SelectionDAG.cpp revision 206124
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13201360Srdivacky
14193323Sed#include "llvm/CodeGen/SelectionDAG.h"
15201360Srdivacky#include "SDNodeOrdering.h"
16205218Srdivacky#include "SDNodeDbgValue.h"
17193323Sed#include "llvm/Constants.h"
18193323Sed#include "llvm/Analysis/ValueTracking.h"
19198090Srdivacky#include "llvm/Function.h"
20193323Sed#include "llvm/GlobalAlias.h"
21193323Sed#include "llvm/GlobalVariable.h"
22193323Sed#include "llvm/Intrinsics.h"
23193323Sed#include "llvm/DerivedTypes.h"
24193323Sed#include "llvm/Assembly/Writer.h"
25193323Sed#include "llvm/CallingConv.h"
26193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
27193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
28193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
29193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
30193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
31193323Sed#include "llvm/Target/TargetRegisterInfo.h"
32193323Sed#include "llvm/Target/TargetData.h"
33200581Srdivacky#include "llvm/Target/TargetFrameInfo.h"
34193323Sed#include "llvm/Target/TargetLowering.h"
35193323Sed#include "llvm/Target/TargetOptions.h"
36193323Sed#include "llvm/Target/TargetInstrInfo.h"
37198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
38193323Sed#include "llvm/Target/TargetMachine.h"
39193323Sed#include "llvm/Support/CommandLine.h"
40202375Srdivacky#include "llvm/Support/Debug.h"
41198090Srdivacky#include "llvm/Support/ErrorHandling.h"
42195098Sed#include "llvm/Support/ManagedStatic.h"
43193323Sed#include "llvm/Support/MathExtras.h"
44193323Sed#include "llvm/Support/raw_ostream.h"
45195098Sed#include "llvm/System/Mutex.h"
46193323Sed#include "llvm/ADT/SetVector.h"
47193323Sed#include "llvm/ADT/SmallPtrSet.h"
48193323Sed#include "llvm/ADT/SmallSet.h"
49193323Sed#include "llvm/ADT/SmallVector.h"
50193323Sed#include "llvm/ADT/StringExtras.h"
51193323Sed#include <algorithm>
52193323Sed#include <cmath>
53193323Sedusing namespace llvm;
54193323Sed
55193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
56193323Sed/// specified members.
57198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58193323Sed  SDVTList Res = {VTs, NumVTs};
59193323Sed  return Res;
60193323Sed}
61193323Sed
62198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
64198090Srdivacky  default: llvm_unreachable("Unknown FP format");
65193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
66193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
67193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
68193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
69193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70193323Sed  }
71193323Sed}
72193323Sed
73193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74193323Sed
75193323Sed//===----------------------------------------------------------------------===//
76193323Sed//                              ConstantFPSDNode Class
77193323Sed//===----------------------------------------------------------------------===//
78193323Sed
79193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
80193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
82193323Sed/// two floating point values.
83193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84193323Sed  return getValueAPF().bitwiseIsEqual(V);
85193323Sed}
86193323Sed
87198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
88193323Sed                                           const APFloat& Val) {
89193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90193323Sed
91193323Sed  // PPC long double cannot be converted to any other type.
92193323Sed  if (VT == MVT::ppcf128 ||
93193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94193323Sed    return false;
95193323Sed
96193323Sed  // convert modifies in place, so make a copy.
97193323Sed  APFloat Val2 = APFloat(Val);
98193323Sed  bool losesInfo;
99198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100193323Sed                      &losesInfo);
101193323Sed  return !losesInfo;
102193323Sed}
103193323Sed
104193323Sed//===----------------------------------------------------------------------===//
105193323Sed//                              ISD Namespace
106193323Sed//===----------------------------------------------------------------------===//
107193323Sed
108193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
109193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
110193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
111193323Sed  // Look through a bit convert.
112193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
113193323Sed    N = N->getOperand(0).getNode();
114193323Sed
115193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116193323Sed
117193323Sed  unsigned i = 0, e = N->getNumOperands();
118193323Sed
119193323Sed  // Skip over all of the undef values.
120193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121193323Sed    ++i;
122193323Sed
123193323Sed  // Do not accept an all-undef vector.
124193323Sed  if (i == e) return false;
125193323Sed
126193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
127193323Sed  // elements.
128193323Sed  SDValue NotZero = N->getOperand(i);
129193323Sed  if (isa<ConstantSDNode>(NotZero)) {
130193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131193323Sed      return false;
132193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
133193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134193323Sed                bitcastToAPInt().isAllOnesValue())
135193323Sed      return false;
136193323Sed  } else
137193323Sed    return false;
138193323Sed
139193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
140193323Sed  // undefs.
141193323Sed  for (++i; i != e; ++i)
142193323Sed    if (N->getOperand(i) != NotZero &&
143193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
144193323Sed      return false;
145193323Sed  return true;
146193323Sed}
147193323Sed
148193323Sed
149193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
150193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
151193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
152193323Sed  // Look through a bit convert.
153193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
154193323Sed    N = N->getOperand(0).getNode();
155193323Sed
156193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157193323Sed
158193323Sed  unsigned i = 0, e = N->getNumOperands();
159193323Sed
160193323Sed  // Skip over all of the undef values.
161193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162193323Sed    ++i;
163193323Sed
164193323Sed  // Do not accept an all-undef vector.
165193323Sed  if (i == e) return false;
166193323Sed
167193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
168193323Sed  // elements.
169193323Sed  SDValue Zero = N->getOperand(i);
170193323Sed  if (isa<ConstantSDNode>(Zero)) {
171193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172193323Sed      return false;
173193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
174193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175193323Sed      return false;
176193323Sed  } else
177193323Sed    return false;
178193323Sed
179193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
180193323Sed  // undefs.
181193323Sed  for (++i; i != e; ++i)
182193323Sed    if (N->getOperand(i) != Zero &&
183193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
184193323Sed      return false;
185193323Sed  return true;
186193323Sed}
187193323Sed
188193323Sed/// isScalarToVector - Return true if the specified node is a
189193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190193323Sed/// element is not an undef.
191193323Sedbool ISD::isScalarToVector(const SDNode *N) {
192193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193193323Sed    return true;
194193323Sed
195193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
196193323Sed    return false;
197193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198193323Sed    return false;
199193323Sed  unsigned NumElems = N->getNumOperands();
200193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
201193323Sed    SDValue V = N->getOperand(i);
202193323Sed    if (V.getOpcode() != ISD::UNDEF)
203193323Sed      return false;
204193323Sed  }
205193323Sed  return true;
206193323Sed}
207193323Sed
208193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209193323Sed/// when given the operation for (X op Y).
210193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211193323Sed  // To perform this operation, we just need to swap the L and G bits of the
212193323Sed  // operation.
213193323Sed  unsigned OldL = (Operation >> 2) & 1;
214193323Sed  unsigned OldG = (Operation >> 1) & 1;
215193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216193323Sed                       (OldL << 1) |       // New G bit
217193323Sed                       (OldG << 2));       // New L bit.
218193323Sed}
219193323Sed
220193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221193323Sed/// 'op' is a valid SetCC operation.
222193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223193323Sed  unsigned Operation = Op;
224193323Sed  if (isInteger)
225193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
226193323Sed  else
227193323Sed    Operation ^= 15;  // Flip all of the condition bits.
228193323Sed
229193323Sed  if (Operation > ISD::SETTRUE2)
230193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
231193323Sed
232193323Sed  return ISD::CondCode(Operation);
233193323Sed}
234193323Sed
235193323Sed
236193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
239193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
240193323Sed  switch (Opcode) {
241198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
242193323Sed  case ISD::SETEQ:
243193323Sed  case ISD::SETNE: return 0;
244193323Sed  case ISD::SETLT:
245193323Sed  case ISD::SETLE:
246193323Sed  case ISD::SETGT:
247193323Sed  case ISD::SETGE: return 1;
248193323Sed  case ISD::SETULT:
249193323Sed  case ISD::SETULE:
250193323Sed  case ISD::SETUGT:
251193323Sed  case ISD::SETUGE: return 2;
252193323Sed  }
253193323Sed}
254193323Sed
255193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
256193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
258193323Sed/// comparison.
259193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260193323Sed                                       bool isInteger) {
261193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263193323Sed    return ISD::SETCC_INVALID;
264193323Sed
265193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266193323Sed
267193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
268193323Sed  // care about orderedness, and is true when ordered.
269193323Sed  if (Op > ISD::SETTRUE2)
270193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
271193323Sed
272193323Sed  // Canonicalize illegal integer setcc's.
273193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274193323Sed    Op = ISD::SETNE;
275193323Sed
276193323Sed  return ISD::CondCode(Op);
277193323Sed}
278193323Sed
279193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
280193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281193323Sed/// function returns zero if it is not possible to represent the resultant
282193323Sed/// comparison.
283193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284193323Sed                                        bool isInteger) {
285193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
287193323Sed    return ISD::SETCC_INVALID;
288193323Sed
289193323Sed  // Combine all of the condition bits.
290193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291193323Sed
292193323Sed  // Canonicalize illegal integer setcc's.
293193323Sed  if (isInteger) {
294193323Sed    switch (Result) {
295193323Sed    default: break;
296193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301193323Sed    }
302193323Sed  }
303193323Sed
304193323Sed  return Result;
305193323Sed}
306193323Sed
307193323Sedconst TargetMachine &SelectionDAG::getTarget() const {
308193323Sed  return MF->getTarget();
309193323Sed}
310193323Sed
311193323Sed//===----------------------------------------------------------------------===//
312193323Sed//                           SDNode Profile Support
313193323Sed//===----------------------------------------------------------------------===//
314193323Sed
315193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316193323Sed///
317193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318193323Sed  ID.AddInteger(OpC);
319193323Sed}
320193323Sed
321193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322193323Sed/// solely with their pointer.
323193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324193323Sed  ID.AddPointer(VTList.VTs);
325193323Sed}
326193323Sed
327193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328193323Sed///
329193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
330193323Sed                              const SDValue *Ops, unsigned NumOps) {
331193323Sed  for (; NumOps; --NumOps, ++Ops) {
332193323Sed    ID.AddPointer(Ops->getNode());
333193323Sed    ID.AddInteger(Ops->getResNo());
334193323Sed  }
335193323Sed}
336193323Sed
337193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338193323Sed///
339193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
340193323Sed                              const SDUse *Ops, unsigned NumOps) {
341193323Sed  for (; NumOps; --NumOps, ++Ops) {
342193323Sed    ID.AddPointer(Ops->getNode());
343193323Sed    ID.AddInteger(Ops->getResNo());
344193323Sed  }
345193323Sed}
346193323Sed
347193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
348193323Sed                          unsigned short OpC, SDVTList VTList,
349193323Sed                          const SDValue *OpList, unsigned N) {
350193323Sed  AddNodeIDOpcode(ID, OpC);
351193323Sed  AddNodeIDValueTypes(ID, VTList);
352193323Sed  AddNodeIDOperands(ID, OpList, N);
353193323Sed}
354193323Sed
355193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356193323Sed/// the NodeID data.
357193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358193323Sed  switch (N->getOpcode()) {
359195098Sed  case ISD::TargetExternalSymbol:
360195098Sed  case ISD::ExternalSymbol:
361198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
362193323Sed  default: break;  // Normal nodes don't need extra info.
363193323Sed  case ISD::TargetConstant:
364193323Sed  case ISD::Constant:
365193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366193323Sed    break;
367193323Sed  case ISD::TargetConstantFP:
368193323Sed  case ISD::ConstantFP: {
369193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370193323Sed    break;
371193323Sed  }
372193323Sed  case ISD::TargetGlobalAddress:
373193323Sed  case ISD::GlobalAddress:
374193323Sed  case ISD::TargetGlobalTLSAddress:
375193323Sed  case ISD::GlobalTLSAddress: {
376193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377193323Sed    ID.AddPointer(GA->getGlobal());
378193323Sed    ID.AddInteger(GA->getOffset());
379195098Sed    ID.AddInteger(GA->getTargetFlags());
380193323Sed    break;
381193323Sed  }
382193323Sed  case ISD::BasicBlock:
383193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384193323Sed    break;
385193323Sed  case ISD::Register:
386193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387193323Sed    break;
388199989Srdivacky
389193323Sed  case ISD::SRCVALUE:
390193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391193323Sed    break;
392193323Sed  case ISD::FrameIndex:
393193323Sed  case ISD::TargetFrameIndex:
394193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395193323Sed    break;
396193323Sed  case ISD::JumpTable:
397193323Sed  case ISD::TargetJumpTable:
398193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400193323Sed    break;
401193323Sed  case ISD::ConstantPool:
402193323Sed  case ISD::TargetConstantPool: {
403193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404193323Sed    ID.AddInteger(CP->getAlignment());
405193323Sed    ID.AddInteger(CP->getOffset());
406193323Sed    if (CP->isMachineConstantPoolEntry())
407193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408193323Sed    else
409193323Sed      ID.AddPointer(CP->getConstVal());
410195098Sed    ID.AddInteger(CP->getTargetFlags());
411193323Sed    break;
412193323Sed  }
413193323Sed  case ISD::LOAD: {
414193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
415193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
416193323Sed    ID.AddInteger(LD->getRawSubclassData());
417193323Sed    break;
418193323Sed  }
419193323Sed  case ISD::STORE: {
420193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
421193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
422193323Sed    ID.AddInteger(ST->getRawSubclassData());
423193323Sed    break;
424193323Sed  }
425193323Sed  case ISD::ATOMIC_CMP_SWAP:
426193323Sed  case ISD::ATOMIC_SWAP:
427193323Sed  case ISD::ATOMIC_LOAD_ADD:
428193323Sed  case ISD::ATOMIC_LOAD_SUB:
429193323Sed  case ISD::ATOMIC_LOAD_AND:
430193323Sed  case ISD::ATOMIC_LOAD_OR:
431193323Sed  case ISD::ATOMIC_LOAD_XOR:
432193323Sed  case ISD::ATOMIC_LOAD_NAND:
433193323Sed  case ISD::ATOMIC_LOAD_MIN:
434193323Sed  case ISD::ATOMIC_LOAD_MAX:
435193323Sed  case ISD::ATOMIC_LOAD_UMIN:
436193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
437193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
439193323Sed    ID.AddInteger(AT->getRawSubclassData());
440193323Sed    break;
441193323Sed  }
442193323Sed  case ISD::VECTOR_SHUFFLE: {
443193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445193323Sed         i != e; ++i)
446193323Sed      ID.AddInteger(SVN->getMaskElt(i));
447193323Sed    break;
448193323Sed  }
449198892Srdivacky  case ISD::TargetBlockAddress:
450198892Srdivacky  case ISD::BlockAddress: {
451199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453198892Srdivacky    break;
454198892Srdivacky  }
455193323Sed  } // end switch (N->getOpcode())
456193323Sed}
457193323Sed
458193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459193323Sed/// data.
460193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
462193323Sed  // Add the return value info.
463193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
464193323Sed  // Add the operand info.
465193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466193323Sed
467193323Sed  // Handle SDNode leafs with special info.
468193323Sed  AddNodeIDCustom(ID, N);
469193323Sed}
470193323Sed
471193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472204642Srdivacky/// the CSE map that carries volatility, temporalness, indexing mode, and
473193323Sed/// extension/truncation information.
474193323Sed///
475193323Sedstatic inline unsigned
476204642SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477204642Srdivacky                     bool isNonTemporal) {
478193323Sed  assert((ConvType & 3) == ConvType &&
479193323Sed         "ConvType may not require more than 2 bits!");
480193323Sed  assert((AM & 7) == AM &&
481193323Sed         "AM may not require more than 3 bits!");
482193323Sed  return ConvType |
483193323Sed         (AM << 2) |
484204642Srdivacky         (isVolatile << 5) |
485204642Srdivacky         (isNonTemporal << 6);
486193323Sed}
487193323Sed
488193323Sed//===----------------------------------------------------------------------===//
489193323Sed//                              SelectionDAG Class
490193323Sed//===----------------------------------------------------------------------===//
491193323Sed
492193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
493193323Sedstatic bool doNotCSE(SDNode *N) {
494193323Sed  if (N->getValueType(0) == MVT::Flag)
495193323Sed    return true; // Never CSE anything that produces a flag.
496193323Sed
497193323Sed  switch (N->getOpcode()) {
498193323Sed  default: break;
499193323Sed  case ISD::HANDLENODE:
500193323Sed  case ISD::EH_LABEL:
501193323Sed    return true;   // Never CSE these nodes.
502193323Sed  }
503193323Sed
504193323Sed  // Check that remaining values produced are not flags.
505193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506193323Sed    if (N->getValueType(i) == MVT::Flag)
507193323Sed      return true; // Never CSE anything that produces a flag.
508193323Sed
509193323Sed  return false;
510193323Sed}
511193323Sed
512193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513193323Sed/// SelectionDAG.
514193323Sedvoid SelectionDAG::RemoveDeadNodes() {
515193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
516193323Sed  // to the root node, preventing it from being deleted.
517193323Sed  HandleSDNode Dummy(getRoot());
518193323Sed
519193323Sed  SmallVector<SDNode*, 128> DeadNodes;
520193323Sed
521193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
522193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523193323Sed    if (I->use_empty())
524193323Sed      DeadNodes.push_back(I);
525193323Sed
526193323Sed  RemoveDeadNodes(DeadNodes);
527193323Sed
528193323Sed  // If the root changed (e.g. it was a dead load, update the root).
529193323Sed  setRoot(Dummy.getValue());
530193323Sed}
531193323Sed
532193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533193323Sed/// given list, and any nodes that become unreachable as a result.
534193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535193323Sed                                   DAGUpdateListener *UpdateListener) {
536193323Sed
537193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
538193323Sed  // worklist.
539193323Sed  while (!DeadNodes.empty()) {
540193323Sed    SDNode *N = DeadNodes.pop_back_val();
541193323Sed
542193323Sed    if (UpdateListener)
543193323Sed      UpdateListener->NodeDeleted(N, 0);
544193323Sed
545193323Sed    // Take the node out of the appropriate CSE map.
546193323Sed    RemoveNodeFromCSEMaps(N);
547193323Sed
548193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
549193323Sed    // no cycles in the graph.
550193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551193323Sed      SDUse &Use = *I++;
552193323Sed      SDNode *Operand = Use.getNode();
553193323Sed      Use.set(SDValue());
554193323Sed
555193323Sed      // Now that we removed this operand, see if there are no uses of it left.
556193323Sed      if (Operand->use_empty())
557193323Sed        DeadNodes.push_back(Operand);
558193323Sed    }
559193323Sed
560193323Sed    DeallocateNode(N);
561193323Sed  }
562193323Sed}
563193323Sed
564193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
566193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
567193323Sed}
568193323Sed
569193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
570193323Sed  // First take this out of the appropriate CSE map.
571193323Sed  RemoveNodeFromCSEMaps(N);
572193323Sed
573193323Sed  // Finally, remove uses due to operands of this node, remove from the
574193323Sed  // AllNodes list, and delete the node.
575193323Sed  DeleteNodeNotInCSEMaps(N);
576193323Sed}
577193323Sed
578193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581193323Sed
582193323Sed  // Drop all of the operands and decrement used node's use counts.
583193323Sed  N->DropOperands();
584193323Sed
585193323Sed  DeallocateNode(N);
586193323Sed}
587193323Sed
588193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
589193323Sed  if (N->OperandsNeedDelete)
590193323Sed    delete[] N->OperandList;
591193323Sed
592193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
593193323Sed  // memory is reallocated.
594193323Sed  N->NodeType = ISD::DELETED_NODE;
595193323Sed
596193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
597200581Srdivacky
598200581Srdivacky  // Remove the ordering of this node.
599202878Srdivacky  Ordering->remove(N);
600205218Srdivacky
601206083Srdivacky  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602206083Srdivacky  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603206083Srdivacky  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604206083Srdivacky    DbgVals[i]->setIsInvalidated();
605193323Sed}
606193323Sed
607193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
609193323Sed/// the node.  We don't want future request for structurally identical nodes
610193323Sed/// to return N anymore.
611193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612193323Sed  bool Erased = false;
613193323Sed  switch (N->getOpcode()) {
614193323Sed  case ISD::EntryToken:
615198090Srdivacky    llvm_unreachable("EntryToken should not be in CSEMaps!");
616193323Sed    return false;
617193323Sed  case ISD::HANDLENODE: return false;  // noop.
618193323Sed  case ISD::CONDCODE:
619193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620193323Sed           "Cond code doesn't exist!");
621193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623193323Sed    break;
624193323Sed  case ISD::ExternalSymbol:
625193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626193323Sed    break;
627195098Sed  case ISD::TargetExternalSymbol: {
628195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629195098Sed    Erased = TargetExternalSymbols.erase(
630195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631195098Sed                                                    ESN->getTargetFlags()));
632193323Sed    break;
633195098Sed  }
634193323Sed  case ISD::VALUETYPE: {
635198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
636193323Sed    if (VT.isExtended()) {
637193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
638193323Sed    } else {
639198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641193323Sed    }
642193323Sed    break;
643193323Sed  }
644193323Sed  default:
645193323Sed    // Remove it from the CSE Map.
646193323Sed    Erased = CSEMap.RemoveNode(N);
647193323Sed    break;
648193323Sed  }
649193323Sed#ifndef NDEBUG
650193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
651193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
652193323Sed  // not subject to CSE.
653193323Sed  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
655193323Sed    N->dump(this);
656202375Srdivacky    dbgs() << "\n";
657198090Srdivacky    llvm_unreachable("Node is not in map!");
658193323Sed  }
659193323Sed#endif
660193323Sed  return Erased;
661193323Sed}
662193323Sed
663193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
665193323Sed/// node already exists, in which case transfer all its users to the existing
666193323Sed/// node. This transfer can potentially trigger recursive merging.
667193323Sed///
668193323Sedvoid
669193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670193323Sed                                       DAGUpdateListener *UpdateListener) {
671193323Sed  // For node types that aren't CSE'd, just act as if no identical node
672193323Sed  // already exists.
673193323Sed  if (!doNotCSE(N)) {
674193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675193323Sed    if (Existing != N) {
676193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
677193323Sed      // to replace the dead one with the existing one.  This can cause
678193323Sed      // recursive merging of other unrelated nodes down the line.
679193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
680193323Sed
681193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
682193323Sed      if (UpdateListener)
683193323Sed        UpdateListener->NodeDeleted(N, Existing);
684193323Sed      DeleteNodeNotInCSEMaps(N);
685193323Sed      return;
686193323Sed    }
687193323Sed  }
688193323Sed
689193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
690193323Sed  // it exists.
691193323Sed  if (UpdateListener)
692193323Sed    UpdateListener->NodeUpdated(N);
693193323Sed}
694193323Sed
695193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696193323Sed/// were replaced with those specified.  If this node is never memoized,
697193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
698193323Sed/// node already exists with these operands, the slot will be non-null.
699193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700193323Sed                                           void *&InsertPos) {
701193323Sed  if (doNotCSE(N))
702193323Sed    return 0;
703193323Sed
704193323Sed  SDValue Ops[] = { Op };
705193323Sed  FoldingSetNodeID ID;
706193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707193323Sed  AddNodeIDCustom(ID, N);
708200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709200581Srdivacky  return Node;
710193323Sed}
711193323Sed
712193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713193323Sed/// were replaced with those specified.  If this node is never memoized,
714193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
715193323Sed/// node already exists with these operands, the slot will be non-null.
716193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717193323Sed                                           SDValue Op1, SDValue Op2,
718193323Sed                                           void *&InsertPos) {
719193323Sed  if (doNotCSE(N))
720193323Sed    return 0;
721193323Sed
722193323Sed  SDValue Ops[] = { Op1, Op2 };
723193323Sed  FoldingSetNodeID ID;
724193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725193323Sed  AddNodeIDCustom(ID, N);
726200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727200581Srdivacky  return Node;
728193323Sed}
729193323Sed
730193323Sed
731193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732193323Sed/// were replaced with those specified.  If this node is never memoized,
733193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
734193323Sed/// node already exists with these operands, the slot will be non-null.
735193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736193323Sed                                           const SDValue *Ops,unsigned NumOps,
737193323Sed                                           void *&InsertPos) {
738193323Sed  if (doNotCSE(N))
739193323Sed    return 0;
740193323Sed
741193323Sed  FoldingSetNodeID ID;
742193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743193323Sed  AddNodeIDCustom(ID, N);
744200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745200581Srdivacky  return Node;
746193323Sed}
747193323Sed
748193323Sed/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749193323Sedvoid SelectionDAG::VerifyNode(SDNode *N) {
750193323Sed  switch (N->getOpcode()) {
751193323Sed  default:
752193323Sed    break;
753193323Sed  case ISD::BUILD_PAIR: {
754198090Srdivacky    EVT VT = N->getValueType(0);
755193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
756193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757193323Sed           "Wrong return type!");
758193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760193323Sed           "Mismatched operand types!");
761193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762193323Sed           "Wrong operand type!");
763193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764193323Sed           "Wrong return type size");
765193323Sed    break;
766193323Sed  }
767193323Sed  case ISD::BUILD_VECTOR: {
768193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
769193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
770193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771193323Sed           "Wrong number of operands!");
772198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
773193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774193323Sed      assert((I->getValueType() == EltVT ||
775193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
776193323Sed              EltVT.bitsLE(I->getValueType()))) &&
777193323Sed            "Wrong operand type!");
778193323Sed    break;
779193323Sed  }
780193323Sed  }
781193323Sed}
782193323Sed
783198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
784193323Sed/// given type.
785193323Sed///
786198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787193323Sed  const Type *Ty = VT == MVT::iPTR ?
788198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789198090Srdivacky                   VT.getTypeForEVT(*getContext());
790193323Sed
791193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
792193323Sed}
793193323Sed
794193323Sed// EntryNode could meaningfully have debug info if we can find it...
