ScheduleDAGInstrs.cpp revision 198953
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36  MFI = mf.getFrameInfo();
37}
38
39/// Run - perform scheduling.
40///
41void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42                            MachineBasicBlock::iterator begin,
43                            MachineBasicBlock::iterator end,
44                            unsigned endcount) {
45  BB = bb;
46  Begin = begin;
47  InsertPosIndex = endcount;
48
49  ScheduleDAG::Run(bb, end);
50}
51
52/// getUnderlyingObjectFromInt - This is the function that does the work of
53/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54static const Value *getUnderlyingObjectFromInt(const Value *V) {
55  do {
56    if (const Operator *U = dyn_cast<Operator>(V)) {
57      // If we find a ptrtoint, we can transfer control back to the
58      // regular getUnderlyingObjectFromInt.
59      if (U->getOpcode() == Instruction::PtrToInt)
60        return U->getOperand(0);
61      // If we find an add of a constant or a multiplied value, it's
62      // likely that the other operand will lead us to the base
63      // object. We don't have to worry about the case where the
64      // object address is somehow being computed by the multiply,
65      // because our callers only care when the result is an
66      // identifibale object.
67      if (U->getOpcode() != Instruction::Add ||
68          (!isa<ConstantInt>(U->getOperand(1)) &&
69           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
70        return V;
71      V = U->getOperand(0);
72    } else {
73      return V;
74    }
75    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
76  } while (1);
77}
78
79/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81static const Value *getUnderlyingObject(const Value *V) {
82  // First just call Value::getUnderlyingObject to let it do what it does.
83  do {
84    V = V->getUnderlyingObject();
85    // If it found an inttoptr, use special code to continue climing.
86    if (Operator::getOpcode(V) != Instruction::IntToPtr)
87      break;
88    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89    // If that succeeded in finding a pointer, continue the search.
90    if (!isa<PointerType>(O->getType()))
91      break;
92    V = O;
93  } while (1);
94  return V;
95}
96
97/// getUnderlyingObjectForInstr - If this machine instr has memory reference
98/// information and it can be tracked to a normal reference to a known
99/// object, return the Value for that object. Otherwise return null.
100static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101                                                const MachineFrameInfo *MFI,
102                                                bool &MayAlias) {
103  MayAlias = true;
104  if (!MI->hasOneMemOperand() ||
105      !(*MI->memoperands_begin())->getValue() ||
106      (*MI->memoperands_begin())->isVolatile())
107    return 0;
108
109  const Value *V = (*MI->memoperands_begin())->getValue();
110  if (!V)
111    return 0;
112
113  V = getUnderlyingObject(V);
114  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
115    MayAlias = PSV->mayAlias(MFI);
116    // For now, ignore PseudoSourceValues which may alias LLVM IR values
117    // because the code that uses this function has no way to cope with
118    // such aliases.
119    if (PSV->isAliased(MFI))
120      return 0;
121    return V;
122  }
123
124  if (isIdentifiedObject(V))
125    return V;
126
127  return 0;
128}
129
130static bool mayUnderlyingObjectForInstrAlias(const MachineInstr *MI,
131                                             const MachineFrameInfo *MFI) {
132  if (!MI->hasOneMemOperand() ||
133      !(*MI->memoperands_begin())->getValue() ||
134      (*MI->memoperands_begin())->isVolatile())
135    return true;
136
137  const Value *V = (*MI->memoperands_begin())->getValue();
138  if (!V)
139    return true;
140
141  V = getUnderlyingObject(V);
142  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
143    return PSV->mayAlias(MFI);
144  return true;
145}
146
147void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
148  if (MachineLoop *ML = MLI.getLoopFor(BB))
149    if (BB == ML->getLoopLatch()) {
150      MachineBasicBlock *Header = ML->getHeader();
151      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
152           E = Header->livein_end(); I != E; ++I)
153        LoopLiveInRegs.insert(*I);
154      LoopRegs.VisitLoop(ML);
155    }
156}
157
158void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
159  // We'll be allocating one SUnit for each instruction, plus one for
160  // the region exit node.
161  SUnits.reserve(BB->size());
162
163  // We build scheduling units by walking a block's instruction list from bottom
164  // to top.
165
166  // Remember where a generic side-effecting instruction is as we procede. If
167  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
168  // ChainMMO is non-null, then Chain makes only a single memory reference.
