ValueEnumerator.cpp revision 206124
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Module.h"
18#include "llvm/TypeSymbolTable.h"
19#include "llvm/ValueSymbolTable.h"
20#include "llvm/Instructions.h"
21#include <algorithm>
22using namespace llvm;
23
24static bool isSingleValueType(const std::pair<const llvm::Type*,
25                              unsigned int> &P) {
26  return P.first->isSingleValueType();
27}
28
29static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
30  return V.first->getType()->isIntegerTy();
31}
32
33static bool CompareByFrequency(const std::pair<const llvm::Type*,
34                               unsigned int> &P1,
35                               const std::pair<const llvm::Type*,
36                               unsigned int> &P2) {
37  return P1.second > P2.second;
38}
39
40/// ValueEnumerator - Enumerate module-level information.
41ValueEnumerator::ValueEnumerator(const Module *M) {
42  // Enumerate the global variables.
43  for (Module::const_global_iterator I = M->global_begin(),
44         E = M->global_end(); I != E; ++I)
45    EnumerateValue(I);
46
47  // Enumerate the functions.
48  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
49    EnumerateValue(I);
50    EnumerateAttributes(cast<Function>(I)->getAttributes());
51  }
52
53  // Enumerate the aliases.
54  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
55       I != E; ++I)
56    EnumerateValue(I);
57
58  // Remember what is the cutoff between globalvalue's and other constants.
59  unsigned FirstConstant = Values.size();
60
61  // Enumerate the global variable initializers.
62  for (Module::const_global_iterator I = M->global_begin(),
63         E = M->global_end(); I != E; ++I)
64    if (I->hasInitializer())
65      EnumerateValue(I->getInitializer());
66
67  // Enumerate the aliasees.
68  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
69       I != E; ++I)
70    EnumerateValue(I->getAliasee());
71
72  // Enumerate types used by the type symbol table.
73  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
74
75  // Insert constants and metadata  that are named at module level into the slot
76  // pool so that the module symbol table can refer to them...
77  EnumerateValueSymbolTable(M->getValueSymbolTable());
78  EnumerateMDSymbolTable(M->getMDSymbolTable());
79
80  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
81
82  // Enumerate types used by function bodies and argument lists.
83  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
84
85    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
86         I != E; ++I)
87      EnumerateType(I->getType());
88
89    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
90      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
91        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
92             OI != E; ++OI) {
93          if (MDNode *MD = dyn_cast<MDNode>(*OI))
94            if (MD->isFunctionLocal() && MD->getFunction())
95              // These will get enumerated during function-incorporation.
96              continue;
97          EnumerateOperandType(*OI);
98        }
99        EnumerateType(I->getType());
100        if (const CallInst *CI = dyn_cast<CallInst>(I))
101          EnumerateAttributes(CI->getAttributes());
102        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
103          EnumerateAttributes(II->getAttributes());
104
105        // Enumerate metadata attached with this instruction.
106        MDs.clear();
107        I->getAllMetadataOtherThanDebugLoc(MDs);
108        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
109          EnumerateMetadata(MDs[i].second);
110
111        if (!I->getDebugLoc().isUnknown()) {
112          MDNode *Scope, *IA;
113          I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
114          if (Scope) EnumerateMetadata(Scope);
115          if (IA) EnumerateMetadata(IA);
116        }
117      }
118  }
119
120  // Optimize constant ordering.
121  OptimizeConstants(FirstConstant, Values.size());
122
123  // Sort the type table by frequency so that most commonly used types are early
124  // in the table (have low bit-width).
125  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
126
127  // Partition the Type ID's so that the single-value types occur before the
128  // aggregate types.  This allows the aggregate types to be dropped from the
129  // type table after parsing the global variable initializers.
130  std::partition(Types.begin(), Types.end(), isSingleValueType);
131
132  // Now that we rearranged the type table, rebuild TypeMap.
133  for (unsigned i = 0, e = Types.size(); i != e; ++i)
134    TypeMap[Types[i].first] = i+1;
135}
136
137unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
138  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
139  assert (I != InstructionMap.end() && "Instruction is not mapped!");
140    return I->second;
141}
142
143void ValueEnumerator::setInstructionID(const Instruction *I) {
144  InstructionMap[I] = InstructionCount++;
145}
146
147unsigned ValueEnumerator::getValueID(const Value *V) const {
148  if (isa<MDNode>(V) || isa<MDString>(V)) {
149    ValueMapType::const_iterator I = MDValueMap.find(V);
150    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
151    return I->second-1;
152  }
153
154  ValueMapType::const_iterator I = ValueMap.find(V);
155  assert(I != ValueMap.end() && "Value not in slotcalculator!");
156  return I->second-1;
157}
158
159// Optimize constant ordering.