795193323SedSelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796193323Sed  : TLI(tli), FLI(fli), DW(0),
797206124Srdivacky    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798200581Srdivacky    Root(getEntryNode()), Ordering(0) {
799193323Sed  AllNodes.push_back(&EntryNode);
800202878Srdivacky  Ordering = new SDNodeOrdering();
801205218Srdivacky  DbgInfo = new SDDbgInfo();
802193323Sed}
803193323Sed
804193323Sedvoid SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
805193323Sed                        DwarfWriter *dw) {
806193323Sed  MF = &mf;
807193323Sed  MMI = mmi;
808193323Sed  DW = dw;
809198090Srdivacky  Context = &mf.getFunction()->getContext();
810193323Sed}
811193323Sed
812193323SedSelectionDAG::~SelectionDAG() {
813193323Sed  allnodes_clear();
814200581Srdivacky  delete Ordering;
815206083Srdivacky  DbgInfo->clear();
816205218Srdivacky  delete DbgInfo;
817193323Sed}
818193323Sed
819193323Sedvoid SelectionDAG::allnodes_clear() {
820193323Sed  assert(&*AllNodes.begin() == &EntryNode);
821193323Sed  AllNodes.remove(AllNodes.begin());
822193323Sed  while (!AllNodes.empty())
823193323Sed    DeallocateNode(AllNodes.begin());
824193323Sed}
825193323Sed
826193323Sedvoid SelectionDAG::clear() {
827193323Sed  allnodes_clear();
828193323Sed  OperandAllocator.Reset();
829193323Sed  CSEMap.clear();
830193323Sed
831193323Sed  ExtendedValueTypeNodes.clear();
832193323Sed  ExternalSymbols.clear();
833193323Sed  TargetExternalSymbols.clear();
834193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
835193323Sed            static_cast<CondCodeSDNode*>(0));
836193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
837193323Sed            static_cast<SDNode*>(0));
838193323Sed
839193323Sed  EntryNode.UseList = 0;
840193323Sed  AllNodes.push_back(&EntryNode);
841193323Sed  Root = getEntryNode();
842203954Srdivacky  delete Ordering;
843202878Srdivacky  Ordering = new SDNodeOrdering();
844206083Srdivacky  DbgInfo->clear();
845205218Srdivacky  delete DbgInfo;
846205218Srdivacky  DbgInfo = new SDDbgInfo();
847193323Sed}
848193323Sed
849198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
850198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
851198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
852198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
853198090Srdivacky}
854198090Srdivacky
855198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
856198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
857198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
858198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
859198090Srdivacky}
860198090Srdivacky
861198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
862200581Srdivacky  assert(!VT.isVector() &&
863200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
864200581Srdivacky         "the vector type!");
865193323Sed  if (Op.getValueType() == VT) return Op;
866200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
867200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
868193323Sed                                   VT.getSizeInBits());
869193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
870193323Sed                 getConstant(Imm, Op.getValueType()));
871193323Sed}
872193323Sed
873193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
874193323Sed///
875198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
876204642Srdivacky  EVT EltVT = VT.getScalarType();
877193323Sed  SDValue NegOne =
878193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
879193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
880193323Sed}
881193323Sed
882198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
883204642Srdivacky  EVT EltVT = VT.getScalarType();
884193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
885193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
886193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
887193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
888193323Sed}
889193323Sed
890198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
891198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
892193323Sed}
893193323Sed
894198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
895193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
896193323Sed
897204642Srdivacky  EVT EltVT = VT.getScalarType();
898193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
899193323Sed         "APInt size does not match type size!");
900193323Sed
901193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
902193323Sed  FoldingSetNodeID ID;
903193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
904193323Sed  ID.AddPointer(&Val);
905193323Sed  void *IP = 0;
906193323Sed  SDNode *N = NULL;
907201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
908193323Sed    if (!VT.isVector())
909193323Sed      return SDValue(N, 0);
910201360Srdivacky
911193323Sed  if (!N) {
912205407Srdivacky    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
913193323Sed    CSEMap.InsertNode(N, IP);
914193323Sed    AllNodes.push_back(N);
915193323Sed  }
916193323Sed
917193323Sed  SDValue Result(N, 0);
918193323Sed  if (VT.isVector()) {
919193323Sed    SmallVector<SDValue, 8> Ops;
920193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
921206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
922193323Sed  }
923193323Sed  return Result;
924193323Sed}
925193323Sed
926193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
927193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
928193323Sed}
929193323Sed
930193323Sed
931198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
932198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
933193323Sed}
934193323Sed
935198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
936193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
937193323Sed
938204642Srdivacky  EVT EltVT = VT.getScalarType();
939193323Sed
940193323Sed  // Do the map lookup using the actual bit pattern for the floating point
941193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
942193323Sed  // we don't have issues with SNANs.
943193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
944193323Sed  FoldingSetNodeID ID;
945193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
946193323Sed  ID.AddPointer(&V);
947193323Sed  void *IP = 0;
948193323Sed  SDNode *N = NULL;
949201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
950193323Sed    if (!VT.isVector())
951193323Sed      return SDValue(N, 0);
952201360Srdivacky
953193323Sed  if (!N) {
954205407Srdivacky    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
955193323Sed    CSEMap.InsertNode(N, IP);
956193323Sed    AllNodes.push_back(N);
957193323Sed  }
958193323Sed
959193323Sed  SDValue Result(N, 0);
960193323Sed  if (VT.isVector()) {
961193323Sed    SmallVector<SDValue, 8> Ops;
962193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
963193323Sed    // FIXME DebugLoc info might be appropriate here
964206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
965193323Sed  }
966193323Sed  return Result;
967193323Sed}
968193323Sed
969198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
970204642Srdivacky  EVT EltVT = VT.getScalarType();
971193323Sed  if (EltVT==MVT::f32)
972193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
973193323Sed  else
974193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
975193323Sed}
976193323Sed
977193323SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
978198090Srdivacky                                       EVT VT, int64_t Offset,
979195098Sed                                       bool isTargetGA,
980195098Sed                                       unsigned char TargetFlags) {
981195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
982195098Sed         "Cannot set target flags on target-independent globals");
983198090Srdivacky
984193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
985198090Srdivacky  EVT PTy = TLI.getPointerTy();
986198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
987193323Sed  if (BitWidth < 64)
988193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
989193323Sed
990193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
991193323Sed  if (!GVar) {
992193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
993193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
994193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
995193323Sed  }
996193323Sed
997195098Sed  unsigned Opc;
998193323Sed  if (GVar && GVar->isThreadLocal())
999193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1000193323Sed  else
1001193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1002193323Sed
1003193323Sed  FoldingSetNodeID ID;
1004193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1005193323Sed  ID.AddPointer(GV);
1006193323Sed  ID.AddInteger(Offset);
1007195098Sed  ID.AddInteger(TargetFlags);
1008193323Sed  void *IP = 0;
1009201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1010193323Sed    return SDValue(E, 0);
1011201360Srdivacky
1012205407Srdivacky  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1013205407Srdivacky                                                      Offset, TargetFlags);
1014193323Sed  CSEMap.InsertNode(N, IP);
1015193323Sed  AllNodes.push_back(N);
1016193323Sed  return SDValue(N, 0);
1017193323Sed}
1018193323Sed
1019198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1020193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1021193323Sed  FoldingSetNodeID ID;
1022193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1023193323Sed  ID.AddInteger(FI);
1024193323Sed  void *IP = 0;
1025201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026193323Sed    return SDValue(E, 0);
1027201360Srdivacky
1028205407Srdivacky  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1029193323Sed  CSEMap.InsertNode(N, IP);
1030193323Sed  AllNodes.push_back(N);
1031193323Sed  return SDValue(N, 0);
1032193323Sed}
1033193323Sed
1034198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1035195098Sed                                   unsigned char TargetFlags) {
1036195098Sed  assert((TargetFlags == 0 || isTarget) &&
1037195098Sed         "Cannot set target flags on target-independent jump tables");
1038193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1039193323Sed  FoldingSetNodeID ID;
1040193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1041193323Sed  ID.AddInteger(JTI);
1042195098Sed  ID.AddInteger(TargetFlags);
1043193323Sed  void *IP = 0;
1044201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1045193323Sed    return SDValue(E, 0);
1046201360Srdivacky
1047205407Srdivacky  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1048205407Srdivacky                                                  TargetFlags);
1049193323Sed  CSEMap.InsertNode(N, IP);
1050193323Sed  AllNodes.push_back(N);
1051193323Sed  return SDValue(N, 0);
1052193323Sed}
1053193323Sed
1054198090SrdivackySDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1055193323Sed                                      unsigned Alignment, int Offset,
1056198090Srdivacky                                      bool isTarget,
1057195098Sed                                      unsigned char TargetFlags) {
1058195098Sed  assert((TargetFlags == 0 || isTarget) &&
1059195098Sed         "Cannot set target flags on target-independent globals");
1060193323Sed  if (Alignment == 0)
1061193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1062193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1063193323Sed  FoldingSetNodeID ID;
1064193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1065193323Sed  ID.AddInteger(Alignment);
1066193323Sed  ID.AddInteger(Offset);
1067193323Sed  ID.AddPointer(C);
1068195098Sed  ID.AddInteger(TargetFlags);
1069193323Sed  void *IP = 0;
1070201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1071193323Sed    return SDValue(E, 0);
1072201360Srdivacky
1073205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1074205407Srdivacky                                                     Alignment, TargetFlags);
1075193323Sed  CSEMap.InsertNode(N, IP);
1076193323Sed  AllNodes.push_back(N);
1077193323Sed  return SDValue(N, 0);
1078193323Sed}
1079193323Sed
1080193323Sed
1081198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1082193323Sed                                      unsigned Alignment, int Offset,
1083195098Sed                                      bool isTarget,
1084195098Sed                                      unsigned char TargetFlags) {
1085195098Sed  assert((TargetFlags == 0 || isTarget) &&
1086195098Sed         "Cannot set target flags on target-independent globals");
1087193323Sed  if (Alignment == 0)
1088193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1089193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1090193323Sed  FoldingSetNodeID ID;
1091193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1092193323Sed  ID.AddInteger(Alignment);
1093193323Sed  ID.AddInteger(Offset);
1094193323Sed  C->AddSelectionDAGCSEId(ID);
1095195098Sed  ID.AddInteger(TargetFlags);
1096193323Sed  void *IP = 0;
1097201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1098193323Sed    return SDValue(E, 0);
1099201360Srdivacky
1100205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1101205407Srdivacky                                                     Alignment, TargetFlags);
1102193323Sed  CSEMap.InsertNode(N, IP);
1103193323Sed  AllNodes.push_back(N);
1104193323Sed  return SDValue(N, 0);
1105193323Sed}
1106193323Sed
1107193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1108193323Sed  FoldingSetNodeID ID;
1109193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1110193323Sed  ID.AddPointer(MBB);
1111193323Sed  void *IP = 0;
1112201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1113193323Sed    return SDValue(E, 0);
1114201360Srdivacky
1115205407Srdivacky  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1116193323Sed  CSEMap.InsertNode(N, IP);
1117193323Sed  AllNodes.push_back(N);
1118193323Sed  return SDValue(N, 0);
1119193323Sed}
1120193323Sed
1121198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1122198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1123198090Srdivacky      ValueTypeNodes.size())
1124198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1125193323Sed
1126193323Sed  SDNode *&N = VT.isExtended() ?
1127198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1128193323Sed
1129193323Sed  if (N) return SDValue(N, 0);
1130205407Srdivacky  N = new (NodeAllocator) VTSDNode(VT);
1131193323Sed  AllNodes.push_back(N);
1132193323Sed  return SDValue(N, 0);
1133193323Sed}
1134193323Sed
1135198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1136193323Sed  SDNode *&N = ExternalSymbols[Sym];
1137193323Sed  if (N) return SDValue(N, 0);
1138205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1139193323Sed  AllNodes.push_back(N);
1140193323Sed  return SDValue(N, 0);
1141193323Sed}
1142193323Sed
1143198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1144195098Sed                                              unsigned char TargetFlags) {
1145195098Sed  SDNode *&N =
1146195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1147195098Sed                                                               TargetFlags)];
1148193323Sed  if (N) return SDValue(N, 0);
1149205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1150193323Sed  AllNodes.push_back(N);
1151193323Sed  return SDValue(N, 0);
1152193323Sed}
1153193323Sed
1154193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1155193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1156193323Sed    CondCodeNodes.resize(Cond+1);
1157193323Sed
1158193323Sed  if (CondCodeNodes[Cond] == 0) {
1159205407Srdivacky    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1160193323Sed    CondCodeNodes[Cond] = N;
1161193323Sed    AllNodes.push_back(N);
1162193323Sed  }
1163201360Srdivacky
1164193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1165193323Sed}
1166193323Sed
1167193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1168193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1169193323Sed// N2 to point at N1.
1170193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1171193323Sed  std::swap(N1, N2);
1172193323Sed  int NElts = M.size();
1173193323Sed  for (int i = 0; i != NElts; ++i) {
1174193323Sed    if (M[i] >= NElts)
1175193323Sed      M[i] -= NElts;
1176193323Sed    else if (M[i] >= 0)
1177193323Sed      M[i] += NElts;
1178193323Sed  }
1179193323Sed}
1180193323Sed
1181198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1182193323Sed                                       SDValue N2, const int *Mask) {
1183193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1184198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1185193323Sed         "Vector Shuffle VTs must be a vectors");
1186193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1187193323Sed         && "Vector Shuffle VTs must have same element type");
1188193323Sed
1189193323Sed  // Canonicalize shuffle undef, undef -> undef
1190193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1191198090Srdivacky    return getUNDEF(VT);
1192193323Sed
1193198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1194193323Sed  // input to the shuffle.
1195193323Sed  unsigned NElts = VT.getVectorNumElements();
1196193323Sed  SmallVector<int, 8> MaskVec;
1197193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1198193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1199193323Sed    MaskVec.push_back(Mask[i]);
1200193323Sed  }
1201198090Srdivacky
1202193323Sed  // Canonicalize shuffle v, v -> v, undef
1203193323Sed  if (N1 == N2) {
1204193323Sed    N2 = getUNDEF(VT);
1205193323Sed    for (unsigned i = 0; i != NElts; ++i)
1206193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1207193323Sed  }
1208198090Srdivacky
1209193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1210193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1211193323Sed    commuteShuffle(N1, N2, MaskVec);
1212198090Srdivacky
1213193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1214193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1215193323Sed  bool AllLHS = true, AllRHS = true;
1216193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1217193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1218193323Sed    if (MaskVec[i] >= (int)NElts) {
1219193323Sed      if (N2Undef)
1220193323Sed        MaskVec[i] = -1;
1221193323Sed      else
1222193323Sed        AllLHS = false;
1223193323Sed    } else if (MaskVec[i] >= 0) {
1224193323Sed      AllRHS = false;
1225193323Sed    }
1226193323Sed  }
1227193323Sed  if (AllLHS && AllRHS)
1228193323Sed    return getUNDEF(VT);
1229193323Sed  if (AllLHS && !N2Undef)
1230193323Sed    N2 = getUNDEF(VT);
1231193323Sed  if (AllRHS) {
1232193323Sed    N1 = getUNDEF(VT);
1233193323Sed    commuteShuffle(N1, N2, MaskVec);
1234193323Sed  }
1235198090Srdivacky
1236193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1237193323Sed  bool AllUndef = true;
1238193323Sed  bool Identity = true;
1239193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1240193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1241193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1242193323Sed  }
1243198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1244193323Sed    return N1;
1245193323Sed  if (AllUndef)
1246193323Sed    return getUNDEF(VT);
1247193323Sed
1248193323Sed  FoldingSetNodeID ID;
1249193323Sed  SDValue Ops[2] = { N1, N2 };
1250193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1251193323Sed  for (unsigned i = 0; i != NElts; ++i)
1252193323Sed    ID.AddInteger(MaskVec[i]);
1253198090Srdivacky
1254193323Sed  void* IP = 0;
1255201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1256193323Sed    return SDValue(E, 0);
1257198090Srdivacky
1258193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1259193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1260193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1261193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1262193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1263198090Srdivacky
1264205407Srdivacky  ShuffleVectorSDNode *N =
1265205407Srdivacky    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1266193323Sed  CSEMap.InsertNode(N, IP);
1267193323Sed  AllNodes.push_back(N);
1268193323Sed  return SDValue(N, 0);
1269193323Sed}
1270193323Sed
1271198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1272193323Sed                                       SDValue Val, SDValue DTy,
1273193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1274193323Sed                                       ISD::CvtCode Code) {
1275193323Sed  // If the src and dest types are the same and the conversion is between
1276193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1277193323Sed  if (DTy == STy &&
1278193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1279193323Sed    return Val;
1280193323Sed
1281193323Sed  FoldingSetNodeID ID;
1282199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1283199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1284193323Sed  void* IP = 0;
1285201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1286193323Sed    return SDValue(E, 0);
1287201360Srdivacky
1288205407Srdivacky  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1289205407Srdivacky                                                           Code);
1290193323Sed  CSEMap.InsertNode(N, IP);
1291193323Sed  AllNodes.push_back(N);
1292193323Sed  return SDValue(N, 0);
1293193323Sed}
1294193323Sed
1295198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1296193323Sed  FoldingSetNodeID ID;
1297193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1298193323Sed  ID.AddInteger(RegNo);
1299193323Sed  void *IP = 0;
1300201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1301193323Sed    return SDValue(E, 0);
1302201360Srdivacky
1303205407Srdivacky  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1304193323Sed  CSEMap.InsertNode(N, IP);
1305193323Sed  AllNodes.push_back(N);
1306193323Sed  return SDValue(N, 0);
1307193323Sed}
1308193323Sed
1309205218SrdivackySDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1310193323Sed  FoldingSetNodeID ID;
1311193323Sed  SDValue Ops[] = { Root };
1312205218Srdivacky  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1313205218Srdivacky  ID.AddPointer(Label);
1314193323Sed  void *IP = 0;
1315201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1316193323Sed    return SDValue(E, 0);
1317205218Srdivacky
1318205407Srdivacky  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1319193323Sed  CSEMap.InsertNode(N, IP);
1320193323Sed  AllNodes.push_back(N);
1321193323Sed  return SDValue(N, 0);
1322193323Sed}
1323193323Sed
1324205218Srdivacky
1325199989SrdivackySDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1326199989Srdivacky                                      bool isTarget,
1327199989Srdivacky                                      unsigned char TargetFlags) {
1328198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1329198892Srdivacky
1330198892Srdivacky  FoldingSetNodeID ID;
1331199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1332198892Srdivacky  ID.AddPointer(BA);
1333199989Srdivacky  ID.AddInteger(TargetFlags);
1334198892Srdivacky  void *IP = 0;
1335201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1336198892Srdivacky    return SDValue(E, 0);
1337201360Srdivacky
1338205407Srdivacky  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1339198892Srdivacky  CSEMap.InsertNode(N, IP);
1340198892Srdivacky  AllNodes.push_back(N);
1341198892Srdivacky  return SDValue(N, 0);
1342198892Srdivacky}
1343198892Srdivacky
1344193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1345204642Srdivacky  assert((!V || V->getType()->isPointerTy()) &&
1346193323Sed         "SrcValue is not a pointer?");
1347193323Sed
1348193323Sed  FoldingSetNodeID ID;
1349193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1350193323Sed  ID.AddPointer(V);
1351193323Sed
1352193323Sed  void *IP = 0;
1353201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1354193323Sed    return SDValue(E, 0);
1355193323Sed
1356205407Srdivacky  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1357193323Sed  CSEMap.InsertNode(N, IP);
1358193323Sed  AllNodes.push_back(N);
1359193323Sed  return SDValue(N, 0);
1360193323Sed}
1361193323Sed
1362193323Sed/// getShiftAmountOperand - Return the specified value casted to
1363193323Sed/// the target's desired shift amount type.
1364193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1365198090Srdivacky  EVT OpTy = Op.getValueType();
1366193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1367193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1368193323Sed
1369193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1370193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1371193323Sed}
1372193323Sed
1373193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1374193323Sed/// specified value type.
1375198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1376193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1377198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1378198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1379193323Sed  unsigned StackAlign =
1380193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1381193323Sed
1382199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1383193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1384193323Sed}
1385193323Sed
1386193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1387193323Sed/// either of the specified value types.
1388198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1389193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1390193323Sed                            VT2.getStoreSizeInBits())/8;
1391198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1392198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1393193323Sed  const TargetData *TD = TLI.getTargetData();
1394193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1395193323Sed                            TD->getPrefTypeAlignment(Ty2));
1396193323Sed
1397193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1398199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1399193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1400193323Sed}
1401193323Sed
1402198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1403193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1404193323Sed  // These setcc operations always fold.
1405193323Sed  switch (Cond) {
1406193323Sed  default: break;
1407193323Sed  case ISD::SETFALSE:
1408193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1409193323Sed  case ISD::SETTRUE:
1410193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1411193323Sed
1412193323Sed  case ISD::SETOEQ:
1413193323Sed  case ISD::SETOGT:
1414193323Sed  case ISD::SETOGE:
1415193323Sed  case ISD::SETOLT:
1416193323Sed  case ISD::SETOLE:
1417193323Sed  case ISD::SETONE:
1418193323Sed  case ISD::SETO:
1419193323Sed  case ISD::SETUO:
1420193323Sed  case ISD::SETUEQ:
1421193323Sed  case ISD::SETUNE:
1422193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1423193323Sed    break;
1424193323Sed  }
1425193323Sed
1426193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1427193323Sed    const APInt &C2 = N2C->getAPIntValue();
1428193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1429193323Sed      const APInt &C1 = N1C->getAPIntValue();
1430193323Sed
1431193323Sed      switch (Cond) {
1432198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1433193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1434193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1435193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1436193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1437193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1438193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1439193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1440193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1441193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1442193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1443193323Sed      }
1444193323Sed    }
1445193323Sed  }
1446193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1447193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1448193323Sed      // No compile time operations on this type yet.
1449193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1450193323Sed        return SDValue();
1451193323Sed
1452193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1453193323Sed      switch (Cond) {
1454193323Sed      default: break;
1455193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1456193323Sed                          return getUNDEF(VT);
1457193323Sed                        // fall through
1458193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1459193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1460193323Sed                          return getUNDEF(VT);
1461193323Sed                        // fall through
1462193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1463193323Sed                                           R==APFloat::cmpLessThan, VT);
1464193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1465193323Sed                          return getUNDEF(VT);
1466193323Sed                        // fall through
1467193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1468193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1469193323Sed                          return getUNDEF(VT);
1470193323Sed                        // fall through
1471193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1472193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1473193323Sed                          return getUNDEF(VT);
1474193323Sed                        // fall through
1475193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1476193323Sed                                           R==APFloat::cmpEqual, VT);
1477193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1478193323Sed                          return getUNDEF(VT);
1479193323Sed                        // fall through
1480193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1481193323Sed                                           R==APFloat::cmpEqual, VT);
1482193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1483193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1484193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1485193323Sed                                           R==APFloat::cmpEqual, VT);
1486193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1487193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1488193323Sed                                           R==APFloat::cmpLessThan, VT);
1489193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1490193323Sed                                           R==APFloat::cmpUnordered, VT);
1491193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1492193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1493193323Sed      }
1494193323Sed    } else {
1495193323Sed      // Ensure that the constant occurs on the RHS.
1496193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1497193323Sed    }
1498193323Sed  }
1499193323Sed
1500193323Sed  // Could not fold it.
1501193323Sed  return SDValue();
1502193323Sed}
1503193323Sed
1504193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1505193323Sed/// use this predicate to simplify operations downstream.
1506193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1507198090Srdivacky  // This predicate is not safe for vector operations.
1508198090Srdivacky  if (Op.getValueType().isVector())
1509198090Srdivacky    return false;
1510198090Srdivacky
1511200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1512193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1513193323Sed}
1514193323Sed
1515193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1516193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1517193323Sed/// for bits that V cannot have.
1518193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1519193323Sed                                     unsigned Depth) const {
1520193323Sed  APInt KnownZero, KnownOne;
1521193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1522193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1523193323Sed  return (KnownZero & Mask) == Mask;
1524193323Sed}
1525193323Sed
1526193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1527193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1528193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1529193323Sed/// processing.
1530193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1531193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1532193323Sed                                     unsigned Depth) const {
1533193323Sed  unsigned BitWidth = Mask.getBitWidth();
1534200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1535193323Sed         "Mask size mismatches value type size!");
1536193323Sed
1537193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1538193323Sed  if (Depth == 6 || Mask == 0)
1539193323Sed    return;  // Limit search depth.
1540193323Sed
1541193323Sed  APInt KnownZero2, KnownOne2;
1542193323Sed
1543193323Sed  switch (Op.getOpcode()) {
1544193323Sed  case ISD::Constant:
1545193323Sed    // We know all of the bits for a constant!
1546193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1547193323Sed    KnownZero = ~KnownOne & Mask;
1548193323Sed    return;
1549193323Sed  case ISD::AND:
1550193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1551193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1552193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1553193323Sed                      KnownZero2, KnownOne2, Depth+1);
1554193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556193323Sed
1557193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1558193323Sed    KnownOne &= KnownOne2;
1559193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1560193323Sed    KnownZero |= KnownZero2;
1561193323Sed    return;
1562193323Sed  case ISD::OR:
1563193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1564193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1565193323Sed                      KnownZero2, KnownOne2, Depth+1);
1566193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1568193323Sed
1569193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1570193323Sed    KnownZero &= KnownZero2;
1571193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1572193323Sed    KnownOne |= KnownOne2;
1573193323Sed    return;
1574193323Sed  case ISD::XOR: {
1575193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1576193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1577193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579193323Sed
1580193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1581193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1582193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1583193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1584193323Sed    KnownZero = KnownZeroOut;
1585193323Sed    return;
1586193323Sed  }
1587193323Sed  case ISD::MUL: {
1588193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1589193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1590193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1591193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593193323Sed
1594193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1595193323Sed    // Also compute a conserative estimate for high known-0 bits.
1596193323Sed    // More trickiness is possible, but this is sufficient for the
1597193323Sed    // interesting case of alignment computation.
1598193323Sed    KnownOne.clear();
1599193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1600193323Sed                      KnownZero2.countTrailingOnes();
1601193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1602193323Sed                               KnownZero2.countLeadingOnes(),
1603193323Sed                               BitWidth) - BitWidth;
1604193323Sed
1605193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1606193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1607193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1608193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1609193323Sed    KnownZero &= Mask;
1610193323Sed    return;
1611193323Sed  }
1612193323Sed  case ISD::UDIV: {
1613193323Sed    // For the purposes of computing leading zeros we can conservatively
1614193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1615193323Sed    // be less than the denominator.
1616193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1617193323Sed    ComputeMaskedBits(Op.getOperand(0),
1618193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1619193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1620193323Sed
1621193323Sed    KnownOne2.clear();
1622193323Sed    KnownZero2.clear();
1623193323Sed    ComputeMaskedBits(Op.getOperand(1),
1624193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1625193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1626193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1627193323Sed      LeadZ = std::min(BitWidth,
1628193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1629193323Sed
1630193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1631193323Sed    return;
1632193323Sed  }
1633193323Sed  case ISD::SELECT:
1634193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1635193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1636193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1637193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1638193323Sed
1639193323Sed    // Only known if known in both the LHS and RHS.
1640193323Sed    KnownOne &= KnownOne2;
1641193323Sed    KnownZero &= KnownZero2;
1642193323Sed    return;
1643193323Sed  case ISD::SELECT_CC:
1644193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1645193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1646193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648193323Sed
1649193323Sed    // Only known if known in both the LHS and RHS.
1650193323Sed    KnownOne &= KnownOne2;
1651193323Sed    KnownZero &= KnownZero2;
1652193323Sed    return;
1653193323Sed  case ISD::SADDO:
1654193323Sed  case ISD::UADDO:
1655193323Sed  case ISD::SSUBO:
1656193323Sed  case ISD::USUBO:
1657193323Sed  case ISD::SMULO:
1658193323Sed  case ISD::UMULO:
1659193323Sed    if (Op.getResNo() != 1)
1660193323Sed      return;
1661193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1662193323Sed  case ISD::SETCC:
1663193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1664193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1665193323Sed        BitWidth > 1)
1666193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1667193323Sed    return;
1668193323Sed  case ISD::SHL:
1669193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1670193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1671193323Sed      unsigned ShAmt = SA->getZExtValue();
1672193323Sed
1673193323Sed      // If the shift count is an invalid immediate, don't do anything.
1674193323Sed      if (ShAmt >= BitWidth)
1675193323Sed        return;
1676193323Sed
1677193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1678193323Sed                        KnownZero, KnownOne, Depth+1);
1679193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680193323Sed      KnownZero <<= ShAmt;
1681193323Sed      KnownOne  <<= ShAmt;
1682193323Sed      // low bits known zero.
1683193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1684193323Sed    }
1685193323Sed    return;
1686193323Sed  case ISD::SRL:
1687193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1688193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689193323Sed      unsigned ShAmt = SA->getZExtValue();
1690193323Sed
1691193323Sed      // If the shift count is an invalid immediate, don't do anything.
1692193323Sed      if (ShAmt >= BitWidth)
1693193323Sed        return;
1694193323Sed
1695193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1696193323Sed                        KnownZero, KnownOne, Depth+1);
1697193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1699193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1700193323Sed
1701193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1702193323Sed      KnownZero |= HighBits;  // High bits known zero.
