ValueEnumerator.cpp revision 204642
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Module.h"
18#include "llvm/TypeSymbolTable.h"
19#include "llvm/ValueSymbolTable.h"
20#include "llvm/Instructions.h"
21#include <algorithm>
22using namespace llvm;
23
24static bool isSingleValueType(const std::pair<const llvm::Type*,
25                              unsigned int> &P) {
26  return P.first->isSingleValueType();
27}
28
29static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
30  return V.first->getType()->isIntegerTy();
31}
32
33static bool CompareByFrequency(const std::pair<const llvm::Type*,
34                               unsigned int> &P1,
35                               const std::pair<const llvm::Type*,
36                               unsigned int> &P2) {
37  return P1.second > P2.second;
38}
39
40/// ValueEnumerator - Enumerate module-level information.
41ValueEnumerator::ValueEnumerator(const Module *M) {
42  // Enumerate the global variables.
43  for (Module::const_global_iterator I = M->global_begin(),
44         E = M->global_end(); I != E; ++I)
45    EnumerateValue(I);
46
47  // Enumerate the functions.
48  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
49    EnumerateValue(I);
50    EnumerateAttributes(cast<Function>(I)->getAttributes());
51  }
52
53  // Enumerate the aliases.
54  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
55       I != E; ++I)
56    EnumerateValue(I);
57
58  // Remember what is the cutoff between globalvalue's and other constants.
59  unsigned FirstConstant = Values.size();
60
61  // Enumerate the global variable initializers.
62  for (Module::const_global_iterator I = M->global_begin(),
63         E = M->global_end(); I != E; ++I)
64    if (I->hasInitializer())
65      EnumerateValue(I->getInitializer());
66
67  // Enumerate the aliasees.
68  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
69       I != E; ++I)
70    EnumerateValue(I->getAliasee());
71
72  // Enumerate types used by the type symbol table.
73  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
74
75  // Insert constants and metadata  that are named at module level into the slot
76  // pool so that the module symbol table can refer to them...
77  EnumerateValueSymbolTable(M->getValueSymbolTable());
78  EnumerateMDSymbolTable(M->getMDSymbolTable());
79
80  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
81
82  // Enumerate types used by function bodies and argument lists.
83  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
84
85    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
86         I != E; ++I)
87      EnumerateType(I->getType());
88
89    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
90      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
91        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
92             OI != E; ++OI) {
93          if (MDNode *MD = dyn_cast<MDNode>(*OI))
94            if (MD->isFunctionLocal() && MD->getFunction())
95              // These will get enumerated during function-incorporation.
96              continue;
97          EnumerateOperandType(*OI);
98        }
99        EnumerateType(I->getType());
100        if (const CallInst *CI = dyn_cast<CallInst>(I))
101          EnumerateAttributes(CI->getAttributes());
102        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
103          EnumerateAttributes(II->getAttributes());
104
105        // Enumerate metadata attached with this instruction.
106        MDs.clear();
107        I->getAllMetadata(MDs);
108        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
109          EnumerateMetadata(MDs[i].second);
110      }
111  }
112
113  // Optimize constant ordering.
114  OptimizeConstants(FirstConstant, Values.size());
115
116  // Sort the type table by frequency so that most commonly used types are early
117  // in the table (have low bit-width).
118  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
119
120  // Partition the Type ID's so that the single-value types occur before the
121  // aggregate types.  This allows the aggregate types to be dropped from the
122  // type table after parsing the global variable initializers.
123  std::partition(Types.begin(), Types.end(), isSingleValueType);
124
125  // Now that we rearranged the type table, rebuild TypeMap.
126  for (unsigned i = 0, e = Types.size(); i != e; ++i)
127    TypeMap[Types[i].first] = i+1;
128}
129
130unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
131  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
132  assert (I != InstructionMap.end() && "Instruction is not mapped!");
133    return I->second;
134}
135
136void ValueEnumerator::setInstructionID(const Instruction *I) {
137  InstructionMap[I] = InstructionCount++;
138}
139
140unsigned ValueEnumerator::getValueID(const Value *V) const {
141  if (isa<MDNode>(V) || isa<MDString>(V)) {
142    ValueMapType::const_iterator I = MDValueMap.find(V);
143    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
144    return I->second-1;
145  }
146
147  ValueMapType::const_iterator I = ValueMap.find(V);
148  assert(I != ValueMap.end() && "Value not in slotcalculator!");
149  return I->second-1;
150}
151
152// Optimize constant ordering.
