ScheduleDAGInstrs.cpp revision 193323
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetMachine.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace llvm;
29
30ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
31                                     const MachineLoopInfo &mli,
32                                     const MachineDominatorTree &mdt)
33  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}
34
35/// Run - perform scheduling.
36///
37void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
38                            MachineBasicBlock::iterator begin,
39                            MachineBasicBlock::iterator end,
40                            unsigned endcount) {
41  BB = bb;
42  Begin = begin;
43  InsertPosIndex = endcount;
44
45  ScheduleDAG::Run(bb, end);
46}
47
48/// getOpcode - If this is an Instruction or a ConstantExpr, return the
49/// opcode value. Otherwise return UserOp1.
50static unsigned getOpcode(const Value *V) {
51  if (const Instruction *I = dyn_cast<Instruction>(V))
52    return I->getOpcode();
53  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
54    return CE->getOpcode();
55  // Use UserOp1 to mean there's no opcode.
56  return Instruction::UserOp1;
57}
58
59/// getUnderlyingObjectFromInt - This is the function that does the work of
60/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
61static const Value *getUnderlyingObjectFromInt(const Value *V) {
62  do {
63    if (const User *U = dyn_cast<User>(V)) {
64      // If we find a ptrtoint, we can transfer control back to the
65      // regular getUnderlyingObjectFromInt.
66      if (getOpcode(U) == Instruction::PtrToInt)
67        return U->getOperand(0);
68      // If we find an add of a constant or a multiplied value, it's
69      // likely that the other operand will lead us to the base
70      // object. We don't have to worry about the case where the
71      // object address is somehow being computed bt the multiply,
72      // because our callers only care when the result is an
73      // identifibale object.
74      if (getOpcode(U) != Instruction::Add ||
75          (!isa<ConstantInt>(U->getOperand(1)) &&
76           getOpcode(U->getOperand(1)) != Instruction::Mul))
77        return V;
78      V = U->getOperand(0);
79    } else {
80      return V;
81    }
82    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
83  } while (1);
84}
85
86/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
87/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
88static const Value *getUnderlyingObject(const Value *V) {
89  // First just call Value::getUnderlyingObject to let it do what it does.
90  do {
91    V = V->getUnderlyingObject();
92    // If it found an inttoptr, use special code to continue climing.
93    if (getOpcode(V) != Instruction::IntToPtr)
94      break;
95    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
96    // If that succeeded in finding a pointer, continue the search.
97    if (!isa<PointerType>(O->getType()))
98      break;
99    V = O;
100  } while (1);
101  return V;
102}
103
104/// getUnderlyingObjectForInstr - If this machine instr has memory reference
105/// information and it can be tracked to a normal reference to a known
106/// object, return the Value for that object. Otherwise return null.
107static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
108  if (!MI->hasOneMemOperand() ||
109      !MI->memoperands_begin()->getValue() ||
110      MI->memoperands_begin()->isVolatile())
111    return 0;
112
113  const Value *V = MI->memoperands_begin()->getValue();
114  if (!V)
115    return 0;
116
117  V = getUnderlyingObject(V);
118  if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
119    return 0;
120
121  return V;
122}
123
124void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
125  if (MachineLoop *ML = MLI.getLoopFor(BB))
126    if (BB == ML->getLoopLatch()) {
127      MachineBasicBlock *Header = ML->getHeader();
128      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
129           E = Header->livein_end(); I != E; ++I)
130        LoopLiveInRegs.insert(*I);
131      LoopRegs.VisitLoop(ML);
132    }
133}
134
135void ScheduleDAGInstrs::BuildSchedGraph() {
136  // We'll be allocating one SUnit for each instruction, plus one for
137  // the region exit node.
138  SUnits.reserve(BB->size());
139
140  // We build scheduling units by walking a block's instruction list from bottom
141  // to top.
142
143  // Remember where a generic side-effecting instruction is as we procede. If
144  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
145  // ChainMMO is non-null, then Chain makes only a single memory reference.
146  SUnit *Chain = 0;
147  MachineMemOperand *ChainMMO = 0;
148
149  // Memory references to specific known memory locations are tracked so that
150  // they can be given more precise dependencies.
151  std::map<const Value *, SUnit *> MemDefs;
152  std::map<const Value *, std::vector<SUnit *> > MemUses;
153
154  // Check to see if the scheduler cares about latencies.
155  bool UnitLatencies = ForceUnitLatencies();
156
157  // Ask the target if address-backscheduling is desirable, and if so how much.
158  unsigned SpecialAddressLatency =
159    TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
160
161  // Walk the list of instructions, from bottom moving up.
162  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
163       MII != MIE; --MII) {
164    MachineInstr *MI = prior(MII);
165    const TargetInstrDesc &TID = MI->getDesc();
166    assert(!TID.isTerminator() && !MI->isLabel() &&
167           "Cannot schedule terminators or labels!");
168    // Create the SUnit for this MI.