160namespace {
161  struct CstSortPredicate {
162    ValueEnumerator &VE;
163    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
164    bool operator()(const std::pair<const Value*, unsigned> &LHS,
165                    const std::pair<const Value*, unsigned> &RHS) {
166      // Sort by plane.
167      if (LHS.first->getType() != RHS.first->getType())
168        return VE.getTypeID(LHS.first->getType()) <
169               VE.getTypeID(RHS.first->getType());
170      // Then by frequency.
171      return LHS.second > RHS.second;
172    }
173  };
174}
175
176/// OptimizeConstants - Reorder constant pool for denser encoding.
177void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
178  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
179
180  CstSortPredicate P(*this);
181  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
182
183  // Ensure that integer constants are at the start of the constant pool.  This
184  // is important so that GEP structure indices come before gep constant exprs.
185  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
186                 isIntegerValue);
187
188  // Rebuild the modified portion of ValueMap.
189  for (; CstStart != CstEnd; ++CstStart)
190    ValueMap[Values[CstStart].first] = CstStart+1;
191}
192
193
194/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
195/// table.
196void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
197  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
198       TI != TE; ++TI)
199    EnumerateType(TI->second);
200}
201
202/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
203/// table into the values table.
204void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
205  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
206       VI != VE; ++VI)
207    EnumerateValue(VI->getValue());
208}
209
210/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
211/// table.
212void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
213  for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
214       MI != ME; ++MI)
215    EnumerateValue(MI->getValue());
216}
217
218void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
219  // Check to see if it's already in!
220  unsigned &MDValueID = MDValueMap[MD];
221  if (MDValueID) {
222    // Increment use count.
223    MDValues[MDValueID-1].second++;
224    return;
225  }
226
227  // Enumerate the type of this value.
228  EnumerateType(MD->getType());
229
230  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
231    if (MDNode *E = MD->getOperand(i))
232      EnumerateValue(E);
233  MDValues.push_back(std::make_pair(MD, 1U));
234  MDValueMap[MD] = Values.size();
235}
236
237void ValueEnumerator::EnumerateMetadata(const Value *MD) {
238  assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
239  // Check to see if it's already in!
240  unsigned &MDValueID = MDValueMap[MD];
241  if (MDValueID) {
242    // Increment use count.
243    MDValues[MDValueID-1].second++;
244    return;
245  }
246
247  // Enumerate the type of this value.
248  EnumerateType(MD->getType());
249
250  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
251    MDValues.push_back(std::make_pair(MD, 1U));
252    MDValueMap[MD] = MDValues.size();
253    MDValueID = MDValues.size();
254    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
255      if (Value *V = N->getOperand(i))
256        EnumerateValue(V);
257      else
258        EnumerateType(Type::getVoidTy(MD->getContext()));
259    }
260    return;
261  }
262
263  // Add the value.
264  assert(isa<MDString>(MD) && "Unknown metadata kind");
265  MDValues.push_back(std::make_pair(MD, 1U));
266  MDValueID = MDValues.size();
267}
268
269void ValueEnumerator::EnumerateValue(const Value *V) {
270  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
271  if (isa<MDNode>(V) || isa<MDString>(V))
272    return EnumerateMetadata(V);
273  else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
274    return EnumerateNamedMDNode(NMD);
275
276  // Check to see if it's already in!
277  unsigned &ValueID = ValueMap[V];
278  if (ValueID) {
279    // Increment use count.
280    Values[ValueID-1].second++;
281    return;
282  }
283
284  // Enumerate the type of this value.
285  EnumerateType(V->getType());
286
287  if (const Constant *C = dyn_cast<Constant>(V)) {
288    if (isa<GlobalValue>(C)) {
289      // Initializers for globals are handled explicitly elsewhere.
290    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
291      // Do not enumerate the initializers for an array of simple characters.
292      // The initializers just polute the value table, and we emit the strings
293      // specially.
294    } else if (C->getNumOperands()) {
295      // If a constant has operands, enumerate them.  This makes sure that if a
296      // constant has uses (for example an array of const ints), that they are
297      // inserted also.
298
299      // We prefer to enumerate them with values before we enumerate the user
300      // itself.  This makes it more likely that we can avoid forward references
301      // in the reader.  We know that there can be no cycles in the constants
302      // graph that don't go through a global variable.
303      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
304           I != E; ++I)
305        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
306          EnumerateValue(*I);
307
308      // Finally, add the value.  Doing this could make the ValueID reference be
309      // dangling, don't reuse it.