169  SUnit *Chain = 0;
170  MachineMemOperand *ChainMMO = 0;
171
172  // Memory references to specific known memory locations are tracked so that
173  // they can be given more precise dependencies.
174  std::map<const Value *, SUnit *> MemDefs;
175  std::map<const Value *, std::vector<SUnit *> > MemUses;
176
177  // Check to see if the scheduler cares about latencies.
178  bool UnitLatencies = ForceUnitLatencies();
179
180  // Ask the target if address-backscheduling is desirable, and if so how much.
181  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
182  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
183
184  // Walk the list of instructions, from bottom moving up.
185  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
186       MII != MIE; --MII) {
187    MachineInstr *MI = prior(MII);
188    const TargetInstrDesc &TID = MI->getDesc();
189    assert(!TID.isTerminator() && !MI->isLabel() &&
190           "Cannot schedule terminators or labels!");
191    // Create the SUnit for this MI.
192    SUnit *SU = NewSUnit(MI);
193
194    // Assign the Latency field of SU using target-provided information.
195    if (UnitLatencies)
196      SU->Latency = 1;
197    else
198      ComputeLatency(SU);
199
200    // Add register-based dependencies (data, anti, and output).
201    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
202      const MachineOperand &MO = MI->getOperand(j);
203      if (!MO.isReg()) continue;
204      unsigned Reg = MO.getReg();
205      if (Reg == 0) continue;
206
207      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
208      std::vector<SUnit *> &UseList = Uses[Reg];
209      std::vector<SUnit *> &DefList = Defs[Reg];
210      // Optionally add output and anti dependencies. For anti
211      // dependencies we use a latency of 0 because for a multi-issue
212      // target we want to allow the defining instruction to issue
213      // in the same cycle as the using instruction.
214      // TODO: Using a latency of 1 here for output dependencies assumes
215      //       there's no cost for reusing registers.
216      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
217      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
218      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
219        SUnit *DefSU = DefList[i];
220        if (DefSU != SU &&
221            (Kind != SDep::Output || !MO.isDead() ||
222             !DefSU->getInstr()->registerDefIsDead(Reg)))
223          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
224      }
225      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
226        std::vector<SUnit *> &DefList = Defs[*Alias];
227        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
228          SUnit *DefSU = DefList[i];
229          if (DefSU != SU &&
230              (Kind != SDep::Output || !MO.isDead() ||
231               !DefSU->getInstr()->registerDefIsDead(*Alias)))
232            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
233        }
234      }
235
236      if (MO.isDef()) {
237        // Add any data dependencies.
238        unsigned DataLatency = SU->Latency;
239        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
240          SUnit *UseSU = UseList[i];
241          if (UseSU != SU) {
242            unsigned LDataLatency = DataLatency;
243            // Optionally add in a special extra latency for nodes that
244            // feed addresses.
245            // TODO: Do this for register aliases too.
246            // TODO: Perhaps we should get rid of
247            // SpecialAddressLatency and just move this into
248            // adjustSchedDependency for the targets that care about
249            // it.
250            if (SpecialAddressLatency != 0 && !UnitLatencies) {
251              MachineInstr *UseMI = UseSU->getInstr();
252              const TargetInstrDesc &UseTID = UseMI->getDesc();
253              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
254              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
255              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
256                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
257                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
258                LDataLatency += SpecialAddressLatency;
259            }
260            // Adjust the dependence latency using operand def/use
261            // information (if any), and then allow the target to
262            // perform its own adjustments.
263            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
264            if (!UnitLatencies) {
265              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
266              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
267            }
268            UseSU->addPred(dep);
269          }
270        }
271        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
272          std::vector<SUnit *> &UseList = Uses[*Alias];
273          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
274            SUnit *UseSU = UseList[i];
275            if (UseSU != SU) {
276              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
277              if (!UnitLatencies) {
278                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
279                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
280              }
281              UseSU->addPred(dep);
282            }
283          }
284        }
285
286        // If a def is going to wrap back around to the top of the loop,
287        // backschedule it.
288        if (!UnitLatencies && DefList.empty()) {
289          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
290          if (I != LoopRegs.Deps.end()) {
291            const MachineOperand *UseMO = I->second.first;
292            unsigned Count = I->second.second;
293            const MachineInstr *UseMI = UseMO->getParent();
294            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
295            const TargetInstrDesc &UseTID = UseMI->getDesc();
296            // TODO: If we knew the total depth of the region here, we could
297            // handle the case where the whole loop is inside the region but
298            // is large enough that the isScheduleHigh trick isn't needed.