169    SUnit *SU = NewSUnit(MI);
170
171    // Assign the Latency field of SU using target-provided information.
172    if (UnitLatencies)
173      SU->Latency = 1;
174    else
175      ComputeLatency(SU);
176
177    // Add register-based dependencies (data, anti, and output).
178    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
179      const MachineOperand &MO = MI->getOperand(j);
180      if (!MO.isReg()) continue;
181      unsigned Reg = MO.getReg();
182      if (Reg == 0) continue;
183
184      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
185      std::vector<SUnit *> &UseList = Uses[Reg];
186      std::vector<SUnit *> &DefList = Defs[Reg];
187      // Optionally add output and anti dependencies.
188      // TODO: Using a latency of 1 here assumes there's no cost for
189      //       reusing registers.
190      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
191      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
192        SUnit *DefSU = DefList[i];
193        if (DefSU != SU &&
194            (Kind != SDep::Output || !MO.isDead() ||
195             !DefSU->getInstr()->registerDefIsDead(Reg)))
196          DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
197      }
198      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
199        std::vector<SUnit *> &DefList = Defs[*Alias];
200        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
201          SUnit *DefSU = DefList[i];
202          if (DefSU != SU &&
203              (Kind != SDep::Output || !MO.isDead() ||
204               !DefSU->getInstr()->registerDefIsDead(Reg)))
205            DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
206        }
207      }
208
209      if (MO.isDef()) {
210        // Add any data dependencies.
211        unsigned DataLatency = SU->Latency;
212        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
213          SUnit *UseSU = UseList[i];
214          if (UseSU != SU) {
215            unsigned LDataLatency = DataLatency;
216            // Optionally add in a special extra latency for nodes that
217            // feed addresses.
218            // TODO: Do this for register aliases too.
219            if (SpecialAddressLatency != 0 && !UnitLatencies) {
220              MachineInstr *UseMI = UseSU->getInstr();
221              const TargetInstrDesc &UseTID = UseMI->getDesc();
222              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
223              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
224              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
225                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
226                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
227                LDataLatency += SpecialAddressLatency;
228            }
229            UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
230          }
231        }
232        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
233          std::vector<SUnit *> &UseList = Uses[*Alias];
234          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
235            SUnit *UseSU = UseList[i];
236            if (UseSU != SU)
237              UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
238          }
239        }
240
241        // If a def is going to wrap back around to the top of the loop,
242        // backschedule it.
243        if (!UnitLatencies && DefList.empty()) {
244          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
245          if (I != LoopRegs.Deps.end()) {
246            const MachineOperand *UseMO = I->second.first;
247            unsigned Count = I->second.second;
248            const MachineInstr *UseMI = UseMO->getParent();
249            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
250            const TargetInstrDesc &UseTID = UseMI->getDesc();
251            // TODO: If we knew the total depth of the region here, we could
252            // handle the case where the whole loop is inside the region but
253            // is large enough that the isScheduleHigh trick isn't needed.
254            if (UseMOIdx < UseTID.getNumOperands()) {
255              // Currently, we only support scheduling regions consisting of
256              // single basic blocks. Check to see if the instruction is in
257              // the same region by checking to see if it has the same parent.
258              if (UseMI->getParent() != MI->getParent()) {
259                unsigned Latency = SU->Latency;
260                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
261                  Latency += SpecialAddressLatency;
262                // This is a wild guess as to the portion of the latency which
263                // will be overlapped by work done outside the current
264                // scheduling region.
265                Latency -= std::min(Latency, Count);
266                // Add the artifical edge.
267                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
268                                    /*Reg=*/0, /*isNormalMemory=*/false,
269                                    /*isMustAlias=*/false,
270                                    /*isArtificial=*/true));
271              } else if (SpecialAddressLatency > 0 &&
272                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
273                // The entire loop body is within the current scheduling region
274                // and the latency of this operation is assumed to be greater
275                // than the latency of the loop.
276                // TODO: Recursively mark data-edge predecessors as
277                //       isScheduleHigh too.
278                SU->isScheduleHigh = true;
279              }
280            }
281            LoopRegs.Deps.erase(I);
282          }
283        }
284
285        UseList.clear();
286        if (!MO.isDead())
287          DefList.clear();
288        DefList.push_back(SU);
289      } else {
290        UseList.push_back(SU);
291      }
292    }
293
294    // Add chain dependencies.
295    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
296    // after stack slots are lowered to actual addresses.
297    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
298    // produce more precise dependence information.
299    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
300    new_chain:
301      // This is the conservative case. Add dependencies on all memory
302      // references.
