ScalarEvolution.cpp revision 251662
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/ConstantFolding.h"
67#include "llvm/Analysis/Dominators.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/ConstantRange.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/GetElementPtrTypeIterator.h"
86#include "llvm/Support/InstIterator.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Target/TargetLibraryInfo.h"
90#include <algorithm>
91using namespace llvm;
92
93STATISTIC(NumArrayLenItCounts,
94          "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96          "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98          "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100          "Number of loops with trip counts computed by force");
101
102static cl::opt<unsigned>
103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104                        cl::desc("Maximum number of iterations SCEV will "
105                                 "symbolically execute a constant "
106                                 "derived loop"),
107                        cl::init(100));
108
109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112           cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115                "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120                "Scalar Evolution Analysis", false, true)
121char ScalarEvolution::ID = 0;
122
123//===----------------------------------------------------------------------===//
124//                           SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
132void SCEV::dump() const {
133  print(dbgs());
134  dbgs() << '\n';
135}
136#endif
137
138void SCEV::print(raw_ostream &OS) const {
139  switch (getSCEVType()) {
140  case scConstant:
141    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142    return;
143  case scTruncate: {
144    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145    const SCEV *Op = Trunc->getOperand();
146    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147       << *Trunc->getType() << ")";
148    return;
149  }
150  case scZeroExtend: {
151    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152    const SCEV *Op = ZExt->getOperand();
153    OS << "(zext " << *Op->getType() << " " << *Op << " to "
154       << *ZExt->getType() << ")";
155    return;
156  }
157  case scSignExtend: {
158    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159    const SCEV *Op = SExt->getOperand();
160    OS << "(sext " << *Op->getType() << " " << *Op << " to "
161       << *SExt->getType() << ")";
162    return;
163  }
164  case scAddRecExpr: {
165    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166    OS << "{" << *AR->getOperand(0);
167    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168      OS << ",+," << *AR->getOperand(i);
169    OS << "}<";
170    if (AR->getNoWrapFlags(FlagNUW))
171      OS << "nuw><";
172    if (AR->getNoWrapFlags(FlagNSW))
173      OS << "nsw><";
174    if (AR->getNoWrapFlags(FlagNW) &&
175        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176      OS << "nw><";
177    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178    OS << ">";
179    return;
180  }
181  case scAddExpr:
182  case scMulExpr:
183  case scUMaxExpr:
184  case scSMaxExpr: {
185    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186    const char *OpStr = 0;
187    switch (NAry->getSCEVType()) {
188    case scAddExpr: OpStr = " + "; break;
189    case scMulExpr: OpStr = " * "; break;
190    case scUMaxExpr: OpStr = " umax "; break;
191    case scSMaxExpr: OpStr = " smax "; break;
192    }
193    OS << "(";
194    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195         I != E; ++I) {
196      OS << **I;
197      if (llvm::next(I) != E)
198        OS << OpStr;
199    }
200    OS << ")";
201    switch (NAry->getSCEVType()) {
202    case scAddExpr:
203    case scMulExpr:
204      if (NAry->getNoWrapFlags(FlagNUW))
205        OS << "<nuw>";
206      if (NAry->getNoWrapFlags(FlagNSW))
207        OS << "<nsw>";
208    }
209    return;
210  }
211  case scUDivExpr: {
212    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214    return;
215  }
216  case scUnknown: {
217    const SCEVUnknown *U = cast<SCEVUnknown>(this);
218    Type *AllocTy;
219    if (U->isSizeOf(AllocTy)) {
220      OS << "sizeof(" << *AllocTy << ")";
221      return;
222    }
223    if (U->isAlignOf(AllocTy)) {
224      OS << "alignof(" << *AllocTy << ")";
225      return;
226    }
227
228    Type *CTy;
229    Constant *FieldNo;
230    if (U->isOffsetOf(CTy, FieldNo)) {
231      OS << "offsetof(" << *CTy << ", ";
232      WriteAsOperand(OS, FieldNo, false);
233      OS << ")";
234      return;
235    }
236
237    // Otherwise just print it normally.
238    WriteAsOperand(OS, U->getValue(), false);
239    return;
240  }
241  case scCouldNotCompute:
242    OS << "***COULDNOTCOMPUTE***";
243    return;
244  default: break;
245  }
246  llvm_unreachable("Unknown SCEV kind!");
247}
248
249Type *SCEV::getType() const {
250  switch (getSCEVType()) {
251  case scConstant:
252    return cast<SCEVConstant>(this)->getType();
253  case scTruncate:
254  case scZeroExtend:
255  case scSignExtend:
256    return cast<SCEVCastExpr>(this)->getType();
257  case scAddRecExpr:
258  case scMulExpr:
259  case scUMaxExpr:
260  case scSMaxExpr:
261    return cast<SCEVNAryExpr>(this)->getType();
262  case scAddExpr:
263    return cast<SCEVAddExpr>(this)->getType();
264  case scUDivExpr:
265    return cast<SCEVUDivExpr>(this)->getType();
266  case scUnknown:
267    return cast<SCEVUnknown>(this)->getType();
268  case scCouldNotCompute:
269    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
270  default:
271    llvm_unreachable("Unknown SCEV kind!");
272  }
273}
274
275bool SCEV::isZero() const {
276  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277    return SC->getValue()->isZero();
278  return false;
279}
280
281bool SCEV::isOne() const {
282  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283    return SC->getValue()->isOne();
284  return false;
285}
286
287bool SCEV::isAllOnesValue() const {
288  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289    return SC->getValue()->isAllOnesValue();
290  return false;
291}
292
293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297  if (!Mul) return false;
298
299  // If there is a constant factor, it will be first.
300  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301  if (!SC) return false;
302
303  // Return true if the value is negative, this matches things like (-42 * V).
304  return SC->getValue()->getValue().isNegative();
305}
306
307SCEVCouldNotCompute::SCEVCouldNotCompute() :
308  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
309
310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311  return S->getSCEVType() == scCouldNotCompute;
312}
313
314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
315  FoldingSetNodeID ID;
316  ID.AddInteger(scConstant);
317  ID.AddPointer(V);
318  void *IP = 0;
319  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
320  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
321  UniqueSCEVs.InsertNode(S, IP);
322  return S;
323}
324
325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
326  return getConstant(ConstantInt::get(getContext(), Val));
327}
328
329const SCEV *
330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
332  return getConstant(ConstantInt::get(ITy, V, isSigned));
333}
334
335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
336                           unsigned SCEVTy, const SCEV *op, Type *ty)
337  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
338
339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
340                                   const SCEV *op, Type *ty)
341  : SCEVCastExpr(ID, scTruncate, op, ty) {
342  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
344         "Cannot truncate non-integer value!");
345}
346
347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
348                                       const SCEV *op, Type *ty)
349  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
350  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
352         "Cannot zero extend non-integer value!");
353}
354
355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
356                                       const SCEV *op, Type *ty)
357  : SCEVCastExpr(ID, scSignExtend, op, ty) {
358  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
360         "Cannot sign extend non-integer value!");
361}
362
363void SCEVUnknown::deleted() {
364  // Clear this SCEVUnknown from various maps.
365  SE->forgetMemoizedResults(this);
366
367  // Remove this SCEVUnknown from the uniquing map.
368  SE->UniqueSCEVs.RemoveNode(this);
369
370  // Release the value.
371  setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
375  // Clear this SCEVUnknown from various maps.
376  SE->forgetMemoizedResults(this);
377
378  // Remove this SCEVUnknown from the uniquing map.
379  SE->UniqueSCEVs.RemoveNode(this);
380
381  // Update this SCEVUnknown to point to the new value. This is needed
382  // because there may still be outstanding SCEVs which still point to
383  // this SCEVUnknown.
384  setValPtr(New);
385}
386
387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
388  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
389    if (VCE->getOpcode() == Instruction::PtrToInt)
390      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
391        if (CE->getOpcode() == Instruction::GetElementPtr &&
392            CE->getOperand(0)->isNullValue() &&
393            CE->getNumOperands() == 2)
394          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395            if (CI->isOne()) {
396              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397                                 ->getElementType();
398              return true;
399            }
400
401  return false;
402}
403
404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
405  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
406    if (VCE->getOpcode() == Instruction::PtrToInt)
407      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
408        if (CE->getOpcode() == Instruction::GetElementPtr &&
409            CE->getOperand(0)->isNullValue()) {
410          Type *Ty =
411            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
412          if (StructType *STy = dyn_cast<StructType>(Ty))
413            if (!STy->isPacked() &&
414                CE->getNumOperands() == 3 &&
415                CE->getOperand(1)->isNullValue()) {
416              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417                if (CI->isOne() &&
418                    STy->getNumElements() == 2 &&
419                    STy->getElementType(0)->isIntegerTy(1)) {
420                  AllocTy = STy->getElementType(1);
421                  return true;
422                }
423            }
424        }
425
426  return false;
427}
428
429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
430  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431    if (VCE->getOpcode() == Instruction::PtrToInt)
432      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433        if (CE->getOpcode() == Instruction::GetElementPtr &&
434            CE->getNumOperands() == 3 &&
435            CE->getOperand(0)->isNullValue() &&
436            CE->getOperand(1)->isNullValue()) {
437          Type *Ty =
438            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439          // Ignore vector types here so that ScalarEvolutionExpander doesn't
440          // emit getelementptrs that index into vectors.