1703193323Sed    }
1704193323Sed    return;
1705193323Sed  case ISD::SRA:
1706193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707193323Sed      unsigned ShAmt = SA->getZExtValue();
1708193323Sed
1709193323Sed      // If the shift count is an invalid immediate, don't do anything.
1710193323Sed      if (ShAmt >= BitWidth)
1711193323Sed        return;
1712193323Sed
1713193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1714193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1715193323Sed      // demand the input sign bit.
1716193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1717193323Sed      if (HighBits.getBoolValue())
1718193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1719193323Sed
1720193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1721193323Sed                        Depth+1);
1722193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1723193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1724193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1725193323Sed
1726193323Sed      // Handle the sign bits.
1727193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1728193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1729193323Sed
1730193323Sed      if (KnownZero.intersects(SignBit)) {
1731193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1732193323Sed      } else if (KnownOne.intersects(SignBit)) {
1733193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1734193323Sed      }
1735193323Sed    }
1736193323Sed    return;
1737193323Sed  case ISD::SIGN_EXTEND_INREG: {
1738198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1739202375Srdivacky    unsigned EBits = EVT.getScalarType().getSizeInBits();
1740193323Sed
1741193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1742193323Sed    // present in the input.
1743193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1744193323Sed
1745193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1746193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1747193323Sed
1748193323Sed    // If the sign extended bits are demanded, we know that the sign
1749193323Sed    // bit is demanded.
1750193323Sed    InSignBit.zext(BitWidth);
1751193323Sed    if (NewBits.getBoolValue())
1752193323Sed      InputDemandedBits |= InSignBit;
1753193323Sed
1754193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1755193323Sed                      KnownZero, KnownOne, Depth+1);
1756193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1757193323Sed
1758193323Sed    // If the sign bit of the input is known set or clear, then we know the
1759193323Sed    // top bits of the result.
1760193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1761193323Sed      KnownZero |= NewBits;
1762193323Sed      KnownOne  &= ~NewBits;
1763193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1764193323Sed      KnownOne  |= NewBits;
1765193323Sed      KnownZero &= ~NewBits;
1766193323Sed    } else {                              // Input sign bit unknown
1767193323Sed      KnownZero &= ~NewBits;
1768193323Sed      KnownOne  &= ~NewBits;
1769193323Sed    }
1770193323Sed    return;
1771193323Sed  }
1772193323Sed  case ISD::CTTZ:
1773193323Sed  case ISD::CTLZ:
1774193323Sed  case ISD::CTPOP: {
1775193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1776193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1777193323Sed    KnownOne.clear();
1778193323Sed    return;
1779193323Sed  }
1780193323Sed  case ISD::LOAD: {
1781193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1782193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1783198090Srdivacky      EVT VT = LD->getMemoryVT();
1784202375Srdivacky      unsigned MemBits = VT.getScalarType().getSizeInBits();
1785193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1786193323Sed    }
1787193323Sed    return;
1788193323Sed  }
1789193323Sed  case ISD::ZERO_EXTEND: {
1790198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1791200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1792193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1793193323Sed    APInt InMask    = Mask;
1794193323Sed    InMask.trunc(InBits);
1795193323Sed    KnownZero.trunc(InBits);
1796193323Sed    KnownOne.trunc(InBits);
1797193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1798193323Sed    KnownZero.zext(BitWidth);
1799193323Sed    KnownOne.zext(BitWidth);
1800193323Sed    KnownZero |= NewBits;
1801193323Sed    return;
1802193323Sed  }
1803193323Sed  case ISD::SIGN_EXTEND: {
1804198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1805200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1806193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1807193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1808193323Sed    APInt InMask = Mask;
1809193323Sed    InMask.trunc(InBits);
1810193323Sed
1811193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1812193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1813193323Sed    if (NewBits.getBoolValue())
1814193323Sed      InMask |= InSignBit;
1815193323Sed
1816193323Sed    KnownZero.trunc(InBits);
1817193323Sed    KnownOne.trunc(InBits);
1818193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1819193323Sed
1820193323Sed    // Note if the sign bit is known to be zero or one.
1821193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1822193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1823193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1824193323Sed           "Sign bit can't be known to be both zero and one!");
1825193323Sed
1826193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1827193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1828193323Sed    // mask and reapply it to the result values.
1829193323Sed    InMask = Mask;
1830193323Sed    InMask.trunc(InBits);
1831193323Sed    KnownZero &= InMask;
1832193323Sed    KnownOne  &= InMask;
1833193323Sed
1834193323Sed    KnownZero.zext(BitWidth);
1835193323Sed    KnownOne.zext(BitWidth);
1836193323Sed
1837193323Sed    // If the sign bit is known zero or one, the top bits match.
1838193323Sed    if (SignBitKnownZero)
1839193323Sed      KnownZero |= NewBits;
1840193323Sed    else if (SignBitKnownOne)
1841193323Sed      KnownOne  |= NewBits;
1842193323Sed    return;
1843193323Sed  }
1844193323Sed  case ISD::ANY_EXTEND: {
1845198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1846200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1847193323Sed    APInt InMask = Mask;
1848193323Sed    InMask.trunc(InBits);
1849193323Sed    KnownZero.trunc(InBits);
1850193323Sed    KnownOne.trunc(InBits);
1851193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1852193323Sed    KnownZero.zext(BitWidth);
1853193323Sed    KnownOne.zext(BitWidth);
1854193323Sed    return;
1855193323Sed  }
1856193323Sed  case ISD::TRUNCATE: {
1857198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1858200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1859193323Sed    APInt InMask = Mask;
1860193323Sed    InMask.zext(InBits);
1861193323Sed    KnownZero.zext(InBits);
1862193323Sed    KnownOne.zext(InBits);
1863193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1864193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1865193323Sed    KnownZero.trunc(BitWidth);
1866193323Sed    KnownOne.trunc(BitWidth);
1867193323Sed    break;
1868193323Sed  }
1869193323Sed  case ISD::AssertZext: {
1870198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1871193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1872193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1873193323Sed                      KnownOne, Depth+1);
1874193323Sed    KnownZero |= (~InMask) & Mask;
1875193323Sed    return;
1876193323Sed  }
1877193323Sed  case ISD::FGETSIGN:
1878193323Sed    // All bits are zero except the low bit.
1879193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1880193323Sed    return;
1881193323Sed
1882193323Sed  case ISD::SUB: {
1883193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1884193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1885193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1886193323Sed      // positive if we can prove that X is >= 0 and < 16.
1887193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1888193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1889193323Sed        // NLZ can't be BitWidth with no sign bit
1890193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1891193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1892193323Sed                          Depth+1);
1893193323Sed
1894193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1895193323Sed        // output top bits are zero, because we now know that the output is
1896193323Sed        // from [0-C].
1897193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1898193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1899193323Sed          // Top bits known zero.
1900193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1901193323Sed        }
1902193323Sed      }
1903193323Sed    }
1904193323Sed  }
1905193323Sed  // fall through
1906193323Sed  case ISD::ADD: {
1907193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1908193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1909193323Sed    // low 3 bits clear.
1910193323Sed    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1911193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1912193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1913193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1914193323Sed
1915193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1916193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1917193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1918193323Sed                            KnownZero2.countTrailingOnes());
1919193323Sed
1920193323Sed    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1921193323Sed    return;
1922193323Sed  }
1923193323Sed  case ISD::SREM:
1924193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1925203954Srdivacky      const APInt &RA = Rem->getAPIntValue().abs();
1926203954Srdivacky      if (RA.isPowerOf2()) {
1927203954Srdivacky        APInt LowBits = RA - 1;
1928193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1929193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1930193323Sed
1931203954Srdivacky        // The low bits of the first operand are unchanged by the srem.
1932203954Srdivacky        KnownZero = KnownZero2 & LowBits;
1933203954Srdivacky        KnownOne = KnownOne2 & LowBits;
1934203954Srdivacky
1935203954Srdivacky        // If the first operand is non-negative or has all low bits zero, then
1936203954Srdivacky        // the upper bits are all zero.
1937193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1938203954Srdivacky          KnownZero |= ~LowBits;
1939193323Sed
1940203954Srdivacky        // If the first operand is negative and not all low bits are zero, then
1941203954Srdivacky        // the upper bits are all one.
1942203954Srdivacky        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1943203954Srdivacky          KnownOne |= ~LowBits;
1944193323Sed
1945203954Srdivacky        KnownZero &= Mask;
1946203954Srdivacky        KnownOne &= Mask;
1947203954Srdivacky
1948193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1949193323Sed      }
1950193323Sed    }
1951193323Sed    return;
1952193323Sed  case ISD::UREM: {
1953193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1954193323Sed      const APInt &RA = Rem->getAPIntValue();
1955193323Sed      if (RA.isPowerOf2()) {
1956193323Sed        APInt LowBits = (RA - 1);
1957193323Sed        APInt Mask2 = LowBits & Mask;
1958193323Sed        KnownZero |= ~LowBits & Mask;
1959193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1960193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1961193323Sed        break;
1962193323Sed      }
1963193323Sed    }
1964193323Sed
1965193323Sed    // Since the result is less than or equal to either operand, any leading
1966193323Sed    // zero bits in either operand must also exist in the result.
1967193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1968193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1969193323Sed                      Depth+1);
1970193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1971193323Sed                      Depth+1);
1972193323Sed
1973193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1974193323Sed                                KnownZero2.countLeadingOnes());
1975193323Sed    KnownOne.clear();
1976193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1977193323Sed    return;
1978193323Sed  }
1979193323Sed  default:
1980193323Sed    // Allow the target to implement this method for its nodes.
1981193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1982193323Sed  case ISD::INTRINSIC_WO_CHAIN:
1983193323Sed  case ISD::INTRINSIC_W_CHAIN:
1984193323Sed  case ISD::INTRINSIC_VOID:
1985198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1986198090Srdivacky                                         Depth);
1987193323Sed    }
1988193323Sed    return;
1989193323Sed  }
1990193323Sed}
1991193323Sed
1992193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
1993193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
1994193323Sed/// is always equal to the sign bit (itself), but other cases can give us
1995193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
1996193323Sed/// the top 3 bits are all equal to each other, so we return 3.
1997193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1998198090Srdivacky  EVT VT = Op.getValueType();
1999193323Sed  assert(VT.isInteger() && "Invalid VT!");
2000200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
2001193323Sed  unsigned Tmp, Tmp2;
2002193323Sed  unsigned FirstAnswer = 1;
2003193323Sed
2004193323Sed  if (Depth == 6)
2005193323Sed    return 1;  // Limit search depth.
2006193323Sed
2007193323Sed  switch (Op.getOpcode()) {
2008193323Sed  default: break;
2009193323Sed  case ISD::AssertSext:
2010193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2011193323Sed    return VTBits-Tmp+1;
2012193323Sed  case ISD::AssertZext:
2013193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2014193323Sed    return VTBits-Tmp;
2015193323Sed
2016193323Sed  case ISD::Constant: {
2017193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2018193323Sed    // If negative, return # leading ones.
2019193323Sed    if (Val.isNegative())
2020193323Sed      return Val.countLeadingOnes();
2021193323Sed
2022193323Sed    // Return # leading zeros.
2023193323Sed    return Val.countLeadingZeros();
2024193323Sed  }
2025193323Sed
2026193323Sed  case ISD::SIGN_EXTEND:
2027200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2028193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2029193323Sed
2030193323Sed  case ISD::SIGN_EXTEND_INREG:
2031193323Sed    // Max of the input and what this extends.
2032202375Srdivacky    Tmp =
2033202375Srdivacky      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2034193323Sed    Tmp = VTBits-Tmp+1;
2035193323Sed
2036193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2037193323Sed    return std::max(Tmp, Tmp2);
2038193323Sed
2039193323Sed  case ISD::SRA:
2040193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041193323Sed    // SRA X, C   -> adds C sign bits.
2042193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2043193323Sed      Tmp += C->getZExtValue();
2044193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2045193323Sed    }
2046193323Sed    return Tmp;
2047193323Sed  case ISD::SHL:
2048193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2049193323Sed      // shl destroys sign bits.
2050193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2051193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2052193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2053193323Sed      return Tmp - C->getZExtValue();
2054193323Sed    }
2055193323Sed    break;
2056193323Sed  case ISD::AND:
2057193323Sed  case ISD::OR:
2058193323Sed  case ISD::XOR:    // NOT is handled here.
2059193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2060193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2061193323Sed    if (Tmp != 1) {
2062193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2063193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2064193323Sed      // We computed what we know about the sign bits as our first
2065193323Sed      // answer. Now proceed to the generic code that uses
2066193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2067193323Sed    }
2068193323Sed    break;
2069193323Sed
2070193323Sed  case ISD::SELECT:
2071193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2072193323Sed    if (Tmp == 1) return 1;  // Early out.
2073193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2074193323Sed    return std::min(Tmp, Tmp2);
2075193323Sed
2076193323Sed  case ISD::SADDO:
2077193323Sed  case ISD::UADDO:
2078193323Sed  case ISD::SSUBO:
2079193323Sed  case ISD::USUBO:
2080193323Sed  case ISD::SMULO:
2081193323Sed  case ISD::UMULO:
2082193323Sed    if (Op.getResNo() != 1)
2083193323Sed      break;
2084193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2085193323Sed  case ISD::SETCC:
2086193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2087193323Sed    if (TLI.getBooleanContents() ==
2088193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2089193323Sed      return VTBits;
2090193323Sed    break;
2091193323Sed  case ISD::ROTL:
2092193323Sed  case ISD::ROTR:
2093193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2094193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2095193323Sed
2096193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2097193323Sed      if (Op.getOpcode() == ISD::ROTR)
2098193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2099193323Sed
2100193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2101193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2102193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2103193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2104193323Sed    }
2105193323Sed    break;
2106193323Sed  case ISD::ADD:
2107193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2108193323Sed    // is, at worst, one more bit than the inputs.
2109193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110193323Sed    if (Tmp == 1) return 1;  // Early out.
2111193323Sed
2112193323Sed    // Special case decrementing a value (ADD X, -1):
2113193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2114193323Sed      if (CRHS->isAllOnesValue()) {
2115193323Sed        APInt KnownZero, KnownOne;
2116193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2117193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2118193323Sed
2119193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2120193323Sed        // sign bits set.
2121193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2122193323Sed          return VTBits;
2123193323Sed
2124193323Sed        // If we are subtracting one from a positive number, there is no carry
2125193323Sed        // out of the result.
2126193323Sed        if (KnownZero.isNegative())
2127193323Sed          return Tmp;
2128193323Sed      }
2129193323Sed
2130193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2131193323Sed    if (Tmp2 == 1) return 1;
2132193323Sed      return std::min(Tmp, Tmp2)-1;
2133193323Sed    break;
2134193323Sed
2135193323Sed  case ISD::SUB:
2136193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2137193323Sed    if (Tmp2 == 1) return 1;
2138193323Sed
2139193323Sed    // Handle NEG.
2140193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2141193323Sed      if (CLHS->isNullValue()) {
2142193323Sed        APInt KnownZero, KnownOne;
2143193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2144193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2145193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2146193323Sed        // sign bits set.
2147193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2148193323Sed          return VTBits;
2149193323Sed
2150193323Sed        // If the input is known to be positive (the sign bit is known clear),
2151193323Sed        // the output of the NEG has the same number of sign bits as the input.
2152193323Sed        if (KnownZero.isNegative())
2153193323Sed          return Tmp2;
2154193323Sed
2155193323Sed        // Otherwise, we treat this like a SUB.
2156193323Sed      }
2157193323Sed
2158193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2159193323Sed    // is, at worst, one more bit than the inputs.
2160193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2161193323Sed    if (Tmp == 1) return 1;  // Early out.
2162193323Sed      return std::min(Tmp, Tmp2)-1;
2163193323Sed    break;
2164193323Sed  case ISD::TRUNCATE:
2165193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2166193323Sed    // case for targets like X86.
2167193323Sed    break;
2168193323Sed  }
2169193323Sed
2170193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2171193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2172193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2173193323Sed    unsigned ExtType = LD->getExtensionType();
2174193323Sed    switch (ExtType) {
2175193323Sed    default: break;
2176193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2177202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2178193323Sed      return VTBits-Tmp+1;
2179193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2180202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2181193323Sed      return VTBits-Tmp;
2182193323Sed    }
2183193323Sed  }
2184193323Sed
2185193323Sed  // Allow the target to implement this method for its nodes.
2186193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2187193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2188193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2189193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2190193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2191193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2192193323Sed  }
2193193323Sed
2194193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2195193323Sed  // use this information.
2196193323Sed  APInt KnownZero, KnownOne;
2197193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2198193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2199193323Sed
2200193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2201193323Sed    Mask = KnownZero;
2202193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2203193323Sed    Mask = KnownOne;
2204193323Sed  } else {
2205193323Sed    // Nothing known.
2206193323Sed    return FirstAnswer;
2207193323Sed  }
2208193323Sed
2209193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2210193323Sed  // the number of identical bits in the top of the input value.
2211193323Sed  Mask = ~Mask;
2212193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2213193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2214193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2215193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2216193323Sed}
2217193323Sed
2218198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2219198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2220198090Srdivacky  if (FiniteOnlyFPMath())
2221198090Srdivacky    return true;
2222193323Sed
2223198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2224198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2225198090Srdivacky    return !C->getValueAPF().isNaN();
2226198090Srdivacky
2227198090Srdivacky  // TODO: Recognize more cases here.
2228198090Srdivacky
2229198090Srdivacky  return false;
2230198090Srdivacky}
2231198090Srdivacky
2232204642Srdivackybool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2233204642Srdivacky  // If the value is a constant, we can obviously see if it is a zero or not.
2234204642Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2235204642Srdivacky    return !C->isZero();
2236204642Srdivacky
2237204642Srdivacky  // TODO: Recognize more cases here.
2238204642Srdivacky
2239204642Srdivacky  return false;
2240204642Srdivacky}
2241204642Srdivacky
2242204642Srdivackybool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2243204642Srdivacky  // Check the obvious case.
2244204642Srdivacky  if (A == B) return true;
2245204642Srdivacky
2246204642Srdivacky  // For for negative and positive zero.
2247204642Srdivacky  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2248204642Srdivacky    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2249204642Srdivacky      if (CA->isZero() && CB->isZero()) return true;
2250204642Srdivacky
2251204642Srdivacky  // Otherwise they may not be equal.
2252204642Srdivacky  return false;
2253204642Srdivacky}
2254204642Srdivacky
2255193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2256193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2257193323Sed  if (!GA) return false;
2258193323Sed  if (GA->getOffset() != 0) return false;
2259193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2260193323Sed  if (!GV) return false;
2261193323Sed  MachineModuleInfo *MMI = getMachineModuleInfo();
2262193323Sed  return MMI && MMI->hasDebugInfo();
2263193323Sed}
2264193323Sed
2265193323Sed
2266193323Sed/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2267193323Sed/// element of the result of the vector shuffle.
2268193323SedSDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2269193323Sed                                          unsigned i) {
2270198090Srdivacky  EVT VT = N->getValueType(0);
2271193323Sed  DebugLoc dl = N->getDebugLoc();
2272193323Sed  if (N->getMaskElt(i) < 0)
2273193323Sed    return getUNDEF(VT.getVectorElementType());
2274193323Sed  unsigned Index = N->getMaskElt(i);
2275193323Sed  unsigned NumElems = VT.getVectorNumElements();
2276193323Sed  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2277193323Sed  Index %= NumElems;
2278193323Sed
2279193323Sed  if (V.getOpcode() == ISD::BIT_CONVERT) {
2280193323Sed    V = V.getOperand(0);
2281198090Srdivacky    EVT VVT = V.getValueType();
2282193323Sed    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2283193323Sed      return SDValue();
2284193323Sed  }
2285193323Sed  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2286193323Sed    return (Index == 0) ? V.getOperand(0)
2287193323Sed                      : getUNDEF(VT.getVectorElementType());
2288193323Sed  if (V.getOpcode() == ISD::BUILD_VECTOR)
2289193323Sed    return V.getOperand(Index);
2290193323Sed  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2291193323Sed    return getShuffleScalarElt(SVN, Index);
2292193323Sed  return SDValue();
2293193323Sed}
2294193323Sed
2295193323Sed
2296193323Sed/// getNode - Gets or creates the specified node.
2297193323Sed///
2298198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2299193323Sed  FoldingSetNodeID ID;
2300193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2301193323Sed  void *IP = 0;
2302201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2303193323Sed    return SDValue(E, 0);
2304201360Srdivacky
2305205407Srdivacky  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2306193323Sed  CSEMap.InsertNode(N, IP);
2307193323Sed
2308193323Sed  AllNodes.push_back(N);
2309193323Sed#ifndef NDEBUG
2310193323Sed  VerifyNode(N);
2311193323Sed#endif
2312193323Sed  return SDValue(N, 0);
2313193323Sed}
2314193323Sed
2315193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2316198090Srdivacky                              EVT VT, SDValue Operand) {
2317193323Sed  // Constant fold unary operations with an integer constant operand.
2318193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2319193323Sed    const APInt &Val = C->getAPIntValue();
2320193323Sed    switch (Opcode) {
2321193323Sed    default: break;
2322193323Sed    case ISD::SIGN_EXTEND:
2323205218Srdivacky      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2324193323Sed    case ISD::ANY_EXTEND:
2325193323Sed    case ISD::ZERO_EXTEND:
2326193323Sed    case ISD::TRUNCATE:
2327205218Srdivacky      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2328193323Sed    case ISD::UINT_TO_FP:
2329193323Sed    case ISD::SINT_TO_FP: {
2330193323Sed      const uint64_t zero[] = {0, 0};
2331205218Srdivacky      // No compile time operations on ppcf128.
2332205218Srdivacky      if (VT == MVT::ppcf128) break;
2333205218Srdivacky      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2334193323Sed      (void)apf.convertFromAPInt(Val,
2335193323Sed                                 Opcode==ISD::SINT_TO_FP,
2336193323Sed                                 APFloat::rmNearestTiesToEven);
2337193323Sed      return getConstantFP(apf, VT);
2338193323Sed    }
2339193323Sed    case ISD::BIT_CONVERT:
2340193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2341193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2342193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2343193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2344193323Sed      break;
2345193323Sed    case ISD::BSWAP:
2346193323Sed      return getConstant(Val.byteSwap(), VT);
2347193323Sed    case ISD::CTPOP:
2348193323Sed      return getConstant(Val.countPopulation(), VT);
2349193323Sed    case ISD::CTLZ:
2350193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2351193323Sed    case ISD::CTTZ:
2352193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2353193323Sed    }
2354193323Sed  }
2355193323Sed
2356193323Sed  // Constant fold unary operations with a floating point constant operand.
2357193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2358193323Sed    APFloat V = C->getValueAPF();    // make copy
2359193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2360193323Sed      switch (Opcode) {
2361193323Sed      case ISD::FNEG:
2362193323Sed        V.changeSign();
2363193323Sed        return getConstantFP(V, VT);
2364193323Sed      case ISD::FABS:
2365193323Sed        V.clearSign();
2366193323Sed        return getConstantFP(V, VT);
2367193323Sed      case ISD::FP_ROUND:
2368193323Sed      case ISD::FP_EXTEND: {
2369193323Sed        bool ignored;
2370193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2371193323Sed        // FIXME need to be more flexible about rounding mode.
2372198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2373193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2374193323Sed        return getConstantFP(V, VT);
2375193323Sed      }
2376193323Sed      case ISD::FP_TO_SINT:
2377193323Sed      case ISD::FP_TO_UINT: {
2378193323Sed        integerPart x[2];
2379193323Sed        bool ignored;
2380193323Sed        assert(integerPartWidth >= 64);
2381193323Sed        // FIXME need to be more flexible about rounding mode.
2382193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2383193323Sed                              Opcode==ISD::FP_TO_SINT,
2384193323Sed                              APFloat::rmTowardZero, &ignored);
2385193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2386193323Sed          break;
2387193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2388193323Sed        return getConstant(api, VT);
2389193323Sed      }
2390193323Sed      case ISD::BIT_CONVERT:
2391193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2392193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2393193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2394193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2395193323Sed        break;
2396193323Sed      }
2397193323Sed    }
2398193323Sed  }
2399193323Sed
2400193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2401193323Sed  switch (Opcode) {
2402193323Sed  case ISD::TokenFactor:
2403193323Sed  case ISD::MERGE_VALUES:
2404193323Sed  case ISD::CONCAT_VECTORS:
2405193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2406198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2407193323Sed  case ISD::FP_EXTEND:
2408193323Sed    assert(VT.isFloatingPoint() &&
2409193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2410193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2411200581Srdivacky    assert((!VT.isVector() ||
2412200581Srdivacky            VT.getVectorNumElements() ==
2413200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2414200581Srdivacky           "Vector element count mismatch!");
2415193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2416193323Sed      return getUNDEF(VT);
2417193323Sed    break;
2418193323Sed  case ISD::SIGN_EXTEND:
2419193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2420193323Sed           "Invalid SIGN_EXTEND!");
2421193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2422200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2423200581Srdivacky           "Invalid sext node, dst < src!");
2424200581Srdivacky    assert((!VT.isVector() ||
2425200581Srdivacky            VT.getVectorNumElements() ==
2426200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2427200581Srdivacky           "Vector element count mismatch!");
2428193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2429193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2430193323Sed    break;
2431193323Sed  case ISD::ZERO_EXTEND:
2432193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2433193323Sed           "Invalid ZERO_EXTEND!");
2434193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2435200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2436200581Srdivacky           "Invalid zext node, dst < src!");
2437200581Srdivacky    assert((!VT.isVector() ||
2438200581Srdivacky            VT.getVectorNumElements() ==
2439200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2440200581Srdivacky           "Vector element count mismatch!");
2441193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2442193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2443193323Sed                     Operand.getNode()->getOperand(0));
2444193323Sed    break;
2445193323Sed  case ISD::ANY_EXTEND:
2446193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2447193323Sed           "Invalid ANY_EXTEND!");
2448193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2449200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2450200581Srdivacky           "Invalid anyext node, dst < src!");
2451200581Srdivacky    assert((!VT.isVector() ||
2452200581Srdivacky            VT.getVectorNumElements() ==
2453200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2454200581Srdivacky           "Vector element count mismatch!");
2455193323Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2456193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2457193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2458193323Sed    break;
2459193323Sed  case ISD::TRUNCATE:
2460193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2461193323Sed           "Invalid TRUNCATE!");
2462193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2463200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2464200581Srdivacky           "Invalid truncate node, src < dst!");
2465200581Srdivacky    assert((!VT.isVector() ||
2466200581Srdivacky            VT.getVectorNumElements() ==
2467200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2468200581Srdivacky           "Vector element count mismatch!");
2469193323Sed    if (OpOpcode == ISD::TRUNCATE)
2470193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2471193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2472193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2473193323Sed      // If the source is smaller than the dest, we still need an extend.
2474200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2475200581Srdivacky            .bitsLT(VT.getScalarType()))
2476193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2477193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2478193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2479193323Sed      else
2480193323Sed        return Operand.getNode()->getOperand(0);
2481193323Sed    }
2482193323Sed    break;
2483193323Sed  case ISD::BIT_CONVERT:
2484193323Sed    // Basic sanity checking.
