Sed    void *IP = 0;
4269201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4270193323Sed      return SDValue(E, 0);
4271201360Srdivacky
4272193323Sed    if (NumOps == 1) {
4273205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4274193323Sed    } else if (NumOps == 2) {
4275205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4276193323Sed    } else if (NumOps == 3) {
4277205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4278205407Srdivacky                                            Ops[2]);
4279193323Sed    } else {
4280205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4281193323Sed    }
4282193323Sed    CSEMap.InsertNode(N, IP);
4283193323Sed  } else {
4284193323Sed    if (NumOps == 1) {
4285205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4286193323Sed    } else if (NumOps == 2) {
4287205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4288193323Sed    } else if (NumOps == 3) {
4289205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4290205407Srdivacky                                            Ops[2]);
4291193323Sed    } else {
4292205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4293193323Sed    }
4294193323Sed  }
4295193323Sed  AllNodes.push_back(N);
4296193323Sed#ifndef NDEBUG
4297193323Sed  VerifyNode(N);
4298193323Sed#endif
4299193323Sed  return SDValue(N, 0);
4300193323Sed}
4301193323Sed
4302193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4303193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4304193323Sed}
4305193323Sed
4306193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4307193323Sed                              SDValue N1) {
4308193323Sed  SDValue Ops[] = { N1 };
4309193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4310193323Sed}
4311193323Sed
4312193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4313193323Sed                              SDValue N1, SDValue N2) {
4314193323Sed  SDValue Ops[] = { N1, N2 };
4315193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4316193323Sed}
4317193323Sed
4318193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4319193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4320193323Sed  SDValue Ops[] = { N1, N2, N3 };
4321193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4322193323Sed}
4323193323Sed
4324193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4325193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4326193323Sed                              SDValue N4) {
4327193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4328193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4329193323Sed}
4330193323Sed
4331193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4332193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4333193323Sed                              SDValue N4, SDValue N5) {
4334193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4335193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4336193323Sed}
4337193323Sed
4338198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4339193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4340193323Sed}
4341193323Sed
4342198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4343193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4344193323Sed       E = VTList.rend(); I != E; ++I)
4345193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4346193323Sed      return *I;
4347193323Sed
4348198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4349193323Sed  Array[0] = VT1;
4350193323Sed  Array[1] = VT2;
4351193323Sed  SDVTList Result = makeVTList(Array, 2);
4352193323Sed  VTList.push_back(Result);
4353193323Sed  return Result;
4354193323Sed}
4355193323Sed
4356198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4357193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4358193323Sed       E = VTList.rend(); I != E; ++I)
4359193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4360193323Sed                          I->VTs[2] == VT3)
4361193323Sed      return *I;
4362193323Sed
4363198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4364193323Sed  Array[0] = VT1;
4365193323Sed  Array[1] = VT2;
4366193323Sed  Array[2] = VT3;
4367193323Sed  SDVTList Result = makeVTList(Array, 3);
4368193323Sed  VTList.push_back(Result);
4369193323Sed  return Result;
4370193323Sed}
4371193323Sed
4372198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4373193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4374193323Sed       E = VTList.rend(); I != E; ++I)
4375193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4376193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4377193323Sed      return *I;
4378193323Sed
4379200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4380193323Sed  Array[0] = VT1;
4381193323Sed  Array[1] = VT2;
4382193323Sed  Array[2] = VT3;
4383193323Sed  Array[3] = VT4;
4384193323Sed  SDVTList Result = makeVTList(Array, 4);
4385193323Sed  VTList.push_back(Result);
4386193323Sed  return Result;
4387193323Sed}
4388193323Sed
4389198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4390193323Sed  switch (NumVTs) {
4391198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4392193323Sed    case 1: return getVTList(VTs[0]);
4393193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4394193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4395201360Srdivacky    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4396193323Sed    default: break;
4397193323Sed  }
4398193323Sed
4399193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4400193323Sed       E = VTList.rend(); I != E; ++I) {
4401193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4402193323Sed      continue;
4403193323Sed
4404193323Sed    bool NoMatch = false;
4405193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4406193323Sed      if (VTs[i] != I->VTs[i]) {
4407193323Sed        NoMatch = true;
4408193323Sed        break;
4409193323Sed      }
4410193323Sed    if (!NoMatch)
4411193323Sed      return *I;
4412193323Sed  }
4413193323Sed
4414198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4415193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4416193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4417193323Sed  VTList.push_back(Result);
4418193323Sed  return Result;
4419193323Sed}
4420193323Sed
4421193323Sed
4422193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4423193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4424193323Sed/// this does not modify the specified node, instead it returns the node that
4425193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4426193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4427193323Sed/// input operands as the node already has, the input node is returned.
4428193323SedSDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4429193323Sed  SDNode *N = InN.getNode();
4430193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4431193323Sed
4432193323Sed  // Check to see if there is no change.
4433193323Sed  if (Op == N->getOperand(0)) return InN;
4434193323Sed
4435193323Sed  // See if the modified node already exists.
4436193323Sed  void *InsertPos = 0;
4437193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4438193323Sed    return SDValue(Existing, InN.getResNo());
4439193323Sed
4440193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4441193323Sed  if (InsertPos)
4442193323Sed    if (!RemoveNodeFromCSEMaps(N))
4443193323Sed      InsertPos = 0;
4444193323Sed
4445193323Sed  // Now we update the operands.
4446193323Sed  N->OperandList[0].set(Op);
4447193323Sed
4448193323Sed  // If this gets put into a CSE map, add it.
4449193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4450193323Sed  return InN;
4451193323Sed}
4452193323Sed
4453193323SedSDValue SelectionDAG::
4454193323SedUpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4455193323Sed  SDNode *N = InN.getNode();
4456193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4457193323Sed
4458193323Sed  // Check to see if there is no change.
4459193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4460193323Sed    return InN;   // No operands changed, just return the input node.
4461193323Sed
4462193323Sed  // See if the modified node already exists.
4463193323Sed  void *InsertPos = 0;
4464193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4465193323Sed    return SDValue(Existing, InN.getResNo());
4466193323Sed
4467193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4468193323Sed  if (InsertPos)
4469193323Sed    if (!RemoveNodeFromCSEMaps(N))
4470193323Sed      InsertPos = 0;
4471193323Sed
4472193323Sed  // Now we update the operands.
4473193323Sed  if (N->OperandList[0] != Op1)
4474193323Sed    N->OperandList[0].set(Op1);
4475193323Sed  if (N->OperandList[1] != Op2)
4476193323Sed    N->OperandList[1].set(Op2);
4477193323Sed
4478193323Sed  // If this gets put into a CSE map, add it.
4479193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4480193323Sed  return InN;
4481193323Sed}
4482193323Sed
4483193323SedSDValue SelectionDAG::
4484193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4485193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4486193323Sed  return UpdateNodeOperands(N, Ops, 3);
4487193323Sed}
4488193323Sed
4489193323SedSDValue SelectionDAG::
4490193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4491193323Sed                   SDValue Op3, SDValue Op4) {
4492193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4493193323Sed  return UpdateNodeOperands(N, Ops, 4);
4494193323Sed}
4495193323Sed
4496193323SedSDValue SelectionDAG::
4497193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4498193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4499193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4500193323Sed  return UpdateNodeOperands(N, Ops, 5);
4501193323Sed}
4502193323Sed
4503193323SedSDValue SelectionDAG::
4504193323SedUpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4505193323Sed  SDNode *N = InN.getNode();
4506193323Sed  assert(N->getNumOperands() == NumOps &&
4507193323Sed         "Update with wrong number of operands");
4508193323Sed
4509193323Sed  // Check to see if there is no change.
4510193323Sed  bool AnyChange = false;
4511193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4512193323Sed    if (Ops[i] != N->getOperand(i)) {
4513193323Sed      AnyChange = true;
4514193323Sed      break;
4515193323Sed    }
4516193323Sed  }
4517193323Sed
4518193323Sed  // No operands changed, just return the input node.
4519193323Sed  if (!AnyChange) return InN;
4520193323Sed
4521193323Sed  // See if the modified node already exists.
4522193323Sed  void *InsertPos = 0;
4523193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4524193323Sed    return SDValue(Existing, InN.getResNo());
4525193323Sed
4526193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4527193323Sed  if (InsertPos)
4528193323Sed    if (!RemoveNodeFromCSEMaps(N))
4529193323Sed      InsertPos = 0;
4530193323Sed
4531193323Sed  // Now we update the operands.
4532193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4533193323Sed    if (N->OperandList[i] != Ops[i])
4534193323Sed      N->OperandList[i].set(Ops[i]);
4535193323Sed
4536193323Sed  // If this gets put into a CSE map, add it.
4537193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4538193323Sed  return InN;
4539193323Sed}
4540193323Sed
4541193323Sed/// DropOperands - Release the operands and set this node to have
4542193323Sed/// zero operands.
4543193323Sedvoid SDNode::DropOperands() {
4544193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4545193323Sed  // watch for dead nodes here.
4546193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4547193323Sed    SDUse &Use = *I++;
4548193323Sed    Use.set(SDValue());
4549193323Sed  }
4550193323Sed}
4551193323Sed
4552193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4553193323Sed/// machine opcode.