441          if (Ty->isStructTy() || Ty->isArrayTy()) {
442            CTy = Ty;
443            FieldNo = CE->getOperand(2);
444            return true;
445          }
446        }
447
448  return false;
449}
450
451//===----------------------------------------------------------------------===//
452//                               SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457  /// than the complexity of the RHS.  This comparator is used to canonicalize
458  /// expressions.
459  class SCEVComplexityCompare {
460    const LoopInfo *const LI;
461  public:
462    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
463
464    // Return true or false if LHS is less than, or at least RHS, respectively.
465    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
466      return compare(LHS, RHS) < 0;
467    }
468
469    // Return negative, zero, or positive, if LHS is less than, equal to, or
470    // greater than RHS, respectively. A three-way result allows recursive
471    // comparisons to be more efficient.
472    int compare(const SCEV *LHS, const SCEV *RHS) const {
473      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474      if (LHS == RHS)
475        return 0;
476
477      // Primarily, sort the SCEVs by their getSCEVType().
478      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479      if (LType != RType)
480        return (int)LType - (int)RType;
481
482      // Aside from the getSCEVType() ordering, the particular ordering
483      // isn't very important except that it's beneficial to be consistent,
484      // so that (a + b) and (b + a) don't end up as different expressions.
485      switch (LType) {
486      case scUnknown: {
487        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
488        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
489
490        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491        // not as complete as it could be.
492        const Value *LV = LU->getValue(), *RV = RU->getValue();
493
494        // Order pointer values after integer values. This helps SCEVExpander
495        // form GEPs.
496        bool LIsPointer = LV->getType()->isPointerTy(),
497             RIsPointer = RV->getType()->isPointerTy();
498        if (LIsPointer != RIsPointer)
499          return (int)LIsPointer - (int)RIsPointer;
500
501        // Compare getValueID values.
502        unsigned LID = LV->getValueID(),
503                 RID = RV->getValueID();
504        if (LID != RID)
505          return (int)LID - (int)RID;
506
507        // Sort arguments by their position.
508        if (const Argument *LA = dyn_cast<Argument>(LV)) {
509          const Argument *RA = cast<Argument>(RV);
510          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511          return (int)LArgNo - (int)RArgNo;
512        }
513
514        // For instructions, compare their loop depth, and their operand
515        // count.  This is pretty loose.
516        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517          const Instruction *RInst = cast<Instruction>(RV);
518
519          // Compare loop depths.
520          const BasicBlock *LParent = LInst->getParent(),
521                           *RParent = RInst->getParent();
522          if (LParent != RParent) {
523            unsigned LDepth = LI->getLoopDepth(LParent),
524                     RDepth = LI->getLoopDepth(RParent);
525            if (LDepth != RDepth)
526              return (int)LDepth - (int)RDepth;
527          }
528
529          // Compare the number of operands.
530          unsigned LNumOps = LInst->getNumOperands(),
531                   RNumOps = RInst->getNumOperands();
532          return (int)LNumOps - (int)RNumOps;
533        }
534
535        return 0;
536      }
537
538      case scConstant: {
539        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
540        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
541
542        // Compare constant values.
543        const APInt &LA = LC->getValue()->getValue();
544        const APInt &RA = RC->getValue()->getValue();
545        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
546        if (LBitWidth != RBitWidth)
547          return (int)LBitWidth - (int)RBitWidth;
548        return LA.ult(RA) ? -1 : 1;
549      }
550
551      case scAddRecExpr: {
552        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
553        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
554
555        // Compare addrec loop depths.
556        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557        if (LLoop != RLoop) {
558          unsigned LDepth = LLoop->getLoopDepth(),
559                   RDepth = RLoop->getLoopDepth();
560          if (LDepth != RDepth)
561            return (int)LDepth - (int)RDepth;
562        }
563
564        // Addrec complexity grows with operand count.
565        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566        if (LNumOps != RNumOps)
567          return (int)LNumOps - (int)RNumOps;
568
569        // Lexicographically compare.
570        for (unsigned i = 0; i != LNumOps; ++i) {
571          long X = compare(LA->getOperand(i), RA->getOperand(i));
572          if (X != 0)
573            return X;
574        }
575
576        return 0;
577      }
578
579      case scAddExpr:
580      case scMulExpr:
581      case scSMaxExpr:
582      case scUMaxExpr: {
583        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
584        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
585
586        // Lexicographically compare n-ary expressions.
587        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588        for (unsigned i = 0; i != LNumOps; ++i) {
589          if (i >= RNumOps)
590            return 1;
591          long X = compare(LC->getOperand(i), RC->getOperand(i));
592          if (X != 0)
593            return X;
594        }
595        return (int)LNumOps - (int)RNumOps;
596      }
597
598      case scUDivExpr: {
599        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601
602        // Lexicographically compare udiv expressions.
603        long X = compare(LC->getLHS(), RC->getLHS());
604        if (X != 0)
605          return X;
606        return compare(LC->getRHS(), RC->getRHS());
607      }
608
609      case scTruncate:
610      case scZeroExtend:
611      case scSignExtend: {
612        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614
615        // Compare cast expressions by operand.
616        return compare(LC->getOperand(), RC->getOperand());
617      }
618
619      default:
620        llvm_unreachable("Unknown SCEV kind!");
621      }
622    }
623  };
624}
625
626/// GroupByComplexity - Given a list of SCEV objects, order them by their
627/// complexity, and group objects of the same complexity together by value.
628/// When this routine is finished, we know that any duplicates in the vector are
629/// consecutive and that complexity is monotonically increasing.
630///
631/// Note that we go take special precautions to ensure that we get deterministic
632/// results from this routine.  In other words, we don't want the results of
633/// this to depend on where the addresses of various SCEV objects happened to
634/// land in memory.
635///
636static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
637                              LoopInfo *LI) {
638  if (Ops.size() < 2) return;  // Noop
639  if (Ops.size() == 2) {
640    // This is the common case, which also happens to be trivially simple.
641    // Special case it.
642    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
643    if (SCEVComplexityCompare(LI)(RHS, LHS))
644      std::swap(LHS, RHS);
645    return;
646  }
647
648  // Do the rough sort by complexity.
649  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
650
651  // Now that we are sorted by complexity, group elements of the same
652  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
653  // be extremely short in practice.  Note that we take this approach because we
654  // do not want to depend on the addresses of the objects we are grouping.
655  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
656    const SCEV *S = Ops[i];
657    unsigned Complexity = S->getSCEVType();
658
659    // If there are any objects of the same complexity and same value as this
660    // one, group them.
661    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
662      if (Ops[j] == S) { // Found a duplicate.
663        // Move it to immediately after i'th element.
664        std::swap(Ops[i+1], Ops[j]);
665        ++i;   // no need to rescan it.
666        if (i == e-2) return;  // Done!
667      }
668    }
669  }
670}
671
672
673
674//===----------------------------------------------------------------------===//
675//                      Simple SCEV method implementations
676//===----------------------------------------------------------------------===//
677
678/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
679/// Assume, K > 0.
680static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
681                                       ScalarEvolution &SE,
682                                       Type *ResultTy) {
683  // Handle the simplest case efficiently.
684  if (K == 1)
685    return SE.getTruncateOrZeroExtend(It, ResultTy);
686
687  // We are using the following formula for BC(It, K):
688  //
689  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
690  //
691  // Suppose, W is the bitwidth of the return value.  We must be prepared for
692  // overflow.  Hence, we must assure that the result of our computation is
693  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
694  // safe in modular arithmetic.
695  //
696  // However, this code doesn't use exactly that formula; the formula it uses
697  // is something like the following, where T is the number of factors of 2 in
698  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
699  // exponentiation:
700  //
701  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
702  //
703  // This formula is trivially equivalent to the previous formula.  However,
704  // this formula can be implemented much more efficiently.  The trick is that
705  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
706  // arithmetic.  To do exact division in modular arithmetic, all we have
707  // to do is multiply by the inverse.  Therefore, this step can be done at
708  // width W.
709  //
710  // The next issue is how to safely do the division by 2^T.  The way this
711  // is done is by doing the multiplication step at a width of at least W + T
712  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
713  // when we perform the division by 2^T (which is equivalent to a right shift
714  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
715  // truncated out after the division by 2^T.
716  //
717  // In comparison to just directly using the first formula, this technique
718  // is much more efficient; using the first formula requires W * K bits,
719  // but this formula less than W + K bits. Also, the first formula requires
720  // a division step, whereas this formula only requires multiplies and shifts.
721  //
722  // It doesn't matter whether the subtraction step is done in the calculation
723  // width or the input iteration count's width; if the subtraction overflows,
724  // the result must be zero anyway.  We prefer here to do it in the width of
725  // the induction variable because it helps a lot for certain cases; CodeGen
726  // isn't smart enough to ignore the overflow, which leads to much less
727  // efficient code if the width of the subtraction is wider than the native
728  // register width.
729  //
730  // (It's possible to not widen at all by pulling out factors of 2 before
731  // the multiplication; for example, K=2 can be calculated as
732  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
733  // extra arithmetic, so it's not an obvious win, and it gets
734  // much more complicated for K > 3.)
735
736  // Protection from insane SCEVs; this bound is conservative,
737  // but it probably doesn't matter.