153namespace {
154  struct CstSortPredicate {
155    ValueEnumerator &VE;
156    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
157    bool operator()(const std::pair<const Value*, unsigned> &LHS,
158                    const std::pair<const Value*, unsigned> &RHS) {
159      // Sort by plane.
160      if (LHS.first->getType() != RHS.first->getType())
161        return VE.getTypeID(LHS.first->getType()) <
162               VE.getTypeID(RHS.first->getType());
163      // Then by frequency.
164      return LHS.second > RHS.second;
165    }
166  };
167}
168
169/// OptimizeConstants - Reorder constant pool for denser encoding.
170void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
171  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
172
173  CstSortPredicate P(*this);
174  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
175
176  // Ensure that integer constants are at the start of the constant pool.  This
177  // is important so that GEP structure indices come before gep constant exprs.
178  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
179                 isIntegerValue);
180
181  // Rebuild the modified portion of ValueMap.
182  for (; CstStart != CstEnd; ++CstStart)
183    ValueMap[Values[CstStart].first] = CstStart+1;
184}
185
186
187/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
188/// table.
189void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
190  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
191       TI != TE; ++TI)
192    EnumerateType(TI->second);
193}
194
195/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
196/// table into the values table.
197void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
198  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
199       VI != VE; ++VI)
200    EnumerateValue(VI->getValue());
201}
202
203/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
204/// table.
205void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
206  for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
207       MI != ME; ++MI)
208    EnumerateValue(MI->getValue());
209}
210
211void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
212  // Check to see if it's already in!
213  unsigned &MDValueID = MDValueMap[MD];
214  if (MDValueID) {
215    // Increment use count.
216    MDValues[MDValueID-1].second++;
217    return;
218  }
219
220  // Enumerate the type of this value.
221  EnumerateType(MD->getType());
222
223  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
224    if (MDNode *E = MD->getOperand(i))
225      EnumerateValue(E);
226  MDValues.push_back(std::make_pair(MD, 1U));
227  MDValueMap[MD] = Values.size();
228}
229
230void ValueEnumerator::EnumerateMetadata(const Value *MD) {
231  assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
232  // Check to see if it's already in!
233  unsigned &MDValueID = MDValueMap[MD];
234  if (MDValueID) {
235    // Increment use count.
236    MDValues[MDValueID-1].second++;
237    return;
238  }
239
240  // Enumerate the type of this value.
241  EnumerateType(MD->getType());
242
243  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
244    MDValues.push_back(std::make_pair(MD, 1U));
245    MDValueMap[MD] = MDValues.size();
246    MDValueID = MDValues.size();
247    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
248      if (Value *V = N->getOperand(i))
249        EnumerateValue(V);
250      else
251        EnumerateType(Type::getVoidTy(MD->getContext()));
252    }
253    return;
254  }
255
256  // Add the value.
257  assert(isa<MDString>(MD) && "Unknown metadata kind");
258  MDValues.push_back(std::make_pair(MD, 1U));
259  MDValueID = MDValues.size();
260}
261
262void ValueEnumerator::EnumerateValue(const Value *V) {
263  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
264  if (isa<MDNode>(V) || isa<MDString>(V))
265    return EnumerateMetadata(V);
266  else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
267    return EnumerateNamedMDNode(NMD);
268
269  // Check to see if it's already in!
270  unsigned &ValueID = ValueMap[V];
271  if (ValueID) {
272    // Increment use count.
273    Values[ValueID-1].second++;
274    return;
275  }
276
277  // Enumerate the type of this value.
278  EnumerateType(V->getType());
279
280  if (const Constant *C = dyn_cast<Constant>(V)) {
281    if (isa<GlobalValue>(C)) {
282      // Initializers for globals are handled explicitly elsewhere.
283    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
284      // Do not enumerate the initializers for an array of simple characters.
285      // The initializers just polute the value table, and we emit the strings
286      // specially.
287    } else if (C->getNumOperands()) {
288      // If a constant has operands, enumerate them.  This makes sure that if a
289      // constant has uses (for example an array of const ints), that they are
290      // inserted also.
291
292      // We prefer to enumerate them with values before we enumerate the user
293      // itself.  This makes it more likely that we can avoid forward references
294      // in the reader.  We know that there can be no cycles in the constants
295      // graph that don't go through a global variable.
296      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
297           I != E; ++I)
298        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
299          EnumerateValue(*I);
300
301      // Finally, add the value.  Doing this could make the ValueID reference be
302      // dangling, don't reuse it.
303      Values.push_back(std::make_pair(V, 1U));
304      ValueMap[V] = Values.size();
305      return;
306    }
307  }
308
309  // Add the value.