2485193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2486193323Sed           && "Cannot BIT_CONVERT between types of different sizes!");
2487193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2488193323Sed    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2489193323Sed      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2490193323Sed    if (OpOpcode == ISD::UNDEF)
2491193323Sed      return getUNDEF(VT);
2492193323Sed    break;
2493193323Sed  case ISD::SCALAR_TO_VECTOR:
2494193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2495193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2496193323Sed            (VT.getVectorElementType().isInteger() &&
2497193323Sed             Operand.getValueType().isInteger() &&
2498193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2499193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2500193323Sed    if (OpOpcode == ISD::UNDEF)
2501193323Sed      return getUNDEF(VT);
2502193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2503193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2504193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2505193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2506193323Sed        Operand.getOperand(0).getValueType() == VT)
2507193323Sed      return Operand.getOperand(0);
2508193323Sed    break;
2509193323Sed  case ISD::FNEG:
2510193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2511193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2512193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2513193323Sed                     Operand.getNode()->getOperand(0));
2514193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2515193323Sed      return Operand.getNode()->getOperand(0);
2516193323Sed    break;
2517193323Sed  case ISD::FABS:
2518193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2519193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2520193323Sed    break;
2521193323Sed  }
2522193323Sed
2523193323Sed  SDNode *N;
2524193323Sed  SDVTList VTs = getVTList(VT);
2525193323Sed  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2526193323Sed    FoldingSetNodeID ID;
2527193323Sed    SDValue Ops[1] = { Operand };
2528193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2529193323Sed    void *IP = 0;
2530201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2531193323Sed      return SDValue(E, 0);
2532201360Srdivacky
2533205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2534193323Sed    CSEMap.InsertNode(N, IP);
2535193323Sed  } else {
2536205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2537193323Sed  }
2538193323Sed
2539193323Sed  AllNodes.push_back(N);
2540193323Sed#ifndef NDEBUG
2541193323Sed  VerifyNode(N);
2542193323Sed#endif
2543193323Sed  return SDValue(N, 0);
2544193323Sed}
2545193323Sed
2546193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2547198090Srdivacky                                             EVT VT,
2548193323Sed                                             ConstantSDNode *Cst1,
2549193323Sed                                             ConstantSDNode *Cst2) {
2550193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2551193323Sed
2552193323Sed  switch (Opcode) {
2553193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2554193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2555193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2556193323Sed  case ISD::UDIV:
2557193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2558193323Sed    break;
2559193323Sed  case ISD::UREM:
2560193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2561193323Sed    break;
2562193323Sed  case ISD::SDIV:
2563193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2564193323Sed    break;
2565193323Sed  case ISD::SREM:
2566193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2567193323Sed    break;
2568193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2569193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2570193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2571193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2572193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2573193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2574193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2575193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2576193323Sed  default: break;
2577193323Sed  }
2578193323Sed
2579193323Sed  return SDValue();
2580193323Sed}
2581193323Sed
2582198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2583193323Sed                              SDValue N1, SDValue N2) {
2584193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2585193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2586193323Sed  switch (Opcode) {
2587193323Sed  default: break;
2588193323Sed  case ISD::TokenFactor:
2589193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2590193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2591193323Sed    // Fold trivial token factors.
2592193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2593193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2594193323Sed    if (N1 == N2) return N1;
2595193323Sed    break;
2596193323Sed  case ISD::CONCAT_VECTORS:
2597193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2598193323Sed    // one big BUILD_VECTOR.
2599193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2600193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2601193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2602193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2603193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2604193323Sed    }
2605193323Sed    break;
2606193323Sed  case ISD::AND:
2607193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2608193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2609193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2610193323Sed    // worth handling here.
2611193323Sed    if (N2C && N2C->isNullValue())
2612193323Sed      return N2;
2613193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2614193323Sed      return N1;
2615193323Sed    break;
2616193323Sed  case ISD::OR:
2617193323Sed  case ISD::XOR:
2618193323Sed  case ISD::ADD:
2619193323Sed  case ISD::SUB:
2620193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2621193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2622193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2623193323Sed    // it's worth handling here.
2624193323Sed    if (N2C && N2C->isNullValue())
2625193323Sed      return N1;
2626193323Sed    break;
2627193323Sed  case ISD::UDIV:
2628193323Sed  case ISD::UREM:
2629193323Sed  case ISD::MULHU:
2630193323Sed  case ISD::MULHS:
2631193323Sed  case ISD::MUL:
2632193323Sed  case ISD::SDIV:
2633193323Sed  case ISD::SREM:
2634193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2635193323Sed    // fall through
2636193323Sed  case ISD::FADD:
2637193323Sed  case ISD::FSUB:
2638193323Sed  case ISD::FMUL:
2639193323Sed  case ISD::FDIV:
2640193323Sed  case ISD::FREM:
2641193323Sed    if (UnsafeFPMath) {
2642193323Sed      if (Opcode == ISD::FADD) {
2643193323Sed        // 0+x --> x
2644193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2645193323Sed          if (CFP->getValueAPF().isZero())
2646193323Sed            return N2;
2647193323Sed        // x+0 --> x
2648193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2649193323Sed          if (CFP->getValueAPF().isZero())
2650193323Sed            return N1;
2651193323Sed      } else if (Opcode == ISD::FSUB) {
2652193323Sed        // x-0 --> x
2653193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2654193323Sed          if (CFP->getValueAPF().isZero())
2655193323Sed            return N1;
2656193323Sed      }
2657193323Sed    }
2658193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2659193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2660193323Sed    break;
2661193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2662193323Sed    assert(N1.getValueType() == VT &&
2663193323Sed           N1.getValueType().isFloatingPoint() &&
2664193323Sed           N2.getValueType().isFloatingPoint() &&
2665193323Sed           "Invalid FCOPYSIGN!");
2666193323Sed    break;
2667193323Sed  case ISD::SHL:
2668193323Sed  case ISD::SRA:
2669193323Sed  case ISD::SRL:
2670193323Sed  case ISD::ROTL:
2671193323Sed  case ISD::ROTR:
2672193323Sed    assert(VT == N1.getValueType() &&
2673193323Sed           "Shift operators return type must be the same as their first arg");
2674193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2675193323Sed           "Shifts only work on integers");
2676193323Sed
2677193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2678193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2679193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2680193323Sed    if (VT == MVT::i1)
2681193323Sed      return N1;
2682202375Srdivacky    if (N2C && N2C->isNullValue())
2683202375Srdivacky      return N1;
2684193323Sed    break;
2685193323Sed  case ISD::FP_ROUND_INREG: {
2686198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2687193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2688193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2689193323Sed           "Cannot FP_ROUND_INREG integer types");
2690202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2691202375Srdivacky           "FP_ROUND_INREG type should be vector iff the operand "
2692202375Srdivacky           "type is vector!");
2693202375Srdivacky    assert((!EVT.isVector() ||
2694202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2695202375Srdivacky           "Vector element counts must match in FP_ROUND_INREG");
2696193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2697193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2698193323Sed    break;
2699193323Sed  }
2700193323Sed  case ISD::FP_ROUND:
2701193323Sed    assert(VT.isFloatingPoint() &&
2702193323Sed           N1.getValueType().isFloatingPoint() &&
2703193323Sed           VT.bitsLE(N1.getValueType()) &&
2704193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2705193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2706193323Sed    break;
2707193323Sed  case ISD::AssertSext:
2708193323Sed  case ISD::AssertZext: {
2709198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2710193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2711193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2712193323Sed           "Cannot *_EXTEND_INREG FP types");
2713200581Srdivacky    assert(!EVT.isVector() &&
2714200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2715200581Srdivacky           "rather than the vector type!");
2716193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2717193323Sed    if (VT == EVT) return N1; // noop assertion.
2718193323Sed    break;
2719193323Sed  }
2720193323Sed  case ISD::SIGN_EXTEND_INREG: {
2721198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2722193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2723193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2724193323Sed           "Cannot *_EXTEND_INREG FP types");
2725202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2726202375Srdivacky           "SIGN_EXTEND_INREG type should be vector iff the operand "
2727202375Srdivacky           "type is vector!");
2728202375Srdivacky    assert((!EVT.isVector() ||
2729202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2730202375Srdivacky           "Vector element counts must match in SIGN_EXTEND_INREG");
2731202375Srdivacky    assert(EVT.bitsLE(VT) && "Not extending!");
2732193323Sed    if (EVT == VT) return N1;  // Not actually extending
2733193323Sed
2734193323Sed    if (N1C) {
2735193323Sed      APInt Val = N1C->getAPIntValue();
2736202375Srdivacky      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2737193323Sed      Val <<= Val.getBitWidth()-FromBits;
2738193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2739193323Sed      return getConstant(Val, VT);
2740193323Sed    }
2741193323Sed    break;
2742193323Sed  }
2743193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2744193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2745193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2746193323Sed      return getUNDEF(VT);
2747193323Sed
2748193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2749193323Sed    // expanding copies of large vectors from registers.
2750193323Sed    if (N2C &&
2751193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2752193323Sed        N1.getNumOperands() > 0) {
2753193323Sed      unsigned Factor =
2754193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2755193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2756193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2757193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2758193323Sed                                 N2.getValueType()));
2759193323Sed    }
2760193323Sed
2761193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2762193323Sed    // expanding large vector constants.
2763193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2764193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2765198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2766198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2767193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2768193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2769198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2770193323Sed      }
2771198090Srdivacky      if (VT != VEltTy) {
2772198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2773198090Srdivacky        // result is implicitly extended.
2774198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2775198090Srdivacky      }
2776193323Sed      return Elt;
2777193323Sed    }
2778193323Sed
2779193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2780193323Sed    // operations are lowered to scalars.
2781193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2782203954Srdivacky      // If the indices are the same, return the inserted element else
2783203954Srdivacky      // if the indices are known different, extract the element from
2784193323Sed      // the original vector.
2785203954Srdivacky      if (N1.getOperand(2) == N2) {
2786203954Srdivacky        if (VT == N1.getOperand(1).getValueType())
2787203954Srdivacky          return N1.getOperand(1);
2788203954Srdivacky        else
2789203954Srdivacky          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2790203954Srdivacky      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2791203954Srdivacky                 isa<ConstantSDNode>(N2))
2792193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2793193323Sed    }
2794193323Sed    break;
2795193323Sed  case ISD::EXTRACT_ELEMENT:
2796193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2797193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2798193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2799193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2800193323Sed
2801193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2802193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2803193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2804193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2805193323Sed      return N1.getOperand(N2C->getZExtValue());
2806193323Sed
2807193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2808193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2809193323Sed      unsigned ElementSize = VT.getSizeInBits();
2810193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2811193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2812193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2813193323Sed    }
2814193323Sed    break;
2815193323Sed  case ISD::EXTRACT_SUBVECTOR:
2816193323Sed    if (N1.getValueType() == VT) // Trivial extraction.
2817193323Sed      return N1;
2818193323Sed    break;
2819193323Sed  }
2820193323Sed
2821193323Sed  if (N1C) {
2822193323Sed    if (N2C) {
2823193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2824193323Sed      if (SV.getNode()) return SV;
2825193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2826193323Sed      if (isCommutativeBinOp(Opcode)) {
2827193323Sed        std::swap(N1C, N2C);
2828193323Sed        std::swap(N1, N2);
2829193323Sed      }
2830193323Sed    }
2831193323Sed  }
2832193323Sed
2833193323Sed  // Constant fold FP operations.
2834193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2835193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2836193323Sed  if (N1CFP) {
2837193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2838193323Sed      // Cannonicalize constant to RHS if commutative
2839193323Sed      std::swap(N1CFP, N2CFP);
2840193323Sed      std::swap(N1, N2);
2841193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2842193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2843193323Sed      APFloat::opStatus s;
2844193323Sed      switch (Opcode) {
2845193323Sed      case ISD::FADD:
2846193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2847193323Sed        if (s != APFloat::opInvalidOp)
2848193323Sed          return getConstantFP(V1, VT);
2849193323Sed        break;
2850193323Sed      case ISD::FSUB:
2851193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2852193323Sed        if (s!=APFloat::opInvalidOp)
2853193323Sed          return getConstantFP(V1, VT);
2854193323Sed        break;
2855193323Sed      case ISD::FMUL:
2856193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2857193323Sed        if (s!=APFloat::opInvalidOp)
2858193323Sed          return getConstantFP(V1, VT);
2859193323Sed        break;
2860193323Sed      case ISD::FDIV:
2861193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2862193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2863193323Sed          return getConstantFP(V1, VT);
2864193323Sed        break;
2865193323Sed      case ISD::FREM :
2866193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2867193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2868193323Sed          return getConstantFP(V1, VT);
2869193323Sed        break;
2870193323Sed      case ISD::FCOPYSIGN:
2871193323Sed        V1.copySign(V2);
2872193323Sed        return getConstantFP(V1, VT);
2873193323Sed      default: break;
2874193323Sed      }
2875193323Sed    }
2876193323Sed  }
2877193323Sed
2878193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2879193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2880193323Sed    if (isCommutativeBinOp(Opcode)) {
2881193323Sed      std::swap(N1, N2);
2882193323Sed    } else {
2883193323Sed      switch (Opcode) {
2884193323Sed      case ISD::FP_ROUND_INREG:
2885193323Sed      case ISD::SIGN_EXTEND_INREG:
2886193323Sed      case ISD::SUB:
2887193323Sed      case ISD::FSUB:
2888193323Sed      case ISD::FDIV:
2889193323Sed      case ISD::FREM:
2890193323Sed      case ISD::SRA:
2891193323Sed        return N1;     // fold op(undef, arg2) -> undef
2892193323Sed      case ISD::UDIV:
2893193323Sed      case ISD::SDIV:
2894193323Sed      case ISD::UREM:
2895193323Sed      case ISD::SREM:
2896193323Sed      case ISD::SRL:
2897193323Sed      case ISD::SHL:
2898193323Sed        if (!VT.isVector())
2899193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2900193323Sed        // For vectors, we can't easily build an all zero vector, just return
2901193323Sed        // the LHS.
2902193323Sed        return N2;
2903193323Sed      }
2904193323Sed    }
2905193323Sed  }
2906193323Sed
2907193323Sed  // Fold a bunch of operators when the RHS is undef.
2908193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
2909193323Sed    switch (Opcode) {
2910193323Sed    case ISD::XOR:
2911193323Sed      if (N1.getOpcode() == ISD::UNDEF)
2912193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
2913193323Sed        // idiom (misuse).
2914193323Sed        return getConstant(0, VT);
2915193323Sed      // fallthrough
2916193323Sed    case ISD::ADD:
2917193323Sed    case ISD::ADDC:
2918193323Sed    case ISD::ADDE:
2919193323Sed    case ISD::SUB:
2920193574Sed    case ISD::UDIV:
2921193574Sed    case ISD::SDIV:
2922193574Sed    case ISD::UREM:
2923193574Sed    case ISD::SREM:
2924193574Sed      return N2;       // fold op(arg1, undef) -> undef
2925193323Sed    case ISD::FADD:
2926193323Sed    case ISD::FSUB:
2927193323Sed    case ISD::FMUL:
2928193323Sed    case ISD::FDIV:
2929193323Sed    case ISD::FREM:
2930193574Sed      if (UnsafeFPMath)
2931193574Sed        return N2;
2932193574Sed      break;
2933193323Sed    case ISD::MUL:
2934193323Sed    case ISD::AND:
2935193323Sed    case ISD::SRL:
2936193323Sed    case ISD::SHL:
2937193323Sed      if (!VT.isVector())
2938193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2939193323Sed      // For vectors, we can't easily build an all zero vector, just return
2940193323Sed      // the LHS.
2941193323Sed      return N1;
2942193323Sed    case ISD::OR:
2943193323Sed      if (!VT.isVector())
2944193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2945193323Sed      // For vectors, we can't easily build an all one vector, just return
2946193323Sed      // the LHS.
2947193323Sed      return N1;
2948193323Sed    case ISD::SRA:
2949193323Sed      return N1;
2950193323Sed    }
2951193323Sed  }
2952193323Sed
2953193323Sed  // Memoize this node if possible.
2954193323Sed  SDNode *N;
2955193323Sed  SDVTList VTs = getVTList(VT);
2956193323Sed  if (VT != MVT::Flag) {
2957193323Sed    SDValue Ops[] = { N1, N2 };
2958193323Sed    FoldingSetNodeID ID;
2959193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2960193323Sed    void *IP = 0;
2961201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2962193323Sed      return SDValue(E, 0);
2963201360Srdivacky
2964205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2965193323Sed    CSEMap.InsertNode(N, IP);
2966193323Sed  } else {
2967205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2968193323Sed  }
2969193323Sed
2970193323Sed  AllNodes.push_back(N);
2971193323Sed#ifndef NDEBUG
2972193323Sed  VerifyNode(N);
2973193323Sed#endif
2974193323Sed  return SDValue(N, 0);
2975193323Sed}
2976193323Sed
2977198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2978193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
2979193323Sed  // Perform various simplifications.
2980193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2981193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2982193323Sed  switch (Opcode) {
2983193323Sed  case ISD::CONCAT_VECTORS:
2984193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2985193323Sed    // one big BUILD_VECTOR.
2986193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2987193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
2988193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
2989193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2990193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2991193323Sed      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2992193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2993193323Sed    }
2994193323Sed    break;
2995193323Sed  case ISD::SETCC: {
2996193323Sed    // Use FoldSetCC to simplify SETCC's.
2997193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2998193323Sed    if (Simp.getNode()) return Simp;
2999193323Sed    break;
3000193323Sed  }
3001193323Sed  case ISD::SELECT:
3002193323Sed    if (N1C) {
3003193323Sed     if (N1C->getZExtValue())
3004193323Sed        return N2;             // select true, X, Y -> X
3005193323Sed      else
3006193323Sed        return N3;             // select false, X, Y -> Y
3007193323Sed    }
3008193323Sed
3009193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
3010193323Sed    break;
3011193323Sed  case ISD::BRCOND:
3012193323Sed    if (N2C) {
3013193323Sed      if (N2C->getZExtValue()) // Unconditional branch
3014193323Sed        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3015193323Sed      else
3016193323Sed        return N1;         // Never-taken branch
3017193323Sed    }
3018193323Sed    break;
3019193323Sed  case ISD::VECTOR_SHUFFLE:
3020198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
3021193323Sed    break;
3022193323Sed  case ISD::BIT_CONVERT:
3023193323Sed    // Fold bit_convert nodes from a type to themselves.
3024193323Sed    if (N1.getValueType() == VT)
3025193323Sed      return N1;
3026193323Sed    break;
3027193323Sed  }
3028193323Sed
3029193323Sed  // Memoize node if it doesn't produce a flag.
3030193323Sed  SDNode *N;
3031193323Sed  SDVTList VTs = getVTList(VT);
3032193323Sed  if (VT != MVT::Flag) {
3033193323Sed    SDValue Ops[] = { N1, N2, N3 };
3034193323Sed    FoldingSetNodeID ID;
3035193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3036193323Sed    void *IP = 0;
3037201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3038193323Sed      return SDValue(E, 0);
3039201360Srdivacky
3040205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3041193323Sed    CSEMap.InsertNode(N, IP);
3042193323Sed  } else {
3043205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3044193323Sed  }
3045200581Srdivacky
3046193323Sed  AllNodes.push_back(N);
3047193323Sed#ifndef NDEBUG
3048193323Sed  VerifyNode(N);
3049193323Sed#endif
3050193323Sed  return SDValue(N, 0);
3051193323Sed}
3052193323Sed
3053198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3054193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3055193323Sed                              SDValue N4) {
3056193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3057193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3058193323Sed}
3059193323Sed
3060198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3061193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3062193323Sed                              SDValue N4, SDValue N5) {
3063193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3064193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3065193323Sed}
3066193323Sed
3067198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3068198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3069198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3070198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3071198090Srdivacky
3072198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3073198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3074198090Srdivacky  // CALLSEQ_BEGIN node.
3075198090Srdivacky  ArgChains.push_back(Chain);
3076198090Srdivacky
3077198090Srdivacky  // Add a chain value for each stack argument.
3078198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3079198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3080198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3081198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3082198090Srdivacky        if (FI->getIndex() < 0)
3083198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3084198090Srdivacky
3085198090Srdivacky  // Build a tokenfactor for all the chains.
3086198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3087198090Srdivacky                 &ArgChains[0], ArgChains.size());
3088198090Srdivacky}
3089198090Srdivacky
3090193323Sed/// getMemsetValue - Vectorized representation of the memset value
3091193323Sed/// operand.
3092198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3093193323Sed                              DebugLoc dl) {
3094206124Srdivacky  assert(Value.getOpcode() != ISD::UNDEF);
3095206124Srdivacky
3096204642Srdivacky  unsigned NumBits = VT.getScalarType().getSizeInBits();
3097193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3098193323Sed    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3099193323Sed    unsigned Shift = 8;
3100193323Sed    for (unsigned i = NumBits; i > 8; i >>= 1) {
3101193323Sed      Val = (Val << Shift) | Val;
3102193323Sed      Shift <<= 1;
3103193323Sed    }
3104193323Sed    if (VT.isInteger())
3105193323Sed      return DAG.getConstant(Val, VT);
3106193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3107193323Sed  }
3108193323Sed
3109193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3111193323Sed  unsigned Shift = 8;
3112193323Sed  for (unsigned i = NumBits; i > 8; i >>= 1) {
3113193323Sed    Value = DAG.getNode(ISD::OR, dl, VT,
3114193323Sed                        DAG.getNode(ISD::SHL, dl, VT, Value,
3115193323Sed                                    DAG.getConstant(Shift,
3116193323Sed                                                    TLI.getShiftAmountTy())),
3117193323Sed                        Value);
3118193323Sed    Shift <<= 1;
3119193323Sed  }
3120193323Sed
3121193323Sed  return Value;
3122193323Sed}
3123193323Sed
3124193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3126193323Sed/// string ptr.
3127198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3128198090Srdivacky                                  const TargetLowering &TLI,
3129198090Srdivacky                                  std::string &Str, unsigned Offset) {
3130193323Sed  // Handle vector with all elements zero.
3131193323Sed  if (Str.empty()) {
3132193323Sed    if (VT.isInteger())
3133193323Sed      return DAG.getConstant(0, VT);
3134206083Srdivacky    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3135206083Srdivacky             VT.getSimpleVT().SimpleTy == MVT::f64)
3136206083Srdivacky      return DAG.getConstantFP(0.0, VT);
3137206083Srdivacky    else if (VT.isVector()) {
3138206083Srdivacky      unsigned NumElts = VT.getVectorNumElements();
3139206083Srdivacky      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3140206083Srdivacky      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3141206083Srdivacky                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3142206083Srdivacky                                                             EltVT, NumElts)));
3143206083Srdivacky    } else
3144206083Srdivacky      llvm_unreachable("Expected type!");
3145193323Sed  }
3146193323Sed
3147193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3148193323Sed  unsigned NumBits = VT.getSizeInBits();
3149193323Sed  unsigned MSB = NumBits / 8;
3150193323Sed  uint64_t Val = 0;
3151193323Sed  if (TLI.isLittleEndian())
3152193323Sed    Offset = Offset + MSB - 1;
3153193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3154193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3155193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3156193323Sed  }
3157193323Sed  return DAG.getConstant(Val, VT);
3158193323Sed}
3159193323Sed
3160193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3161193323Sed///
3162193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3163193323Sed                                      SelectionDAG &DAG) {
3164198090Srdivacky  EVT VT = Base.getValueType();
3165193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3166193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3167193323Sed}
3168193323Sed
3169193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3170193323Sed///
3171193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3172193323Sed  unsigned SrcDelta = 0;
3173193323Sed  GlobalAddressSDNode *G = NULL;
3174193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3175193323Sed    G = cast<GlobalAddressSDNode>(Src);
3176193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3177193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3178193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3179193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3180193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3181193323Sed  }
3182193323Sed  if (!G)
3183193323Sed    return false;
3184193323Sed
3185193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3186193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3187193323Sed    return true;
3188193323Sed
3189193323Sed  return false;
3190193323Sed}
3191193323Sed
3192206083Srdivacky/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3193206083Srdivacky/// to replace the memset / memcpy. Return true if the number of memory ops
3194206083Srdivacky/// is below the threshold. It returns the types of the sequence of
3195206083Srdivacky/// memory ops to perform memset / memcpy by reference.
3196206083Srdivackystatic bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3197206083Srdivacky                                     unsigned Limit, uint64_t Size,
3198206083Srdivacky                                     unsigned DstAlign, unsigned SrcAlign,
3199206124Srdivacky                                     bool NonScalarIntSafe,
3200206083Srdivacky                                     SelectionDAG &DAG,
3201206083Srdivacky                                     const TargetLowering &TLI) {
3202206083Srdivacky  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3203206083Srdivacky         "Expecting memcpy / memset source to meet alignment requirement!");
3204206083Srdivacky  // If 'SrcAlign' is zero, that means the memory operation does not need load
3205206083Srdivacky  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3206206083Srdivacky  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3207206083Srdivacky  // specified alignment of the memory operation. If it is zero, that means
3208206083Srdivacky  // it's possible to change the alignment of the destination.
3209206124Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3210206124Srdivacky                                   NonScalarIntSafe, DAG);
3211193323Sed
3212204961Srdivacky  if (VT == MVT::Other) {
3213206083Srdivacky    VT = TLI.getPointerTy();
3214206083Srdivacky    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3215206083Srdivacky    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3216206083Srdivacky        TLI.allowsUnalignedMemoryAccesses(VT)) {
3217193323Sed      VT = MVT::i64;
3218193323Sed    } else {
3219206083Srdivacky      switch (DstAlign & 7) {
3220193323Sed      case 0:  VT = MVT::i64; break;
3221193323Sed      case 4:  VT = MVT::i32; break;
3222193323Sed      case 2:  VT = MVT::i16; break;
3223193323Sed      default: VT = MVT::i8;  break;
3224193323Sed      }
3225193323Sed    }
3226193323Sed
3227193323Sed    MVT LVT = MVT::i64;
3228193323Sed    while (!TLI.isTypeLegal(LVT))
3229198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3230193323Sed    assert(LVT.isInteger());
3231193323Sed
3232193323Sed    if (VT.bitsGT(LVT))
3233193323Sed      VT = LVT;
3234193323Sed  }
3235193323Sed
3236193323Sed  unsigned NumMemOps = 0;
3237193323Sed  while (Size != 0) {
3238193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3239193323Sed    while (VTSize > Size) {
3240193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3241206083Srdivacky      if (VT.isVector() || VT.isFloatingPoint()) {
3242193323Sed        VT = MVT::i64;
3243193323Sed        while (!TLI.isTypeLegal(VT))
3244198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3245193323Sed        VTSize = VT.getSizeInBits() / 8;
3246193323Sed      } else {
3247194710Sed        // This can result in a type that is not legal on the target, e.g.
3248194710Sed        // 1 or 2 bytes on PPC.
3249198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3250193323Sed        VTSize >>= 1;
3251193323Sed      }
3252193323Sed    }
3253193323Sed
3254193323Sed    if (++NumMemOps > Limit)
3255193323Sed      return false;
3256193323Sed    MemOps.push_back(VT);
3257193323Sed    Size -= VTSize;
3258193323Sed  }
3259193323Sed
3260193323Sed  return true;
3261193323Sed}
3262193323Sed
3263193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3264206083Srdivacky                                       SDValue Chain, SDValue Dst,
3265206083Srdivacky                                       SDValue Src, uint64_t Size,
3266206083Srdivacky                                       unsigned Align, bool AlwaysInline,
3267206083Srdivacky                                       const Value *DstSV, uint64_t DstSVOff,
3268206083Srdivacky                                       const Value *SrcSV, uint64_t SrcSVOff) {
3269206124Srdivacky  // Turn a memcpy of undef to nop.
3270206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3271206124Srdivacky    return Chain;
3272193323Sed
3273193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3274193323Sed  // below a certain threshold.