738  if (K > 1000)
739    return SE.getCouldNotCompute();
740
741  unsigned W = SE.getTypeSizeInBits(ResultTy);
742
743  // Calculate K! / 2^T and T; we divide out the factors of two before
744  // multiplying for calculating K! / 2^T to avoid overflow.
745  // Other overflow doesn't matter because we only care about the bottom
746  // W bits of the result.
747  APInt OddFactorial(W, 1);
748  unsigned T = 1;
749  for (unsigned i = 3; i <= K; ++i) {
750    APInt Mult(W, i);
751    unsigned TwoFactors = Mult.countTrailingZeros();
752    T += TwoFactors;
753    Mult = Mult.lshr(TwoFactors);
754    OddFactorial *= Mult;
755  }
756
757  // We need at least W + T bits for the multiplication step
758  unsigned CalculationBits = W + T;
759
760  // Calculate 2^T, at width T+W.
761  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
762
763  // Calculate the multiplicative inverse of K! / 2^T;
764  // this multiplication factor will perform the exact division by
765  // K! / 2^T.
766  APInt Mod = APInt::getSignedMinValue(W+1);
767  APInt MultiplyFactor = OddFactorial.zext(W+1);
768  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
769  MultiplyFactor = MultiplyFactor.trunc(W);
770
771  // Calculate the product, at width T+W
772  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
773                                                      CalculationBits);
774  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
775  for (unsigned i = 1; i != K; ++i) {
776    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
777    Dividend = SE.getMulExpr(Dividend,
778                             SE.getTruncateOrZeroExtend(S, CalculationTy));
779  }
780
781  // Divide by 2^T
782  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
783
784  // Truncate the result, and divide by K! / 2^T.
785
786  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
787                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
788}
789
790/// evaluateAtIteration - Return the value of this chain of recurrences at
791/// the specified iteration number.  We can evaluate this recurrence by
792/// multiplying each element in the chain by the binomial coefficient
793/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
794///
795///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
796///
797/// where BC(It, k) stands for binomial coefficient.
798///
799const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
800                                                ScalarEvolution &SE) const {
801  const SCEV *Result = getStart();
802  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
803    // The computation is correct in the face of overflow provided that the
804    // multiplication is performed _after_ the evaluation of the binomial
805    // coefficient.
806    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
807    if (isa<SCEVCouldNotCompute>(Coeff))
808      return Coeff;
809
810    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
811  }
812  return Result;
813}
814
815//===----------------------------------------------------------------------===//
816//                    SCEV Expression folder implementations
817//===----------------------------------------------------------------------===//
818
819const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
820                                             Type *Ty) {
821  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
822         "This is not a truncating conversion!");
823  assert(isSCEVable(Ty) &&
824         "This is not a conversion to a SCEVable type!");
825  Ty = getEffectiveSCEVType(Ty);
826
827  FoldingSetNodeID ID;
828  ID.AddInteger(scTruncate);
829  ID.AddPointer(Op);
830  ID.AddPointer(Ty);
831  void *IP = 0;
832  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
833
834  // Fold if the operand is constant.
835  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
836    return getConstant(
837      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
838
839  // trunc(trunc(x)) --> trunc(x)
840  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
841    return getTruncateExpr(ST->getOperand(), Ty);
842
843  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
844  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
845    return getTruncateOrSignExtend(SS->getOperand(), Ty);
846
847  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
848  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
849    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
850
851  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
852  // eliminate all the truncates.
853  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
854    SmallVector<const SCEV *, 4> Operands;
855    bool hasTrunc = false;
856    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
857      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
858      hasTrunc = isa<SCEVTruncateExpr>(S);
859      Operands.push_back(S);
860    }
861    if (!hasTrunc)
862      return getAddExpr(Operands);
863    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
864  }
865
866  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
867  // eliminate all the truncates.
868  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
869    SmallVector<const SCEV *, 4> Operands;
870    bool hasTrunc = false;
871    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
872      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
873      hasTrunc = isa<SCEVTruncateExpr>(S);
874      Operands.push_back(S);
875    }
876    if (!hasTrunc)
877      return getMulExpr(Operands);
878    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
879  }
880
881  // If the input value is a chrec scev, truncate the chrec's operands.
882  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
883    SmallVector<const SCEV *, 4> Operands;
884    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
885      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
886    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
887  }
888
889  // The cast wasn't folded; create an explicit cast node. We can reuse
890  // the existing insert position since if we get here, we won't have
891  // made any changes which would invalidate it.
892  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
893                                                 Op, Ty);
894  UniqueSCEVs.InsertNode(S, IP);
895  return S;
896}
897
898const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
899                                               Type *Ty) {
900  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
901         "This is not an extending conversion!");
902  assert(isSCEVable(Ty) &&
903         "This is not a conversion to a SCEVable type!");
904  Ty = getEffectiveSCEVType(Ty);
905
906  // Fold if the operand is constant.
907  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
908    return getConstant(
909      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
910
911  // zext(zext(x)) --> zext(x)
912  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
913    return getZeroExtendExpr(SZ->getOperand(), Ty);
914
915  // Before doing any expensive analysis, check to see if we've already
916  // computed a SCEV for this Op and Ty.
917  FoldingSetNodeID ID;
918  ID.AddInteger(scZeroExtend);
919  ID.AddPointer(Op);
920  ID.AddPointer(Ty);
921  void *IP = 0;
922  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
923
924  // zext(trunc(x)) --> zext(x) or x or trunc(x)
925  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
926    // It's possible the bits taken off by the truncate were all zero bits. If
927    // so, we should be able to simplify this further.
928    const SCEV *X = ST->getOperand();
929    ConstantRange CR = getUnsignedRange(X);
930    unsigned TruncBits = getTypeSizeInBits(ST->getType());
931    unsigned NewBits = getTypeSizeInBits(Ty);
932    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
933            CR.zextOrTrunc(NewBits)))
934      return getTruncateOrZeroExtend(X, Ty);
935  }
936
937  // If the input value is a chrec scev, and we can prove that the value
938  // did not overflow the old, smaller, value, we can zero extend all of the
939  // operands (often constants).  This allows analysis of something like
940  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
941  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
942    if (AR->isAffine()) {
943      const SCEV *Start = AR->getStart();
944      const SCEV *Step = AR->getStepRecurrence(*this);
945      unsigned BitWidth = getTypeSizeInBits(AR->getType());
946      const Loop *L = AR->getLoop();
947
948      // If we have special knowledge that this addrec won't overflow,
949      // we don't need to do any further analysis.
950      if (AR->getNoWrapFlags(SCEV::FlagNUW))
951        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
952                             getZeroExtendExpr(Step, Ty),
953                             L, AR->getNoWrapFlags());
954
955      // Check whether the backedge-taken count is SCEVCouldNotCompute.
956      // Note that this serves two purposes: It filters out loops that are
957      // simply not analyzable, and it covers the case where this code is
958      // being called from within backedge-taken count analysis, such that
959      // attempting to ask for the backedge-taken count would likely result
960      // in infinite recursion. In the later case, the analysis code will
961      // cope with a conservative value, and it will take care to purge
962      // that value once it has finished.
963      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
964      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
965        // Manually compute the final value for AR, checking for
966        // overflow.
967
968        // Check whether the backedge-taken count can be losslessly casted to
969        // the addrec's type. The count is always unsigned.
970        const SCEV *CastedMaxBECount =
971          getTruncateOrZeroExtend(MaxBECount, Start->getType());
972        const SCEV *RecastedMaxBECount =
973          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
974        if (MaxBECount == RecastedMaxBECount) {
975          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
976          // Check whether Start+Step*MaxBECount has no unsigned overflow.
977          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
978          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
979          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
980          const SCEV *WideMaxBECount =
981            getZeroExtendExpr(CastedMaxBECount, WideTy);
982          const SCEV *OperandExtendedAdd =
983            getAddExpr(WideStart,
984                       getMulExpr(WideMaxBECount,
985                                  getZeroExtendExpr(Step, WideTy)));
986          if (ZAdd == OperandExtendedAdd) {
987            // Cache knowledge of AR NUW, which is propagated to this AddRec.
988            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
989            // Return the expression with the addrec on the outside.
990            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
991                                 getZeroExtendExpr(Step, Ty),
992                                 L, AR->getNoWrapFlags());
993          }
994          // Similar to above, only this time treat the step value as signed.
995          // This covers loops that count down.
996          OperandExtendedAdd =
997            getAddExpr(WideStart,
998                       getMulExpr(WideMaxBECount,
999                                  getSignExtendExpr(Step, WideTy)));
1000          if (ZAdd == OperandExtendedAdd) {
1001            // Cache knowledge of AR NW, which is propagated to this AddRec.
1002            // Negative step causes unsigned wrap, but it still can't self-wrap.
1003            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1004            // Return the expression with the addrec on the outside.
1005            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1006                                 getSignExtendExpr(Step, Ty),
1007                                 L, AR->getNoWrapFlags());
1008          }
1009        }
1010
1011        // If the backedge is guarded by a comparison with the pre-inc value
1012        // the addrec is safe. Also, if the entry is guarded by a comparison
1013        // with the start value and the backedge is guarded by a comparison
1014        // with the post-inc value, the addrec is safe.
1015        if (isKnownPositive(Step)) {
1016          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1017                                      getUnsignedRange(Step).getUnsignedMax());
1018          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1019              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1020               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1021                                           AR->getPostIncExpr(*this), N))) {
1022            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1023            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1024            // Return the expression with the addrec on the outside.