4554193323Sed///
4555193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556198090Srdivacky                                   EVT VT) {
4557193323Sed  SDVTList VTs = getVTList(VT);
4558193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4559193323Sed}
4560193323Sed
4561193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562198090Srdivacky                                   EVT VT, SDValue Op1) {
4563193323Sed  SDVTList VTs = getVTList(VT);
4564193323Sed  SDValue Ops[] = { Op1 };
4565193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4566193323Sed}
4567193323Sed
4568193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569198090Srdivacky                                   EVT VT, SDValue Op1,
4570193323Sed                                   SDValue Op2) {
4571193323Sed  SDVTList VTs = getVTList(VT);
4572193323Sed  SDValue Ops[] = { Op1, Op2 };
4573193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4574193323Sed}
4575193323Sed
4576193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4577198090Srdivacky                                   EVT VT, SDValue Op1,
4578193323Sed                                   SDValue Op2, SDValue Op3) {
4579193323Sed  SDVTList VTs = getVTList(VT);
4580193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4581193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4582193323Sed}
4583193323Sed
4584193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585198090Srdivacky                                   EVT VT, const SDValue *Ops,
4586193323Sed                                   unsigned NumOps) {
4587193323Sed  SDVTList VTs = getVTList(VT);
4588193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4589193323Sed}
4590193323Sed
4591193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4593193323Sed                                   unsigned NumOps) {
4594193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4595193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4596193323Sed}
4597193323Sed
4598193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599198090Srdivacky                                   EVT VT1, EVT VT2) {
4600193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4601193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4602193323Sed}
4603193323Sed
4604193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4606193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4607193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4608193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4609193323Sed}
4610193323Sed
4611193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4613193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4614193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4615193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4616193323Sed}
4617193323Sed
4618193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619198090Srdivacky                                   EVT VT1, EVT VT2,
4620193323Sed                                   SDValue Op1) {
4621193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4622193323Sed  SDValue Ops[] = { Op1 };
4623193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4624193323Sed}
4625193323Sed
4626193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4627198090Srdivacky                                   EVT VT1, EVT VT2,
4628193323Sed                                   SDValue Op1, SDValue Op2) {
4629193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4630193323Sed  SDValue Ops[] = { Op1, Op2 };
4631193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4632193323Sed}
4633193323Sed
4634193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4635198090Srdivacky                                   EVT VT1, EVT VT2,
4636193323Sed                                   SDValue Op1, SDValue Op2,
4637193323Sed                                   SDValue Op3) {
4638193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4639193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4640193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4641193323Sed}
4642193323Sed
4643193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4644198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4645193323Sed                                   SDValue Op1, SDValue Op2,
4646193323Sed                                   SDValue Op3) {
4647193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4648193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4649193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4650193323Sed}
4651193323Sed
4652193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4653193323Sed                                   SDVTList VTs, const SDValue *Ops,
4654193323Sed                                   unsigned NumOps) {
4655204642Srdivacky  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4656204642Srdivacky  // Reset the NodeID to -1.
4657204642Srdivacky  N->setNodeId(-1);
4658204642Srdivacky  return N;
4659193323Sed}
4660193323Sed
4661204642Srdivacky/// MorphNodeTo - This *mutates* the specified node to have the specified
4662193323Sed/// return type, opcode, and operands.
4663193323Sed///
4664193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4665193323Sed/// node of the specified opcode and operands, it returns that node instead of
4666193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4667193323Sed///
4668193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4669193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4670193323Sed/// node, and because it doesn't require CSE recalculation for any of
4671193323Sed/// the node's users.
4672193323Sed///
4673193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4674193323Sed                                  SDVTList VTs, const SDValue *Ops,
4675193323Sed                                  unsigned NumOps) {
4676193323Sed  // If an identical node already exists, use it.
4677193323Sed  void *IP = 0;
4678193323Sed  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4679193323Sed    FoldingSetNodeID ID;
4680193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4681201360Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4682193323Sed      return ON;
4683193323Sed  }
4684193323Sed
4685193323Sed  if (!RemoveNodeFromCSEMaps(N))
4686193323Sed    IP = 0;
4687193323Sed
4688193323Sed  // Start the morphing.
4689193323Sed  N->NodeType = Opc;
4690193323Sed  N->ValueList = VTs.VTs;
4691193323Sed  N->NumValues = VTs.NumVTs;
4692193323Sed
4693193323Sed  // Clear the operands list, updating used nodes to remove this from their
4694193323Sed  // use list.  Keep track of any operands that become dead as a result.
4695193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4696193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4697193323Sed    SDUse &Use = *I++;
4698193323Sed    SDNode *Used = Use.getNode();
4699193323Sed    Use.set(SDValue());
4700193323Sed    if (Used->use_empty())
4701193323Sed      DeadNodeSet.insert(Used);
4702193323Sed  }
4703193323Sed
4704198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4705198090Srdivacky    // Initialize the memory references information.
4706198090Srdivacky    MN->setMemRefs(0, 0);
4707198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4708198090Srdivacky    // MachineSDNode, reallocate the operand list.
4709198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4710198090Srdivacky      if (MN->OperandsNeedDelete)
4711198090Srdivacky        delete[] MN->OperandList;
4712198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4713198090Srdivacky        // We're creating a final node that will live unmorphed for the
4714198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4715198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4716198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4717205407Srdivacky                         Ops, NumOps);
4718198090Srdivacky      else
4719198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4720198090Srdivacky      MN->OperandsNeedDelete = false;
4721198090Srdivacky    } else
4722198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4723198090Srdivacky  } else {
4724198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4725198090Srdivacky    // the operand list.
4726198090Srdivacky    if (NumOps > N->NumOperands) {
4727198090Srdivacky      if (N->OperandsNeedDelete)
4728198090Srdivacky        delete[] N->OperandList;
4729198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4730193323Sed      N->OperandsNeedDelete = true;
4731198090Srdivacky    } else
4732198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4733193323Sed  }
4734193323Sed
4735193323Sed  // Delete any nodes that are still dead after adding the uses for the
4736193323Sed  // new operands.
4737204642Srdivacky  if (!DeadNodeSet.empty()) {
4738204642Srdivacky    SmallVector<SDNode *, 16> DeadNodes;
4739204642Srdivacky    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4740204642Srdivacky         E = DeadNodeSet.end(); I != E; ++I)
4741204642Srdivacky      if ((*I)->use_empty())
4742204642Srdivacky        DeadNodes.push_back(*I);
4743204642Srdivacky    RemoveDeadNodes(DeadNodes);
4744204642Srdivacky  }
4745193323Sed
4746193323Sed  if (IP)
4747193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4748193323Sed  return N;
4749193323Sed}
4750193323Sed
4751193323Sed
4752198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4753198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4754193323Sed///
4755198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4756193323Sed/// node of the specified opcode and operands, it returns that node instead of
4757193323Sed/// the current one.
4758198090SrdivackyMachineSDNode *
4759198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4760198090Srdivacky  SDVTList VTs = getVTList(VT);
4761198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4762193323Sed}
4763193323Sed
4764198090SrdivackyMachineSDNode *
4765198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4766198090Srdivacky  SDVTList VTs = getVTList(VT);
4767198090Srdivacky  SDValue Ops[] = { Op1 };
4768198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4769193323Sed}
4770193323Sed
4771198090SrdivackyMachineSDNode *
4772198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4773198090Srdivacky                             SDValue Op1, SDValue Op2) {
4774198090Srdivacky  SDVTList VTs = getVTList(VT);
4775198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4776198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4777193323Sed}
4778193323Sed
4779198090SrdivackyMachineSDNode *
4780198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4781198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4782198090Srdivacky  SDVTList VTs = getVTList(VT);
4783198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4784198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4785193323Sed}
4786193323Sed
4787198090SrdivackyMachineSDNode *
4788198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4789198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4790198090Srdivacky  SDVTList VTs = getVTList(VT);
4791198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4792193323Sed}
4793193323Sed
4794198090SrdivackyMachineSDNode *
4795198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4796193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4797198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4798193323Sed}
4799193323Sed
4800198090SrdivackyMachineSDNode *
4801198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4803193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4804198090Srdivacky  SDValue Ops[] = { Op1 };
4805198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4806193323Sed}
4807193323Sed
4808198090SrdivackyMachineSDNode *
4809198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4811193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4812193323Sed  SDValue Ops[] = { Op1, Op2 };
4813198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4814193323Sed}
4815193323Sed
4816198090SrdivackyMachineSDNode *
4817198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4819198090Srdivacky                             SDValue Op2, SDValue Op3) {
4820193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4821193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4822198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4823193323Sed}
4824193323Sed
4825198090SrdivackyMachineSDNode *
4826198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4827198090Srdivacky                             EVT VT1, EVT VT2,
4828198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4829193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4830198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4831193323Sed}
4832193323Sed
4833198090SrdivackyMachineSDNode *
4834198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4835198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4836198090Srdivacky                             SDValue Op1, SDValue Op2) {
4837193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4838193323Sed  SDValue Ops[] = { Op1, Op2 };
4839198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4840193323Sed}
4841193323Sed
4842198090SrdivackyMachineSDNode *
4843198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4844198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4845198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4846193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4847193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4848198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4849193323Sed}
4850193323Sed
4851198090SrdivackyMachineSDNode *
4852198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4853198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4854198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4855193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4856198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4857193323Sed}
4858193323Sed
4859198090SrdivackyMachineSDNode *
4860198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4861198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4862198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4863193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4864198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4865193323Sed}
4866193323Sed
4867198090SrdivackyMachineSDNode *
4868198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4869198090Srdivacky                             const std::vector<EVT> &ResultTys,
4870198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4871198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4872198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4873193323Sed}
4874193323Sed
4875198090SrdivackyMachineSDNode *
4876198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4877198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4878198090Srdivacky  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4879198090Srdivacky  MachineSDNode *N;
4880198090Srdivacky  void *IP;
4881198090Srdivacky
4882198090Srdivacky  if (DoCSE) {
4883198090Srdivacky    FoldingSetNodeID ID;
4884198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4885198090Srdivacky    IP = 0;
4886201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4887198090Srdivacky      return cast<MachineSDNode>(E);
4888198090Srdivacky  }
4889198090Srdivacky
4890198090Srdivacky  // Allocate a new MachineSDNode.
4891205407Srdivacky  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4892198090Srdivacky
4893198090Srdivacky  // Initialize the operands list.