3275206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3276198090Srdivacky  std::vector<EVT> MemOps;
3277193323Sed  uint64_t Limit = -1ULL;
3278193323Sed  if (!AlwaysInline)
3279193323Sed    Limit = TLI.getMaxStoresPerMemcpy();
3280206083Srdivacky  bool DstAlignCanChange = false;
3281206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3282206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3283206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3284206083Srdivacky    DstAlignCanChange = true;
3285206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3286206083Srdivacky  if (Align > SrcAlign)
3287206083Srdivacky    SrcAlign = Align;
3288193323Sed  std::string Str;
3289206083Srdivacky  bool CopyFromStr = isMemSrcFromString(Src, Str);
3290206083Srdivacky  bool isZeroStr = CopyFromStr && Str.empty();
3291206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3292206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3293206083Srdivacky                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3294193323Sed    return SDValue();
3295193323Sed
3296206083Srdivacky  if (DstAlignCanChange) {
3297206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3298206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3299206083Srdivacky    if (NewAlign > Align) {
3300206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3301206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3302206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3303206083Srdivacky      Align = NewAlign;
3304206083Srdivacky    }
3305206083Srdivacky  }
3306193323Sed
3307193323Sed  SmallVector<SDValue, 8> OutChains;
3308193323Sed  unsigned NumMemOps = MemOps.size();
3309193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3310198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3311198090Srdivacky    EVT VT = MemOps[i];
3312193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3313193323Sed    SDValue Value, Store;
3314193323Sed
3315206083Srdivacky    if (CopyFromStr &&
3316206083Srdivacky        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3317193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3318193323Sed      // instruction. It would require a load from a constantpool first.
3319206083Srdivacky      // We only handle zero vectors here.
3320193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3321193323Sed      // a single instruction.
3322193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3323193323Sed      Store = DAG.getStore(Chain, dl, Value,
3324193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3325206083Srdivacky                           DstSV, DstSVOff + DstOff, false, false, Align);
3326193323Sed    } else {
3327194710Sed      // The type might not be legal for the target.  This should only happen
3328194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3329195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3330195098Sed      // to Load/Store if NVT==VT.
3331194710Sed      // FIXME does the case above also need this?
3332198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3333195098Sed      assert(NVT.bitsGE(VT));
3334195098Sed      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3335195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3336206083Srdivacky                             SrcSV, SrcSVOff + SrcOff, VT, false, false,
3337206083Srdivacky                             MinAlign(SrcAlign, SrcOff));
3338195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3339203954Srdivacky                                getMemBasePlusOffset(Dst, DstOff, DAG),
3340203954Srdivacky                                DstSV, DstSVOff + DstOff, VT, false, false,
3341206083Srdivacky                                Align);
3342193323Sed    }
3343193323Sed    OutChains.push_back(Store);
3344193323Sed    SrcOff += VTSize;
3345193323Sed    DstOff += VTSize;
3346193323Sed  }
3347193323Sed
3348193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3349193323Sed                     &OutChains[0], OutChains.size());
3350193323Sed}
3351193323Sed
3352193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3353206083Srdivacky                                        SDValue Chain, SDValue Dst,
3354206083Srdivacky                                        SDValue Src, uint64_t Size,
3355206083Srdivacky                                        unsigned Align,bool AlwaysInline,
3356206083Srdivacky                                        const Value *DstSV, uint64_t DstSVOff,
3357206083Srdivacky                                        const Value *SrcSV, uint64_t SrcSVOff) {
3358206124Srdivacky  // Turn a memmove of undef to nop.
3359206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3360206124Srdivacky    return Chain;
3361193323Sed
3362193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3363193323Sed  // below a certain threshold.
3364206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365198090Srdivacky  std::vector<EVT> MemOps;
3366193323Sed  uint64_t Limit = -1ULL;
3367193323Sed  if (!AlwaysInline)
3368193323Sed    Limit = TLI.getMaxStoresPerMemmove();
3369206083Srdivacky  bool DstAlignCanChange = false;
3370206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3371206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3372206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3373206083Srdivacky    DstAlignCanChange = true;
3374206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3375206083Srdivacky  if (Align > SrcAlign)
3376206083Srdivacky    SrcAlign = Align;
3377206083Srdivacky
3378206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3379206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3380206083Srdivacky                                SrcAlign, true, DAG, TLI))
3381193323Sed    return SDValue();
3382193323Sed
3383206083Srdivacky  if (DstAlignCanChange) {
3384206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3385206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3386206083Srdivacky    if (NewAlign > Align) {
3387206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3388206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3389206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3390206083Srdivacky      Align = NewAlign;
3391206083Srdivacky    }
3392206083Srdivacky  }
3393206083Srdivacky
3394193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3395193323Sed  SmallVector<SDValue, 8> LoadValues;
3396193323Sed  SmallVector<SDValue, 8> LoadChains;
3397193323Sed  SmallVector<SDValue, 8> OutChains;
3398193323Sed  unsigned NumMemOps = MemOps.size();
3399193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3400198090Srdivacky    EVT VT = MemOps[i];
3401193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3402193323Sed    SDValue Value, Store;
3403193323Sed
3404193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3405193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3406206083Srdivacky                        SrcSV, SrcSVOff + SrcOff, false, false, SrcAlign);
3407193323Sed    LoadValues.push_back(Value);
3408193323Sed    LoadChains.push_back(Value.getValue(1));
3409193323Sed    SrcOff += VTSize;
3410193323Sed  }
3411193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3412193323Sed                      &LoadChains[0], LoadChains.size());
3413193323Sed  OutChains.clear();
3414193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3415198090Srdivacky    EVT VT = MemOps[i];
3416193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3417193323Sed    SDValue Value, Store;
3418193323Sed
3419193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3420193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3421206083Srdivacky                         DstSV, DstSVOff + DstOff, false, false, Align);
3422193323Sed    OutChains.push_back(Store);
3423193323Sed    DstOff += VTSize;
3424193323Sed  }
3425193323Sed
3426193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3427193323Sed                     &OutChains[0], OutChains.size());
3428193323Sed}
3429193323Sed
3430193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3431206083Srdivacky                               SDValue Chain, SDValue Dst,
3432206083Srdivacky                               SDValue Src, uint64_t Size,
3433206083Srdivacky                               unsigned Align,
3434206083Srdivacky                               const Value *DstSV, uint64_t DstSVOff) {
3435206124Srdivacky  // Turn a memset of undef to nop.
3436206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3437206124Srdivacky    return Chain;
3438193323Sed
3439193323Sed  // Expand memset to a series of load/store ops if the size operand
3440193323Sed  // falls below a certain threshold.
3441206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3442198090Srdivacky  std::vector<EVT> MemOps;
3443206083Srdivacky  bool DstAlignCanChange = false;
3444206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3445206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3446206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3447206083Srdivacky    DstAlignCanChange = true;
3448206124Srdivacky  bool NonScalarIntSafe =
3449206124Srdivacky    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3450206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3451206083Srdivacky                                Size, (DstAlignCanChange ? 0 : Align), 0,
3452206124Srdivacky                                NonScalarIntSafe, DAG, TLI))
3453193323Sed    return SDValue();
3454193323Sed
3455206083Srdivacky  if (DstAlignCanChange) {
3456206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3457206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3458206083Srdivacky    if (NewAlign > Align) {
3459206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3460206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3461206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3462206083Srdivacky      Align = NewAlign;
3463206083Srdivacky    }
3464206083Srdivacky  }
3465206083Srdivacky
3466193323Sed  SmallVector<SDValue, 8> OutChains;
3467193323Sed  uint64_t DstOff = 0;
3468193323Sed  unsigned NumMemOps = MemOps.size();
3469193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3470198090Srdivacky    EVT VT = MemOps[i];
3471193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3472193323Sed    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3473193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3474193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3475203954Srdivacky                                 DstSV, DstSVOff + DstOff, false, false, 0);
3476193323Sed    OutChains.push_back(Store);
3477193323Sed    DstOff += VTSize;
3478193323Sed  }
3479193323Sed
3480193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3481193323Sed                     &OutChains[0], OutChains.size());
3482193323Sed}
3483193323Sed
3484193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3485193323Sed                                SDValue Src, SDValue Size,
3486193323Sed                                unsigned Align, bool AlwaysInline,
3487193323Sed                                const Value *DstSV, uint64_t DstSVOff,
3488193323Sed                                const Value *SrcSV, uint64_t SrcSVOff) {
3489193323Sed
3490193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3491193323Sed  // For cases within the target-specified limits, this is the best choice.
3492193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3493193323Sed  if (ConstantSize) {
3494193323Sed    // Memcpy with size zero? Just return the original chain.
3495193323Sed    if (ConstantSize->isNullValue())
3496193323Sed      return Chain;
3497193323Sed
3498206083Srdivacky    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3499206083Srdivacky                                             ConstantSize->getZExtValue(),Align,
3500206083Srdivacky                                       false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3501193323Sed    if (Result.getNode())
3502193323Sed      return Result;
3503193323Sed  }
3504193323Sed
3505193323Sed  // Then check to see if we should lower the memcpy with target-specific
3506193323Sed  // code. If the target chooses to do this, this is the next best.
3507193323Sed  SDValue Result =
3508193323Sed    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3509193323Sed                                AlwaysInline,
3510193323Sed                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3511193323Sed  if (Result.getNode())
3512193323Sed    return Result;
3513193323Sed
3514193323Sed  // If we really need inline code and the target declined to provide it,
3515193323Sed  // use a (potentially long) sequence of loads and stores.
3516193323Sed  if (AlwaysInline) {
3517193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3518193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3519193323Sed                                   ConstantSize->getZExtValue(), Align, true,
3520193323Sed                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3521193323Sed  }
3522193323Sed
3523193323Sed  // Emit a library call.
3524193323Sed  TargetLowering::ArgListTy Args;
3525193323Sed  TargetLowering::ArgListEntry Entry;
3526198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3527193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3528193323Sed  Entry.Node = Src; Args.push_back(Entry);
3529193323Sed  Entry.Node = Size; Args.push_back(Entry);
3530193323Sed  // FIXME: pass in DebugLoc
3531193323Sed  std::pair<SDValue,SDValue> CallResult =
3532198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3533198090Srdivacky                    false, false, false, false, 0,
3534198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3535198090Srdivacky                    /*isReturnValueUsed=*/false,
3536198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3537198090Srdivacky                                      TLI.getPointerTy()),
3538204642Srdivacky                    Args, *this, dl);
3539193323Sed  return CallResult.second;
3540193323Sed}
3541193323Sed
3542193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3543193323Sed                                 SDValue Src, SDValue Size,
3544193323Sed                                 unsigned Align,
3545193323Sed                                 const Value *DstSV, uint64_t DstSVOff,
3546193323Sed                                 const Value *SrcSV, uint64_t SrcSVOff) {
3547193323Sed
3548193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3549193323Sed  // For cases within the target-specified limits, this is the best choice.
3550193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3551193323Sed  if (ConstantSize) {
3552193323Sed    // Memmove with size zero? Just return the original chain.
3553193323Sed    if (ConstantSize->isNullValue())
3554193323Sed      return Chain;
3555193323Sed
3556193323Sed    SDValue Result =
3557193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3558193323Sed                               ConstantSize->getZExtValue(),
3559193323Sed                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3560193323Sed    if (Result.getNode())
3561193323Sed      return Result;
3562193323Sed  }
3563193323Sed
3564193323Sed  // Then check to see if we should lower the memmove with target-specific
3565193323Sed  // code. If the target chooses to do this, this is the next best.
3566193323Sed  SDValue Result =
3567193323Sed    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3568193323Sed                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3569193323Sed  if (Result.getNode())
3570193323Sed    return Result;
3571193323Sed
3572193323Sed  // Emit a library call.
3573193323Sed  TargetLowering::ArgListTy Args;
3574193323Sed  TargetLowering::ArgListEntry Entry;
3575198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3576193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3577193323Sed  Entry.Node = Src; Args.push_back(Entry);
3578193323Sed  Entry.Node = Size; Args.push_back(Entry);
3579193323Sed  // FIXME:  pass in DebugLoc
3580193323Sed  std::pair<SDValue,SDValue> CallResult =
3581198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3582198090Srdivacky                    false, false, false, false, 0,
3583198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3584198090Srdivacky                    /*isReturnValueUsed=*/false,
3585198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3586198090Srdivacky                                      TLI.getPointerTy()),
3587204642Srdivacky                    Args, *this, dl);
3588193323Sed  return CallResult.second;
3589193323Sed}
3590193323Sed
3591193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3592193323Sed                                SDValue Src, SDValue Size,
3593193323Sed                                unsigned Align,
3594193323Sed                                const Value *DstSV, uint64_t DstSVOff) {
3595193323Sed
3596193323Sed  // Check to see if we should lower the memset to stores first.
3597193323Sed  // For cases within the target-specified limits, this is the best choice.
3598193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3599193323Sed  if (ConstantSize) {
3600193323Sed    // Memset with size zero? Just return the original chain.
3601193323Sed    if (ConstantSize->isNullValue())
3602193323Sed      return Chain;
3603193323Sed
3604206124Srdivacky    SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
3605206124Srdivacky                                     ConstantSize->getZExtValue(),
3606206124Srdivacky                                     Align, DstSV, DstSVOff);
3607193323Sed    if (Result.getNode())
3608193323Sed      return Result;
3609193323Sed  }
3610193323Sed
3611193323Sed  // Then check to see if we should lower the memset with target-specific
3612193323Sed  // code. If the target chooses to do this, this is the next best.
3613193323Sed  SDValue Result =
3614193323Sed    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3615193323Sed                                DstSV, DstSVOff);
3616193323Sed  if (Result.getNode())
3617193323Sed    return Result;
3618193323Sed
3619193323Sed  // Emit a library call.
3620198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3621193323Sed  TargetLowering::ArgListTy Args;
3622193323Sed  TargetLowering::ArgListEntry Entry;
3623193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3624193323Sed  Args.push_back(Entry);
3625193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3626193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3627193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3628193323Sed  else
3629193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3630198090Srdivacky  Entry.Node = Src;
3631198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3632198090Srdivacky  Entry.isSExt = true;
3633193323Sed  Args.push_back(Entry);
3634198090Srdivacky  Entry.Node = Size;
3635198090Srdivacky  Entry.Ty = IntPtrTy;
3636198090Srdivacky  Entry.isSExt = false;
3637193323Sed  Args.push_back(Entry);
3638193323Sed  // FIXME: pass in DebugLoc
3639193323Sed  std::pair<SDValue,SDValue> CallResult =
3640198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3641198090Srdivacky                    false, false, false, false, 0,
3642198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3643198090Srdivacky                    /*isReturnValueUsed=*/false,
3644198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3645198090Srdivacky                                      TLI.getPointerTy()),
3646204642Srdivacky                    Args, *this, dl);
3647193323Sed  return CallResult.second;
3648193323Sed}
3649193323Sed
3650198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3651193323Sed                                SDValue Chain,
3652193323Sed                                SDValue Ptr, SDValue Cmp,
3653193323Sed                                SDValue Swp, const Value* PtrVal,
3654193323Sed                                unsigned Alignment) {
3655198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3656198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3657198090Srdivacky
3658198090Srdivacky  // Check if the memory reference references a frame index
3659198090Srdivacky  if (!PtrVal)
3660198090Srdivacky    if (const FrameIndexSDNode *FI =
3661198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3662198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3663198090Srdivacky
3664198090Srdivacky  MachineFunction &MF = getMachineFunction();
3665198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3666198090Srdivacky
3667198090Srdivacky  // For now, atomics are considered to be volatile always.
3668198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3669198090Srdivacky
3670198090Srdivacky  MachineMemOperand *MMO =
3671198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3672198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3673198090Srdivacky
3674198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3675198090Srdivacky}
3676198090Srdivacky
3677198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3678198090Srdivacky                                SDValue Chain,
3679198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3680198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3681193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3682193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3683193323Sed
3684198090Srdivacky  EVT VT = Cmp.getValueType();
3685193323Sed
3686193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3687193323Sed  FoldingSetNodeID ID;
3688193323Sed  ID.AddInteger(MemVT.getRawBits());
3689193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3690193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3691193323Sed  void* IP = 0;
3692198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3693198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3694193323Sed    return SDValue(E, 0);
3695198090Srdivacky  }
3696205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3697205407Srdivacky                                               Ptr, Cmp, Swp, MMO);
3698193323Sed  CSEMap.InsertNode(N, IP);
3699193323Sed  AllNodes.push_back(N);
3700193323Sed  return SDValue(N, 0);
3701193323Sed}
3702193323Sed
3703198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3704193323Sed                                SDValue Chain,
3705193323Sed                                SDValue Ptr, SDValue Val,
3706193323Sed                                const Value* PtrVal,
3707193323Sed                                unsigned Alignment) {
3708198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3709198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3710198090Srdivacky
3711198090Srdivacky  // Check if the memory reference references a frame index
3712198090Srdivacky  if (!PtrVal)
3713198090Srdivacky    if (const FrameIndexSDNode *FI =
3714198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3715198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3716198090Srdivacky
3717198090Srdivacky  MachineFunction &MF = getMachineFunction();
3718198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3719198090Srdivacky
3720198090Srdivacky  // For now, atomics are considered to be volatile always.
3721198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3722198090Srdivacky
3723198090Srdivacky  MachineMemOperand *MMO =
3724198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3725198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3726198090Srdivacky
3727198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3728198090Srdivacky}
3729198090Srdivacky
3730198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3731198090Srdivacky                                SDValue Chain,
3732198090Srdivacky                                SDValue Ptr, SDValue Val,
3733198090Srdivacky                                MachineMemOperand *MMO) {
3734193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3735193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3736193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3737193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3738193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3739193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3740193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3741193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3742193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3743193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3744193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3745193323Sed         "Invalid Atomic Op");
3746193323Sed
3747198090Srdivacky  EVT VT = Val.getValueType();
3748193323Sed
3749193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3750193323Sed  FoldingSetNodeID ID;
3751193323Sed  ID.AddInteger(MemVT.getRawBits());
3752193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3753193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3754193323Sed  void* IP = 0;
3755198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3756198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3757193323Sed    return SDValue(E, 0);
3758198090Srdivacky  }
3759205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3760205407Srdivacky                                               Ptr, Val, MMO);
3761193323Sed  CSEMap.InsertNode(N, IP);
3762193323Sed  AllNodes.push_back(N);
3763193323Sed  return SDValue(N, 0);
3764193323Sed}
3765193323Sed
3766193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3767193323Sed/// Allowed to return something different (and simpler) if Simplify is true.
3768193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3769193323Sed                                     DebugLoc dl) {
3770193323Sed  if (NumOps == 1)
3771193323Sed    return Ops[0];
3772193323Sed
3773198090Srdivacky  SmallVector<EVT, 4> VTs;
3774193323Sed  VTs.reserve(NumOps);
3775193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3776193323Sed    VTs.push_back(Ops[i].getValueType());
3777193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3778193323Sed                 Ops, NumOps);
3779193323Sed}
3780193323Sed
3781193323SedSDValue
3782193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3783198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3784193323Sed                                  const SDValue *Ops, unsigned NumOps,
3785198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3786193323Sed                                  unsigned Align, bool Vol,
3787193323Sed                                  bool ReadMem, bool WriteMem) {
3788193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3789193323Sed                             MemVT, srcValue, SVOff, Align, Vol,
3790193323Sed                             ReadMem, WriteMem);
3791193323Sed}
3792193323Sed
3793193323SedSDValue
3794193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3795193323Sed                                  const SDValue *Ops, unsigned NumOps,
3796198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3797193323Sed                                  unsigned Align, bool Vol,
3798193323Sed                                  bool ReadMem, bool WriteMem) {
3799198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3800198090Srdivacky    Align = getEVTAlignment(MemVT);
3801198090Srdivacky
3802198090Srdivacky  MachineFunction &MF = getMachineFunction();
3803198090Srdivacky  unsigned Flags = 0;
3804198090Srdivacky  if (WriteMem)
3805198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3806198090Srdivacky  if (ReadMem)
3807198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3808198090Srdivacky  if (Vol)
3809198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3810198090Srdivacky  MachineMemOperand *MMO =
3811198090Srdivacky    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3812198090Srdivacky                            MemVT.getStoreSize(), Align);
3813198090Srdivacky
3814198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3815198090Srdivacky}
3816198090Srdivacky
3817198090SrdivackySDValue
3818198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3819198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3820198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3821198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3822198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3823198090Srdivacky          (Opcode <= INT_MAX &&
3824198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3825198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3826198090Srdivacky
3827193323Sed  // Memoize the node unless it returns a flag.
3828193323Sed  MemIntrinsicSDNode *N;
3829193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3830193323Sed    FoldingSetNodeID ID;
3831193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3832193323Sed    void *IP = 0;
3833198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3834198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3835193323Sed      return SDValue(E, 0);
3836198090Srdivacky    }
3837193323Sed
3838205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3839205407Srdivacky                                               MemVT, MMO);
3840193323Sed    CSEMap.InsertNode(N, IP);
3841193323Sed  } else {
3842205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3843205407Srdivacky                                               MemVT, MMO);
3844193323Sed  }
3845193323Sed  AllNodes.push_back(N);
3846193323Sed  return SDValue(N, 0);
3847193323Sed}
3848193323Sed
3849193323SedSDValue
3850193323SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3851198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3852193323Sed                      SDValue Ptr, SDValue Offset,
3853198090Srdivacky                      const Value *SV, int SVOffset, EVT MemVT,
3854203954Srdivacky                      bool isVolatile, bool isNonTemporal,
3855203954Srdivacky                      unsigned Alignment) {
3856193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3857198090Srdivacky    Alignment = getEVTAlignment(VT);
3858193323Sed
3859198090Srdivacky  // Check if the memory reference references a frame index
3860198090Srdivacky  if (!SV)
3861198090Srdivacky    if (const FrameIndexSDNode *FI =
3862198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3863198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3864198090Srdivacky
3865198090Srdivacky  MachineFunction &MF = getMachineFunction();
3866198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
3867198090Srdivacky  if (isVolatile)
3868198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3869203954Srdivacky  if (isNonTemporal)
3870203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
3871198090Srdivacky  MachineMemOperand *MMO =
3872198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3873198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3874198090Srdivacky  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3875198090Srdivacky}
3876198090Srdivacky
3877198090SrdivackySDValue
3878198090SrdivackySelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3879198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3880198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
3881198090Srdivacky                      MachineMemOperand *MMO) {
3882198090Srdivacky  if (VT == MemVT) {
3883193323Sed    ExtType = ISD::NON_EXTLOAD;
3884193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
3885198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
3886193323Sed  } else {
3887193323Sed    // Extending load.
3888200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3889200581Srdivacky           "Should only be an extending load, not truncating!");
3890198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
3891193323Sed           "Cannot convert from FP to Int or Int -> FP!");
3892200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
3893200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
3894200581Srdivacky    assert((!VT.isVector() ||
3895200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3896200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
3897193323Sed  }
3898193323Sed
3899193323Sed  bool Indexed = AM != ISD::UNINDEXED;
3900193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3901193323Sed         "Unindexed load with an offset!");
3902193323Sed
3903193323Sed  SDVTList VTs = Indexed ?
3904193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3905193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
3906193323Sed  FoldingSetNodeID ID;
3907193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3908198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
3909204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3910204642Srdivacky                                     MMO->isNonTemporal()));
3911193323Sed  void *IP = 0;
3912198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3913198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
3914193323Sed    return SDValue(E, 0);
3915198090Srdivacky  }
3916205407Srdivacky  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3917205407Srdivacky                                             MemVT, MMO);
3918193323Sed  CSEMap.InsertNode(N, IP);
3919193323Sed  AllNodes.push_back(N);
3920193323Sed  return SDValue(N, 0);
3921193323Sed}
3922193323Sed
3923198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3924193323Sed                              SDValue Chain, SDValue Ptr,
3925193323Sed                              const Value *SV, int SVOffset,
3926203954Srdivacky                              bool isVolatile, bool isNonTemporal,
3927203954Srdivacky                              unsigned Alignment) {
3928193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3929193323Sed  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3930203954Srdivacky                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3931193323Sed}
3932193323Sed
3933198090SrdivackySDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3934193323Sed                                 SDValue Chain, SDValue Ptr,
3935193323Sed                                 const Value *SV,
3936198090Srdivacky                                 int SVOffset, EVT MemVT,
3937203954Srdivacky                                 bool isVolatile, bool isNonTemporal,
3938203954Srdivacky                                 unsigned Alignment) {
3939193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3940193323Sed  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3941203954Srdivacky                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3942193323Sed}
3943193323Sed
3944193323SedSDValue
3945193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3946193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
3947193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3948193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3949193323Sed         "Load is already a indexed load!");
3950193323Sed  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3951193323Sed                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3952193323Sed                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3953203954Srdivacky                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3954193323Sed}
3955193323Sed
3956193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3957193323Sed                               SDValue Ptr, const Value *SV, int SVOffset,
3958203954Srdivacky                               bool isVolatile, bool isNonTemporal,
3959203954Srdivacky                               unsigned Alignment) {
3960193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3961198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
3962193323Sed
3963198090Srdivacky  // Check if the memory reference references a frame index
3964198090Srdivacky  if (!SV)
3965198090Srdivacky    if (const FrameIndexSDNode *FI =
3966198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3967198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3968198090Srdivacky
3969198090Srdivacky  MachineFunction &MF = getMachineFunction();
3970198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3971198090Srdivacky  if (isVolatile)
3972198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3973203954Srdivacky  if (isNonTemporal)
3974203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
3975198090Srdivacky  MachineMemOperand *MMO =
3976198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3977198090Srdivacky                            Val.getValueType().getStoreSize(), Alignment);
3978198090Srdivacky
3979198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
3980198090Srdivacky}
3981198090Srdivacky
3982198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3983198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
3984198090Srdivacky  EVT VT = Val.getValueType();
3985193323Sed  SDVTList VTs = getVTList(MVT::Other);
3986193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3987193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3988193323Sed  FoldingSetNodeID ID;
3989193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3990193323Sed  ID.AddInteger(VT.getRawBits());
3991204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3992204642Srdivacky                                     MMO->isNonTemporal()));
3993193323Sed  void *IP = 0;
3994198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3995198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
3996193323Sed    return SDValue(E, 0);
3997198090Srdivacky  }
3998205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
3999205407Srdivacky                                              false, VT, MMO);
4000193323Sed  CSEMap.InsertNode(N, IP);
4001193323Sed  AllNodes.push_back(N);
4002193323Sed  return SDValue(N, 0);
4003193323Sed}
4004193323Sed
4005193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4006193323Sed                                    SDValue Ptr, const Value *SV,
4007198090Srdivacky                                    int SVOffset, EVT SVT,
4008203954Srdivacky                                    bool isVolatile, bool isNonTemporal,
4009203954Srdivacky                                    unsigned Alignment) {
4010198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4011198090Srdivacky    Alignment = getEVTAlignment(SVT);
4012193323Sed
4013198090Srdivacky  // Check if the memory reference references a frame index
4014198090Srdivacky  if (!SV)
4015198090Srdivacky    if (const FrameIndexSDNode *FI =
4016198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4017198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4018198090Srdivacky
4019198090Srdivacky  MachineFunction &MF = getMachineFunction();
4020198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4021198090Srdivacky  if (isVolatile)
4022198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4023203954Srdivacky  if (isNonTemporal)
4024203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4025198090Srdivacky  MachineMemOperand *MMO =
4026198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4027198090Srdivacky
4028198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4029198090Srdivacky}
4030198090Srdivacky
4031198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4032198090Srdivacky                                    SDValue Ptr, EVT SVT,
4033198090Srdivacky                                    MachineMemOperand *MMO) {
4034198090Srdivacky  EVT VT = Val.getValueType();
4035198090Srdivacky
4036193323Sed  if (VT == SVT)
4037198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
4038193323Sed
4039200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4040200581Srdivacky         "Should only be a truncating store, not extending!");
4041193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
4042193323Sed         "Can't do FP-INT conversion!");
4043200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
4044200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
4045200581Srdivacky  assert((!VT.isVector() ||
4046200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4047200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
4048193323Sed
4049193323Sed  SDVTList VTs = getVTList(MVT::Other);
4050193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4051193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4052193323Sed  FoldingSetNodeID ID;
4053193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4054193323Sed  ID.AddInteger(SVT.getRawBits());
4055204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4056204642Srdivacky                                     MMO->isNonTemporal()));
4057193323Sed  void *IP = 0;
4058198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4059198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4060193323Sed    return SDValue(E, 0);
4061198090Srdivacky  }
4062205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4063205407Srdivacky                                              true, SVT, MMO);
4064193323Sed  CSEMap.InsertNode(N, IP);
4065193323Sed  AllNodes.push_back(N);
4066193323Sed  return SDValue(N, 0);
4067193323Sed}
4068193323Sed
4069193323SedSDValue
4070193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4071193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
4072193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4073193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4074193323Sed         "Store is already a indexed store!");
4075193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4076193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4077193323Sed  FoldingSetNodeID ID;
4078193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4079193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
4080193323Sed  ID.AddInteger(ST->getRawSubclassData());
4081193323Sed  void *IP = 0;
4082201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4083193323Sed    return SDValue(E, 0);
4084201360Srdivacky
4085205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4086205407Srdivacky                                              ST->isTruncatingStore(),
4087205407Srdivacky                                              ST->getMemoryVT(),
4088205407Srdivacky                                              ST->getMemOperand());
4089193323Sed  CSEMap.InsertNode(N, IP);
4090193323Sed  AllNodes.push_back(N);
4091193323Sed  return SDValue(N, 0);
4092193323Sed}
4093193323Sed
4094198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4095193323Sed                               SDValue Chain, SDValue Ptr,
4096193323Sed                               SDValue SV) {
4097193323Sed  SDValue Ops[] = { Chain, Ptr, SV };
4098193323Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4099193323Sed}
4100193323Sed
4101198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4102193323Sed                              const SDUse *Ops, unsigned NumOps) {
4103193323Sed  switch (NumOps) {
4104193323Sed  case 0: return getNode(Opcode, DL, VT);
4105193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4106193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4107193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4108193323Sed  default: break;
4109193323Sed  }
4110193323Sed
4111193323Sed  // Copy from an SDUse array into an SDValue array for use with
4112193323Sed  // the regular getNode logic.