1025            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026                                 getZeroExtendExpr(Step, Ty),
1027                                 L, AR->getNoWrapFlags());
1028          }
1029        } else if (isKnownNegative(Step)) {
1030          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1031                                      getSignedRange(Step).getSignedMin());
1032          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1033              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1034               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1035                                           AR->getPostIncExpr(*this), N))) {
1036            // Cache knowledge of AR NW, which is propagated to this AddRec.
1037            // Negative step causes unsigned wrap, but it still can't self-wrap.
1038            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1039            // Return the expression with the addrec on the outside.
1040            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1041                                 getSignExtendExpr(Step, Ty),
1042                                 L, AR->getNoWrapFlags());
1043          }
1044        }
1045      }
1046    }
1047
1048  // The cast wasn't folded; create an explicit cast node.
1049  // Recompute the insert position, as it may have been invalidated.
1050  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1051  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1052                                                   Op, Ty);
1053  UniqueSCEVs.InsertNode(S, IP);
1054  return S;
1055}
1056
1057// Get the limit of a recurrence such that incrementing by Step cannot cause
1058// signed overflow as long as the value of the recurrence within the loop does
1059// not exceed this limit before incrementing.
1060static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1061                                           ICmpInst::Predicate *Pred,
1062                                           ScalarEvolution *SE) {
1063  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1064  if (SE->isKnownPositive(Step)) {
1065    *Pred = ICmpInst::ICMP_SLT;
1066    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1067                           SE->getSignedRange(Step).getSignedMax());
1068  }
1069  if (SE->isKnownNegative(Step)) {
1070    *Pred = ICmpInst::ICMP_SGT;
1071    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1072                       SE->getSignedRange(Step).getSignedMin());
1073  }
1074  return 0;
1075}
1076
1077// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1078// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1079// or postincrement sibling. This allows normalizing a sign extended AddRec as
1080// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1081// result, the expression "Step + sext(PreIncAR)" is congruent with
1082// "sext(PostIncAR)"
1083static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1084                                            Type *Ty,
1085                                            ScalarEvolution *SE) {
1086  const Loop *L = AR->getLoop();
1087  const SCEV *Start = AR->getStart();
1088  const SCEV *Step = AR->getStepRecurrence(*SE);
1089
1090  // Check for a simple looking step prior to loop entry.
1091  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1092  if (!SA)
1093    return 0;
1094
1095  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1096  // subtraction is expensive. For this purpose, perform a quick and dirty
1097  // difference, by checking for Step in the operand list.
1098  SmallVector<const SCEV *, 4> DiffOps;
1099  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1100       I != E; ++I) {
1101    if (*I != Step)
1102      DiffOps.push_back(*I);
1103  }
1104  if (DiffOps.size() == SA->getNumOperands())
1105    return 0;
1106
1107  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1108  // same three conditions that getSignExtendedExpr checks.
1109
1110  // 1. NSW flags on the step increment.
1111  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1112  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1113    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1114
1115  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1116    return PreStart;
1117
1118  // 2. Direct overflow check on the step operation's expression.
1119  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1120  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1121  const SCEV *OperandExtendedStart =
1122    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1123                   SE->getSignExtendExpr(Step, WideTy));
1124  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1125    // Cache knowledge of PreAR NSW.
1126    if (PreAR)
1127      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1128    // FIXME: this optimization needs a unit test
1129    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1130    return PreStart;
1131  }
1132
1133  // 3. Loop precondition.
1134  ICmpInst::Predicate Pred;
1135  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1136
1137  if (OverflowLimit &&
1138      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1139    return PreStart;
1140  }
1141  return 0;
1142}
1143
1144// Get the normalized sign-extended expression for this AddRec's Start.
1145static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1146                                            Type *Ty,
1147                                            ScalarEvolution *SE) {
1148  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1149  if (!PreStart)
1150    return SE->getSignExtendExpr(AR->getStart(), Ty);
1151
1152  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1153                        SE->getSignExtendExpr(PreStart, Ty));
1154}
1155
1156const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1157                                               Type *Ty) {
1158  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1159         "This is not an extending conversion!");
1160  assert(isSCEVable(Ty) &&
1161         "This is not a conversion to a SCEVable type!");
1162  Ty = getEffectiveSCEVType(Ty);
1163
1164  // Fold if the operand is constant.
1165  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1166    return getConstant(
1167      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1168
1169  // sext(sext(x)) --> sext(x)
1170  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1171    return getSignExtendExpr(SS->getOperand(), Ty);
1172
1173  // sext(zext(x)) --> zext(x)
1174  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175    return getZeroExtendExpr(SZ->getOperand(), Ty);
1176
1177  // Before doing any expensive analysis, check to see if we've already
1178  // computed a SCEV for this Op and Ty.
1179  FoldingSetNodeID ID;
1180  ID.AddInteger(scSignExtend);
1181  ID.AddPointer(Op);
1182  ID.AddPointer(Ty);
1183  void *IP = 0;
1184  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1185
1186  // If the input value is provably positive, build a zext instead.
1187  if (isKnownNonNegative(Op))
1188    return getZeroExtendExpr(Op, Ty);
1189
1190  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1191  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1192    // It's possible the bits taken off by the truncate were all sign bits. If
1193    // so, we should be able to simplify this further.
1194    const SCEV *X = ST->getOperand();
1195    ConstantRange CR = getSignedRange(X);
1196    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1197    unsigned NewBits = getTypeSizeInBits(Ty);
1198    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1199            CR.sextOrTrunc(NewBits)))
1200      return getTruncateOrSignExtend(X, Ty);
1201  }
1202
1203  // If the input value is a chrec scev, and we can prove that the value
1204  // did not overflow the old, smaller, value, we can sign extend all of the
1205  // operands (often constants).  This allows analysis of something like
1206  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1207  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1208    if (AR->isAffine()) {
1209      const SCEV *Start = AR->getStart();
1210      const SCEV *Step = AR->getStepRecurrence(*this);
1211      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1212      const Loop *L = AR->getLoop();
1213
1214      // If we have special knowledge that this addrec won't overflow,
1215      // we don't need to do any further analysis.
1216      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1217        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1218                             getSignExtendExpr(Step, Ty),
1219                             L, SCEV::FlagNSW);
1220
1221      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1222      // Note that this serves two purposes: It filters out loops that are
1223      // simply not analyzable, and it covers the case where this code is
1224      // being called from within backedge-taken count analysis, such that
1225      // attempting to ask for the backedge-taken count would likely result
1226      // in infinite recursion. In the later case, the analysis code will
1227      // cope with a conservative value, and it will take care to purge
1228      // that value once it has finished.
1229      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1230      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1231        // Manually compute the final value for AR, checking for
1232        // overflow.
1233
1234        // Check whether the backedge-taken count can be losslessly casted to
1235        // the addrec's type. The count is always unsigned.
1236        const SCEV *CastedMaxBECount =
1237          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1238        const SCEV *RecastedMaxBECount =
1239          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1240        if (MaxBECount == RecastedMaxBECount) {
1241          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1242          // Check whether Start+Step*MaxBECount has no signed overflow.
1243          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1244          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1245          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1246          const SCEV *WideMaxBECount =
1247            getZeroExtendExpr(CastedMaxBECount, WideTy);
1248          const SCEV *OperandExtendedAdd =
1249            getAddExpr(WideStart,
1250                       getMulExpr(WideMaxBECount,
1251                                  getSignExtendExpr(Step, WideTy)));
1252          if (SAdd == OperandExtendedAdd) {
1253            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1254            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1255            // Return the expression with the addrec on the outside.
1256            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1257                                 getSignExtendExpr(Step, Ty),
1258                                 L, AR->getNoWrapFlags());
1259          }
1260          // Similar to above, only this time treat the step value as unsigned.
1261          // This covers loops that count up with an unsigned step.
1262          OperandExtendedAdd =
1263            getAddExpr(WideStart,
1264                       getMulExpr(WideMaxBECount,
1265                                  getZeroExtendExpr(Step, WideTy)));
1266          if (SAdd == OperandExtendedAdd) {
1267            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1268            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1269            // Return the expression with the addrec on the outside.
1270            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1271                                 getZeroExtendExpr(Step, Ty),
1272                                 L, AR->getNoWrapFlags());
1273          }
1274        }
1275
1276        // If the backedge is guarded by a comparison with the pre-inc value
1277        // the addrec is safe. Also, if the entry is guarded by a comparison
1278        // with the start value and the backedge is guarded by a comparison
1279        // with the post-inc value, the addrec is safe.
1280        ICmpInst::Predicate Pred;
1281        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1282        if (OverflowLimit &&
1283            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1284             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1285              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1286                                          OverflowLimit)))) {
1287          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1288          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1289          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1290                               getSignExtendExpr(Step, Ty),
1291                               L, AR->getNoWrapFlags());
1292        }
1293      }
1294    }
1295
1296  // The cast wasn't folded; create an explicit cast node.
1297  // Recompute the insert position, as it may have been invalidated.
1298  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1299  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1300                                                   Op, Ty);
1301  UniqueSCEVs.InsertNode(S, IP);
1302  return S;
1303}
1304
1305/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1306/// unspecified bits out to the given type.