4894198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
4895198090Srdivacky    // We're creating a final node that will live unmorphed for the
4896198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
4897198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
4898198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4899198090Srdivacky                    Ops, NumOps);
4900198090Srdivacky  else
4901198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
4902198090Srdivacky  N->OperandsNeedDelete = false;
4903198090Srdivacky
4904198090Srdivacky  if (DoCSE)
4905198090Srdivacky    CSEMap.InsertNode(N, IP);
4906198090Srdivacky
4907198090Srdivacky  AllNodes.push_back(N);
4908198090Srdivacky#ifndef NDEBUG
4909198090Srdivacky  VerifyNode(N);
4910198090Srdivacky#endif
4911198090Srdivacky  return N;
4912198090Srdivacky}
4913198090Srdivacky
4914198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
4915203954Srdivacky/// TargetOpcode::EXTRACT_SUBREG nodes.
4916198090SrdivackySDValue
4917198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4918198090Srdivacky                                     SDValue Operand) {
4919198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4920203954Srdivacky  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4921198090Srdivacky                                  VT, Operand, SRIdxVal);
4922198090Srdivacky  return SDValue(Subreg, 0);
4923198090Srdivacky}
4924198090Srdivacky
4925198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
4926203954Srdivacky/// TargetOpcode::INSERT_SUBREG nodes.
4927198090SrdivackySDValue
4928198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4929198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
4930198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4931203954Srdivacky  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4932198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
4933198090Srdivacky  return SDValue(Result, 0);
4934198090Srdivacky}
4935198090Srdivacky
4936193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
4937193323Sed/// else return NULL.
4938193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4939193323Sed                                      const SDValue *Ops, unsigned NumOps) {
4940193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4941193323Sed    FoldingSetNodeID ID;
4942193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4943193323Sed    void *IP = 0;
4944201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4945193323Sed      return E;
4946193323Sed  }
4947193323Sed  return NULL;
4948193323Sed}
4949193323Sed
4950206083Srdivacky/// getDbgValue - Creates a SDDbgValue node.
4951206083Srdivacky///
4952206083SrdivackySDDbgValue *
4953206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4954206083Srdivacky                          DebugLoc DL, unsigned O) {
4955206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4956206083Srdivacky}
4957206083Srdivacky
4958206083SrdivackySDDbgValue *
4959207618SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4960206083Srdivacky                          DebugLoc DL, unsigned O) {
4961206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4962206083Srdivacky}
4963206083Srdivacky
4964206083SrdivackySDDbgValue *
4965206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4966206083Srdivacky                          DebugLoc DL, unsigned O) {
4967206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4968206083Srdivacky}
4969206083Srdivacky
4970204792Srdivackynamespace {
4971204792Srdivacky
4972204792Srdivacky/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4973204792Srdivacky/// pointed to by a use iterator is deleted, increment the use iterator
4974204792Srdivacky/// so that it doesn't dangle.
4975204792Srdivacky///
4976204792Srdivacky/// This class also manages a "downlink" DAGUpdateListener, to forward
4977204792Srdivacky/// messages to ReplaceAllUsesWith's callers.
4978204792Srdivacky///
4979204792Srdivackyclass RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4980204792Srdivacky  SelectionDAG::DAGUpdateListener *DownLink;
4981204792Srdivacky  SDNode::use_iterator &UI;
4982204792Srdivacky  SDNode::use_iterator &UE;
4983204792Srdivacky
4984204792Srdivacky  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4985204792Srdivacky    // Increment the iterator as needed.
4986204792Srdivacky    while (UI != UE && N == *UI)
4987204792Srdivacky      ++UI;
4988204792Srdivacky
4989204792Srdivacky    // Then forward the message.
4990204792Srdivacky    if (DownLink) DownLink->NodeDeleted(N, E);
4991204792Srdivacky  }
4992204792Srdivacky
4993204792Srdivacky  virtual void NodeUpdated(SDNode *N) {
4994204792Srdivacky    // Just forward the message.
4995204792Srdivacky    if (DownLink) DownLink->NodeUpdated(N);
4996204792Srdivacky  }
4997204792Srdivacky
4998204792Srdivackypublic:
4999204792Srdivacky  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5000204792Srdivacky                     SDNode::use_iterator &ui,
5001204792Srdivacky                     SDNode::use_iterator &ue)
5002204792Srdivacky    : DownLink(dl), UI(ui), UE(ue) {}
5003204792Srdivacky};
5004204792Srdivacky
5005204792Srdivacky}
5006204792Srdivacky
5007193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5008193323Sed/// This can cause recursive merging of nodes in the DAG.
5009193323Sed///
5010193323Sed/// This version assumes From has a single result value.
5011193323Sed///
5012193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5013193323Sed                                      DAGUpdateListener *UpdateListener) {
5014193323Sed  SDNode *From = FromN.getNode();
5015193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5016193323Sed         "Cannot replace with this method!");
5017193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
5018193323Sed
5019193323Sed  // Iterate over all the existing uses of From. New uses will be added
5020193323Sed  // to the beginning of the use list, which we avoid visiting.
5021193323Sed  // This specifically avoids visiting uses of From that arise while the
5022193323Sed  // replacement is happening, because any such uses would be the result
5023193323Sed  // of CSE: If an existing node looks like From after one of its operands
5024193323Sed  // is replaced by To, we don't want to replace of all its users with To
5025193323Sed  // too. See PR3018 for more info.
5026193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5027204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5028193323Sed  while (UI != UE) {
5029193323Sed    SDNode *User = *UI;
5030193323Sed
5031193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5032193323Sed    RemoveNodeFromCSEMaps(User);
5033193323Sed
5034193323Sed    // A user can appear in a use list multiple times, and when this
5035193323Sed    // happens the uses are usually next to each other in the list.
5036193323Sed    // To help reduce the number of CSE recomputations, process all
5037193323Sed    // the uses of this user that we can find this way.
5038193323Sed    do {
5039193323Sed      SDUse &Use = UI.getUse();
5040193323Sed      ++UI;
5041193323Sed      Use.set(To);
5042193323Sed    } while (UI != UE && *UI == User);
5043193323Sed
5044193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5045193323Sed    // already exists there, recursively merge the results together.
5046204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5047193323Sed  }
5048193323Sed}
5049193323Sed
5050193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5051193323Sed/// This can cause recursive merging of nodes in the DAG.
5052193323Sed///
5053193323Sed/// This version assumes that for each value of From, there is a
5054193323Sed/// corresponding value in To in the same position with the same type.
5055193323Sed///
5056193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5057193323Sed                                      DAGUpdateListener *UpdateListener) {
5058193323Sed#ifndef NDEBUG
5059193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5060193323Sed    assert((!From->hasAnyUseOfValue(i) ||
5061193323Sed            From->getValueType(i) == To->getValueType(i)) &&
5062193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
5063193323Sed#endif
5064193323Sed
5065193323Sed  // Handle the trivial case.
5066193323Sed  if (From == To)
5067193323Sed    return;
5068193323Sed
5069193323Sed  // Iterate over just the existing users of From. See the comments in
5070193323Sed  // the ReplaceAllUsesWith above.
5071193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5072204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5073193323Sed  while (UI != UE) {
5074193323Sed    SDNode *User = *UI;
5075193323Sed
5076193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5077193323Sed    RemoveNodeFromCSEMaps(User);
5078193323Sed
5079193323Sed    // A user can appear in a use list multiple times, and when this
5080193323Sed    // happens the uses are usually next to each other in the list.
5081193323Sed    // To help reduce the number of CSE recomputations, process all
5082193323Sed    // the uses of this user that we can find this way.
5083193323Sed    do {
5084193323Sed      SDUse &Use = UI.getUse();
5085193323Sed      ++UI;
5086193323Sed      Use.setNode(To);
5087193323Sed    } while (UI != UE && *UI == User);
5088193323Sed
5089193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5090193323Sed    // already exists there, recursively merge the results together.
5091204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5092193323Sed  }
5093193323Sed}
5094193323Sed
5095193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5096193323Sed/// This can cause recursive merging of nodes in the DAG.
5097193323Sed///
5098193323Sed/// This version can replace From with any result values.  To must match the
5099193323Sed/// number and types of values returned by From.
5100193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5101193323Sed                                      const SDValue *To,
5102193323Sed                                      DAGUpdateListener *UpdateListener) {
5103193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5104193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5105193323Sed
5106193323Sed  // Iterate over just the existing users of From. See the comments in
5107193323Sed  // the ReplaceAllUsesWith above.
5108193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5109204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5110193323Sed  while (UI != UE) {
5111193323Sed    SDNode *User = *UI;
5112193323Sed
5113193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5114193323Sed    RemoveNodeFromCSEMaps(User);
5115193323Sed
5116193323Sed    // A user can appear in a use list multiple times, and when this
5117193323Sed    // happens the uses are usually next to each other in the list.
5118193323Sed    // To help reduce the number of CSE recomputations, process all
5119193323Sed    // the uses of this user that we can find this way.
5120193323Sed    do {
5121193323Sed      SDUse &Use = UI.getUse();
5122193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5123193323Sed      ++UI;
5124193323Sed      Use.set(ToOp);
5125193323Sed    } while (UI != UE && *UI == User);
5126193323Sed
5127193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5128193323Sed    // already exists there, recursively merge the results together.
5129204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5130193323Sed  }
5131193323Sed}
5132193323Sed
5133193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5134193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5135193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5136193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5137193323Sed                                             DAGUpdateListener *UpdateListener){
5138193323Sed  // Handle the really simple, really trivial case efficiently.
5139193323Sed  if (From == To) return;
5140193323Sed
5141193323Sed  // Handle the simple, trivial, case efficiently.
5142193323Sed  if (From.getNode()->getNumValues() == 1) {
5143193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5144193323Sed    return;
5145193323Sed  }
5146193323Sed
5147193323Sed  // Iterate over just the existing users of From. See the comments in
5148193323Sed  // the ReplaceAllUsesWith above.
5149193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5150193323Sed                       UE = From.getNode()->use_end();
5151204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5152193323Sed  while (UI != UE) {
5153193323Sed    SDNode *User = *UI;
5154193323Sed    bool UserRemovedFromCSEMaps = false;
5155193323Sed
5156193323Sed    // A user can appear in a use list multiple times, and when this
5157193323Sed    // happens the uses are usually next to each other in the list.