310  Values.push_back(std::make_pair(V, 1U));
311  ValueID = Values.size();
312}
313
314
315void ValueEnumerator::EnumerateType(const Type *Ty) {
316  unsigned &TypeID = TypeMap[Ty];
317
318  if (TypeID) {
319    // If we've already seen this type, just increase its occurrence count.
320    Types[TypeID-1].second++;
321    return;
322  }
323
324  // First time we saw this type, add it.
325  Types.push_back(std::make_pair(Ty, 1U));
326  TypeID = Types.size();
327
328  // Enumerate subtypes.
329  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
330       I != E; ++I)
331    EnumerateType(*I);
332}
333
334// Enumerate the types for the specified value.  If the value is a constant,
335// walk through it, enumerating the types of the constant.
336void ValueEnumerator::EnumerateOperandType(const Value *V) {
337  EnumerateType(V->getType());
338
339  if (const Constant *C = dyn_cast<Constant>(V)) {
340    // If this constant is already enumerated, ignore it, we know its type must
341    // be enumerated.
342    if (ValueMap.count(V)) return;
343
344    // This constant may have operands, make sure to enumerate the types in
345    // them.
346    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
347      const User *Op = C->getOperand(i);
348
349      // Don't enumerate basic blocks here, this happens as operands to
350      // blockaddress.
351      if (isa<BasicBlock>(Op)) continue;
352
353      EnumerateOperandType(cast<Constant>(Op));
354    }
355
356    if (const MDNode *N = dyn_cast<MDNode>(V)) {
357      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
358        if (Value *Elem = N->getOperand(i))
359          EnumerateOperandType(Elem);
360    }
361  } else if (isa<MDString>(V) || isa<MDNode>(V))
362    EnumerateValue(V);
363}
364
365void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
366  if (PAL.isEmpty()) return;  // null is always 0.
367  // Do a lookup.
368  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
369  if (Entry == 0) {
370    // Never saw this before, add it.
371    Attributes.push_back(PAL);
372    Entry = Attributes.size();
373  }
374}
375
376
377void ValueEnumerator::incorporateFunction(const Function &F) {
378  InstructionCount = 0;
379  NumModuleValues = Values.size();
380
381  // Adding function arguments to the value table.
382  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
383      I != E; ++I)
384    EnumerateValue(I);
385
386  FirstFuncConstantID = Values.size();
387
388  // Add all function-level constants to the value table.
389  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
390    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
391      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
392           OI != E; ++OI) {
393        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
394            isa<InlineAsm>(*OI))
395          EnumerateValue(*OI);
396      }
397    BasicBlocks.push_back(BB);
398    ValueMap[BB] = BasicBlocks.size();
399  }
400
401  // Optimize the constant layout.
402  OptimizeConstants(FirstFuncConstantID, Values.size());
403
404  // Add the function's parameter attributes so they are available for use in
405  // the function's instruction.
406  EnumerateAttributes(F.getAttributes());
407
408  FirstInstID = Values.size();
409
410  SmallVector<MDNode *, 8> FunctionLocalMDs;
411  // Add all of the instructions.
412  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
413    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
414      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
415           OI != E; ++OI) {
416        if (MDNode *MD = dyn_cast<MDNode>(*OI))
417          if (MD->isFunctionLocal() && MD->getFunction())
418            // Enumerate metadata after the instructions they might refer to.
419            FunctionLocalMDs.push_back(MD);
420      }
421      if (!I->getType()->isVoidTy())
422        EnumerateValue(I);
423    }
424  }
425
426  // Add all of the function-local metadata.
427  for (unsigned i = 0, e = FunctionLocalMDs.size(); i != e; ++i)
428    EnumerateOperandType(FunctionLocalMDs[i]);
429}
430
431void ValueEnumerator::purgeFunction() {
432  /// Remove purged values from the ValueMap.
433  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
434    ValueMap.erase(Values[i].first);
435  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
436    ValueMap.erase(BasicBlocks[i]);
437
438  Values.resize(NumModuleValues);
439  BasicBlocks.clear();
440}
441
442static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
443                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
444  unsigned Counter = 0;
445  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
446    IDMap[BB] = ++Counter;
447}
448
449/// getGlobalBasicBlockID - This returns the function-specific ID for the
450/// specified basic block.  This is relatively expensive information, so it
451/// should only be used by rare constructs such as address-of-label.
452unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
453  unsigned &Idx = GlobalBasicBlockIDs[BB];
454  if (Idx != 0)
455    return Idx-1;
456
457  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
458  return getGlobalBasicBlockID(BB);
459}
460
461