303      if (Chain)
304        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
305      Chain = SU;
306      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
307        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
308      PendingLoads.clear();
309      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
310           E = MemDefs.end(); I != E; ++I) {
311        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
312        I->second = SU;
313      }
314      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
315           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
316        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
317          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
318        I->second.clear();
319      }
320      // See if it is known to just have a single memory reference.
321      MachineInstr *ChainMI = Chain->getInstr();
322      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
323      if (!ChainTID.isCall() &&
324          !ChainTID.hasUnmodeledSideEffects() &&
325          ChainMI->hasOneMemOperand() &&
326          !ChainMI->memoperands_begin()->isVolatile() &&
327          ChainMI->memoperands_begin()->getValue())
328        // We know that the Chain accesses one specific memory location.
329        ChainMMO = &*ChainMI->memoperands_begin();
330      else
331        // Unknown memory accesses. Assume the worst.
332        ChainMMO = 0;
333    } else if (TID.mayStore()) {
334      if (const Value *V = getUnderlyingObjectForInstr(MI)) {
335        // A store to a specific PseudoSourceValue. Add precise dependencies.
336        // Handle the def in MemDefs, if there is one.
337        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
338        if (I != MemDefs.end()) {
339          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
340                                  /*isNormalMemory=*/true));
341          I->second = SU;
342        } else {
343          MemDefs[V] = SU;
344        }
345        // Handle the uses in MemUses, if there are any.
346        std::map<const Value *, std::vector<SUnit *> >::iterator J =
347          MemUses.find(V);
348        if (J != MemUses.end()) {
349          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
350            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
351                                       /*isNormalMemory=*/true));
352          J->second.clear();
353        }
354        // Add dependencies from all the PendingLoads, since without
355        // memoperands we must assume they alias anything.
356        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
357          PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
358        // Add a general dependence too, if needed.
359        if (Chain)
360          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
361      } else
362        // Treat all other stores conservatively.
363        goto new_chain;
364    } else if (TID.mayLoad()) {
365      if (TII->isInvariantLoad(MI)) {
366        // Invariant load, no chain dependencies needed!
367      } else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
368        // A load from a specific PseudoSourceValue. Add precise dependencies.
369        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
370        if (I != MemDefs.end())
371          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
372                                  /*isNormalMemory=*/true));
373        MemUses[V].push_back(SU);
374
375        // Add a general dependence too, if needed.
376        if (Chain && (!ChainMMO ||
377                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
378          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
379      } else if (MI->hasVolatileMemoryRef()) {
380        // Treat volatile loads conservatively. Note that this includes
381        // cases where memoperand information is unavailable.
382        goto new_chain;
383      } else {
384        // A normal load. Depend on the general chain, as well as on
385        // all stores. In the absense of MachineMemOperand information,
386        // we can't even assume that the load doesn't alias well-behaved
387        // memory locations.
388        if (Chain)
389          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
390        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
391             E = MemDefs.end(); I != E; ++I)
392          I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
393        PendingLoads.push_back(SU);
394      }
395    }
396  }
397
398  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
399    Defs[i].clear();
400    Uses[i].clear();
401  }
402  PendingLoads.clear();
403}
404
405void ScheduleDAGInstrs::FinishBlock() {
406  // Nothing to do.
407}
408
409void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
410  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
411
412  // Compute the latency for the node.  We use the sum of the latencies for
413  // all nodes flagged together into this SUnit.
414  SU->Latency =
415    InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
416
417  // Simplistic target-independent heuristic: assume that loads take
418  // extra time.
419  if (InstrItins.isEmpty())
420    if (SU->getInstr()->getDesc().mayLoad())
421      SU->Latency += 2;
422}
423
424void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
425  SU->getInstr()->dump();
426}
427
428std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
429  std::string s;
430  raw_string_ostream oss(s);
431  if (SU == &EntrySU)
432    oss << "<entry>";
433  else if (SU == &ExitSU)
434    oss << "<exit>";
435  else
436    SU->getInstr()->print(oss);
437  return oss.str();
438}
439
440// EmitSchedule - Emit the machine code in scheduled order.
441MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
442  // For MachineInstr-based scheduling, we're rescheduling the instructions in
443  // the block, so start by removing them from the block.
444  while (Begin != InsertPos) {
445    MachineBasicBlock::iterator I = Begin;
446    ++Begin;
447    BB->remove(I);
448  }
449
450  // Then re-insert them according to the given schedule.
451  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
452    SUnit *SU = Sequence[i];
453    if (!SU) {
454      // Null SUnit* is a noop.
455      EmitNoop();
456      continue;
457    }
458
459    BB->insert(InsertPos, SU->getInstr());
460  }
461
462  // Update the Begin iterator, as the first instruction in the block
463  // may have been scheduled later.
464  if (!Sequence.empty())
465    Begin = Sequence[0]->getInstr();
466
467  return BB;
468}
469