310      Values.push_back(std::make_pair(V, 1U));
311      ValueMap[V] = Values.size();
312      return;
313    }
314  }
315
316  // Add the value.
317  Values.push_back(std::make_pair(V, 1U));
318  ValueID = Values.size();
319}
320
321
322void ValueEnumerator::EnumerateType(const Type *Ty) {
323  unsigned &TypeID = TypeMap[Ty];
324
325  if (TypeID) {
326    // If we've already seen this type, just increase its occurrence count.
327    Types[TypeID-1].second++;
328    return;
329  }
330
331  // First time we saw this type, add it.
332  Types.push_back(std::make_pair(Ty, 1U));
333  TypeID = Types.size();
334
335  // Enumerate subtypes.
336  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
337       I != E; ++I)
338    EnumerateType(*I);
339}
340
341// Enumerate the types for the specified value.  If the value is a constant,
342// walk through it, enumerating the types of the constant.
343void ValueEnumerator::EnumerateOperandType(const Value *V) {
344  EnumerateType(V->getType());
345
346  if (const Constant *C = dyn_cast<Constant>(V)) {
347    // If this constant is already enumerated, ignore it, we know its type must
348    // be enumerated.
349    if (ValueMap.count(V)) return;
350
351    // This constant may have operands, make sure to enumerate the types in
352    // them.
353    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
354      const User *Op = C->getOperand(i);
355
356      // Don't enumerate basic blocks here, this happens as operands to
357      // blockaddress.
358      if (isa<BasicBlock>(Op)) continue;
359
360      EnumerateOperandType(cast<Constant>(Op));
361    }
362
363    if (const MDNode *N = dyn_cast<MDNode>(V)) {
364      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
365        if (Value *Elem = N->getOperand(i))
366          EnumerateOperandType(Elem);
367    }
368  } else if (isa<MDString>(V) || isa<MDNode>(V))
369    EnumerateValue(V);
370}
371
372void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
373  if (PAL.isEmpty()) return;  // null is always 0.
374  // Do a lookup.
375  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
376  if (Entry == 0) {
377    // Never saw this before, add it.
378    Attributes.push_back(PAL);
379    Entry = Attributes.size();
380  }
381}
382
383
384void ValueEnumerator::incorporateFunction(const Function &F) {
385  InstructionCount = 0;
386  NumModuleValues = Values.size();
387
388  // Adding function arguments to the value table.
389  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
390      I != E; ++I)
391    EnumerateValue(I);
392
393  FirstFuncConstantID = Values.size();
394
395  // Add all function-level constants to the value table.
396  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
397    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
398      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
399           OI != E; ++OI) {
400        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
401            isa<InlineAsm>(*OI))
402          EnumerateValue(*OI);
403      }
404    BasicBlocks.push_back(BB);
405    ValueMap[BB] = BasicBlocks.size();
406  }
407
408  // Optimize the constant layout.
409  OptimizeConstants(FirstFuncConstantID, Values.size());
410
411  // Add the function's parameter attributes so they are available for use in
412  // the function's instruction.
413  EnumerateAttributes(F.getAttributes());
414
415  FirstInstID = Values.size();
416
417  SmallVector<MDNode *, 8> FunctionLocalMDs;
418  // Add all of the instructions.
419  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
420    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
421      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
422           OI != E; ++OI) {
423        if (MDNode *MD = dyn_cast<MDNode>(*OI))
424          if (MD->isFunctionLocal() && MD->getFunction())
425            // Enumerate metadata after the instructions they might refer to.
426            FunctionLocalMDs.push_back(MD);
427      }
428      if (!I->getType()->isVoidTy())
429        EnumerateValue(I);
430    }
431  }
432
433  // Add all of the function-local metadata.
434  for (unsigned i = 0, e = FunctionLocalMDs.size(); i != e; ++i)
435    EnumerateOperandType(FunctionLocalMDs[i]);
436}
437
438void ValueEnumerator::purgeFunction() {
439  /// Remove purged values from the ValueMap.
440  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
441    ValueMap.erase(Values[i].first);
442  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
443    ValueMap.erase(BasicBlocks[i]);
444
445  Values.resize(NumModuleValues);
446  BasicBlocks.clear();
447}
448
449static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
450                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
451  unsigned Counter = 0;
452  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
453    IDMap[BB] = ++Counter;
454}
455
456/// getGlobalBasicBlockID - This returns the function-specific ID for the
457/// specified basic block.  This is relatively expensive information, so it
458/// should only be used by rare constructs such as address-of-label.
459unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
460  unsigned &Idx = GlobalBasicBlockIDs[BB];
461  if (Idx != 0)
462    return Idx-1;
463
464  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
465  return getGlobalBasicBlockID(BB);
466}
467
468