5158193323Sed    // To help reduce the number of CSE recomputations, process all
5159193323Sed    // the uses of this user that we can find this way.
5160193323Sed    do {
5161193323Sed      SDUse &Use = UI.getUse();
5162193323Sed
5163193323Sed      // Skip uses of different values from the same node.
5164193323Sed      if (Use.getResNo() != From.getResNo()) {
5165193323Sed        ++UI;
5166193323Sed        continue;
5167193323Sed      }
5168193323Sed
5169193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5170193323Sed      // so remove its old self from the CSE maps.
5171193323Sed      if (!UserRemovedFromCSEMaps) {
5172193323Sed        RemoveNodeFromCSEMaps(User);
5173193323Sed        UserRemovedFromCSEMaps = true;
5174193323Sed      }
5175193323Sed
5176193323Sed      ++UI;
5177193323Sed      Use.set(To);
5178193323Sed    } while (UI != UE && *UI == User);
5179193323Sed
5180193323Sed    // We are iterating over all uses of the From node, so if a use
5181193323Sed    // doesn't use the specific value, no changes are made.
5182193323Sed    if (!UserRemovedFromCSEMaps)
5183193323Sed      continue;
5184193323Sed
5185193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5186193323Sed    // already exists there, recursively merge the results together.
5187204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5188193323Sed  }
5189193323Sed}
5190193323Sed
5191193323Sednamespace {
5192193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5193193323Sed  /// to record information about a use.
5194193323Sed  struct UseMemo {
5195193323Sed    SDNode *User;
5196193323Sed    unsigned Index;
5197193323Sed    SDUse *Use;
5198193323Sed  };
5199193323Sed
5200193323Sed  /// operator< - Sort Memos by User.
5201193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5202193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5203193323Sed  }
5204193323Sed}
5205193323Sed
5206193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5207193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5208193323Sed/// may appear in both the From and To list.  The Deleted vector is
5209193323Sed/// handled the same way as for ReplaceAllUsesWith.
5210193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5211193323Sed                                              const SDValue *To,
5212193323Sed                                              unsigned Num,
5213193323Sed                                              DAGUpdateListener *UpdateListener){
5214193323Sed  // Handle the simple, trivial case efficiently.
5215193323Sed  if (Num == 1)
5216193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5217193323Sed
5218193323Sed  // Read up all the uses and make records of them. This helps
5219193323Sed  // processing new uses that are introduced during the
5220193323Sed  // replacement process.
5221193323Sed  SmallVector<UseMemo, 4> Uses;
5222193323Sed  for (unsigned i = 0; i != Num; ++i) {
5223193323Sed    unsigned FromResNo = From[i].getResNo();
5224193323Sed    SDNode *FromNode = From[i].getNode();
5225193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5226193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5227193323Sed      SDUse &Use = UI.getUse();
5228193323Sed      if (Use.getResNo() == FromResNo) {
5229193323Sed        UseMemo Memo = { *UI, i, &Use };
5230193323Sed        Uses.push_back(Memo);
5231193323Sed      }
5232193323Sed    }
5233193323Sed  }
5234193323Sed
5235193323Sed  // Sort the uses, so that all the uses from a given User are together.
5236193323Sed  std::sort(Uses.begin(), Uses.end());
5237193323Sed
5238193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5239193323Sed       UseIndex != UseIndexEnd; ) {
5240193323Sed    // We know that this user uses some value of From.  If it is the right
5241193323Sed    // value, update it.
5242193323Sed    SDNode *User = Uses[UseIndex].User;
5243193323Sed
5244193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5245193323Sed    RemoveNodeFromCSEMaps(User);
5246193323Sed
5247193323Sed    // The Uses array is sorted, so all the uses for a given User
5248193323Sed    // are next to each other in the list.
5249193323Sed    // To help reduce the number of CSE recomputations, process all
5250193323Sed    // the uses of this user that we can find this way.
5251193323Sed    do {
5252193323Sed      unsigned i = Uses[UseIndex].Index;
5253193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5254193323Sed      ++UseIndex;
5255193323Sed
5256193323Sed      Use.set(To[i]);
5257193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5258193323Sed
5259193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5260193323Sed    // already exists there, recursively merge the results together.
5261193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5262193323Sed  }
5263193323Sed}
5264193323Sed
5265193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5266193323Sed/// based on their topological order. It returns the maximum id and a vector
5267193323Sed/// of the SDNodes* in assigned order by reference.
5268193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5269193323Sed
5270193323Sed  unsigned DAGSize = 0;
5271193323Sed
5272193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5273193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5274193323Sed  // it is at the end of the list.
5275193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5276193323Sed
5277193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5278193323Sed  // the list immediately. Annotate nodes that do have operands with their
5279193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5280193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5281193323Sed  // before SortedPos will contain the topological sort index, and the
5282193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5283193323Sed  // count of outstanding operands.
5284193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5285193323Sed    SDNode *N = I++;
5286202878Srdivacky    checkForCycles(N);
5287193323Sed    unsigned Degree = N->getNumOperands();
5288193323Sed    if (Degree == 0) {
5289193323Sed      // A node with no uses, add it to the result array immediately.
5290193323Sed      N->setNodeId(DAGSize++);
5291193323Sed      allnodes_iterator Q = N;
5292193323Sed      if (Q != SortedPos)
5293193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5294202878Srdivacky      assert(SortedPos != AllNodes.end() && "Overran node list");
5295193323Sed      ++SortedPos;
5296193323Sed    } else {
5297193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5298193323Sed      N->setNodeId(Degree);
5299193323Sed    }
5300193323Sed  }
5301193323Sed
5302193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5303193323Sed  // such that by the time the end is reached all nodes will be sorted.
5304193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5305193323Sed    SDNode *N = I;
5306202878Srdivacky    checkForCycles(N);
5307202878Srdivacky    // N is in sorted position, so all its uses have one less operand
5308202878Srdivacky    // that needs to be sorted.
5309193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5310193323Sed         UI != UE; ++UI) {
5311193323Sed      SDNode *P = *UI;
5312193323Sed      unsigned Degree = P->getNodeId();
5313202878Srdivacky      assert(Degree != 0 && "Invalid node degree");
5314193323Sed      --Degree;
5315193323Sed      if (Degree == 0) {
5316193323Sed        // All of P's operands are sorted, so P may sorted now.
5317193323Sed        P->setNodeId(DAGSize++);
5318193323Sed        if (P != SortedPos)
5319193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5320202878Srdivacky        assert(SortedPos != AllNodes.end() && "Overran node list");
5321193323Sed        ++SortedPos;
5322193323Sed      } else {
5323193323Sed        // Update P's outstanding operand count.
5324193323Sed        P->setNodeId(Degree);
5325193323Sed      }
5326193323Sed    }
5327202878Srdivacky    if (I == SortedPos) {
5328203954Srdivacky#ifndef NDEBUG
5329203954Srdivacky      SDNode *S = ++I;
5330203954Srdivacky      dbgs() << "Overran sorted position:\n";
5331202878Srdivacky      S->dumprFull();
5332203954Srdivacky#endif
5333203954Srdivacky      llvm_unreachable(0);
5334202878Srdivacky    }
5335193323Sed  }
5336193323Sed
5337193323Sed  assert(SortedPos == AllNodes.end() &&
5338193323Sed         "Topological sort incomplete!");
5339193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5340193323Sed         "First node in topological sort is not the entry token!");
5341193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5342193323Sed         "First node in topological sort has non-zero id!");
5343193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5344193323Sed         "First node in topological sort has operands!");
5345193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5346193323Sed         "Last node in topologic sort has unexpected id!");
5347193323Sed  assert(AllNodes.back().use_empty() &&
5348193323Sed         "Last node in topologic sort has users!");
5349193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5350193323Sed  return DAGSize;
5351193323Sed}
5352193323Sed
5353201360Srdivacky/// AssignOrdering - Assign an order to the SDNode.
5354203954Srdivackyvoid SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5355201360Srdivacky  assert(SD && "Trying to assign an order to a null node!");
5356202878Srdivacky  Ordering->add(SD, Order);
5357201360Srdivacky}
5358193323Sed
5359201360Srdivacky/// GetOrdering - Get the order for the SDNode.
5360201360Srdivackyunsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5361201360Srdivacky  assert(SD && "Trying to get the order of a null node!");
5362202878Srdivacky  return Ordering->getOrder(SD);
5363201360Srdivacky}
5364193323Sed
5365206083Srdivacky/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5366206083Srdivacky/// value is produced by SD.
5367207618Srdivackyvoid SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5368207618Srdivacky  DbgInfo->add(DB, SD, isParameter);
5369206083Srdivacky  if (SD)
5370206083Srdivacky    SD->setHasDebugValue(true);
5371205218Srdivacky}
5372201360Srdivacky
5373193323Sed//===----------------------------------------------------------------------===//
5374193323Sed//                              SDNode Class
5375193323Sed//===----------------------------------------------------------------------===//
5376193323Sed
5377193323SedHandleSDNode::~HandleSDNode() {
5378193323Sed  DropOperands();
5379193323Sed}
5380193323Sed
5381195098SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5382198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5383206124Srdivacky  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5384207618Srdivacky  TheGlobal = GA;
5385193323Sed}
5386193323Sed
5387198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5388198090Srdivacky                     MachineMemOperand *mmo)
5389198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5390204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5391204642Srdivacky                                      MMO->isNonTemporal());
5392198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5393204642Srdivacky  assert(isNonTemporal() == MMO->isNonTemporal() &&
5394204642Srdivacky         "Non-temporal encoding error!");
5395198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5396193323Sed}
5397193323Sed
5398193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5399198090Srdivacky                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5400198090Srdivacky                     MachineMemOperand *mmo)
5401193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5402198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5403204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5404204642Srdivacky                                      MMO->isNonTemporal());
5405198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5406198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5407193323Sed}
5408193323Sed
5409193323Sed/// Profile - Gather unique data for the node.