1307///
1308const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1309                                              Type *Ty) {
1310  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1311         "This is not an extending conversion!");
1312  assert(isSCEVable(Ty) &&
1313         "This is not a conversion to a SCEVable type!");
1314  Ty = getEffectiveSCEVType(Ty);
1315
1316  // Sign-extend negative constants.
1317  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1318    if (SC->getValue()->getValue().isNegative())
1319      return getSignExtendExpr(Op, Ty);
1320
1321  // Peel off a truncate cast.
1322  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1323    const SCEV *NewOp = T->getOperand();
1324    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1325      return getAnyExtendExpr(NewOp, Ty);
1326    return getTruncateOrNoop(NewOp, Ty);
1327  }
1328
1329  // Next try a zext cast. If the cast is folded, use it.
1330  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1331  if (!isa<SCEVZeroExtendExpr>(ZExt))
1332    return ZExt;
1333
1334  // Next try a sext cast. If the cast is folded, use it.
1335  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1336  if (!isa<SCEVSignExtendExpr>(SExt))
1337    return SExt;
1338
1339  // Force the cast to be folded into the operands of an addrec.
1340  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1341    SmallVector<const SCEV *, 4> Ops;
1342    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1343         I != E; ++I)
1344      Ops.push_back(getAnyExtendExpr(*I, Ty));
1345    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1346  }
1347
1348  // If the expression is obviously signed, use the sext cast value.
1349  if (isa<SCEVSMaxExpr>(Op))
1350    return SExt;
1351
1352  // Absent any other information, use the zext cast value.
1353  return ZExt;
1354}
1355
1356/// CollectAddOperandsWithScales - Process the given Ops list, which is
1357/// a list of operands to be added under the given scale, update the given
1358/// map. This is a helper function for getAddRecExpr. As an example of
1359/// what it does, given a sequence of operands that would form an add
1360/// expression like this:
1361///
1362///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1363///
1364/// where A and B are constants, update the map with these values:
1365///
1366///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1367///
1368/// and add 13 + A*B*29 to AccumulatedConstant.
1369/// This will allow getAddRecExpr to produce this:
1370///
1371///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1372///
1373/// This form often exposes folding opportunities that are hidden in
1374/// the original operand list.
1375///
1376/// Return true iff it appears that any interesting folding opportunities
1377/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1378/// the common case where no interesting opportunities are present, and
1379/// is also used as a check to avoid infinite recursion.
1380///
1381static bool
1382CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1383                             SmallVector<const SCEV *, 8> &NewOps,
1384                             APInt &AccumulatedConstant,
1385                             const SCEV *const *Ops, size_t NumOperands,
1386                             const APInt &Scale,
1387                             ScalarEvolution &SE) {
1388  bool Interesting = false;
1389
1390  // Iterate over the add operands. They are sorted, with constants first.
1391  unsigned i = 0;
1392  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1393    ++i;
1394    // Pull a buried constant out to the outside.
1395    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1396      Interesting = true;
1397    AccumulatedConstant += Scale * C->getValue()->getValue();
1398  }
1399
1400  // Next comes everything else. We're especially interested in multiplies
1401  // here, but they're in the middle, so just visit the rest with one loop.
1402  for (; i != NumOperands; ++i) {
1403    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1404    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1405      APInt NewScale =
1406        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1407      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1408        // A multiplication of a constant with another add; recurse.
1409        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1410        Interesting |=
1411          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1412                                       Add->op_begin(), Add->getNumOperands(),
1413                                       NewScale, SE);
1414      } else {
1415        // A multiplication of a constant with some other value. Update
1416        // the map.
1417        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1418        const SCEV *Key = SE.getMulExpr(MulOps);
1419        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1420          M.insert(std::make_pair(Key, NewScale));
1421        if (Pair.second) {
1422          NewOps.push_back(Pair.first->first);
1423        } else {
1424          Pair.first->second += NewScale;
1425          // The map already had an entry for this value, which may indicate
1426          // a folding opportunity.
1427          Interesting = true;
1428        }
1429      }
1430    } else {
1431      // An ordinary operand. Update the map.
1432      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1433        M.insert(std::make_pair(Ops[i], Scale));
1434      if (Pair.second) {
1435        NewOps.push_back(Pair.first->first);
1436      } else {
1437        Pair.first->second += Scale;
1438        // The map already had an entry for this value, which may indicate
1439        // a folding opportunity.
1440        Interesting = true;
1441      }
1442    }
1443  }
1444
1445  return Interesting;
1446}
1447
1448namespace {
1449  struct APIntCompare {
1450    bool operator()(const APInt &LHS, const APInt &RHS) const {
1451      return LHS.ult(RHS);
1452    }
1453  };
1454}
1455
1456/// getAddExpr - Get a canonical add expression, or something simpler if
1457/// possible.
1458const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1459                                        SCEV::NoWrapFlags Flags) {
1460  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1461         "only nuw or nsw allowed");
1462  assert(!Ops.empty() && "Cannot get empty add!");
1463  if (Ops.size() == 1) return Ops[0];
1464#ifndef NDEBUG
1465  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1466  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1467    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1468           "SCEVAddExpr operand types don't match!");
1469#endif
1470
1471  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1472  // And vice-versa.
1473  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1474  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1475  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1476    bool All = true;
1477    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1478         E = Ops.end(); I != E; ++I)
1479      if (!isKnownNonNegative(*I)) {
1480        All = false;
1481        break;
1482      }
1483    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1484  }
1485
1486  // Sort by complexity, this groups all similar expression types together.
1487  GroupByComplexity(Ops, LI);
1488
1489  // If there are any constants, fold them together.
1490  unsigned Idx = 0;
1491  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1492    ++Idx;
1493    assert(Idx < Ops.size());
1494    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1495      // We found two constants, fold them together!
1496      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1497                           RHSC->getValue()->getValue());
1498      if (Ops.size() == 2) return Ops[0];
1499      Ops.erase(Ops.begin()+1);  // Erase the folded element
1500      LHSC = cast<SCEVConstant>(Ops[0]);
1501    }
1502
1503    // If we are left with a constant zero being added, strip it off.
1504    if (LHSC->getValue()->isZero()) {
1505      Ops.erase(Ops.begin());
1506      --Idx;
1507    }
1508
1509    if (Ops.size() == 1) return Ops[0];
1510  }
1511
1512  // Okay, check to see if the same value occurs in the operand list more than
1513  // once.  If so, merge them together into an multiply expression.  Since we
1514  // sorted the list, these values are required to be adjacent.
1515  Type *Ty = Ops[0]->getType();
1516  bool FoundMatch = false;
1517  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1518    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1519      // Scan ahead to count how many equal operands there are.
1520      unsigned Count = 2;
1521      while (i+Count != e && Ops[i+Count] == Ops[i])
1522        ++Count;
1523      // Merge the values into a multiply.
1524      const SCEV *Scale = getConstant(Ty, Count);
1525      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1526      if (Ops.size() == Count)
1527        return Mul;
1528      Ops[i] = Mul;
1529      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1530      --i; e -= Count - 1;
1531      FoundMatch = true;
1532    }
1533  if (FoundMatch)
1534    return getAddExpr(Ops, Flags);
1535
1536  // Check for truncates. If all the operands are truncated from the same
1537  // type, see if factoring out the truncate would permit the result to be
1538  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1539  // if the contents of the resulting outer trunc fold to something simple.
1540  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1541    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1542    Type *DstType = Trunc->getType();
1543    Type *SrcType = Trunc->getOperand()->getType();
1544    SmallVector<const SCEV *, 8> LargeOps;
1545    bool Ok = true;
1546    // Check all the operands to see if they can be represented in the
1547    // source type of the truncate.
1548    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1549      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1550        if (T->getOperand()->getType() != SrcType) {
1551          Ok = false;
1552          break;
1553        }
1554        LargeOps.push_back(T->getOperand());
1555      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1556        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1557      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1558        SmallVector<const SCEV *, 8> LargeMulOps;
1559        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1560          if (const SCEVTruncateExpr *T =
1561                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1562            if (T->getOperand()->getType() != SrcType) {
1563              Ok = false;
1564              break;
1565            }
1566            LargeMulOps.push_back(T->getOperand());
1567          } else if (const SCEVConstant *C =
1568                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1569            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1570          } else {
1571            Ok = false;
1572            break;
1573          }
1574        }
1575        if (Ok)
1576          LargeOps.push_back(getMulExpr(LargeMulOps));
1577      } else {
1578        Ok = false;
1579        break;
1580      }
1581    }
1582    if (Ok) {
1583      // Evaluate the expression in the larger type.
1584      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1585      // If it folds to something simple, use it. Otherwise, don't.
1586      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1587        return getTruncateExpr(Fold, DstType);
1588    }
1589  }
1590
1591  // Skip past any other cast SCEVs.
1592  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1593    ++Idx;
1594
1595  // If there are add operands they would be next.
1596  if (Idx < Ops.size()) {
1597    bool DeletedAdd = false;
1598    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1599      // If we have an add, expand the add operands onto the end of the operands
1600      // list.
1601      Ops.erase(Ops.begin()+Idx);
1602      Ops.append(Add->op_begin(), Add->op_end());
1603      DeletedAdd = true;
1604    }
1605
1606    // If we deleted at least one add, we added operands to the end of the list,
1607    // and they are not necessarily sorted.  Recurse to resort and resimplify
1608    // any operands we just acquired.
1609    if (DeletedAdd)
1610      return getAddExpr(Ops);
1611  }
1612
1613  // Skip over the add expression until we get to a multiply.