4113193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4114193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4115193323Sed}
4116193323Sed
4117198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4118193323Sed                              const SDValue *Ops, unsigned NumOps) {
4119193323Sed  switch (NumOps) {
4120193323Sed  case 0: return getNode(Opcode, DL, VT);
4121193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4122193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4123193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4124193323Sed  default: break;
4125193323Sed  }
4126193323Sed
4127193323Sed  switch (Opcode) {
4128193323Sed  default: break;
4129193323Sed  case ISD::SELECT_CC: {
4130193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4131193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4132193323Sed           "LHS and RHS of condition must have same type!");
4133193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4134193323Sed           "True and False arms of SelectCC must have same type!");
4135193323Sed    assert(Ops[2].getValueType() == VT &&
4136193323Sed           "select_cc node must be of same type as true and false value!");
4137193323Sed    break;
4138193323Sed  }
4139193323Sed  case ISD::BR_CC: {
4140193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4141193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4142193323Sed           "LHS/RHS of comparison should match types!");
4143193323Sed    break;
4144193323Sed  }
4145193323Sed  }
4146193323Sed
4147193323Sed  // Memoize nodes.
4148193323Sed  SDNode *N;
4149193323Sed  SDVTList VTs = getVTList(VT);
4150193323Sed
4151193323Sed  if (VT != MVT::Flag) {
4152193323Sed    FoldingSetNodeID ID;
4153193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4154193323Sed    void *IP = 0;
4155193323Sed
4156201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4157193323Sed      return SDValue(E, 0);
4158193323Sed
4159205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4160193323Sed    CSEMap.InsertNode(N, IP);
4161193323Sed  } else {
4162205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4163193323Sed  }
4164193323Sed
4165193323Sed  AllNodes.push_back(N);
4166193323Sed#ifndef NDEBUG
4167193323Sed  VerifyNode(N);
4168193323Sed#endif
4169193323Sed  return SDValue(N, 0);
4170193323Sed}
4171193323Sed
4172193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4173198090Srdivacky                              const std::vector<EVT> &ResultTys,
4174193323Sed                              const SDValue *Ops, unsigned NumOps) {
4175193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4176193323Sed                 Ops, NumOps);
4177193323Sed}
4178193323Sed
4179193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4180198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4181193323Sed                              const SDValue *Ops, unsigned NumOps) {
4182193323Sed  if (NumVTs == 1)
4183193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4184193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4185193323Sed}
4186193323Sed
4187193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4188193323Sed                              const SDValue *Ops, unsigned NumOps) {
4189193323Sed  if (VTList.NumVTs == 1)
4190193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4191193323Sed
4192198090Srdivacky#if 0
4193193323Sed  switch (Opcode) {
4194193323Sed  // FIXME: figure out how to safely handle things like
4195193323Sed  // int foo(int x) { return 1 << (x & 255); }
4196193323Sed  // int bar() { return foo(256); }
4197193323Sed  case ISD::SRA_PARTS:
4198193323Sed  case ISD::SRL_PARTS:
4199193323Sed  case ISD::SHL_PARTS:
4200193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4201193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4202193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4203193323Sed    else if (N3.getOpcode() == ISD::AND)
4204193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4205193323Sed        // If the and is only masking out bits that cannot effect the shift,
4206193323Sed        // eliminate the and.
4207202375Srdivacky        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4208193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4209193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4210193323Sed      }
4211193323Sed    break;
4212198090Srdivacky  }
4213193323Sed#endif
4214193323Sed
4215193323Sed  // Memoize the node unless it returns a flag.
4216193323Sed  SDNode *N;
4217193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4218193323Sed    FoldingSetNodeID ID;
4219193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4220193323Sed    void *IP = 0;
4221201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4222193323Sed      return SDValue(E, 0);
4223201360Srdivacky
4224193323Sed    if (NumOps == 1) {
4225205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4226193323Sed    } else if (NumOps == 2) {
4227205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4228193323Sed    } else if (NumOps == 3) {
4229205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4230205407Srdivacky                                            Ops[2]);
4231193323Sed    } else {
4232205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4233193323Sed    }
4234193323Sed    CSEMap.InsertNode(N, IP);
4235193323Sed  } else {
4236193323Sed    if (NumOps == 1) {
4237205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4238193323Sed    } else if (NumOps == 2) {
4239205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4240193323Sed    } else if (NumOps == 3) {
4241205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4242205407Srdivacky                                            Ops[2]);
4243193323Sed    } else {
4244205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4245193323Sed    }
4246193323Sed  }
4247193323Sed  AllNodes.push_back(N);
4248193323Sed#ifndef NDEBUG
4249193323Sed  VerifyNode(N);
4250193323Sed#endif
4251193323Sed  return SDValue(N, 0);
4252193323Sed}
4253193323Sed
4254193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4255193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4256193323Sed}
4257193323Sed
4258193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4259193323Sed                              SDValue N1) {
4260193323Sed  SDValue Ops[] = { N1 };
4261193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4262193323Sed}
4263193323Sed
4264193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4265193323Sed                              SDValue N1, SDValue N2) {
4266193323Sed  SDValue Ops[] = { N1, N2 };
4267193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4268193323Sed}
4269193323Sed
4270193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4271193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4272193323Sed  SDValue Ops[] = { N1, N2, N3 };
4273193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4274193323Sed}
4275193323Sed
4276193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4277193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4278193323Sed                              SDValue N4) {
4279193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4280193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4281193323Sed}
4282193323Sed
4283193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4284193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4285193323Sed                              SDValue N4, SDValue N5) {
4286193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4287193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4288193323Sed}
4289193323Sed
4290198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4291193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4292193323Sed}
4293193323Sed
4294198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4295193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4296193323Sed       E = VTList.rend(); I != E; ++I)
4297193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4298193323Sed      return *I;
4299193323Sed
4300198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4301193323Sed  Array[0] = VT1;
4302193323Sed  Array[1] = VT2;
4303193323Sed  SDVTList Result = makeVTList(Array, 2);
4304193323Sed  VTList.push_back(Result);
4305193323Sed  return Result;
4306193323Sed}
4307193323Sed
4308198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4309193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4310193323Sed       E = VTList.rend(); I != E; ++I)
4311193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4312193323Sed                          I->VTs[2] == VT3)
4313193323Sed      return *I;
4314193323Sed
4315198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4316193323Sed  Array[0] = VT1;
4317193323Sed  Array[1] = VT2;
4318193323Sed  Array[2] = VT3;
4319193323Sed  SDVTList Result = makeVTList(Array, 3);
4320193323Sed  VTList.push_back(Result);
4321193323Sed  return Result;
4322193323Sed}
4323193323Sed
4324198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4325193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4326193323Sed       E = VTList.rend(); I != E; ++I)
4327193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4328193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4329193323Sed      return *I;
4330193323Sed
4331200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4332193323Sed  Array[0] = VT1;
4333193323Sed  Array[1] = VT2;
4334193323Sed  Array[2] = VT3;
4335193323Sed  Array[3] = VT4;
4336193323Sed  SDVTList Result = makeVTList(Array, 4);
4337193323Sed  VTList.push_back(Result);
4338193323Sed  return Result;
4339193323Sed}
4340193323Sed
4341198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4342193323Sed  switch (NumVTs) {
4343198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4344193323Sed    case 1: return getVTList(VTs[0]);
4345193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4346193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4347201360Srdivacky    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4348193323Sed    default: break;
4349193323Sed  }
4350193323Sed
4351193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4352193323Sed       E = VTList.rend(); I != E; ++I) {
4353193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4354193323Sed      continue;
4355193323Sed
4356193323Sed    bool NoMatch = false;
4357193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4358193323Sed      if (VTs[i] != I->VTs[i]) {
4359193323Sed        NoMatch = true;
4360193323Sed        break;
4361193323Sed      }
4362193323Sed    if (!NoMatch)
4363193323Sed      return *I;
4364193323Sed  }
4365193323Sed
4366198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4367193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4368193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4369193323Sed  VTList.push_back(Result);
4370193323Sed  return Result;
4371193323Sed}
4372193323Sed
4373193323Sed
4374193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4375193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4376193323Sed/// this does not modify the specified node, instead it returns the node that
4377193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4378193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4379193323Sed/// input operands as the node already has, the input node is returned.
4380193323SedSDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4381193323Sed  SDNode *N = InN.getNode();
4382193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4383193323Sed
4384193323Sed  // Check to see if there is no change.
4385193323Sed  if (Op == N->getOperand(0)) return InN;
4386193323Sed
4387193323Sed  // See if the modified node already exists.
4388193323Sed  void *InsertPos = 0;
4389193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4390193323Sed    return SDValue(Existing, InN.getResNo());
4391193323Sed
4392193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4393193323Sed  if (InsertPos)
4394193323Sed    if (!RemoveNodeFromCSEMaps(N))
4395193323Sed      InsertPos = 0;
4396193323Sed
4397193323Sed  // Now we update the operands.
4398193323Sed  N->OperandList[0].set(Op);
4399193323Sed
4400193323Sed  // If this gets put into a CSE map, add it.
4401193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4402193323Sed  return InN;
4403193323Sed}
4404193323Sed
4405193323SedSDValue SelectionDAG::
4406193323SedUpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4407193323Sed  SDNode *N = InN.getNode();
4408193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4409193323Sed
4410193323Sed  // Check to see if there is no change.
4411193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4412193323Sed    return InN;   // No operands changed, just return the input node.
4413193323Sed
4414193323Sed  // See if the modified node already exists.
4415193323Sed  void *InsertPos = 0;
4416193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4417193323Sed    return SDValue(Existing, InN.getResNo());
4418193323Sed
4419193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4420193323Sed  if (InsertPos)
4421193323Sed    if (!RemoveNodeFromCSEMaps(N))
4422193323Sed      InsertPos = 0;
4423193323Sed
4424193323Sed  // Now we update the operands.
4425193323Sed  if (N->OperandList[0] != Op1)
4426193323Sed    N->OperandList[0].set(Op1);
4427193323Sed  if (N->OperandList[1] != Op2)
4428193323Sed    N->OperandList[1].set(Op2);
4429193323Sed
4430193323Sed  // If this gets put into a CSE map, add it.
4431193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4432193323Sed  return InN;
4433193323Sed}
4434193323Sed
4435193323SedSDValue SelectionDAG::
4436193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4437193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4438193323Sed  return UpdateNodeOperands(N, Ops, 3);
4439193323Sed}
4440193323Sed
4441193323SedSDValue SelectionDAG::
4442193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4443193323Sed                   SDValue Op3, SDValue Op4) {
4444193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4445193323Sed  return UpdateNodeOperands(N, Ops, 4);
4446193323Sed}
4447193323Sed
4448193323SedSDValue SelectionDAG::
4449193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4450193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4451193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4452193323Sed  return UpdateNodeOperands(N, Ops, 5);
4453193323Sed}
4454193323Sed
4455193323SedSDValue SelectionDAG::
4456193323SedUpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4457193323Sed  SDNode *N = InN.getNode();
4458193323Sed  assert(N->getNumOperands() == NumOps &&
4459193323Sed         "Update with wrong number of operands");
4460193323Sed
4461193323Sed  // Check to see if there is no change.
4462193323Sed  bool AnyChange = false;
4463193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4464193323Sed    if (Ops[i] != N->getOperand(i)) {
4465193323Sed      AnyChange = true;
4466193323Sed      break;
4467193323Sed    }
4468193323Sed  }
4469193323Sed
4470193323Sed  // No operands changed, just return the input node.
4471193323Sed  if (!AnyChange) return InN;
4472193323Sed
4473193323Sed  // See if the modified node already exists.
4474193323Sed  void *InsertPos = 0;
4475193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4476193323Sed    return SDValue(Existing, InN.getResNo());
4477193323Sed
4478193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4479193323Sed  if (InsertPos)
4480193323Sed    if (!RemoveNodeFromCSEMaps(N))
4481193323Sed      InsertPos = 0;
4482193323Sed
4483193323Sed  // Now we update the operands.
4484193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4485193323Sed    if (N->OperandList[i] != Ops[i])
4486193323Sed      N->OperandList[i].set(Ops[i]);
4487193323Sed
4488193323Sed  // If this gets put into a CSE map, add it.
4489193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4490193323Sed  return InN;
4491193323Sed}
4492193323Sed
4493193323Sed/// DropOperands - Release the operands and set this node to have
4494193323Sed/// zero operands.
4495193323Sedvoid SDNode::DropOperands() {
4496193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4497193323Sed  // watch for dead nodes here.
4498193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4499193323Sed    SDUse &Use = *I++;
4500193323Sed    Use.set(SDValue());
4501193323Sed  }
4502193323Sed}
4503193323Sed
4504193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4505193323Sed/// machine opcode.
4506193323Sed///
4507193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4508198090Srdivacky                                   EVT VT) {
4509193323Sed  SDVTList VTs = getVTList(VT);
4510193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4511193323Sed}
4512193323Sed
4513193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4514198090Srdivacky                                   EVT VT, SDValue Op1) {
4515193323Sed  SDVTList VTs = getVTList(VT);
4516193323Sed  SDValue Ops[] = { Op1 };
4517193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4518193323Sed}
4519193323Sed
4520193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4521198090Srdivacky                                   EVT VT, SDValue Op1,
4522193323Sed                                   SDValue Op2) {
4523193323Sed  SDVTList VTs = getVTList(VT);
4524193323Sed  SDValue Ops[] = { Op1, Op2 };
4525193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4526193323Sed}
4527193323Sed
4528193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4529198090Srdivacky                                   EVT VT, SDValue Op1,
4530193323Sed                                   SDValue Op2, SDValue Op3) {
4531193323Sed  SDVTList VTs = getVTList(VT);
4532193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4533193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4534193323Sed}
4535193323Sed
4536193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4537198090Srdivacky                                   EVT VT, const SDValue *Ops,
4538193323Sed                                   unsigned NumOps) {
4539193323Sed  SDVTList VTs = getVTList(VT);
4540193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4541193323Sed}
4542193323Sed
4543193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4545193323Sed                                   unsigned NumOps) {
4546193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4547193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4548193323Sed}
4549193323Sed
4550193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551198090Srdivacky                                   EVT VT1, EVT VT2) {
4552193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4553193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4554193323Sed}
4555193323Sed
4556193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4557198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4558193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4559193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4560193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4561193323Sed}
4562193323Sed
4563193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4565193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4566193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4567193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4568193323Sed}
4569193323Sed
4570193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4571198090Srdivacky                                   EVT VT1, EVT VT2,
4572193323Sed                                   SDValue Op1) {
4573193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4574193323Sed  SDValue Ops[] = { Op1 };
4575193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4576193323Sed}
4577193323Sed
4578193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4579198090Srdivacky                                   EVT VT1, EVT VT2,
4580193323Sed                                   SDValue Op1, SDValue Op2) {
4581193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4582193323Sed  SDValue Ops[] = { Op1, Op2 };
4583193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4584193323Sed}
4585193323Sed
4586193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4587198090Srdivacky                                   EVT VT1, EVT VT2,
4588193323Sed                                   SDValue Op1, SDValue Op2,
4589193323Sed                                   SDValue Op3) {
4590193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4591193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4592193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4593193323Sed}
4594193323Sed
4595193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4597193323Sed                                   SDValue Op1, SDValue Op2,
4598193323Sed                                   SDValue Op3) {
4599193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4600193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4601193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4602193323Sed}
4603193323Sed
4604193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605193323Sed                                   SDVTList VTs, const SDValue *Ops,
4606193323Sed                                   unsigned NumOps) {
4607204642Srdivacky  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4608204642Srdivacky  // Reset the NodeID to -1.
4609204642Srdivacky  N->setNodeId(-1);
4610204642Srdivacky  return N;
4611193323Sed}
4612193323Sed
4613204642Srdivacky/// MorphNodeTo - This *mutates* the specified node to have the specified
4614193323Sed/// return type, opcode, and operands.
4615193323Sed///
4616193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4617193323Sed/// node of the specified opcode and operands, it returns that node instead of
4618193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4619193323Sed///
4620193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4621193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4622193323Sed/// node, and because it doesn't require CSE recalculation for any of
4623193323Sed/// the node's users.
4624193323Sed///
4625193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4626193323Sed                                  SDVTList VTs, const SDValue *Ops,
4627193323Sed                                  unsigned NumOps) {
4628193323Sed  // If an identical node already exists, use it.
4629193323Sed  void *IP = 0;
4630193323Sed  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4631193323Sed    FoldingSetNodeID ID;
4632193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4633201360Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4634193323Sed      return ON;
4635193323Sed  }
4636193323Sed
4637193323Sed  if (!RemoveNodeFromCSEMaps(N))
4638193323Sed    IP = 0;
4639193323Sed
4640193323Sed  // Start the morphing.
4641193323Sed  N->NodeType = Opc;
4642193323Sed  N->ValueList = VTs.VTs;
4643193323Sed  N->NumValues = VTs.NumVTs;
4644193323Sed
4645193323Sed  // Clear the operands list, updating used nodes to remove this from their
4646193323Sed  // use list.  Keep track of any operands that become dead as a result.
4647193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4648193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4649193323Sed    SDUse &Use = *I++;
4650193323Sed    SDNode *Used = Use.getNode();
4651193323Sed    Use.set(SDValue());
4652193323Sed    if (Used->use_empty())
4653193323Sed      DeadNodeSet.insert(Used);
4654193323Sed  }
4655193323Sed
4656198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4657198090Srdivacky    // Initialize the memory references information.
4658198090Srdivacky    MN->setMemRefs(0, 0);
4659198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4660198090Srdivacky    // MachineSDNode, reallocate the operand list.
4661198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4662198090Srdivacky      if (MN->OperandsNeedDelete)
4663198090Srdivacky        delete[] MN->OperandList;
4664198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4665198090Srdivacky        // We're creating a final node that will live unmorphed for the
4666198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4667198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4668198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4669205407Srdivacky                         Ops, NumOps);
4670198090Srdivacky      else
4671198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4672198090Srdivacky      MN->OperandsNeedDelete = false;
4673198090Srdivacky    } else
4674198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4675198090Srdivacky  } else {
4676198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4677198090Srdivacky    // the operand list.
4678198090Srdivacky    if (NumOps > N->NumOperands) {
4679198090Srdivacky      if (N->OperandsNeedDelete)
4680198090Srdivacky        delete[] N->OperandList;
4681198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4682193323Sed      N->OperandsNeedDelete = true;
4683198090Srdivacky    } else
4684198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4685193323Sed  }
4686193323Sed
4687193323Sed  // Delete any nodes that are still dead after adding the uses for the
4688193323Sed  // new operands.
4689204642Srdivacky  if (!DeadNodeSet.empty()) {
4690204642Srdivacky    SmallVector<SDNode *, 16> DeadNodes;
4691204642Srdivacky    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4692204642Srdivacky         E = DeadNodeSet.end(); I != E; ++I)
4693204642Srdivacky      if ((*I)->use_empty())
4694204642Srdivacky        DeadNodes.push_back(*I);
4695204642Srdivacky    RemoveDeadNodes(DeadNodes);
4696204642Srdivacky  }
4697193323Sed
4698193323Sed  if (IP)
4699193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4700193323Sed  return N;
4701193323Sed}
4702193323Sed
4703193323Sed
4704198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4705198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4706193323Sed///
4707198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4708193323Sed/// node of the specified opcode and operands, it returns that node instead of
4709193323Sed/// the current one.
4710198090SrdivackyMachineSDNode *
4711198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4712198090Srdivacky  SDVTList VTs = getVTList(VT);
4713198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4714193323Sed}
4715193323Sed
4716198090SrdivackyMachineSDNode *
4717198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4718198090Srdivacky  SDVTList VTs = getVTList(VT);
4719198090Srdivacky  SDValue Ops[] = { Op1 };
4720198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4721193323Sed}
4722193323Sed
4723198090SrdivackyMachineSDNode *
4724198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4725198090Srdivacky                             SDValue Op1, SDValue Op2) {
4726198090Srdivacky  SDVTList VTs = getVTList(VT);
4727198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4728198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4729193323Sed}
4730193323Sed
4731198090SrdivackyMachineSDNode *
4732198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4733198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4734198090Srdivacky  SDVTList VTs = getVTList(VT);
4735198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4736198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4737193323Sed}
4738193323Sed
4739198090SrdivackyMachineSDNode *
4740198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4741198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4742198090Srdivacky  SDVTList VTs = getVTList(VT);
4743198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4744193323Sed}
4745193323Sed
4746198090SrdivackyMachineSDNode *
4747198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4748193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4749198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4750193323Sed}
4751193323Sed
4752198090SrdivackyMachineSDNode *
4753198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4754198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4755193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4756198090Srdivacky  SDValue Ops[] = { Op1 };
4757198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4758193323Sed}
4759193323Sed
4760198090SrdivackyMachineSDNode *
4761198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4762198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4763193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4764193323Sed  SDValue Ops[] = { Op1, Op2 };
4765198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4766193323Sed}
4767193323Sed
4768198090SrdivackyMachineSDNode *
4769198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4770198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4771198090Srdivacky                             SDValue Op2, SDValue Op3) {
4772193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4773193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4774198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4775193323Sed}
4776193323Sed
4777198090SrdivackyMachineSDNode *
4778198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4779198090Srdivacky                             EVT VT1, EVT VT2,
4780198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4781193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4782198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4783193323Sed}
4784193323Sed
4785198090SrdivackyMachineSDNode *
4786198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4787198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4788198090Srdivacky                             SDValue Op1, SDValue Op2) {
4789193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4790193323Sed  SDValue Ops[] = { Op1, Op2 };
4791198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4792193323Sed}
4793193323Sed
4794198090SrdivackyMachineSDNode *
4795198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4796198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4797198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4798193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4799193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4800198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4801193323Sed}
4802193323Sed
4803198090SrdivackyMachineSDNode *
4804198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4805198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4806198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4807193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4808198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4809193323Sed}
4810193323Sed
4811198090SrdivackyMachineSDNode *
4812198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4813198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4814198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4815193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4816198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4817193323Sed}
4818193323Sed
4819198090SrdivackyMachineSDNode *
4820198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821198090Srdivacky                             const std::vector<EVT> &ResultTys,
4822198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4823198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4824198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4825193323Sed}
4826193323Sed
4827198090SrdivackyMachineSDNode *
4828198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4829198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4830198090Srdivacky  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4831198090Srdivacky  MachineSDNode *N;
4832198090Srdivacky  void *IP;
4833198090Srdivacky
4834198090Srdivacky  if (DoCSE) {
4835198090Srdivacky    FoldingSetNodeID ID;
4836198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4837198090Srdivacky    IP = 0;
4838201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4839198090Srdivacky      return cast<MachineSDNode>(E);
4840198090Srdivacky  }
4841198090Srdivacky
4842198090Srdivacky  // Allocate a new MachineSDNode.
4843205407Srdivacky  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4844198090Srdivacky
4845198090Srdivacky  // Initialize the operands list.
4846198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
4847198090Srdivacky    // We're creating a final node that will live unmorphed for the
4848198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
4849198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
4850198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4851198090Srdivacky                    Ops, NumOps);
4852198090Srdivacky  else
4853198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
4854198090Srdivacky  N->OperandsNeedDelete = false;
4855198090Srdivacky
4856198090Srdivacky  if (DoCSE)
4857198090Srdivacky    CSEMap.InsertNode(N, IP);
4858198090Srdivacky
4859198090Srdivacky  AllNodes.push_back(N);
4860198090Srdivacky#ifndef NDEBUG
4861198090Srdivacky  VerifyNode(N);
4862198090Srdivacky#endif
4863198090Srdivacky  return N;
4864198090Srdivacky}
4865198090Srdivacky
4866198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
4867203954Srdivacky/// TargetOpcode::EXTRACT_SUBREG nodes.
4868198090SrdivackySDValue
4869198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4870198090Srdivacky                                     SDValue Operand) {
4871198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4872203954Srdivacky  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4873198090Srdivacky                                  VT, Operand, SRIdxVal);
4874198090Srdivacky  return SDValue(Subreg, 0);
4875198090Srdivacky}
4876198090Srdivacky
4877198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
4878203954Srdivacky/// TargetOpcode::INSERT_SUBREG nodes.
4879198090SrdivackySDValue
4880198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4881198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
4882198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4883203954Srdivacky  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4884198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
4885198090Srdivacky  return SDValue(Result, 0);
4886198090Srdivacky}
4887198090Srdivacky
4888193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
4889193323Sed/// else return NULL.
4890193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4891193323Sed                                      const SDValue *Ops, unsigned NumOps) {
4892193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4893193323Sed    FoldingSetNodeID ID;
4894193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4895193323Sed    void *IP = 0;
4896201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4897193323Sed      return E;
4898193323Sed  }
4899193323Sed  return NULL;
4900193323Sed}
4901193323Sed
4902206083Srdivacky/// getDbgValue - Creates a SDDbgValue node.
4903206083Srdivacky///
4904206083SrdivackySDDbgValue *
4905206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4906206083Srdivacky                          DebugLoc DL, unsigned O) {
4907206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4908206083Srdivacky}
4909206083Srdivacky
4910206083SrdivackySDDbgValue *
4911206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4912206083Srdivacky                          DebugLoc DL, unsigned O) {
4913206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4914206083Srdivacky}
4915206083Srdivacky
4916206083SrdivackySDDbgValue *
4917206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4918206083Srdivacky                          DebugLoc DL, unsigned O) {
4919206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4920206083Srdivacky}
4921206083Srdivacky
4922204792Srdivackynamespace {
4923204792Srdivacky
4924204792Srdivacky/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4925204792Srdivacky/// pointed to by a use iterator is deleted, increment the use iterator
4926204792Srdivacky/// so that it doesn't dangle.