5410193323Sed///
5411193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5412193323Sed  AddNodeIDNode(ID, this);
5413193323Sed}
5414193323Sed
5415198090Srdivackynamespace {
5416198090Srdivacky  struct EVTArray {
5417198090Srdivacky    std::vector<EVT> VTs;
5418198090Srdivacky
5419198090Srdivacky    EVTArray() {
5420198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5421198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5422198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5423198090Srdivacky    }
5424198090Srdivacky  };
5425198090Srdivacky}
5426198090Srdivacky
5427198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5428198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5429195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5430195098Sed
5431193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5432193323Sed///
5433198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5434193323Sed  if (VT.isExtended()) {
5435198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5436195098Sed    return &(*EVTs->insert(VT).first);
5437193323Sed  } else {
5438208599Srdivacky    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5439208599Srdivacky           "Value type out of range!");
5440198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5441193323Sed  }
5442193323Sed}
5443193323Sed
5444193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5445193323Sed/// indicated value.  This method ignores uses of other values defined by this
5446193323Sed/// operation.
5447193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5448193323Sed  assert(Value < getNumValues() && "Bad value!");
5449193323Sed
5450193323Sed  // TODO: Only iterate over uses of a given value of the node
5451193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5452193323Sed    if (UI.getUse().getResNo() == Value) {
5453193323Sed      if (NUses == 0)
5454193323Sed        return false;
5455193323Sed      --NUses;
5456193323Sed    }
5457193323Sed  }
5458193323Sed
5459193323Sed  // Found exactly the right number of uses?
5460193323Sed  return NUses == 0;
5461193323Sed}
5462193323Sed
5463193323Sed
5464193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5465193323Sed/// value. This method ignores uses of other values defined by this operation.
5466193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5467193323Sed  assert(Value < getNumValues() && "Bad value!");
5468193323Sed
5469193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5470193323Sed    if (UI.getUse().getResNo() == Value)
5471193323Sed      return true;
5472193323Sed
5473193323Sed  return false;
5474193323Sed}
5475193323Sed
5476193323Sed
5477193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5478193323Sed///
5479193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5480193323Sed  bool Seen = false;
5481193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5482193323Sed    SDNode *User = *I;
5483193323Sed    if (User == this)
5484193323Sed      Seen = true;
5485193323Sed    else
5486193323Sed      return false;
5487193323Sed  }
5488193323Sed
5489193323Sed  return Seen;
5490193323Sed}
5491193323Sed
5492193323Sed/// isOperand - Return true if this node is an operand of N.
5493193323Sed///
5494193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5495193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5496193323Sed    if (*this == N->getOperand(i))
5497193323Sed      return true;
5498193323Sed  return false;
5499193323Sed}
5500193323Sed
5501193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5502193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5503193323Sed    if (this == N->OperandList[i].getNode())
5504193323Sed      return true;
5505193323Sed  return false;
5506193323Sed}
5507193323Sed
5508193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5509193323Sed/// be a chain) reaches the specified operand without crossing any
5510193323Sed/// side-effecting instructions.  In practice, this looks through token
5511193323Sed/// factors and non-volatile loads.  In order to remain efficient, this only
5512193323Sed/// looks a couple of nodes in, it does not do an exhaustive search.
5513193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5514193323Sed                                               unsigned Depth) const {
5515193323Sed  if (*this == Dest) return true;
5516193323Sed
5517193323Sed  // Don't search too deeply, we just want to be able to see through
5518193323Sed  // TokenFactor's etc.
5519193323Sed  if (Depth == 0) return false;
5520193323Sed
5521193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5522193323Sed  // of the operands of the TF reach dest, then we can do the xform.
5523193323Sed  if (getOpcode() == ISD::TokenFactor) {
5524193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5525193323Sed      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5526193323Sed        return true;
5527193323Sed    return false;
5528193323Sed  }
5529193323Sed
5530193323Sed  // Loads don't have side effects, look through them.
5531193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5532193323Sed    if (!Ld->isVolatile())
5533193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5534193323Sed  }
5535193323Sed  return false;
5536193323Sed}
5537193323Sed
5538193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5539198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5540193323Sed/// NOTE: this is an expensive method. Use it carefully.
5541193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5542193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5543198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5544198892Srdivacky  Worklist.push_back(N);
5545198892Srdivacky
5546198892Srdivacky  do {
5547198892Srdivacky    N = Worklist.pop_back_val();
5548198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5549198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5550198892Srdivacky      if (Op == this)
5551198892Srdivacky        return true;
5552198892Srdivacky      if (Visited.insert(Op))
5553198892Srdivacky        Worklist.push_back(Op);
5554198892Srdivacky    }
5555198892Srdivacky  } while (!Worklist.empty());
5556198892Srdivacky
5557198892Srdivacky  return false;
5558193323Sed}
5559193323Sed
5560193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5561193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5562193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5563193323Sed}
5564193323Sed
5565193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5566193323Sed  switch (getOpcode()) {
5567193323Sed  default:
5568193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5569193323Sed      return "<<Unknown DAG Node>>";
5570193323Sed    if (isMachineOpcode()) {
5571193323Sed      if (G)
5572193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5573193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5574193323Sed            return TII->get(getMachineOpcode()).getName();
5575204642Srdivacky      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5576193323Sed    }
5577193323Sed    if (G) {
5578193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5579193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5580193323Sed      if (Name) return Name;
5581204642Srdivacky      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5582193323Sed    }
5583204642Srdivacky    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5584193323Sed
5585193323Sed#ifndef NDEBUG
5586193323Sed  case ISD::DELETED_NODE:
5587193323Sed    return "<<Deleted Node!>>";
5588193323Sed#endif
5589193323Sed  case ISD::PREFETCH:      return "Prefetch";
5590193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5591193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5592193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5593193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5594193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5595193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5596193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5597193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5598193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5599193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5600193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5601193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5602193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5603193323Sed  case ISD::PCMARKER:      return "PCMarker";
5604193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5605193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5606207618Srdivacky  case ISD::MDNODE_SDNODE: return "MDNode";
5607193323Sed  case ISD::EntryToken:    return "EntryToken";
5608193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5609193323Sed  case ISD::AssertSext:    return "AssertSext";
5610193323Sed  case ISD::AssertZext:    return "AssertZext";
5611193323Sed
5612193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5613193323Sed  case ISD::VALUETYPE:     return "ValueType";
5614193323Sed  case ISD::Register:      return "Register";
5615193323Sed
5616193323Sed  case ISD::Constant:      return "Constant";
5617193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5618193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5619193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5620193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5621193323Sed  case ISD::JumpTable:     return "JumpTable";
5622193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5623193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5624193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5625193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5626193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5627198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5628193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5629193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5630208599Srdivacky  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5631208599Srdivacky  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5632193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5633193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5634198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5635198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5636193323Sed  case ISD::INTRINSIC_VOID:
5637193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5638198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5639198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5640198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5641198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5642198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5643198396Srdivacky      return TII->getName(IID);
5644198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5645193323Sed  }
5646193323Sed
5647193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5648193323Sed  case ISD::TargetConstant: return "TargetConstant";
5649193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5650193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5651193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5652193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5653193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5654193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5655193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5656198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5657193323Sed
5658193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5659193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5660193323Sed  case ISD::UNDEF:         return "undef";
5661193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5662193323Sed  case ISD::INLINEASM:     return "inlineasm";
5663193323Sed  case ISD::EH_LABEL:      return "eh_label";
5664193323Sed  case ISD::HANDLENODE:    return "handlenode";
5665193323Sed
5666193323Sed  // Unary operators
5667193323Sed  case ISD::FABS:   return "fabs";
5668193323Sed  case ISD::FNEG:   return "fneg";
5669193323Sed  case ISD::FSQRT:  return "fsqrt";
5670193323Sed  case ISD::FSIN:   return "fsin";
5671193323Sed  case ISD::FCOS:   return "fcos";
5672193323Sed  case ISD::FPOWI:  return "fpowi";
5673193323Sed  case ISD::FPOW:   return "fpow";
5674193323Sed  case ISD::FTRUNC: return "ftrunc";
5675193323Sed  case ISD::FFLOOR: return "ffloor";
5676193323Sed  case ISD::FCEIL:  return "fceil";
5677193323Sed  case ISD::FRINT:  return "frint";
5678193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5679193323Sed
5680193323Sed  // Binary operators
5681193323Sed  case ISD::ADD:    return "add";
5682193323Sed  case ISD::SUB:    return "sub";
5683193323Sed  case ISD::MUL:    return "mul";
5684193323Sed  case ISD::MULHU:  return "mulhu";
5685193323Sed  case ISD::MULHS:  return "mulhs";
5686193323Sed  case ISD::SDIV:   return "sdiv";
5687193323Sed  case ISD::UDIV:   return "udiv";
5688193323Sed  case ISD::SREM:   return "srem";
5689193323Sed  case ISD::UREM:   return "urem";
5690193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5691193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5692193323Sed  case ISD::SDIVREM:    return "sdivrem";
5693193323Sed  case ISD::UDIVREM:    return "udivrem";
5694193323Sed  case ISD::AND:    return "and";
5695193323Sed  case ISD::OR:     return "or";
5696193323Sed  case ISD::XOR:    return "xor";
5697193323Sed  case ISD::SHL:    return "shl";
5698193323Sed  case ISD::SRA:    return "sra";
5699193323Sed  case ISD::SRL:    return "srl";
5700193323Sed  case ISD::ROTL:   return "rotl";
5701193323Sed  case ISD::ROTR:   return "rotr";
5702193323Sed  case ISD::FADD:   return "fadd";
5703193323Sed  case ISD::FSUB:   return "fsub";
5704193323Sed  case ISD::FMUL:   return "fmul";
5705193323Sed  case ISD::FDIV:   return "fdiv";
5706193323Sed  case ISD::FREM:   return "frem";
5707193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5708193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5709193323Sed
5710193323Sed  case ISD::SETCC:       return "setcc";
5711193323Sed  case ISD::VSETCC:      return "vsetcc";
5712193323Sed  case ISD::SELECT:      return "select";
5713193323Sed  case ISD::SELECT_CC:   return "select_cc";
5714193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5715193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5716193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5717193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5718193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5719193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5720193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5721193323Sed  case ISD::ADDC:        return "addc";
5722193323Sed  case ISD::ADDE:        return "adde";
5723193323Sed  case ISD::SADDO:       return "saddo";
5724193323Sed  case ISD::UADDO:       return "uaddo";
5725193323Sed  case ISD::SSUBO:       return "ssubo";
5726193323Sed  case ISD::USUBO:       return "usubo";
5727193323Sed  case ISD::SMULO:       return "smulo";
5728193323Sed  case ISD::UMULO:       return "umulo";
5729193323Sed  case ISD::SUBC:        return "subc";
5730193323Sed  case ISD::SUBE:        return "sube";
5731193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5732193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5733193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5734193323Sed
5735193323Sed  // Conversion operators.