299            if (UseMOIdx < UseTID.getNumOperands()) {
300              // Currently, we only support scheduling regions consisting of
301              // single basic blocks. Check to see if the instruction is in
302              // the same region by checking to see if it has the same parent.
303              if (UseMI->getParent() != MI->getParent()) {
304                unsigned Latency = SU->Latency;
305                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
306                  Latency += SpecialAddressLatency;
307                // This is a wild guess as to the portion of the latency which
308                // will be overlapped by work done outside the current
309                // scheduling region.
310                Latency -= std::min(Latency, Count);
311                // Add the artifical edge.
312                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
313                                    /*Reg=*/0, /*isNormalMemory=*/false,
314                                    /*isMustAlias=*/false,
315                                    /*isArtificial=*/true));
316              } else if (SpecialAddressLatency > 0 &&
317                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
318                // The entire loop body is within the current scheduling region
319                // and the latency of this operation is assumed to be greater
320                // than the latency of the loop.
321                // TODO: Recursively mark data-edge predecessors as
322                //       isScheduleHigh too.
323                SU->isScheduleHigh = true;
324              }
325            }
326            LoopRegs.Deps.erase(I);
327          }
328        }
329
330        UseList.clear();
331        if (!MO.isDead())
332          DefList.clear();
333        DefList.push_back(SU);
334      } else {
335        UseList.push_back(SU);
336      }
337    }
338
339    // Add chain dependencies.
340    // Chain dependencies used to enforce memory order should have
341    // latency of 0 (except for true dependency of Store followed by
342    // aliased Load... we estimate that with a single cycle of latency
343    // assuming the hardware will bypass)
344    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
345    // after stack slots are lowered to actual addresses.
346    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
347    // produce more precise dependence information.
348#define STORE_LOAD_LATENCY 1
349    unsigned TrueMemOrderLatency = 0;
350    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
351    new_chain:
352      // This is the conservative case. Add dependencies on all memory
353      // references.
354      if (Chain)
355        Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
356      Chain = SU;
357      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
358        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
359      PendingLoads.clear();
360      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
361           E = MemDefs.end(); I != E; ++I) {
362        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
363        I->second = SU;
364      }
365      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
366           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
367        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
368          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
369        I->second.clear();
370        I->second.push_back(SU);
371      }
372      // See if it is known to just have a single memory reference.
373      MachineInstr *ChainMI = Chain->getInstr();
374      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
375      if (!ChainTID.isCall() &&
376          !ChainTID.hasUnmodeledSideEffects() &&
377          ChainMI->hasOneMemOperand() &&
378          !(*ChainMI->memoperands_begin())->isVolatile() &&
379          (*ChainMI->memoperands_begin())->getValue())
380        // We know that the Chain accesses one specific memory location.
381        ChainMMO = *ChainMI->memoperands_begin();
382      else
383        // Unknown memory accesses. Assume the worst.
384        ChainMMO = 0;
385    } else if (TID.mayStore()) {
386      bool MayAlias = true;
387      TrueMemOrderLatency = STORE_LOAD_LATENCY;
388      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
389        // A store to a specific PseudoSourceValue. Add precise dependencies.
390        // Handle the def in MemDefs, if there is one.
391        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
392        if (I != MemDefs.end()) {
393          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
394                                  /*isNormalMemory=*/true));
395          I->second = SU;
396        } else {
397          MemDefs[V] = SU;
398        }
399        // Handle the uses in MemUses, if there are any.
400        std::map<const Value *, std::vector<SUnit *> >::iterator J =
401          MemUses.find(V);
402        if (J != MemUses.end()) {
403          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
404            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
405                                       /*Reg=*/0, /*isNormalMemory=*/true));
406          J->second.clear();
407        }
408        if (MayAlias) {
409          // Add dependencies from all the PendingLoads, since without
410          // memoperands we must assume they alias anything.
411          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
412            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
413          // Add a general dependence too, if needed.
414          if (Chain)
415            Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
416        }
417      } else {
418        // Treat all other stores conservatively.