4927204792Srdivacky///
4928204792Srdivacky/// This class also manages a "downlink" DAGUpdateListener, to forward
4929204792Srdivacky/// messages to ReplaceAllUsesWith's callers.
4930204792Srdivacky///
4931204792Srdivackyclass RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4932204792Srdivacky  SelectionDAG::DAGUpdateListener *DownLink;
4933204792Srdivacky  SDNode::use_iterator &UI;
4934204792Srdivacky  SDNode::use_iterator &UE;
4935204792Srdivacky
4936204792Srdivacky  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4937204792Srdivacky    // Increment the iterator as needed.
4938204792Srdivacky    while (UI != UE && N == *UI)
4939204792Srdivacky      ++UI;
4940204792Srdivacky
4941204792Srdivacky    // Then forward the message.
4942204792Srdivacky    if (DownLink) DownLink->NodeDeleted(N, E);
4943204792Srdivacky  }
4944204792Srdivacky
4945204792Srdivacky  virtual void NodeUpdated(SDNode *N) {
4946204792Srdivacky    // Just forward the message.
4947204792Srdivacky    if (DownLink) DownLink->NodeUpdated(N);
4948204792Srdivacky  }
4949204792Srdivacky
4950204792Srdivackypublic:
4951204792Srdivacky  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4952204792Srdivacky                     SDNode::use_iterator &ui,
4953204792Srdivacky                     SDNode::use_iterator &ue)
4954204792Srdivacky    : DownLink(dl), UI(ui), UE(ue) {}
4955204792Srdivacky};
4956204792Srdivacky
4957204792Srdivacky}
4958204792Srdivacky
4959193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4960193323Sed/// This can cause recursive merging of nodes in the DAG.
4961193323Sed///
4962193323Sed/// This version assumes From has a single result value.
4963193323Sed///
4964193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4965193323Sed                                      DAGUpdateListener *UpdateListener) {
4966193323Sed  SDNode *From = FromN.getNode();
4967193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4968193323Sed         "Cannot replace with this method!");
4969193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
4970193323Sed
4971193323Sed  // Iterate over all the existing uses of From. New uses will be added
4972193323Sed  // to the beginning of the use list, which we avoid visiting.
4973193323Sed  // This specifically avoids visiting uses of From that arise while the
4974193323Sed  // replacement is happening, because any such uses would be the result
4975193323Sed  // of CSE: If an existing node looks like From after one of its operands
4976193323Sed  // is replaced by To, we don't want to replace of all its users with To
4977193323Sed  // too. See PR3018 for more info.
4978193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4979204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4980193323Sed  while (UI != UE) {
4981193323Sed    SDNode *User = *UI;
4982193323Sed
4983193323Sed    // This node is about to morph, remove its old self from the CSE maps.
4984193323Sed    RemoveNodeFromCSEMaps(User);
4985193323Sed
4986193323Sed    // A user can appear in a use list multiple times, and when this
4987193323Sed    // happens the uses are usually next to each other in the list.
4988193323Sed    // To help reduce the number of CSE recomputations, process all
4989193323Sed    // the uses of this user that we can find this way.
4990193323Sed    do {
4991193323Sed      SDUse &Use = UI.getUse();
4992193323Sed      ++UI;
4993193323Sed      Use.set(To);
4994193323Sed    } while (UI != UE && *UI == User);
4995193323Sed
4996193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
4997193323Sed    // already exists there, recursively merge the results together.
4998204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
4999193323Sed  }
5000193323Sed}
5001193323Sed
5002193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5003193323Sed/// This can cause recursive merging of nodes in the DAG.
5004193323Sed///
5005193323Sed/// This version assumes that for each value of From, there is a
5006193323Sed/// corresponding value in To in the same position with the same type.
5007193323Sed///
5008193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5009193323Sed                                      DAGUpdateListener *UpdateListener) {
5010193323Sed#ifndef NDEBUG
5011193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5012193323Sed    assert((!From->hasAnyUseOfValue(i) ||
5013193323Sed            From->getValueType(i) == To->getValueType(i)) &&
5014193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
5015193323Sed#endif
5016193323Sed
5017193323Sed  // Handle the trivial case.
5018193323Sed  if (From == To)
5019193323Sed    return;
5020193323Sed
5021193323Sed  // Iterate over just the existing users of From. See the comments in
5022193323Sed  // the ReplaceAllUsesWith above.
5023193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5024204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5025193323Sed  while (UI != UE) {
5026193323Sed    SDNode *User = *UI;
5027193323Sed
5028193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5029193323Sed    RemoveNodeFromCSEMaps(User);
5030193323Sed
5031193323Sed    // A user can appear in a use list multiple times, and when this
5032193323Sed    // happens the uses are usually next to each other in the list.
5033193323Sed    // To help reduce the number of CSE recomputations, process all
5034193323Sed    // the uses of this user that we can find this way.
5035193323Sed    do {
5036193323Sed      SDUse &Use = UI.getUse();
5037193323Sed      ++UI;
5038193323Sed      Use.setNode(To);
5039193323Sed    } while (UI != UE && *UI == User);
5040193323Sed
5041193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5042193323Sed    // already exists there, recursively merge the results together.
5043204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5044193323Sed  }
5045193323Sed}
5046193323Sed
5047193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5048193323Sed/// This can cause recursive merging of nodes in the DAG.
5049193323Sed///
5050193323Sed/// This version can replace From with any result values.  To must match the
5051193323Sed/// number and types of values returned by From.
5052193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5053193323Sed                                      const SDValue *To,
5054193323Sed                                      DAGUpdateListener *UpdateListener) {
5055193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5056193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5057193323Sed
5058193323Sed  // Iterate over just the existing users of From. See the comments in
5059193323Sed  // the ReplaceAllUsesWith above.
5060193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5061204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5062193323Sed  while (UI != UE) {
5063193323Sed    SDNode *User = *UI;
5064193323Sed
5065193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5066193323Sed    RemoveNodeFromCSEMaps(User);
5067193323Sed
5068193323Sed    // A user can appear in a use list multiple times, and when this
5069193323Sed    // happens the uses are usually next to each other in the list.
5070193323Sed    // To help reduce the number of CSE recomputations, process all
5071193323Sed    // the uses of this user that we can find this way.
5072193323Sed    do {
5073193323Sed      SDUse &Use = UI.getUse();
5074193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5075193323Sed      ++UI;
5076193323Sed      Use.set(ToOp);
5077193323Sed    } while (UI != UE && *UI == User);
5078193323Sed
5079193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5080193323Sed    // already exists there, recursively merge the results together.
5081204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5082193323Sed  }
5083193323Sed}
5084193323Sed
5085193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5086193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5087193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5088193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5089193323Sed                                             DAGUpdateListener *UpdateListener){
5090193323Sed  // Handle the really simple, really trivial case efficiently.
5091193323Sed  if (From == To) return;
5092193323Sed
5093193323Sed  // Handle the simple, trivial, case efficiently.
5094193323Sed  if (From.getNode()->getNumValues() == 1) {
5095193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5096193323Sed    return;
5097193323Sed  }
5098193323Sed
5099193323Sed  // Iterate over just the existing users of From. See the comments in
5100193323Sed  // the ReplaceAllUsesWith above.
5101193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5102193323Sed                       UE = From.getNode()->use_end();
5103204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5104193323Sed  while (UI != UE) {
5105193323Sed    SDNode *User = *UI;
5106193323Sed    bool UserRemovedFromCSEMaps = false;
5107193323Sed
5108193323Sed    // A user can appear in a use list multiple times, and when this
5109193323Sed    // happens the uses are usually next to each other in the list.
5110193323Sed    // To help reduce the number of CSE recomputations, process all
5111193323Sed    // the uses of this user that we can find this way.
5112193323Sed    do {
5113193323Sed      SDUse &Use = UI.getUse();
5114193323Sed
5115193323Sed      // Skip uses of different values from the same node.
5116193323Sed      if (Use.getResNo() != From.getResNo()) {
5117193323Sed        ++UI;
5118193323Sed        continue;
5119193323Sed      }
5120193323Sed
5121193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5122193323Sed      // so remove its old self from the CSE maps.
5123193323Sed      if (!UserRemovedFromCSEMaps) {
5124193323Sed        RemoveNodeFromCSEMaps(User);
5125193323Sed        UserRemovedFromCSEMaps = true;
5126193323Sed      }
5127193323Sed
5128193323Sed      ++UI;
5129193323Sed      Use.set(To);
5130193323Sed    } while (UI != UE && *UI == User);
5131193323Sed
5132193323Sed    // We are iterating over all uses of the From node, so if a use
5133193323Sed    // doesn't use the specific value, no changes are made.
5134193323Sed    if (!UserRemovedFromCSEMaps)
5135193323Sed      continue;
5136193323Sed
5137193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5138193323Sed    // already exists there, recursively merge the results together.
5139204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5140193323Sed  }
5141193323Sed}
5142193323Sed
5143193323Sednamespace {
5144193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5145193323Sed  /// to record information about a use.
5146193323Sed  struct UseMemo {
5147193323Sed    SDNode *User;
5148193323Sed    unsigned Index;
5149193323Sed    SDUse *Use;
5150193323Sed  };
5151193323Sed
5152193323Sed  /// operator< - Sort Memos by User.
5153193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5154193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5155193323Sed  }
5156193323Sed}
5157193323Sed
5158193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5159193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5160193323Sed/// may appear in both the From and To list.  The Deleted vector is
5161193323Sed/// handled the same way as for ReplaceAllUsesWith.
5162193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5163193323Sed                                              const SDValue *To,
5164193323Sed                                              unsigned Num,
5165193323Sed                                              DAGUpdateListener *UpdateListener){
5166193323Sed  // Handle the simple, trivial case efficiently.
5167193323Sed  if (Num == 1)
5168193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5169193323Sed
5170193323Sed  // Read up all the uses and make records of them. This helps
5171193323Sed  // processing new uses that are introduced during the
5172193323Sed  // replacement process.
5173193323Sed  SmallVector<UseMemo, 4> Uses;
5174193323Sed  for (unsigned i = 0; i != Num; ++i) {
5175193323Sed    unsigned FromResNo = From[i].getResNo();
5176193323Sed    SDNode *FromNode = From[i].getNode();
5177193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5178193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5179193323Sed      SDUse &Use = UI.getUse();
5180193323Sed      if (Use.getResNo() == FromResNo) {
5181193323Sed        UseMemo Memo = { *UI, i, &Use };
5182193323Sed        Uses.push_back(Memo);
5183193323Sed      }
5184193323Sed    }
5185193323Sed  }
5186193323Sed
5187193323Sed  // Sort the uses, so that all the uses from a given User are together.
5188193323Sed  std::sort(Uses.begin(), Uses.end());
5189193323Sed
5190193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5191193323Sed       UseIndex != UseIndexEnd; ) {
5192193323Sed    // We know that this user uses some value of From.  If it is the right
5193193323Sed    // value, update it.
5194193323Sed    SDNode *User = Uses[UseIndex].User;
5195193323Sed
5196193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5197193323Sed    RemoveNodeFromCSEMaps(User);
5198193323Sed
5199193323Sed    // The Uses array is sorted, so all the uses for a given User
5200193323Sed    // are next to each other in the list.
5201193323Sed    // To help reduce the number of CSE recomputations, process all
5202193323Sed    // the uses of this user that we can find this way.
5203193323Sed    do {
5204193323Sed      unsigned i = Uses[UseIndex].Index;
5205193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5206193323Sed      ++UseIndex;
5207193323Sed
5208193323Sed      Use.set(To[i]);
5209193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5210193323Sed
5211193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5212193323Sed    // already exists there, recursively merge the results together.
5213193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5214193323Sed  }
5215193323Sed}
5216193323Sed
5217193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5218193323Sed/// based on their topological order. It returns the maximum id and a vector
5219193323Sed/// of the SDNodes* in assigned order by reference.
5220193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5221193323Sed
5222193323Sed  unsigned DAGSize = 0;
5223193323Sed
5224193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5225193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5226193323Sed  // it is at the end of the list.
5227193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5228193323Sed
5229193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5230193323Sed  // the list immediately. Annotate nodes that do have operands with their
5231193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5232193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5233193323Sed  // before SortedPos will contain the topological sort index, and the
5234193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5235193323Sed  // count of outstanding operands.
5236193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5237193323Sed    SDNode *N = I++;
5238202878Srdivacky    checkForCycles(N);
5239193323Sed    unsigned Degree = N->getNumOperands();
5240193323Sed    if (Degree == 0) {
5241193323Sed      // A node with no uses, add it to the result array immediately.
5242193323Sed      N->setNodeId(DAGSize++);
5243193323Sed      allnodes_iterator Q = N;
5244193323Sed      if (Q != SortedPos)
5245193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5246202878Srdivacky      assert(SortedPos != AllNodes.end() && "Overran node list");
5247193323Sed      ++SortedPos;
5248193323Sed    } else {
5249193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5250193323Sed      N->setNodeId(Degree);
5251193323Sed    }
5252193323Sed  }
5253193323Sed
5254193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5255193323Sed  // such that by the time the end is reached all nodes will be sorted.
5256193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5257193323Sed    SDNode *N = I;
5258202878Srdivacky    checkForCycles(N);
5259202878Srdivacky    // N is in sorted position, so all its uses have one less operand
5260202878Srdivacky    // that needs to be sorted.
5261193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5262193323Sed         UI != UE; ++UI) {
5263193323Sed      SDNode *P = *UI;
5264193323Sed      unsigned Degree = P->getNodeId();
5265202878Srdivacky      assert(Degree != 0 && "Invalid node degree");
5266193323Sed      --Degree;
5267193323Sed      if (Degree == 0) {
5268193323Sed        // All of P's operands are sorted, so P may sorted now.
5269193323Sed        P->setNodeId(DAGSize++);
5270193323Sed        if (P != SortedPos)
5271193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5272202878Srdivacky        assert(SortedPos != AllNodes.end() && "Overran node list");
5273193323Sed        ++SortedPos;
5274193323Sed      } else {
5275193323Sed        // Update P's outstanding operand count.
5276193323Sed        P->setNodeId(Degree);
5277193323Sed      }
5278193323Sed    }
5279202878Srdivacky    if (I == SortedPos) {
5280203954Srdivacky#ifndef NDEBUG
5281203954Srdivacky      SDNode *S = ++I;
5282203954Srdivacky      dbgs() << "Overran sorted position:\n";
5283202878Srdivacky      S->dumprFull();
5284203954Srdivacky#endif
5285203954Srdivacky      llvm_unreachable(0);
5286202878Srdivacky    }
5287193323Sed  }
5288193323Sed
5289193323Sed  assert(SortedPos == AllNodes.end() &&
5290193323Sed         "Topological sort incomplete!");
5291193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5292193323Sed         "First node in topological sort is not the entry token!");
5293193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5294193323Sed         "First node in topological sort has non-zero id!");
5295193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5296193323Sed         "First node in topological sort has operands!");
5297193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5298193323Sed         "Last node in topologic sort has unexpected id!");
5299193323Sed  assert(AllNodes.back().use_empty() &&
5300193323Sed         "Last node in topologic sort has users!");
5301193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5302193323Sed  return DAGSize;
5303193323Sed}
5304193323Sed
5305201360Srdivacky/// AssignOrdering - Assign an order to the SDNode.
5306203954Srdivackyvoid SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5307201360Srdivacky  assert(SD && "Trying to assign an order to a null node!");
5308202878Srdivacky  Ordering->add(SD, Order);
5309201360Srdivacky}
5310193323Sed
5311201360Srdivacky/// GetOrdering - Get the order for the SDNode.
5312201360Srdivackyunsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5313201360Srdivacky  assert(SD && "Trying to get the order of a null node!");
5314202878Srdivacky  return Ordering->getOrder(SD);
5315201360Srdivacky}
5316193323Sed
5317206083Srdivacky/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5318206083Srdivacky/// value is produced by SD.
5319206083Srdivackyvoid SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5320206083Srdivacky  DbgInfo->add(DB, SD);
5321206083Srdivacky  if (SD)
5322206083Srdivacky    SD->setHasDebugValue(true);
5323205218Srdivacky}
5324201360Srdivacky
5325193323Sed//===----------------------------------------------------------------------===//
5326193323Sed//                              SDNode Class
5327193323Sed//===----------------------------------------------------------------------===//
5328193323Sed
5329193323SedHandleSDNode::~HandleSDNode() {
5330193323Sed  DropOperands();
5331193323Sed}
5332193323Sed
5333195098SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5334198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5335206124Srdivacky  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5336193323Sed  TheGlobal = const_cast<GlobalValue*>(GA);
5337193323Sed}
5338193323Sed
5339198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5340198090Srdivacky                     MachineMemOperand *mmo)
5341198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5342204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5343204642Srdivacky                                      MMO->isNonTemporal());
5344198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5345204642Srdivacky  assert(isNonTemporal() == MMO->isNonTemporal() &&
5346204642Srdivacky         "Non-temporal encoding error!");
5347198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5348193323Sed}
5349193323Sed
5350193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5351198090Srdivacky                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5352198090Srdivacky                     MachineMemOperand *mmo)
5353193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5354198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5355204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5356204642Srdivacky                                      MMO->isNonTemporal());
5357198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5358198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5359193323Sed}
5360193323Sed
5361193323Sed/// Profile - Gather unique data for the node.
5362193323Sed///
5363193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5364193323Sed  AddNodeIDNode(ID, this);
5365193323Sed}
5366193323Sed
5367198090Srdivackynamespace {
5368198090Srdivacky  struct EVTArray {
5369198090Srdivacky    std::vector<EVT> VTs;
5370198090Srdivacky
5371198090Srdivacky    EVTArray() {
5372198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5373198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5374198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5375198090Srdivacky    }
5376198090Srdivacky  };
5377198090Srdivacky}
5378198090Srdivacky
5379198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5380198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5381195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5382195098Sed
5383193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5384193323Sed///
5385198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5386193323Sed  if (VT.isExtended()) {
5387198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5388195098Sed    return &(*EVTs->insert(VT).first);
5389193323Sed  } else {
5390198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5391193323Sed  }
5392193323Sed}
5393193323Sed
5394193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5395193323Sed/// indicated value.  This method ignores uses of other values defined by this
5396193323Sed/// operation.
5397193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5398193323Sed  assert(Value < getNumValues() && "Bad value!");
5399193323Sed
5400193323Sed  // TODO: Only iterate over uses of a given value of the node
5401193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5402193323Sed    if (UI.getUse().getResNo() == Value) {
5403193323Sed      if (NUses == 0)
5404193323Sed        return false;
5405193323Sed      --NUses;
5406193323Sed    }
5407193323Sed  }
5408193323Sed
5409193323Sed  // Found exactly the right number of uses?
5410193323Sed  return NUses == 0;
5411193323Sed}
5412193323Sed
5413193323Sed
5414193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5415193323Sed/// value. This method ignores uses of other values defined by this operation.
5416193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5417193323Sed  assert(Value < getNumValues() && "Bad value!");
5418193323Sed
5419193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5420193323Sed    if (UI.getUse().getResNo() == Value)
5421193323Sed      return true;
5422193323Sed
5423193323Sed  return false;
5424193323Sed}
5425193323Sed
5426193323Sed
5427193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5428193323Sed///
5429193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5430193323Sed  bool Seen = false;
5431193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5432193323Sed    SDNode *User = *I;
5433193323Sed    if (User == this)
5434193323Sed      Seen = true;
5435193323Sed    else
5436193323Sed      return false;
5437193323Sed  }
5438193323Sed
5439193323Sed  return Seen;
5440193323Sed}
5441193323Sed
5442193323Sed/// isOperand - Return true if this node is an operand of N.
5443193323Sed///
5444193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5445193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5446193323Sed    if (*this == N->getOperand(i))
5447193323Sed      return true;
5448193323Sed  return false;
5449193323Sed}
5450193323Sed
5451193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5452193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5453193323Sed    if (this == N->OperandList[i].getNode())
5454193323Sed      return true;
5455193323Sed  return false;
5456193323Sed}
5457193323Sed
5458193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5459193323Sed/// be a chain) reaches the specified operand without crossing any
5460193323Sed/// side-effecting instructions.  In practice, this looks through token
5461193323Sed/// factors and non-volatile loads.  In order to remain efficient, this only
5462193323Sed/// looks a couple of nodes in, it does not do an exhaustive search.
5463193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5464193323Sed                                               unsigned Depth) const {
5465193323Sed  if (*this == Dest) return true;
5466193323Sed
5467193323Sed  // Don't search too deeply, we just want to be able to see through
5468193323Sed  // TokenFactor's etc.
5469193323Sed  if (Depth == 0) return false;
5470193323Sed
5471193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5472193323Sed  // of the operands of the TF reach dest, then we can do the xform.
5473193323Sed  if (getOpcode() == ISD::TokenFactor) {
5474193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5475193323Sed      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5476193323Sed        return true;
5477193323Sed    return false;
5478193323Sed  }
5479193323Sed
5480193323Sed  // Loads don't have side effects, look through them.
5481193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5482193323Sed    if (!Ld->isVolatile())
5483193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5484193323Sed  }
5485193323Sed  return false;
5486193323Sed}
5487193323Sed
5488193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5489198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5490193323Sed/// NOTE: this is an expensive method. Use it carefully.
5491193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5492193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5493198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5494198892Srdivacky  Worklist.push_back(N);
5495198892Srdivacky
5496198892Srdivacky  do {
5497198892Srdivacky    N = Worklist.pop_back_val();
5498198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5499198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5500198892Srdivacky      if (Op == this)
5501198892Srdivacky        return true;
5502198892Srdivacky      if (Visited.insert(Op))
5503198892Srdivacky        Worklist.push_back(Op);
5504198892Srdivacky    }
5505198892Srdivacky  } while (!Worklist.empty());
5506198892Srdivacky
5507198892Srdivacky  return false;
5508193323Sed}
5509193323Sed
5510193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5511193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5512193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5513193323Sed}
5514193323Sed
5515193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5516193323Sed  switch (getOpcode()) {
5517193323Sed  default:
5518193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5519193323Sed      return "<<Unknown DAG Node>>";
5520193323Sed    if (isMachineOpcode()) {
5521193323Sed      if (G)
5522193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5523193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5524193323Sed            return TII->get(getMachineOpcode()).getName();
5525204642Srdivacky      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5526193323Sed    }
5527193323Sed    if (G) {
5528193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5529193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5530193323Sed      if (Name) return Name;
5531204642Srdivacky      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5532193323Sed    }
5533204642Srdivacky    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5534193323Sed
5535193323Sed#ifndef NDEBUG
5536193323Sed  case ISD::DELETED_NODE:
5537193323Sed    return "<<Deleted Node!>>";
5538193323Sed#endif
5539193323Sed  case ISD::PREFETCH:      return "Prefetch";
5540193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5541193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5542193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5543193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5544193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5545193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5546193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5547193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5548193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5549193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5550193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5551193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5552193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5553193323Sed  case ISD::PCMARKER:      return "PCMarker";
5554193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5555193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5556193323Sed  case ISD::EntryToken:    return "EntryToken";
5557193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5558193323Sed  case ISD::AssertSext:    return "AssertSext";
5559193323Sed  case ISD::AssertZext:    return "AssertZext";
5560193323Sed
5561193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5562193323Sed  case ISD::VALUETYPE:     return "ValueType";
5563193323Sed  case ISD::Register:      return "Register";
5564193323Sed
5565193323Sed  case ISD::Constant:      return "Constant";
5566193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5567193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5568193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5569193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5570193323Sed  case ISD::JumpTable:     return "JumpTable";
5571193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5572193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5573193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5574193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5575193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5576198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5577193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5578193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5579193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5580193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5581198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5582198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5583193323Sed  case ISD::INTRINSIC_VOID:
5584193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5585198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5586198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5587198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5588198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5589198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5590198396Srdivacky      return TII->getName(IID);
5591198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5592193323Sed  }
5593193323Sed
5594193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5595193323Sed  case ISD::TargetConstant: return "TargetConstant";
5596193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5597193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5598193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5599193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5600193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5601193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5602193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5603198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5604193323Sed
5605193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5606193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5607193323Sed  case ISD::UNDEF:         return "undef";
5608193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5609193323Sed  case ISD::INLINEASM:     return "inlineasm";
5610193323Sed  case ISD::EH_LABEL:      return "eh_label";
5611193323Sed  case ISD::HANDLENODE:    return "handlenode";
5612193323Sed
5613193323Sed  // Unary operators
5614193323Sed  case ISD::FABS:   return "fabs";
5615193323Sed  case ISD::FNEG:   return "fneg";
5616193323Sed  case ISD::FSQRT:  return "fsqrt";
5617193323Sed  case ISD::FSIN:   return "fsin";
5618193323Sed  case ISD::FCOS:   return "fcos";
5619193323Sed  case ISD::FPOWI:  return "fpowi";
5620193323Sed  case ISD::FPOW:   return "fpow";
5621193323Sed  case ISD::FTRUNC: return "ftrunc";
5622193323Sed  case ISD::FFLOOR: return "ffloor";
5623193323Sed  case ISD::FCEIL:  return "fceil";
5624193323Sed  case ISD::FRINT:  return "frint";
5625193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5626193323Sed
5627193323Sed  // Binary operators
5628193323Sed  case ISD::ADD:    return "add";
5629193323Sed  case ISD::SUB:    return "sub";
5630193323Sed  case ISD::MUL:    return "mul";
5631193323Sed  case ISD::MULHU:  return "mulhu";
5632193323Sed  case ISD::MULHS:  return "mulhs";
5633193323Sed  case ISD::SDIV:   return "sdiv";
5634193323Sed  case ISD::UDIV:   return "udiv";
5635193323Sed  case ISD::SREM:   return "srem";
5636193323Sed  case ISD::UREM:   return "urem";
5637193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5638193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5639193323Sed  case ISD::SDIVREM:    return "sdivrem";
5640193323Sed  case ISD::UDIVREM:    return "udivrem";
5641193323Sed  case ISD::AND:    return "and";
5642193323Sed  case ISD::OR:     return "or";
5643193323Sed  case ISD::XOR:    return "xor";
5644193323Sed  case ISD::SHL:    return "shl";
5645193323Sed  case ISD::SRA:    return "sra";
5646193323Sed  case ISD::SRL:    return "srl";
5647193323Sed  case ISD::ROTL:   return "rotl";
5648193323Sed  case ISD::ROTR:   return "rotr";
5649193323Sed  case ISD::FADD:   return "fadd";
5650193323Sed  case ISD::FSUB:   return "fsub";
5651193323Sed  case ISD::FMUL:   return "fmul";
5652193323Sed  case ISD::FDIV:   return "fdiv";
5653193323Sed  case ISD::FREM:   return "frem";
5654193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5655193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5656193323Sed
5657193323Sed  case ISD::SETCC:       return "setcc";
5658193323Sed  case ISD::VSETCC:      return "vsetcc";
5659193323Sed  case ISD::SELECT:      return "select";
5660193323Sed  case ISD::SELECT_CC:   return "select_cc";
5661193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5662193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5663193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5664193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5665193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5666193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5667193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5668193323Sed  case ISD::ADDC:        return "addc";
5669193323Sed  case ISD::ADDE:        return "adde";
5670193323Sed  case ISD::SADDO:       return "saddo";
5671193323Sed  case ISD::UADDO:       return "uaddo";
5672193323Sed  case ISD::SSUBO:       return "ssubo";
5673193323Sed  case ISD::USUBO:       return "usubo";
5674193323Sed  case ISD::SMULO:       return "smulo";
5675193323Sed  case ISD::UMULO:       return "umulo";
5676193323Sed  case ISD::SUBC:        return "subc";
5677193323Sed  case ISD::SUBE:        return "sube";
5678193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5679193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5680193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5681193323Sed
5682193323Sed  // Conversion operators.