5736193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5737193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5738193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5739193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5740193323Sed  case ISD::TRUNCATE:    return "truncate";
5741193323Sed  case ISD::FP_ROUND:    return "fp_round";
5742193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5743193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5744193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5745193323Sed
5746193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5747193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5748193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5749193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5750193323Sed  case ISD::BIT_CONVERT: return "bit_convert";
5751205218Srdivacky  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5752205218Srdivacky  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5753193323Sed
5754193323Sed  case ISD::CONVERT_RNDSAT: {
5755193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5756198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5757193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5758193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5759193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5760193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5761193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5762193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5763193323Sed    case ISD::CVT_SU:  return "cvt_su";
5764193323Sed    case ISD::CVT_US:  return "cvt_us";
5765193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5766193323Sed    }
5767193323Sed  }
5768193323Sed
5769193323Sed    // Control flow instructions
5770193323Sed  case ISD::BR:      return "br";
5771193323Sed  case ISD::BRIND:   return "brind";
5772193323Sed  case ISD::BR_JT:   return "br_jt";
5773193323Sed  case ISD::BRCOND:  return "brcond";
5774193323Sed  case ISD::BR_CC:   return "br_cc";
5775193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5776193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5777193323Sed
5778193323Sed    // Other operators
5779193323Sed  case ISD::LOAD:               return "load";
5780193323Sed  case ISD::STORE:              return "store";
5781193323Sed  case ISD::VAARG:              return "vaarg";
5782193323Sed  case ISD::VACOPY:             return "vacopy";
5783193323Sed  case ISD::VAEND:              return "vaend";
5784193323Sed  case ISD::VASTART:            return "vastart";
5785193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5786193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5787193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5788193323Sed  case ISD::STACKSAVE:          return "stacksave";
5789193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5790193323Sed  case ISD::TRAP:               return "trap";
5791193323Sed
5792193323Sed  // Bit manipulation
5793193323Sed  case ISD::BSWAP:   return "bswap";
5794193323Sed  case ISD::CTPOP:   return "ctpop";
5795193323Sed  case ISD::CTTZ:    return "cttz";
5796193323Sed  case ISD::CTLZ:    return "ctlz";
5797193323Sed
5798193323Sed  // Trampolines
5799193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5800193323Sed
5801193323Sed  case ISD::CONDCODE:
5802193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5803198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5804193323Sed    case ISD::SETOEQ:  return "setoeq";
5805193323Sed    case ISD::SETOGT:  return "setogt";
5806193323Sed    case ISD::SETOGE:  return "setoge";
5807193323Sed    case ISD::SETOLT:  return "setolt";
5808193323Sed    case ISD::SETOLE:  return "setole";
5809193323Sed    case ISD::SETONE:  return "setone";
5810193323Sed
5811193323Sed    case ISD::SETO:    return "seto";
5812193323Sed    case ISD::SETUO:   return "setuo";
5813193323Sed    case ISD::SETUEQ:  return "setue";
5814193323Sed    case ISD::SETUGT:  return "setugt";
5815193323Sed    case ISD::SETUGE:  return "setuge";
5816193323Sed    case ISD::SETULT:  return "setult";
5817193323Sed    case ISD::SETULE:  return "setule";
5818193323Sed    case ISD::SETUNE:  return "setune";
5819193323Sed
5820193323Sed    case ISD::SETEQ:   return "seteq";
5821193323Sed    case ISD::SETGT:   return "setgt";
5822193323Sed    case ISD::SETGE:   return "setge";
5823193323Sed    case ISD::SETLT:   return "setlt";
5824193323Sed    case ISD::SETLE:   return "setle";
5825193323Sed    case ISD::SETNE:   return "setne";
5826193323Sed    }
5827193323Sed  }
5828193323Sed}
5829193323Sed
5830193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5831193323Sed  switch (AM) {
5832193323Sed  default:
5833193323Sed    return "";
5834193323Sed  case ISD::PRE_INC:
5835193323Sed    return "<pre-inc>";
5836193323Sed  case ISD::PRE_DEC:
5837193323Sed    return "<pre-dec>";
5838193323Sed  case ISD::POST_INC:
5839193323Sed    return "<post-inc>";
5840193323Sed  case ISD::POST_DEC:
5841193323Sed    return "<post-dec>";
5842193323Sed  }
5843193323Sed}
5844193323Sed
5845193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
5846193323Sed  std::string S = "< ";
5847193323Sed
5848193323Sed  if (isZExt())
5849193323Sed    S += "zext ";
5850193323Sed  if (isSExt())
5851193323Sed    S += "sext ";
5852193323Sed  if (isInReg())
5853193323Sed    S += "inreg ";
5854193323Sed  if (isSRet())
5855193323Sed    S += "sret ";
5856193323Sed  if (isByVal())
5857193323Sed    S += "byval ";
5858193323Sed  if (isNest())
5859193323Sed    S += "nest ";
5860193323Sed  if (getByValAlign())
5861193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
5862193323Sed  if (getOrigAlign())
5863193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5864193323Sed  if (getByValSize())
5865193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
5866193323Sed  return S + ">";
5867193323Sed}
5868193323Sed
5869193323Sedvoid SDNode::dump() const { dump(0); }
5870193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
5871202375Srdivacky  print(dbgs(), G);
5872193323Sed}
5873193323Sed
5874193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5875193323Sed  OS << (void*)this << ": ";
5876193323Sed
5877193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5878193323Sed    if (i) OS << ",";
5879193323Sed    if (getValueType(i) == MVT::Other)
5880193323Sed      OS << "ch";
5881193323Sed    else
5882198090Srdivacky      OS << getValueType(i).getEVTString();
5883193323Sed  }
5884193323Sed  OS << " = " << getOperationName(G);
5885193323Sed}
5886193323Sed
5887193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5888198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5889198090Srdivacky    if (!MN->memoperands_empty()) {
5890198090Srdivacky      OS << "<";
5891198090Srdivacky      OS << "Mem:";
5892198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5893198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
5894198090Srdivacky        OS << **i;
5895198090Srdivacky        if (next(i) != e)
5896198090Srdivacky          OS << " ";
5897198090Srdivacky      }
5898198090Srdivacky      OS << ">";
5899198090Srdivacky    }
5900198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
5901198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
5902193323Sed    OS << "<";
5903193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5904193323Sed      int Idx = SVN->getMaskElt(i);
5905193323Sed      if (i) OS << ",";
5906193323Sed      if (Idx < 0)
5907193323Sed        OS << "u";
5908193323Sed      else
5909193323Sed        OS << Idx;
5910193323Sed    }
5911193323Sed    OS << ">";
5912198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5913193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
5914193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5915193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5916193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5917193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5918193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5919193323Sed    else {
5920193323Sed      OS << "<APFloat(";
5921193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
5922193323Sed      OS << ")>";
5923193323Sed    }
5924193323Sed  } else if (const GlobalAddressSDNode *GADN =
5925193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
5926193323Sed    int64_t offset = GADN->getOffset();
5927193323Sed    OS << '<';
5928193323Sed    WriteAsOperand(OS, GADN->getGlobal());
5929193323Sed    OS << '>';
5930193323Sed    if (offset > 0)
5931193323Sed      OS << " + " << offset;
5932193323Sed    else
5933193323Sed      OS << " " << offset;
5934198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
5935195098Sed      OS << " [TF=" << TF << ']';
5936193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5937193323Sed    OS << "<" << FIDN->getIndex() << ">";
5938193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5939193323Sed    OS << "<" << JTDN->getIndex() << ">";
5940198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
5941195098Sed      OS << " [TF=" << TF << ']';
5942193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5943193323Sed    int offset = CP->getOffset();
5944193323Sed    if (CP->isMachineConstantPoolEntry())
5945193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
5946193323Sed    else
5947193323Sed      OS << "<" << *CP->getConstVal() << ">";
5948193323Sed    if (offset > 0)
5949193323Sed      OS << " + " << offset;
5950193323Sed    else
5951193323Sed      OS << " " << offset;
5952198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
5953195098Sed      OS << " [TF=" << TF << ']';
5954193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5955193323Sed    OS << "<";
5956193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5957193323Sed    if (LBB)
5958193323Sed      OS << LBB->getName() << " ";
5959193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
5960193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5961193323Sed    if (G && R->getReg() &&
5962193323Sed        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5963198892Srdivacky      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5964193323Sed    } else {
5965198892Srdivacky      OS << " %reg" << R->getReg();
5966193323Sed    }
5967193323Sed  } else if (const ExternalSymbolSDNode *ES =
5968193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
5969193323Sed    OS << "'" << ES->getSymbol() << "'";
5970198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
5971195098Sed      OS << " [TF=" << TF << ']';
5972193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5973193323Sed    if (M->getValue())
5974193323Sed      OS << "<" << M->getValue() << ">";
5975193323Sed    else
5976193323Sed      OS << "<null>";
5977207618Srdivacky  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5978207618Srdivacky    if (MD->getMD())
5979207618Srdivacky      OS << "<" << MD->getMD() << ">";
5980207618Srdivacky    else
5981207618Srdivacky      OS << "<null>";
5982193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5983198090Srdivacky    OS << ":" << N->getVT().getEVTString();
5984193323Sed  }
5985193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5986198892Srdivacky    OS << "<" << *LD->getMemOperand();
5987193323Sed
5988193323Sed    bool doExt = true;
5989193323Sed    switch (LD->getExtensionType()) {
5990193323Sed    default: doExt = false; break;
5991198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
5992198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
5993198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
5994193323Sed    }
5995193323Sed    if (doExt)
5996198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
5997193323Sed
5998193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
5999193323Sed    if (*AM)
6000198090Srdivacky      OS << ", " << AM;
6001198090Srdivacky
6002198090Srdivacky    OS << ">";
6003193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6004198892Srdivacky    OS << "<" << *ST->getMemOperand();
6005193323Sed
6006193323Sed    if (ST->isTruncatingStore())
6007198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6008193323Sed
6009193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
6010193323Sed    if (*AM)
6011198090Srdivacky      OS << ", " << AM;
6012198090Srdivacky
6013198090Srdivacky    OS << ">";
6014198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6015198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
6016198892Srdivacky  } else if (const BlockAddressSDNode *BA =
6017198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
6018198892Srdivacky    OS << "<";
6019198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6020198892Srdivacky    OS << ", ";
6021198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6022198892Srdivacky    OS << ">";
6023199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
6024199989Srdivacky      OS << " [TF=" << TF << ']';
6025193323Sed  }
6026201360Srdivacky
6027201360Srdivacky  if (G)
6028201360Srdivacky    if (unsigned Order = G->GetOrdering(this))
6029201360Srdivacky      OS << " [ORD=" << Order << ']';
6030205218Srdivacky
6031204642Srdivacky  if (getNodeId() != -1)
6032204642Srdivacky    OS << " [ID=" << getNodeId() << ']';
6033208599Srdivacky
6034208599Srdivacky  DebugLoc dl = getDebugLoc();
6035208599Srdivacky  if (G && !dl.isUnknown()) {
6036208599Srdivacky    DIScope
6037208599Srdivacky      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6038208599Srdivacky    OS << " dbg:";
6039208599Srdivacky    // Omit the directory, since it's usually long and uninteresting.