1614  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1615    ++Idx;
1616
1617  // Check to see if there are any folding opportunities present with
1618  // operands multiplied by constant values.
1619  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1620    uint64_t BitWidth = getTypeSizeInBits(Ty);
1621    DenseMap<const SCEV *, APInt> M;
1622    SmallVector<const SCEV *, 8> NewOps;
1623    APInt AccumulatedConstant(BitWidth, 0);
1624    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1625                                     Ops.data(), Ops.size(),
1626                                     APInt(BitWidth, 1), *this)) {
1627      // Some interesting folding opportunity is present, so its worthwhile to
1628      // re-generate the operands list. Group the operands by constant scale,
1629      // to avoid multiplying by the same constant scale multiple times.
1630      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1631      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1632           E = NewOps.end(); I != E; ++I)
1633        MulOpLists[M.find(*I)->second].push_back(*I);
1634      // Re-generate the operands list.
1635      Ops.clear();
1636      if (AccumulatedConstant != 0)
1637        Ops.push_back(getConstant(AccumulatedConstant));
1638      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1639           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1640        if (I->first != 0)
1641          Ops.push_back(getMulExpr(getConstant(I->first),
1642                                   getAddExpr(I->second)));
1643      if (Ops.empty())
1644        return getConstant(Ty, 0);
1645      if (Ops.size() == 1)
1646        return Ops[0];
1647      return getAddExpr(Ops);
1648    }
1649  }
1650
1651  // If we are adding something to a multiply expression, make sure the
1652  // something is not already an operand of the multiply.  If so, merge it into
1653  // the multiply.
1654  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1655    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1656    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1657      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1658      if (isa<SCEVConstant>(MulOpSCEV))
1659        continue;
1660      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1661        if (MulOpSCEV == Ops[AddOp]) {
1662          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1663          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1664          if (Mul->getNumOperands() != 2) {
1665            // If the multiply has more than two operands, we must get the
1666            // Y*Z term.
1667            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1668                                                Mul->op_begin()+MulOp);
1669            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1670            InnerMul = getMulExpr(MulOps);
1671          }
1672          const SCEV *One = getConstant(Ty, 1);
1673          const SCEV *AddOne = getAddExpr(One, InnerMul);
1674          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1675          if (Ops.size() == 2) return OuterMul;
1676          if (AddOp < Idx) {
1677            Ops.erase(Ops.begin()+AddOp);
1678            Ops.erase(Ops.begin()+Idx-1);
1679          } else {
1680            Ops.erase(Ops.begin()+Idx);
1681            Ops.erase(Ops.begin()+AddOp-1);
1682          }
1683          Ops.push_back(OuterMul);
1684          return getAddExpr(Ops);
1685        }
1686
1687      // Check this multiply against other multiplies being added together.
1688      for (unsigned OtherMulIdx = Idx+1;
1689           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1690           ++OtherMulIdx) {
1691        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1692        // If MulOp occurs in OtherMul, we can fold the two multiplies
1693        // together.
1694        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1695             OMulOp != e; ++OMulOp)
1696          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1697            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1698            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1699            if (Mul->getNumOperands() != 2) {
1700              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1701                                                  Mul->op_begin()+MulOp);
1702              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1703              InnerMul1 = getMulExpr(MulOps);
1704            }
1705            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1706            if (OtherMul->getNumOperands() != 2) {
1707              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1708                                                  OtherMul->op_begin()+OMulOp);
1709              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1710              InnerMul2 = getMulExpr(MulOps);
1711            }
1712            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1713            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1714            if (Ops.size() == 2) return OuterMul;
1715            Ops.erase(Ops.begin()+Idx);
1716            Ops.erase(Ops.begin()+OtherMulIdx-1);
1717            Ops.push_back(OuterMul);
1718            return getAddExpr(Ops);
1719          }
1720      }
1721    }
1722  }
1723
1724  // If there are any add recurrences in the operands list, see if any other
1725  // added values are loop invariant.  If so, we can fold them into the
1726  // recurrence.
1727  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1728    ++Idx;
1729
1730  // Scan over all recurrences, trying to fold loop invariants into them.
1731  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1732    // Scan all of the other operands to this add and add them to the vector if
1733    // they are loop invariant w.r.t. the recurrence.
1734    SmallVector<const SCEV *, 8> LIOps;
1735    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1736    const Loop *AddRecLoop = AddRec->getLoop();
1737    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1738      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1739        LIOps.push_back(Ops[i]);
1740        Ops.erase(Ops.begin()+i);
1741        --i; --e;
1742      }
1743
1744    // If we found some loop invariants, fold them into the recurrence.
1745    if (!LIOps.empty()) {
1746      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1747      LIOps.push_back(AddRec->getStart());
1748
1749      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1750                                             AddRec->op_end());
1751      AddRecOps[0] = getAddExpr(LIOps);
1752
1753      // Build the new addrec. Propagate the NUW and NSW flags if both the
1754      // outer add and the inner addrec are guaranteed to have no overflow.
1755      // Always propagate NW.
1756      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1757      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1758
1759      // If all of the other operands were loop invariant, we are done.
1760      if (Ops.size() == 1) return NewRec;
1761
1762      // Otherwise, add the folded AddRec by the non-invariant parts.
1763      for (unsigned i = 0;; ++i)
1764        if (Ops[i] == AddRec) {
1765          Ops[i] = NewRec;
1766          break;
1767        }
1768      return getAddExpr(Ops);
1769    }
1770
1771    // Okay, if there weren't any loop invariants to be folded, check to see if
1772    // there are multiple AddRec's with the same loop induction variable being
1773    // added together.  If so, we can fold them.
1774    for (unsigned OtherIdx = Idx+1;
1775         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776         ++OtherIdx)
1777      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1778        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1779        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1780                                               AddRec->op_end());
1781        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782             ++OtherIdx)
1783          if (const SCEVAddRecExpr *OtherAddRec =
1784                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1785            if (OtherAddRec->getLoop() == AddRecLoop) {
1786              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1787                   i != e; ++i) {
1788                if (i >= AddRecOps.size()) {
1789                  AddRecOps.append(OtherAddRec->op_begin()+i,
1790                                   OtherAddRec->op_end());
1791                  break;
1792                }
1793                AddRecOps[i] = getAddExpr(AddRecOps[i],
1794                                          OtherAddRec->getOperand(i));
1795              }
1796              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1797            }
1798        // Step size has changed, so we cannot guarantee no self-wraparound.
1799        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1800        return getAddExpr(Ops);
1801      }
1802
1803    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1804    // next one.
1805  }
1806
1807  // Okay, it looks like we really DO need an add expr.  Check to see if we
1808  // already have one, otherwise create a new one.
1809  FoldingSetNodeID ID;
1810  ID.AddInteger(scAddExpr);
1811  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1812    ID.AddPointer(Ops[i]);
1813  void *IP = 0;
1814  SCEVAddExpr *S =
1815    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1816  if (!S) {
1817    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1818    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1819    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1820                                        O, Ops.size());
1821    UniqueSCEVs.InsertNode(S, IP);
1822  }
1823  S->setNoWrapFlags(Flags);
1824  return S;
1825}
1826
1827static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1828  uint64_t k = i*j;
1829  if (j > 1 && k / j != i) Overflow = true;
1830  return k;
1831}
1832
1833/// Compute the result of "n choose k", the binomial coefficient.  If an
1834/// intermediate computation overflows, Overflow will be set and the return will
1835/// be garbage. Overflow is not cleared on absence of overflow.
1836static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1837  // We use the multiplicative formula:
1838  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1839  // At each iteration, we take the n-th term of the numeral and divide by the
1840  // (k-n)th term of the denominator.  This division will always produce an
1841  // integral result, and helps reduce the chance of overflow in the
1842  // intermediate computations. However, we can still overflow even when the
1843  // final result would fit.
1844
1845  if (n == 0 || n == k) return 1;
1846  if (k > n) return 0;
1847
1848  if (k > n/2)
1849    k = n-k;
1850
1851  uint64_t r = 1;
1852  for (uint64_t i = 1; i <= k; ++i) {
1853    r = umul_ov(r, n-(i-1), Overflow);
1854    r /= i;
1855  }
1856  return r;
1857}
1858
1859/// getMulExpr - Get a canonical multiply expression, or something simpler if
1860/// possible.
1861const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1862                                        SCEV::NoWrapFlags Flags) {
1863  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1864         "only nuw or nsw allowed");
1865  assert(!Ops.empty() && "Cannot get empty mul!");
1866  if (Ops.size() == 1) return Ops[0];
1867#ifndef NDEBUG
1868  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1869  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1870    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1871           "SCEVMulExpr operand types don't match!");
1872#endif
1873
1874  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1875  // And vice-versa.
1876  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1877  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1878  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1879    bool All = true;
1880    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1881         E = Ops.end(); I != E; ++I)
1882      if (!isKnownNonNegative(*I)) {
1883        All = false;
1884        break;
1885      }
1886    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1887  }
1888
1889  // Sort by complexity, this groups all similar expression types together.
1890  GroupByComplexity(Ops, LI);
1891
1892  // If there are any constants, fold them together.