419        goto new_chain;
420      }
421    } else if (TID.mayLoad()) {
422      bool MayAlias = true;
423      TrueMemOrderLatency = 0;
424      if (MI->isInvariantLoad(AA)) {
425        // Invariant load, no chain dependencies needed!
426      } else if (const Value *V =
427                     getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
428        // A load from a specific PseudoSourceValue. Add precise dependencies.
429        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
430        if (I != MemDefs.end())
431          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
432                                  /*isNormalMemory=*/true));
433        MemUses[V].push_back(SU);
434
435        // Add a general dependence too, if needed.
436        if (Chain && (!ChainMMO ||
437                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
438          Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
439      } else if (MI->hasVolatileMemoryRef()) {
440        // Treat volatile loads conservatively. Note that this includes
441        // cases where memoperand information is unavailable.
442        goto new_chain;
443      } else {
444        // A "MayAlias" load. Depend on the general chain, as well as on
445        // all stores. In the absense of MachineMemOperand information,
446        // we can't even assume that the load doesn't alias well-behaved
447        // memory locations.
448        if (Chain)
449          Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
450        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
451               E = MemDefs.end(); I != E; ++I) {
452          SUnit *DefSU = I->second;
453          if (mayUnderlyingObjectForInstrAlias(DefSU->getInstr(), MFI))
454            DefSU->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
455        }
456        PendingLoads.push_back(SU);
457      }
458    }
459  }
460
461  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
462    Defs[i].clear();
463    Uses[i].clear();
464  }
465  PendingLoads.clear();
466}
467
468void ScheduleDAGInstrs::FinishBlock() {
469  // Nothing to do.
470}
471
472void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
473  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
474
475  // Compute the latency for the node.
476  SU->Latency =
477    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
478
479  // Simplistic target-independent heuristic: assume that loads take
480  // extra time.
481  if (InstrItins.isEmpty())
482    if (SU->getInstr()->getDesc().mayLoad())
483      SU->Latency += 2;
484}
485
486void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
487                                              SDep& dep) const {
488  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
489  if (InstrItins.isEmpty())
490    return;
491
492  // For a data dependency with a known register...
493  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
494    return;
495
496  const unsigned Reg = dep.getReg();
497
498  // ... find the definition of the register in the defining
499  // instruction
500  MachineInstr *DefMI = Def->getInstr();
501  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
502  if (DefIdx != -1) {
503    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
504    if (DefCycle >= 0) {
505      MachineInstr *UseMI = Use->getInstr();
506      const unsigned UseClass = UseMI->getDesc().getSchedClass();
507
508      // For all uses of the register, calculate the maxmimum latency
509      int Latency = -1;
510      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
511        const MachineOperand &MO = UseMI->getOperand(i);
512        if (!MO.isReg() || !MO.isUse())
513          continue;
514        unsigned MOReg = MO.getReg();
515        if (MOReg != Reg)
516          continue;
517
518        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
519        if (UseCycle >= 0)
520          Latency = std::max(Latency, DefCycle - UseCycle + 1);
521      }
522
523      // If we found a latency, then replace the existing dependence latency.
524      if (Latency >= 0)
525        dep.setLatency(Latency);
526    }
527  }
528}
529
530void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
531  SU->getInstr()->dump();
532}
533
534std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
535  std::string s;
536  raw_string_ostream oss(s);
537  if (SU == &EntrySU)
538    oss << "<entry>";
539  else if (SU == &ExitSU)
540    oss << "<exit>";
541  else
542    SU->getInstr()->print(oss);
543  return oss.str();
544}
545
546// EmitSchedule - Emit the machine code in scheduled order.
547MachineBasicBlock *ScheduleDAGInstrs::
548EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
549  // For MachineInstr-based scheduling, we're rescheduling the instructions in
550  // the block, so start by removing them from the block.
551  while (Begin != InsertPos) {
552    MachineBasicBlock::iterator I = Begin;
553    ++Begin;
554    BB->remove(I);
555  }
556
557  // Then re-insert them according to the given schedule.
558  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
559    SUnit *SU = Sequence[i];
560    if (!SU) {
561      // Null SUnit* is a noop.
562      EmitNoop();
563      continue;
564    }
565
566    BB->insert(InsertPos, SU->getInstr());
567  }
568
569  // Update the Begin iterator, as the first instruction in the block
570  // may have been scheduled later.
571  if (!Sequence.empty())
572    Begin = Sequence[0]->getInstr();
573
574  return BB;
575}
576