6040208599Srdivacky    if (Scope.Verify())
6041208599Srdivacky      OS << Scope.getFilename();
6042208599Srdivacky    else
6043208599Srdivacky      OS << "<unknown>";
6044208599Srdivacky    OS << ':' << dl.getLine();
6045208599Srdivacky    if (dl.getCol() != 0)
6046208599Srdivacky      OS << ':' << dl.getCol();
6047208599Srdivacky  }
6048193323Sed}
6049193323Sed
6050193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6051193323Sed  print_types(OS, G);
6052193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6053199481Srdivacky    if (i) OS << ", "; else OS << " ";
6054193323Sed    OS << (void*)getOperand(i).getNode();
6055193323Sed    if (unsigned RN = getOperand(i).getResNo())
6056193323Sed      OS << ":" << RN;
6057193323Sed  }
6058193323Sed  print_details(OS, G);
6059193323Sed}
6060193323Sed
6061202878Srdivackystatic void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6062202878Srdivacky                                  const SelectionDAG *G, unsigned depth,
6063202878Srdivacky                                  unsigned indent)
6064202878Srdivacky{
6065202878Srdivacky  if (depth == 0)
6066202878Srdivacky    return;
6067202878Srdivacky
6068202878Srdivacky  OS.indent(indent);
6069202878Srdivacky
6070202878Srdivacky  N->print(OS, G);
6071202878Srdivacky
6072202878Srdivacky  if (depth < 1)
6073202878Srdivacky    return;
6074202878Srdivacky
6075202878Srdivacky  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6076202878Srdivacky    OS << '\n';
6077202878Srdivacky    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6078202878Srdivacky  }
6079202878Srdivacky}
6080202878Srdivacky
6081202878Srdivackyvoid SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6082202878Srdivacky                            unsigned depth) const {
6083202878Srdivacky  printrWithDepthHelper(OS, this, G, depth, 0);
6084202878Srdivacky}
6085202878Srdivacky
6086202878Srdivackyvoid SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6087202878Srdivacky  // Don't print impossibly deep things.
6088202878Srdivacky  printrWithDepth(OS, G, 100);
6089202878Srdivacky}
6090202878Srdivacky
6091202878Srdivackyvoid SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6092202878Srdivacky  printrWithDepth(dbgs(), G, depth);
6093202878Srdivacky}
6094202878Srdivacky
6095202878Srdivackyvoid SDNode::dumprFull(const SelectionDAG *G) const {
6096202878Srdivacky  // Don't print impossibly deep things.
6097202878Srdivacky  dumprWithDepth(G, 100);
6098202878Srdivacky}
6099202878Srdivacky
6100193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6101193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6102193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
6103193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6104193323Sed    else
6105202375Srdivacky      dbgs() << "\n" << std::string(indent+2, ' ')
6106202375Srdivacky           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6107193323Sed
6108193323Sed
6109202375Srdivacky  dbgs() << "\n";
6110202375Srdivacky  dbgs().indent(indent);
6111193323Sed  N->dump(G);
6112193323Sed}
6113193323Sed
6114199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6115199989Srdivacky  assert(N->getNumValues() == 1 &&
6116199989Srdivacky         "Can't unroll a vector with multiple results!");
6117199989Srdivacky
6118199989Srdivacky  EVT VT = N->getValueType(0);
6119199989Srdivacky  unsigned NE = VT.getVectorNumElements();
6120199989Srdivacky  EVT EltVT = VT.getVectorElementType();
6121199989Srdivacky  DebugLoc dl = N->getDebugLoc();
6122199989Srdivacky
6123199989Srdivacky  SmallVector<SDValue, 8> Scalars;
6124199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6125199989Srdivacky
6126199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
6127199989Srdivacky  if (ResNE == 0)
6128199989Srdivacky    ResNE = NE;
6129199989Srdivacky  else if (NE > ResNE)
6130199989Srdivacky    NE = ResNE;
6131199989Srdivacky
6132199989Srdivacky  unsigned i;
6133199989Srdivacky  for (i= 0; i != NE; ++i) {
6134207618Srdivacky    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6135199989Srdivacky      SDValue Operand = N->getOperand(j);
6136199989Srdivacky      EVT OperandVT = Operand.getValueType();
6137199989Srdivacky      if (OperandVT.isVector()) {
6138199989Srdivacky        // A vector operand; extract a single element.
6139199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
6140199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6141199989Srdivacky                              OperandEltVT,
6142199989Srdivacky                              Operand,
6143199989Srdivacky                              getConstant(i, MVT::i32));
6144199989Srdivacky      } else {
6145199989Srdivacky        // A scalar operand; just use it as is.
6146199989Srdivacky        Operands[j] = Operand;
6147199989Srdivacky      }
6148199989Srdivacky    }
6149199989Srdivacky
6150199989Srdivacky    switch (N->getOpcode()) {
6151199989Srdivacky    default:
6152199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6153199989Srdivacky                                &Operands[0], Operands.size()));
6154199989Srdivacky      break;
6155199989Srdivacky    case ISD::SHL:
6156199989Srdivacky    case ISD::SRA:
6157199989Srdivacky    case ISD::SRL:
6158199989Srdivacky    case ISD::ROTL:
6159199989Srdivacky    case ISD::ROTR:
6160199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6161199989Srdivacky                                getShiftAmountOperand(Operands[1])));
6162199989Srdivacky      break;
6163202375Srdivacky    case ISD::SIGN_EXTEND_INREG:
6164202375Srdivacky    case ISD::FP_ROUND_INREG: {
6165202375Srdivacky      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6166202375Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6167202375Srdivacky                                Operands[0],
6168202375Srdivacky                                getValueType(ExtVT)));
6169199989Srdivacky    }
6170202375Srdivacky    }
6171199989Srdivacky  }
6172199989Srdivacky
6173199989Srdivacky  for (; i < ResNE; ++i)
6174199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
6175199989Srdivacky
6176199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
6177199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6178199989Srdivacky                 &Scalars[0], Scalars.size());
6179199989Srdivacky}
6180199989Srdivacky
6181200581Srdivacky
6182200581Srdivacky/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6183200581Srdivacky/// location that is 'Dist' units away from the location that the 'Base' load
6184200581Srdivacky/// is loading from.
6185200581Srdivackybool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6186200581Srdivacky                                     unsigned Bytes, int Dist) const {
6187200581Srdivacky  if (LD->getChain() != Base->getChain())
6188200581Srdivacky    return false;
6189200581Srdivacky  EVT VT = LD->getValueType(0);
6190200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
6191200581Srdivacky    return false;
6192200581Srdivacky
6193200581Srdivacky  SDValue Loc = LD->getOperand(1);
6194200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
6195200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
6196200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6197200581Srdivacky      return false;
6198200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6199200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6200200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6201200581Srdivacky    int FS  = MFI->getObjectSize(FI);
6202200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
6203200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6204200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6205200581Srdivacky  }
6206200581Srdivacky  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6207200581Srdivacky    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6208200581Srdivacky    if (V && (V->getSExtValue() == Dist*Bytes))
6209200581Srdivacky      return true;
6210200581Srdivacky  }
6211200581Srdivacky
6212207618Srdivacky  const GlobalValue *GV1 = NULL;
6213207618Srdivacky  const GlobalValue *GV2 = NULL;
6214200581Srdivacky  int64_t Offset1 = 0;
6215200581Srdivacky  int64_t Offset2 = 0;
6216200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6217200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6218200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6219200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6220200581Srdivacky  return false;
6221200581Srdivacky}
6222200581Srdivacky
6223200581Srdivacky
6224200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6225200581Srdivacky/// it cannot be inferred.