5683193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5684193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5685193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5686193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5687193323Sed  case ISD::TRUNCATE:    return "truncate";
5688193323Sed  case ISD::FP_ROUND:    return "fp_round";
5689193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5690193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5691193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5692193323Sed
5693193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5694193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5695193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5696193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5697193323Sed  case ISD::BIT_CONVERT: return "bit_convert";
5698205218Srdivacky  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5699205218Srdivacky  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5700193323Sed
5701193323Sed  case ISD::CONVERT_RNDSAT: {
5702193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5703198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5704193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5705193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5706193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5707193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5708193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5709193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5710193323Sed    case ISD::CVT_SU:  return "cvt_su";
5711193323Sed    case ISD::CVT_US:  return "cvt_us";
5712193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5713193323Sed    }
5714193323Sed  }
5715193323Sed
5716193323Sed    // Control flow instructions
5717193323Sed  case ISD::BR:      return "br";
5718193323Sed  case ISD::BRIND:   return "brind";
5719193323Sed  case ISD::BR_JT:   return "br_jt";
5720193323Sed  case ISD::BRCOND:  return "brcond";
5721193323Sed  case ISD::BR_CC:   return "br_cc";
5722193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5723193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5724193323Sed
5725193323Sed    // Other operators
5726193323Sed  case ISD::LOAD:               return "load";
5727193323Sed  case ISD::STORE:              return "store";
5728193323Sed  case ISD::VAARG:              return "vaarg";
5729193323Sed  case ISD::VACOPY:             return "vacopy";
5730193323Sed  case ISD::VAEND:              return "vaend";
5731193323Sed  case ISD::VASTART:            return "vastart";
5732193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5733193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5734193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5735193323Sed  case ISD::STACKSAVE:          return "stacksave";
5736193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5737193323Sed  case ISD::TRAP:               return "trap";
5738193323Sed
5739193323Sed  // Bit manipulation
5740193323Sed  case ISD::BSWAP:   return "bswap";
5741193323Sed  case ISD::CTPOP:   return "ctpop";
5742193323Sed  case ISD::CTTZ:    return "cttz";
5743193323Sed  case ISD::CTLZ:    return "ctlz";
5744193323Sed
5745193323Sed  // Trampolines
5746193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5747193323Sed
5748193323Sed  case ISD::CONDCODE:
5749193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5750198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5751193323Sed    case ISD::SETOEQ:  return "setoeq";
5752193323Sed    case ISD::SETOGT:  return "setogt";
5753193323Sed    case ISD::SETOGE:  return "setoge";
5754193323Sed    case ISD::SETOLT:  return "setolt";
5755193323Sed    case ISD::SETOLE:  return "setole";
5756193323Sed    case ISD::SETONE:  return "setone";
5757193323Sed
5758193323Sed    case ISD::SETO:    return "seto";
5759193323Sed    case ISD::SETUO:   return "setuo";
5760193323Sed    case ISD::SETUEQ:  return "setue";
5761193323Sed    case ISD::SETUGT:  return "setugt";
5762193323Sed    case ISD::SETUGE:  return "setuge";
5763193323Sed    case ISD::SETULT:  return "setult";
5764193323Sed    case ISD::SETULE:  return "setule";
5765193323Sed    case ISD::SETUNE:  return "setune";
5766193323Sed
5767193323Sed    case ISD::SETEQ:   return "seteq";
5768193323Sed    case ISD::SETGT:   return "setgt";
5769193323Sed    case ISD::SETGE:   return "setge";
5770193323Sed    case ISD::SETLT:   return "setlt";
5771193323Sed    case ISD::SETLE:   return "setle";
5772193323Sed    case ISD::SETNE:   return "setne";
5773193323Sed    }
5774193323Sed  }
5775193323Sed}
5776193323Sed
5777193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5778193323Sed  switch (AM) {
5779193323Sed  default:
5780193323Sed    return "";
5781193323Sed  case ISD::PRE_INC:
5782193323Sed    return "<pre-inc>";
5783193323Sed  case ISD::PRE_DEC:
5784193323Sed    return "<pre-dec>";
5785193323Sed  case ISD::POST_INC:
5786193323Sed    return "<post-inc>";
5787193323Sed  case ISD::POST_DEC:
5788193323Sed    return "<post-dec>";
5789193323Sed  }
5790193323Sed}
5791193323Sed
5792193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
5793193323Sed  std::string S = "< ";
5794193323Sed
5795193323Sed  if (isZExt())
5796193323Sed    S += "zext ";
5797193323Sed  if (isSExt())
5798193323Sed    S += "sext ";
5799193323Sed  if (isInReg())
5800193323Sed    S += "inreg ";
5801193323Sed  if (isSRet())
5802193323Sed    S += "sret ";
5803193323Sed  if (isByVal())
5804193323Sed    S += "byval ";
5805193323Sed  if (isNest())
5806193323Sed    S += "nest ";
5807193323Sed  if (getByValAlign())
5808193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
5809193323Sed  if (getOrigAlign())
5810193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5811193323Sed  if (getByValSize())
5812193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
5813193323Sed  return S + ">";
5814193323Sed}
5815193323Sed
5816193323Sedvoid SDNode::dump() const { dump(0); }
5817193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
5818202375Srdivacky  print(dbgs(), G);
5819193323Sed}
5820193323Sed
5821193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5822193323Sed  OS << (void*)this << ": ";
5823193323Sed
5824193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5825193323Sed    if (i) OS << ",";
5826193323Sed    if (getValueType(i) == MVT::Other)
5827193323Sed      OS << "ch";
5828193323Sed    else
5829198090Srdivacky      OS << getValueType(i).getEVTString();
5830193323Sed  }
5831193323Sed  OS << " = " << getOperationName(G);
5832193323Sed}
5833193323Sed
5834193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5835198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5836198090Srdivacky    if (!MN->memoperands_empty()) {
5837198090Srdivacky      OS << "<";
5838198090Srdivacky      OS << "Mem:";
5839198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5840198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
5841198090Srdivacky        OS << **i;
5842198090Srdivacky        if (next(i) != e)
5843198090Srdivacky          OS << " ";
5844198090Srdivacky      }
5845198090Srdivacky      OS << ">";
5846198090Srdivacky    }
5847198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
5848198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
5849193323Sed    OS << "<";
5850193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5851193323Sed      int Idx = SVN->getMaskElt(i);
5852193323Sed      if (i) OS << ",";
5853193323Sed      if (Idx < 0)
5854193323Sed        OS << "u";
5855193323Sed      else
5856193323Sed        OS << Idx;
5857193323Sed    }
5858193323Sed    OS << ">";
5859198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5860193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
5861193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5862193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5863193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5864193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5865193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5866193323Sed    else {
5867193323Sed      OS << "<APFloat(";
5868193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
5869193323Sed      OS << ")>";
5870193323Sed    }
5871193323Sed  } else if (const GlobalAddressSDNode *GADN =
5872193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
5873193323Sed    int64_t offset = GADN->getOffset();
5874193323Sed    OS << '<';
5875193323Sed    WriteAsOperand(OS, GADN->getGlobal());
5876193323Sed    OS << '>';
5877193323Sed    if (offset > 0)
5878193323Sed      OS << " + " << offset;
5879193323Sed    else
5880193323Sed      OS << " " << offset;
5881198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
5882195098Sed      OS << " [TF=" << TF << ']';
5883193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5884193323Sed    OS << "<" << FIDN->getIndex() << ">";
5885193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5886193323Sed    OS << "<" << JTDN->getIndex() << ">";
5887198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
5888195098Sed      OS << " [TF=" << TF << ']';
5889193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5890193323Sed    int offset = CP->getOffset();
5891193323Sed    if (CP->isMachineConstantPoolEntry())
5892193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
5893193323Sed    else
5894193323Sed      OS << "<" << *CP->getConstVal() << ">";
5895193323Sed    if (offset > 0)
5896193323Sed      OS << " + " << offset;
5897193323Sed    else
5898193323Sed      OS << " " << offset;
5899198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
5900195098Sed      OS << " [TF=" << TF << ']';
5901193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5902193323Sed    OS << "<";
5903193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5904193323Sed    if (LBB)
5905193323Sed      OS << LBB->getName() << " ";
5906193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
5907193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5908193323Sed    if (G && R->getReg() &&
5909193323Sed        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5910198892Srdivacky      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5911193323Sed    } else {
5912198892Srdivacky      OS << " %reg" << R->getReg();
5913193323Sed    }
5914193323Sed  } else if (const ExternalSymbolSDNode *ES =
5915193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
5916193323Sed    OS << "'" << ES->getSymbol() << "'";
5917198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
5918195098Sed      OS << " [TF=" << TF << ']';
5919193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5920193323Sed    if (M->getValue())
5921193323Sed      OS << "<" << M->getValue() << ">";
5922193323Sed    else
5923193323Sed      OS << "<null>";
5924193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5925198090Srdivacky    OS << ":" << N->getVT().getEVTString();
5926193323Sed  }
5927193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5928198892Srdivacky    OS << "<" << *LD->getMemOperand();
5929193323Sed
5930193323Sed    bool doExt = true;
5931193323Sed    switch (LD->getExtensionType()) {
5932193323Sed    default: doExt = false; break;
5933198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
5934198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
5935198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
5936193323Sed    }
5937193323Sed    if (doExt)
5938198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
5939193323Sed
5940193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
5941193323Sed    if (*AM)
5942198090Srdivacky      OS << ", " << AM;
5943198090Srdivacky
5944198090Srdivacky    OS << ">";
5945193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5946198892Srdivacky    OS << "<" << *ST->getMemOperand();
5947193323Sed
5948193323Sed    if (ST->isTruncatingStore())
5949198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5950193323Sed
5951193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
5952193323Sed    if (*AM)
5953198090Srdivacky      OS << ", " << AM;
5954198090Srdivacky
5955198090Srdivacky    OS << ">";
5956198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5957198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
5958198892Srdivacky  } else if (const BlockAddressSDNode *BA =
5959198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
5960198892Srdivacky    OS << "<";
5961198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5962198892Srdivacky    OS << ", ";
5963198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5964198892Srdivacky    OS << ">";
5965199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
5966199989Srdivacky      OS << " [TF=" << TF << ']';
5967193323Sed  }
5968201360Srdivacky
5969201360Srdivacky  if (G)
5970201360Srdivacky    if (unsigned Order = G->GetOrdering(this))
5971201360Srdivacky      OS << " [ORD=" << Order << ']';
5972205218Srdivacky
5973204642Srdivacky  if (getNodeId() != -1)
5974204642Srdivacky    OS << " [ID=" << getNodeId() << ']';
5975193323Sed}
5976193323Sed
5977193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5978193323Sed  print_types(OS, G);
5979193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5980199481Srdivacky    if (i) OS << ", "; else OS << " ";
5981193323Sed    OS << (void*)getOperand(i).getNode();
5982193323Sed    if (unsigned RN = getOperand(i).getResNo())
5983193323Sed      OS << ":" << RN;
5984193323Sed  }
5985193323Sed  print_details(OS, G);
5986193323Sed}
5987193323Sed
5988202878Srdivackystatic void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5989202878Srdivacky                                  const SelectionDAG *G, unsigned depth,
5990202878Srdivacky                                  unsigned indent)
5991202878Srdivacky{
5992202878Srdivacky  if (depth == 0)
5993202878Srdivacky    return;
5994202878Srdivacky
5995202878Srdivacky  OS.indent(indent);
5996202878Srdivacky
5997202878Srdivacky  N->print(OS, G);
5998202878Srdivacky
5999202878Srdivacky  if (depth < 1)
6000202878Srdivacky    return;
6001202878Srdivacky
6002202878Srdivacky  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6003202878Srdivacky    OS << '\n';
6004202878Srdivacky    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6005202878Srdivacky  }
6006202878Srdivacky}
6007202878Srdivacky
6008202878Srdivackyvoid SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6009202878Srdivacky                            unsigned depth) const {
6010202878Srdivacky  printrWithDepthHelper(OS, this, G, depth, 0);
6011202878Srdivacky}
6012202878Srdivacky
6013202878Srdivackyvoid SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6014202878Srdivacky  // Don't print impossibly deep things.
6015202878Srdivacky  printrWithDepth(OS, G, 100);
6016202878Srdivacky}
6017202878Srdivacky
6018202878Srdivackyvoid SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6019202878Srdivacky  printrWithDepth(dbgs(), G, depth);
6020202878Srdivacky}
6021202878Srdivacky
6022202878Srdivackyvoid SDNode::dumprFull(const SelectionDAG *G) const {
6023202878Srdivacky  // Don't print impossibly deep things.
6024202878Srdivacky  dumprWithDepth(G, 100);
6025202878Srdivacky}
6026202878Srdivacky
6027193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6028193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6029193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
6030193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6031193323Sed    else
6032202375Srdivacky      dbgs() << "\n" << std::string(indent+2, ' ')
6033202375Srdivacky           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6034193323Sed
6035193323Sed
6036202375Srdivacky  dbgs() << "\n";
6037202375Srdivacky  dbgs().indent(indent);
6038193323Sed  N->dump(G);
6039193323Sed}
6040193323Sed
6041199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6042199989Srdivacky  assert(N->getNumValues() == 1 &&
6043199989Srdivacky         "Can't unroll a vector with multiple results!");
6044199989Srdivacky
6045199989Srdivacky  EVT VT = N->getValueType(0);
6046199989Srdivacky  unsigned NE = VT.getVectorNumElements();
6047199989Srdivacky  EVT EltVT = VT.getVectorElementType();
6048199989Srdivacky  DebugLoc dl = N->getDebugLoc();
6049199989Srdivacky
6050199989Srdivacky  SmallVector<SDValue, 8> Scalars;
6051199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6052199989Srdivacky
6053199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
6054199989Srdivacky  if (ResNE == 0)
6055199989Srdivacky    ResNE = NE;
6056199989Srdivacky  else if (NE > ResNE)
6057199989Srdivacky    NE = ResNE;
6058199989Srdivacky
6059199989Srdivacky  unsigned i;
6060199989Srdivacky  for (i= 0; i != NE; ++i) {
6061199989Srdivacky    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6062199989Srdivacky      SDValue Operand = N->getOperand(j);
6063199989Srdivacky      EVT OperandVT = Operand.getValueType();
6064199989Srdivacky      if (OperandVT.isVector()) {
6065199989Srdivacky        // A vector operand; extract a single element.
6066199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
6067199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6068199989Srdivacky                              OperandEltVT,
6069199989Srdivacky                              Operand,
6070199989Srdivacky                              getConstant(i, MVT::i32));
6071199989Srdivacky      } else {
6072199989Srdivacky        // A scalar operand; just use it as is.
6073199989Srdivacky        Operands[j] = Operand;
6074199989Srdivacky      }
6075199989Srdivacky    }
6076199989Srdivacky
6077199989Srdivacky    switch (N->getOpcode()) {
6078199989Srdivacky    default:
6079199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6080199989Srdivacky                                &Operands[0], Operands.size()));
6081199989Srdivacky      break;
6082199989Srdivacky    case ISD::SHL:
6083199989Srdivacky    case ISD::SRA:
6084199989Srdivacky    case ISD::SRL:
6085199989Srdivacky    case ISD::ROTL:
6086199989Srdivacky    case ISD::ROTR:
6087199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6088199989Srdivacky                                getShiftAmountOperand(Operands[1])));
6089199989Srdivacky      break;
6090202375Srdivacky    case ISD::SIGN_EXTEND_INREG:
6091202375Srdivacky    case ISD::FP_ROUND_INREG: {
6092202375Srdivacky      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6093202375Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6094202375Srdivacky                                Operands[0],
6095202375Srdivacky                                getValueType(ExtVT)));
6096199989Srdivacky    }
6097202375Srdivacky    }
6098199989Srdivacky  }
6099199989Srdivacky
6100199989Srdivacky  for (; i < ResNE; ++i)
6101199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
6102199989Srdivacky
6103199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
6104199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6105199989Srdivacky                 &Scalars[0], Scalars.size());
6106199989Srdivacky}
6107199989Srdivacky
6108200581Srdivacky
6109200581Srdivacky/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6110200581Srdivacky/// location that is 'Dist' units away from the location that the 'Base' load
6111200581Srdivacky/// is loading from.
6112200581Srdivackybool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6113200581Srdivacky                                     unsigned Bytes, int Dist) const {
6114200581Srdivacky  if (LD->getChain() != Base->getChain())
6115200581Srdivacky    return false;
6116200581Srdivacky  EVT VT = LD->getValueType(0);
6117200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
6118200581Srdivacky    return false;
6119200581Srdivacky
6120200581Srdivacky  SDValue Loc = LD->getOperand(1);
6121200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
6122200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
6123200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6124200581Srdivacky      return false;
6125200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6126200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6127200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6128200581Srdivacky    int FS  = MFI->getObjectSize(FI);
6129200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
6130200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6131200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6132200581Srdivacky  }
6133200581Srdivacky  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6134200581Srdivacky    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6135200581Srdivacky    if (V && (V->getSExtValue() == Dist*Bytes))
6136200581Srdivacky      return true;
6137200581Srdivacky  }
6138200581Srdivacky
6139200581Srdivacky  GlobalValue *GV1 = NULL;
6140200581Srdivacky  GlobalValue *GV2 = NULL;
6141200581Srdivacky  int64_t Offset1 = 0;
6142200581Srdivacky  int64_t Offset2 = 0;
6143200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6144200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6145200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6146200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6147200581Srdivacky  return false;
6148200581Srdivacky}
6149200581Srdivacky
6150200581Srdivacky
6151200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6152200581Srdivacky/// it cannot be inferred.
6153200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6154200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6155200581Srdivacky  GlobalValue *GV;
6156200581Srdivacky  int64_t GVOffset = 0;
6157206083Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6158206083Srdivacky    // If GV has specified alignment, then use it. Otherwise, use the preferred
6159206083Srdivacky    // alignment.
6160206083Srdivacky    unsigned Align = GV->getAlignment();
6161206083Srdivacky    if (!Align) {
6162206083Srdivacky      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6163206083Srdivacky        if (GVar->hasInitializer()) {
6164206083Srdivacky          const TargetData *TD = TLI.getTargetData();
6165206083Srdivacky          Align = TD->getPreferredAlignment(GVar);
6166206083Srdivacky        }
6167206083Srdivacky      }
6168206083Srdivacky    }
6169206083Srdivacky    return MinAlign(Align, GVOffset);
6170206083Srdivacky  }
6171200581Srdivacky
6172200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6173200581Srdivacky  // stack slot's alignment.
6174200581Srdivacky  int FrameIdx = 1 << 31;
6175200581Srdivacky  int64_t FrameOffset = 0;
6176200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6177200581Srdivacky    FrameIdx = FI->getIndex();
6178200581Srdivacky  } else if (Ptr.getOpcode() == ISD::ADD &&
6179200581Srdivacky             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6180200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6181200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6182200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6183200581Srdivacky  }
6184200581Srdivacky
6185200581Srdivacky  if (FrameIdx != (1 << 31)) {
6186200581Srdivacky    // FIXME: Handle FI+CST.
6187200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6188200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6189200581Srdivacky                                    FrameOffset);
6190200581Srdivacky    if (MFI.isFixedObjectIndex(FrameIdx)) {
6191200581Srdivacky      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6192200581Srdivacky
6193200581Srdivacky      // The alignment of the frame index can be determined from its offset from
6194200581Srdivacky      // the incoming frame position.  If the frame object is at offset 32 and
6195200581Srdivacky      // the stack is guaranteed to be 16-byte aligned, then we know that the
6196200581Srdivacky      // object is 16-byte aligned.
6197200581Srdivacky      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6198200581Srdivacky      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6199200581Srdivacky
6200200581Srdivacky      // Finally, the frame object itself may have a known alignment.  Factor
6201200581Srdivacky      // the alignment + offset into a new alignment.  For example, if we know
6202200581Srdivacky      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6203200581Srdivacky      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6204200581Srdivacky      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6205200581Srdivacky      return std::max(Align, FIInfoAlign);
6206200581Srdivacky    }
6207200581Srdivacky    return FIInfoAlign;
6208200581Srdivacky  }
6209200581Srdivacky
6210200581Srdivacky  return 0;
6211200581Srdivacky}
6212200581Srdivacky
6213193323Sedvoid SelectionDAG::dump() const {
6214202375Srdivacky  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6215193323Sed
6216193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6217193323Sed       I != E; ++I) {
6218193323Sed    const SDNode *N = I;
6219193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6220193323Sed      DumpNodes(N, 2, this);
6221193323Sed  }
6222193323Sed
6223193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6224193323Sed
6225202375Srdivacky  dbgs() << "\n\n";
6226193323Sed}
6227193323Sed
6228193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6229193323Sed  print_types(OS, G);
6230193323Sed  print_details(OS, G);
6231193323Sed}
6232193323Sed
6233193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6234193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6235193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6236193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6237193323Sed    return;
6238201360Srdivacky
6239193323Sed  // Dump the current SDNode, but don't end the line yet.
6240193323Sed  OS << std::string(indent, ' ');
6241193323Sed  N->printr(OS, G);
6242201360Srdivacky
6243193323Sed  // Having printed this SDNode, walk the children:
6244193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6245193323Sed    const SDNode *child = N->getOperand(i).getNode();
6246201360Srdivacky
6247193323Sed    if (i) OS << ",";
6248193323Sed    OS << " ";
6249201360Srdivacky
6250193323Sed    if (child->getNumOperands() == 0) {
6251193323Sed      // This child has no grandchildren; print it inline right here.
6252193323Sed      child->printr(OS, G);
6253193323Sed      once.insert(child);
6254201360Srdivacky    } else {         // Just the address. FIXME: also print the child's opcode.
6255193323Sed      OS << (void*)child;
6256193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6257193323Sed        OS << ":" << RN;
6258193323Sed    }
6259193323Sed  }
6260201360Srdivacky
6261193323Sed  OS << "\n";
6262201360Srdivacky
6263193323Sed  // Dump children that have grandchildren on their own line(s).
6264193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6265193323Sed    const SDNode *child = N->getOperand(i).getNode();
6266193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6267193323Sed  }
6268193323Sed}
6269193323Sed
6270193323Sedvoid SDNode::dumpr() const {
6271193323Sed  VisitedSDNodeSet once;
6272202375Srdivacky  DumpNodesr(dbgs(), this, 0, 0, once);
6273193323Sed}
6274193323Sed
6275198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6276198090Srdivacky  VisitedSDNodeSet once;
6277202375Srdivacky  DumpNodesr(dbgs(), this, 0, G, once);
6278198090Srdivacky}
6279193323Sed
6280198090Srdivacky
6281193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6282193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6283193323Sed  return getGlobal()->getType()->getAddressSpace();
6284193323Sed}
6285193323Sed
6286193323Sed
6287193323Sedconst Type *ConstantPoolSDNode::getType() const {
6288193323Sed  if (isMachineConstantPoolEntry())
6289193323Sed    return Val.MachineCPVal->getType();
6290193323Sed  return Val.ConstVal->getType();
6291193323Sed}
6292193323Sed
6293193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6294193323Sed                                        APInt &SplatUndef,
6295193323Sed                                        unsigned &SplatBitSize,
6296193323Sed                                        bool &HasAnyUndefs,
6297199481Srdivacky                                        unsigned MinSplatBits,
6298199481Srdivacky                                        bool isBigEndian) {
6299198090Srdivacky  EVT VT = getValueType(0);
6300193323Sed  assert(VT.isVector() && "Expected a vector type");
6301193323Sed  unsigned sz = VT.getSizeInBits();
6302193323Sed  if (MinSplatBits > sz)
6303193323Sed    return false;
6304193323Sed
6305193323Sed  SplatValue = APInt(sz, 0);
6306193323Sed  SplatUndef = APInt(sz, 0);
6307193323Sed
6308193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6309193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6310193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6311193323Sed  // false.
6312193323Sed  unsigned int nOps = getNumOperands();
6313193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6314193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6315199481Srdivacky
6316199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6317199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6318193323Sed    SDValue OpVal = getOperand(i);
6319199481Srdivacky    unsigned BitPos = j * EltBitSize;
6320193323Sed
6321193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6322199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6323193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6324193323Sed      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6325193323Sed                     zextOrTrunc(sz) << BitPos);
6326193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6327193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6328193323Sed     else
6329193323Sed      return false;
6330193323Sed  }
6331193323Sed
6332193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6333193323Sed  // size that splats the vector.
6334193323Sed
6335193323Sed  HasAnyUndefs = (SplatUndef != 0);
6336193323Sed  while (sz > 8) {
6337193323Sed
6338193323Sed    unsigned HalfSize = sz / 2;
6339193323Sed    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6340193323Sed    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6341193323Sed    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6342193323Sed    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6343193323Sed
6344193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6345193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6346193323Sed        MinSplatBits > HalfSize)
6347193323Sed      break;
6348193323Sed
6349193323Sed    SplatValue = HighValue | LowValue;
6350193323Sed    SplatUndef = HighUndef & LowUndef;
6351198090Srdivacky
6352193323Sed    sz = HalfSize;
6353193323Sed  }
6354193323Sed
6355193323Sed  SplatBitSize = sz;
6356193323Sed  return true;
6357193323Sed}
6358193323Sed
6359198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6360193323Sed  // Find the first non-undef value in the shuffle mask.
6361193323Sed  unsigned i, e;
6362193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6363193323Sed    /* search */;
6364193323Sed
6365193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6366198090Srdivacky
6367193323Sed  // Make sure all remaining elements are either undef or the same as the first
6368193323Sed  // non-undef value.
6369193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6370193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6371193323Sed      return false;
6372193323Sed  return true;
6373193323Sed}
6374202878Srdivacky
6375204642Srdivacky#ifdef XDEBUG
6376202878Srdivackystatic void checkForCyclesHelper(const SDNode *N,
6377204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Visited,
6378204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6379204642Srdivacky  // If this node has already been checked, don't check it again.
6380204642Srdivacky  if (Checked.count(N))
6381204642Srdivacky    return;
6382204642Srdivacky
6383204642Srdivacky  // If a node has already been visited on this depth-first walk, reject it as
6384204642Srdivacky  // a cycle.
6385204642Srdivacky  if (!Visited.insert(N)) {
6386202878Srdivacky    dbgs() << "Offending node:\n";
6387202878Srdivacky    N->dumprFull();
6388204642Srdivacky    errs() << "Detected cycle in SelectionDAG\n";
6389204642Srdivacky    abort();
6390202878Srdivacky  }
6391204642Srdivacky
6392204642Srdivacky  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6393204642Srdivacky    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6394204642Srdivacky
6395204642Srdivacky  Checked.insert(N);
6396204642Srdivacky  Visited.erase(N);
6397202878Srdivacky}
6398204642Srdivacky#endif
6399202878Srdivacky
6400202878Srdivackyvoid llvm::checkForCycles(const llvm::SDNode *N) {
6401202878Srdivacky#ifdef XDEBUG
6402202878Srdivacky  assert(N && "Checking nonexistant SDNode");
6403204642Srdivacky  SmallPtrSet<const SDNode*, 32> visited;
6404204642Srdivacky  SmallPtrSet<const SDNode*, 32> checked;
6405204642Srdivacky  checkForCyclesHelper(N, visited, checked);
6406202878Srdivacky#endif
6407202878Srdivacky}
6408202878Srdivacky
6409202878Srdivackyvoid llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6410202878Srdivacky  checkForCycles(DAG->getRoot().getNode());
6411202878Srdivacky}
6412