1893  unsigned Idx = 0;
1894  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1895
1896    // C1*(C2+V) -> C1*C2 + C1*V
1897    if (Ops.size() == 2)
1898      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1899        if (Add->getNumOperands() == 2 &&
1900            isa<SCEVConstant>(Add->getOperand(0)))
1901          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1902                            getMulExpr(LHSC, Add->getOperand(1)));
1903
1904    ++Idx;
1905    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1906      // We found two constants, fold them together!
1907      ConstantInt *Fold = ConstantInt::get(getContext(),
1908                                           LHSC->getValue()->getValue() *
1909                                           RHSC->getValue()->getValue());
1910      Ops[0] = getConstant(Fold);
1911      Ops.erase(Ops.begin()+1);  // Erase the folded element
1912      if (Ops.size() == 1) return Ops[0];
1913      LHSC = cast<SCEVConstant>(Ops[0]);
1914    }
1915
1916    // If we are left with a constant one being multiplied, strip it off.
1917    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1918      Ops.erase(Ops.begin());
1919      --Idx;
1920    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1921      // If we have a multiply of zero, it will always be zero.
1922      return Ops[0];
1923    } else if (Ops[0]->isAllOnesValue()) {
1924      // If we have a mul by -1 of an add, try distributing the -1 among the
1925      // add operands.
1926      if (Ops.size() == 2) {
1927        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1928          SmallVector<const SCEV *, 4> NewOps;
1929          bool AnyFolded = false;
1930          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1931                 E = Add->op_end(); I != E; ++I) {
1932            const SCEV *Mul = getMulExpr(Ops[0], *I);
1933            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1934            NewOps.push_back(Mul);
1935          }
1936          if (AnyFolded)
1937            return getAddExpr(NewOps);
1938        }
1939        else if (const SCEVAddRecExpr *
1940                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1941          // Negation preserves a recurrence's no self-wrap property.
1942          SmallVector<const SCEV *, 4> Operands;
1943          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1944                 E = AddRec->op_end(); I != E; ++I) {
1945            Operands.push_back(getMulExpr(Ops[0], *I));
1946          }
1947          return getAddRecExpr(Operands, AddRec->getLoop(),
1948                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1949        }
1950      }
1951    }
1952
1953    if (Ops.size() == 1)
1954      return Ops[0];
1955  }
1956
1957  // Skip over the add expression until we get to a multiply.
1958  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1959    ++Idx;
1960
1961  // If there are mul operands inline them all into this expression.
1962  if (Idx < Ops.size()) {
1963    bool DeletedMul = false;
1964    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1965      // If we have an mul, expand the mul operands onto the end of the operands
1966      // list.
1967      Ops.erase(Ops.begin()+Idx);
1968      Ops.append(Mul->op_begin(), Mul->op_end());
1969      DeletedMul = true;
1970    }
1971
1972    // If we deleted at least one mul, we added operands to the end of the list,
1973    // and they are not necessarily sorted.  Recurse to resort and resimplify
1974    // any operands we just acquired.
1975    if (DeletedMul)
1976      return getMulExpr(Ops);
1977  }
1978
1979  // If there are any add recurrences in the operands list, see if any other
1980  // added values are loop invariant.  If so, we can fold them into the
1981  // recurrence.
1982  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1983    ++Idx;
1984
1985  // Scan over all recurrences, trying to fold loop invariants into them.
1986  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1987    // Scan all of the other operands to this mul and add them to the vector if
1988    // they are loop invariant w.r.t. the recurrence.
1989    SmallVector<const SCEV *, 8> LIOps;
1990    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1991    const Loop *AddRecLoop = AddRec->getLoop();
1992    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1993      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1994        LIOps.push_back(Ops[i]);
1995        Ops.erase(Ops.begin()+i);
1996        --i; --e;
1997      }
1998
1999    // If we found some loop invariants, fold them into the recurrence.
2000    if (!LIOps.empty()) {
2001      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2002      SmallVector<const SCEV *, 4> NewOps;
2003      NewOps.reserve(AddRec->getNumOperands());
2004      const SCEV *Scale = getMulExpr(LIOps);
2005      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2006        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2007
2008      // Build the new addrec. Propagate the NUW and NSW flags if both the
2009      // outer mul and the inner addrec are guaranteed to have no overflow.
2010      //
2011      // No self-wrap cannot be guaranteed after changing the step size, but
2012      // will be inferred if either NUW or NSW is true.
2013      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2014      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2015
2016      // If all of the other operands were loop invariant, we are done.
2017      if (Ops.size() == 1) return NewRec;
2018
2019      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2020      for (unsigned i = 0;; ++i)
2021        if (Ops[i] == AddRec) {
2022          Ops[i] = NewRec;
2023          break;
2024        }
2025      return getMulExpr(Ops);
2026    }
2027
2028    // Okay, if there weren't any loop invariants to be folded, check to see if
2029    // there are multiple AddRec's with the same loop induction variable being
2030    // multiplied together.  If so, we can fold them.
2031    for (unsigned OtherIdx = Idx+1;
2032         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2033         ++OtherIdx) {
2034      if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2035        continue;
2036
2037      // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2038      // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2039      //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2040      //   ]]],+,...up to x=2n}.
2041      // Note that the arguments to choose() are always integers with values
2042      // known at compile time, never SCEV objects.
2043      //
2044      // The implementation avoids pointless extra computations when the two
2045      // addrec's are of different length (mathematically, it's equivalent to
2046      // an infinite stream of zeros on the right).
2047      bool OpsModified = false;
2048      for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2049           ++OtherIdx) {
2050        const SCEVAddRecExpr *OtherAddRec =
2051          dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2052        if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2053          continue;
2054
2055        bool Overflow = false;
2056        Type *Ty = AddRec->getType();
2057        bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2058        SmallVector<const SCEV*, 7> AddRecOps;
2059        for (int x = 0, xe = AddRec->getNumOperands() +
2060               OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2061          const SCEV *Term = getConstant(Ty, 0);
2062          for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2063            uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2064            for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2065                   ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2066                 z < ze && !Overflow; ++z) {
2067              uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2068              uint64_t Coeff;
2069              if (LargerThan64Bits)
2070                Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2071              else
2072                Coeff = Coeff1*Coeff2;
2073              const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2074              const SCEV *Term1 = AddRec->getOperand(y-z);
2075              const SCEV *Term2 = OtherAddRec->getOperand(z);
2076              Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2077            }
2078          }
2079          AddRecOps.push_back(Term);
2080        }
2081        if (!Overflow) {
2082          const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2083                                                SCEV::FlagAnyWrap);
2084          if (Ops.size() == 2) return NewAddRec;
2085          Ops[Idx] = NewAddRec;
2086          Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2087          OpsModified = true;
2088          AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2089          if (!AddRec)
2090            break;
2091        }
2092      }
2093      if (OpsModified)
2094        return getMulExpr(Ops);
2095    }
2096
2097    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2098    // next one.
2099  }
2100
2101  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2102  // already have one, otherwise create a new one.
2103  FoldingSetNodeID ID;
2104  ID.AddInteger(scMulExpr);
2105  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2106    ID.AddPointer(Ops[i]);
2107  void *IP = 0;
2108  SCEVMulExpr *S =
2109    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110  if (!S) {
2111    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2112    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2113    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2114                                        O, Ops.size());
2115    UniqueSCEVs.InsertNode(S, IP);
2116  }
2117  S->setNoWrapFlags(Flags);
2118  return S;
2119}
2120
2121/// getUDivExpr - Get a canonical unsigned division expression, or something
2122/// simpler if possible.
2123const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2124                                         const SCEV *RHS) {
2125  assert(getEffectiveSCEVType(LHS->getType()) ==
2126         getEffectiveSCEVType(RHS->getType()) &&
2127         "SCEVUDivExpr operand types don't match!");
2128
2129  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2130    if (RHSC->getValue()->equalsInt(1))
2131      return LHS;                               // X udiv 1 --> x
2132    // If the denominator is zero, the result of the udiv is undefined. Don't
2133    // try to analyze it, because the resolution chosen here may differ from
2134    // the resolution chosen in other parts of the compiler.
2135    if (!RHSC->getValue()->isZero()) {
2136      // Determine if the division can be folded into the operands of
2137      // its operands.
2138      // TODO: Generalize this to non-constants by using known-bits information.
2139      Type *Ty = LHS->getType();
2140      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2141      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2142      // For non-power-of-two values, effectively round the value up to the
2143      // nearest power of two.
2144      if (!RHSC->getValue()->getValue().isPowerOf2())
2145        ++MaxShiftAmt;
2146      IntegerType *ExtTy =
2147        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2148      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2149        if (const SCEVConstant *Step =
2150            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2151          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2152          const APInt &StepInt = Step->getValue()->getValue();
2153          const APInt &DivInt = RHSC->getValue()->getValue();
2154          if (!StepInt.urem(DivInt) &&
2155              getZeroExtendExpr(AR, ExtTy) ==
2156              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2157                            getZeroExtendExpr(Step, ExtTy),
2158                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2159            SmallVector<const SCEV *, 4> Operands;
2160            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2161              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2162            return getAddRecExpr(Operands, AR->getLoop(),
2163                                 SCEV::FlagNW);
2164          }
2165          /// Get a canonical UDivExpr for a recurrence.
2166          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2167          // We can currently only fold X%N if X is constant.