6226200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6227200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6228207618Srdivacky  const GlobalValue *GV;
6229200581Srdivacky  int64_t GVOffset = 0;
6230206083Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6231206083Srdivacky    // If GV has specified alignment, then use it. Otherwise, use the preferred
6232206083Srdivacky    // alignment.
6233206083Srdivacky    unsigned Align = GV->getAlignment();
6234206083Srdivacky    if (!Align) {
6235207618Srdivacky      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6236206083Srdivacky        if (GVar->hasInitializer()) {
6237206083Srdivacky          const TargetData *TD = TLI.getTargetData();
6238206083Srdivacky          Align = TD->getPreferredAlignment(GVar);
6239206083Srdivacky        }
6240206083Srdivacky      }
6241206083Srdivacky    }
6242206083Srdivacky    return MinAlign(Align, GVOffset);
6243206083Srdivacky  }
6244200581Srdivacky
6245200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6246200581Srdivacky  // stack slot's alignment.
6247200581Srdivacky  int FrameIdx = 1 << 31;
6248200581Srdivacky  int64_t FrameOffset = 0;
6249200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6250200581Srdivacky    FrameIdx = FI->getIndex();
6251200581Srdivacky  } else if (Ptr.getOpcode() == ISD::ADD &&
6252200581Srdivacky             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6253200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6254200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6255200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6256200581Srdivacky  }
6257200581Srdivacky
6258200581Srdivacky  if (FrameIdx != (1 << 31)) {
6259200581Srdivacky    // FIXME: Handle FI+CST.
6260200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6261200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6262200581Srdivacky                                    FrameOffset);
6263200581Srdivacky    if (MFI.isFixedObjectIndex(FrameIdx)) {
6264200581Srdivacky      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6265200581Srdivacky
6266200581Srdivacky      // The alignment of the frame index can be determined from its offset from
6267200581Srdivacky      // the incoming frame position.  If the frame object is at offset 32 and
6268200581Srdivacky      // the stack is guaranteed to be 16-byte aligned, then we know that the
6269200581Srdivacky      // object is 16-byte aligned.
6270200581Srdivacky      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6271200581Srdivacky      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6272200581Srdivacky
6273200581Srdivacky      // Finally, the frame object itself may have a known alignment.  Factor
6274200581Srdivacky      // the alignment + offset into a new alignment.  For example, if we know
6275200581Srdivacky      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6276200581Srdivacky      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6277200581Srdivacky      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6278200581Srdivacky      return std::max(Align, FIInfoAlign);
6279200581Srdivacky    }
6280200581Srdivacky    return FIInfoAlign;
6281200581Srdivacky  }
6282200581Srdivacky
6283200581Srdivacky  return 0;
6284200581Srdivacky}
6285200581Srdivacky
6286193323Sedvoid SelectionDAG::dump() const {
6287202375Srdivacky  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6288193323Sed
6289193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6290193323Sed       I != E; ++I) {
6291193323Sed    const SDNode *N = I;
6292193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6293193323Sed      DumpNodes(N, 2, this);
6294193323Sed  }
6295193323Sed
6296193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6297193323Sed
6298202375Srdivacky  dbgs() << "\n\n";
6299193323Sed}
6300193323Sed
6301193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6302193323Sed  print_types(OS, G);
6303193323Sed  print_details(OS, G);
6304193323Sed}
6305193323Sed
6306193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6307193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6308193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6309193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6310193323Sed    return;
6311201360Srdivacky
6312193323Sed  // Dump the current SDNode, but don't end the line yet.
6313193323Sed  OS << std::string(indent, ' ');
6314193323Sed  N->printr(OS, G);
6315201360Srdivacky
6316193323Sed  // Having printed this SDNode, walk the children:
6317193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6318193323Sed    const SDNode *child = N->getOperand(i).getNode();
6319201360Srdivacky
6320193323Sed    if (i) OS << ",";
6321193323Sed    OS << " ";
6322201360Srdivacky
6323193323Sed    if (child->getNumOperands() == 0) {
6324193323Sed      // This child has no grandchildren; print it inline right here.
6325193323Sed      child->printr(OS, G);
6326193323Sed      once.insert(child);
6327201360Srdivacky    } else {         // Just the address. FIXME: also print the child's opcode.
6328193323Sed      OS << (void*)child;
6329193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6330193323Sed        OS << ":" << RN;
6331193323Sed    }
6332193323Sed  }
6333201360Srdivacky
6334193323Sed  OS << "\n";
6335201360Srdivacky
6336193323Sed  // Dump children that have grandchildren on their own line(s).
6337193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6338193323Sed    const SDNode *child = N->getOperand(i).getNode();
6339193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6340193323Sed  }
6341193323Sed}
6342193323Sed
6343193323Sedvoid SDNode::dumpr() const {
6344193323Sed  VisitedSDNodeSet once;
6345202375Srdivacky  DumpNodesr(dbgs(), this, 0, 0, once);
6346193323Sed}
6347193323Sed
6348198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6349198090Srdivacky  VisitedSDNodeSet once;
6350202375Srdivacky  DumpNodesr(dbgs(), this, 0, G, once);
6351198090Srdivacky}
6352193323Sed
6353198090Srdivacky
6354193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6355193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6356193323Sed  return getGlobal()->getType()->getAddressSpace();
6357193323Sed}
6358193323Sed
6359193323Sed
6360193323Sedconst Type *ConstantPoolSDNode::getType() const {
6361193323Sed  if (isMachineConstantPoolEntry())
6362193323Sed    return Val.MachineCPVal->getType();
6363193323Sed  return Val.ConstVal->getType();
6364193323Sed}
6365193323Sed
6366193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6367193323Sed                                        APInt &SplatUndef,
6368193323Sed                                        unsigned &SplatBitSize,
6369193323Sed                                        bool &HasAnyUndefs,
6370199481Srdivacky                                        unsigned MinSplatBits,
6371199481Srdivacky                                        bool isBigEndian) {
6372198090Srdivacky  EVT VT = getValueType(0);
6373193323Sed  assert(VT.isVector() && "Expected a vector type");
6374193323Sed  unsigned sz = VT.getSizeInBits();
6375193323Sed  if (MinSplatBits > sz)
6376193323Sed    return false;
6377193323Sed
6378193323Sed  SplatValue = APInt(sz, 0);
6379193323Sed  SplatUndef = APInt(sz, 0);
6380193323Sed
6381193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6382193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6383193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6384193323Sed  // false.
6385193323Sed  unsigned int nOps = getNumOperands();
6386193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6387193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6388199481Srdivacky
6389199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6390199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6391193323Sed    SDValue OpVal = getOperand(i);
6392199481Srdivacky    unsigned BitPos = j * EltBitSize;
6393193323Sed
6394193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6395199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6396193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6397207618Srdivacky      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6398207618Srdivacky                    zextOrTrunc(sz) << BitPos;
6399193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6400193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6401193323Sed     else
6402193323Sed      return false;
6403193323Sed  }
6404193323Sed
6405193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6406193323Sed  // size that splats the vector.
6407193323Sed
6408193323Sed  HasAnyUndefs = (SplatUndef != 0);
6409193323Sed  while (sz > 8) {
6410193323Sed
6411193323Sed    unsigned HalfSize = sz / 2;
6412193323Sed    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6413193323Sed    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6414193323Sed    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6415193323Sed    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6416193323Sed
6417193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6418193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6419193323Sed        MinSplatBits > HalfSize)
6420193323Sed      break;
6421193323Sed
6422193323Sed    SplatValue = HighValue | LowValue;
6423193323Sed    SplatUndef = HighUndef & LowUndef;
6424198090Srdivacky
6425193323Sed    sz = HalfSize;
6426193323Sed  }
6427193323Sed
6428193323Sed  SplatBitSize = sz;
6429193323Sed  return true;
6430193323Sed}
6431193323Sed
6432198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6433193323Sed  // Find the first non-undef value in the shuffle mask.
6434193323Sed  unsigned i, e;
6435193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6436193323Sed    /* search */;
6437193323Sed
6438193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6439198090Srdivacky
6440193323Sed  // Make sure all remaining elements are either undef or the same as the first
6441193323Sed  // non-undef value.
6442193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6443193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6444193323Sed      return false;
6445193323Sed  return true;
6446193323Sed}
6447202878Srdivacky
6448204642Srdivacky#ifdef XDEBUG
6449202878Srdivackystatic void checkForCyclesHelper(const SDNode *N,
6450204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Visited,
6451204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6452204642Srdivacky  // If this node has already been checked, don't check it again.
6453204642Srdivacky  if (Checked.count(N))
6454204642Srdivacky    return;
6455204642Srdivacky
6456204642Srdivacky  // If a node has already been visited on this depth-first walk, reject it as
6457204642Srdivacky  // a cycle.
6458204642Srdivacky  if (!Visited.insert(N)) {
6459202878Srdivacky    dbgs() << "Offending node:\n";
6460202878Srdivacky    N->dumprFull();
6461204642Srdivacky    errs() << "Detected cycle in SelectionDAG\n";
6462204642Srdivacky    abort();
6463202878Srdivacky  }
6464204642Srdivacky
6465204642Srdivacky  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6466204642Srdivacky    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6467204642Srdivacky
6468204642Srdivacky  Checked.insert(N);
6469204642Srdivacky  Visited.erase(N);
6470202878Srdivacky}
6471204642Srdivacky#endif
6472202878Srdivacky
6473202878Srdivackyvoid llvm::checkForCycles(const llvm::SDNode *N) {
6474202878Srdivacky#ifdef XDEBUG
6475202878Srdivacky  assert(N && "Checking nonexistant SDNode");
6476204642Srdivacky  SmallPtrSet<const SDNode*, 32> visited;
6477204642Srdivacky  SmallPtrSet<const SDNode*, 32> checked;
6478204642Srdivacky  checkForCyclesHelper(N, visited, checked);
6479202878Srdivacky#endif
6480202878Srdivacky}
6481202878Srdivacky
6482202878Srdivackyvoid llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6483202878Srdivacky  checkForCycles(DAG->getRoot().getNode());
6484202878Srdivacky}
6485