2168          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2169          if (StartC && !DivInt.urem(StepInt) &&
2170              getZeroExtendExpr(AR, ExtTy) ==
2171              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2172                            getZeroExtendExpr(Step, ExtTy),
2173                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2174            const APInt &StartInt = StartC->getValue()->getValue();
2175            const APInt &StartRem = StartInt.urem(StepInt);
2176            if (StartRem != 0)
2177              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2178                                  AR->getLoop(), SCEV::FlagNW);
2179          }
2180        }
2181      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2182      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2183        SmallVector<const SCEV *, 4> Operands;
2184        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2185          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2186        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2187          // Find an operand that's safely divisible.
2188          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2189            const SCEV *Op = M->getOperand(i);
2190            const SCEV *Div = getUDivExpr(Op, RHSC);
2191            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2192              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2193                                                      M->op_end());
2194              Operands[i] = Div;
2195              return getMulExpr(Operands);
2196            }
2197          }
2198      }
2199      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2200      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2201        SmallVector<const SCEV *, 4> Operands;
2202        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2203          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2204        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2205          Operands.clear();
2206          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2207            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2208            if (isa<SCEVUDivExpr>(Op) ||
2209                getMulExpr(Op, RHS) != A->getOperand(i))
2210              break;
2211            Operands.push_back(Op);
2212          }
2213          if (Operands.size() == A->getNumOperands())
2214            return getAddExpr(Operands);
2215        }
2216      }
2217
2218      // Fold if both operands are constant.
2219      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2220        Constant *LHSCV = LHSC->getValue();
2221        Constant *RHSCV = RHSC->getValue();
2222        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2223                                                                   RHSCV)));
2224      }
2225    }
2226  }
2227
2228  FoldingSetNodeID ID;
2229  ID.AddInteger(scUDivExpr);
2230  ID.AddPointer(LHS);
2231  ID.AddPointer(RHS);
2232  void *IP = 0;
2233  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2234  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2235                                             LHS, RHS);
2236  UniqueSCEVs.InsertNode(S, IP);
2237  return S;
2238}
2239
2240
2241/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2242/// Simplify the expression as much as possible.
2243const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2244                                           const Loop *L,
2245                                           SCEV::NoWrapFlags Flags) {
2246  SmallVector<const SCEV *, 4> Operands;
2247  Operands.push_back(Start);
2248  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2249    if (StepChrec->getLoop() == L) {
2250      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2251      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2252    }
2253
2254  Operands.push_back(Step);
2255  return getAddRecExpr(Operands, L, Flags);
2256}
2257
2258/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2259/// Simplify the expression as much as possible.
2260const SCEV *
2261ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2262                               const Loop *L, SCEV::NoWrapFlags Flags) {
2263  if (Operands.size() == 1) return Operands[0];
2264#ifndef NDEBUG
2265  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2266  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2267    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2268           "SCEVAddRecExpr operand types don't match!");
2269  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2270    assert(isLoopInvariant(Operands[i], L) &&
2271           "SCEVAddRecExpr operand is not loop-invariant!");
2272#endif
2273
2274  if (Operands.back()->isZero()) {
2275    Operands.pop_back();
2276    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2277  }
2278
2279  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2280  // use that information to infer NUW and NSW flags. However, computing a
2281  // BE count requires calling getAddRecExpr, so we may not yet have a
2282  // meaningful BE count at this point (and if we don't, we'd be stuck
2283  // with a SCEVCouldNotCompute as the cached BE count).
2284
2285  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2286  // And vice-versa.
2287  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2288  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2289  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2290    bool All = true;
2291    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2292         E = Operands.end(); I != E; ++I)
2293      if (!isKnownNonNegative(*I)) {
2294        All = false;
2295        break;
2296      }
2297    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2298  }
2299
2300  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2301  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2302    const Loop *NestedLoop = NestedAR->getLoop();
2303    if (L->contains(NestedLoop) ?
2304        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2305        (!NestedLoop->contains(L) &&
2306         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2307      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2308                                                  NestedAR->op_end());
2309      Operands[0] = NestedAR->getStart();
2310      // AddRecs require their operands be loop-invariant with respect to their
2311      // loops. Don't perform this transformation if it would break this
2312      // requirement.
2313      bool AllInvariant = true;
2314      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2315        if (!isLoopInvariant(Operands[i], L)) {
2316          AllInvariant = false;
2317          break;
2318        }
2319      if (AllInvariant) {
2320        // Create a recurrence for the outer loop with the same step size.
2321        //
2322        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2323        // inner recurrence has the same property.
2324        SCEV::NoWrapFlags OuterFlags =
2325          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2326
2327        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2328        AllInvariant = true;
2329        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2330          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2331            AllInvariant = false;
2332            break;
2333          }
2334        if (AllInvariant) {
2335          // Ok, both add recurrences are valid after the transformation.
2336          //
2337          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2338          // the outer recurrence has the same property.
2339          SCEV::NoWrapFlags InnerFlags =
2340            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2341          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2342        }
2343      }
2344      // Reset Operands to its original state.
2345      Operands[0] = NestedAR;
2346    }
2347  }
2348
2349  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2350  // already have one, otherwise create a new one.
2351  FoldingSetNodeID ID;
2352  ID.AddInteger(scAddRecExpr);
2353  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2354    ID.AddPointer(Operands[i]);
2355  ID.AddPointer(L);
2356  void *IP = 0;
2357  SCEVAddRecExpr *S =
2358    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2359  if (!S) {
2360    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2361    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2362    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2363                                           O, Operands.size(), L);
2364    UniqueSCEVs.InsertNode(S, IP);
2365  }
2366  S->setNoWrapFlags(Flags);
2367  return S;
2368}
2369
2370const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2371                                         const SCEV *RHS) {
2372  SmallVector<const SCEV *, 2> Ops;
2373  Ops.push_back(LHS);
2374  Ops.push_back(RHS);
2375  return getSMaxExpr(Ops);
2376}
2377
2378const SCEV *
2379ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2380  assert(!Ops.empty() && "Cannot get empty smax!");
2381  if (Ops.size() == 1) return Ops[0];
2382#ifndef NDEBUG
2383  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2384  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2385    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2386           "SCEVSMaxExpr operand types don't match!");
2387#endif
2388
2389  // Sort by complexity, this groups all similar expression types together.
2390  GroupByComplexity(Ops, LI);
2391
2392  // If there are any constants, fold them together.
2393  unsigned Idx = 0;
2394  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2395    ++Idx;
2396    assert(Idx < Ops.size());
2397    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2398      // We found two constants, fold them together!
2399      ConstantInt *Fold = ConstantInt::get(getContext(),
2400                              APIntOps::smax(LHSC->getValue()->getValue(),
2401                                             RHSC->getValue()->getValue()));
2402      Ops[0] = getConstant(Fold);
2403      Ops.erase(Ops.begin()+1);  // Erase the folded element
2404      if (Ops.size() == 1) return Ops[0];
2405      LHSC = cast<SCEVConstant>(Ops[0]);
2406    }
2407
2408    // If we are left with a constant minimum-int, strip it off.
2409    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2410      Ops.erase(Ops.begin());
2411      --Idx;
2412    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2413      // If we have an smax with a constant maximum-int, it will always be
2414      // maximum-int.
2415      return Ops[0];
2416    }
2417
2418    if (Ops.size() == 1) return Ops[0];
2419  }
2420
2421  // Find the first SMax
2422  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2423    ++Idx;
2424
2425  // Check to see if one of the operands is an SMax. If so, expand its operands
2426  // onto our operand list, and recurse to simplify.
2427  if (Idx < Ops.size()) {
2428    bool DeletedSMax = false;
2429    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2430      Ops.erase(Ops.begin()+Idx);
2431      Ops.append(SMax->op_begin(), SMax->op_end());
2432      DeletedSMax = true;
2433    }
2434
2435    if (DeletedSMax)
2436      return getSMaxExpr(Ops);
2437  }
2438
2439  // Okay, check to see if the same value occurs in the operand list twice.  If
2440  // so, delete one.  Since we sorted the list, these values are required to
2441  // be adjacent.
2442  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2443    //  X smax Y smax Y  -->  X smax Y
2444    //  X smax Y         -->  X, if X is always greater than Y
2445    if (Ops[i] == Ops[i+1] ||
2446        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2447      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2448      --i; --e;
2449    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2450      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2451      --i; --e;
2452    }
2453
2454  if (Ops.size() == 1) return Ops[0];
2455
2456  assert(!Ops.empty() && "Reduced smax down to nothing!");
2457
2458  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2459  // already have one, otherwise create a new one.
2460  FoldingSetNodeID ID;
2461  ID.AddInteger(scSMaxExpr);
2462  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2463    ID.AddPointer(Ops[i]);
2464  void *IP = 0;
2465  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2466  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2467  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2468  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2469                                             O, Ops.size());
2470  UniqueSCEVs.InsertNode(S, IP);
2471  return S;
2472}
2473
2474const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2475                                         const SCEV *RHS) {
2476  SmallVector<const SCEV *, 2> Ops;
2477  Ops.push_back(LHS);
2478  Ops.push_back(RHS);
2479  return getUMaxExpr(Ops);
2480}
2481
2482const SCEV *
2483ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2484  assert(!Ops.empty() && "Cannot get empty umax!");
2485  if (Ops.size() == 1) return Ops[0];
2486#ifndef NDEBUG
2487  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2488  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2489    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2490           "SCEVUMaxExpr operand types don't match!");
2491#endif
2492
2493  // Sort by complexity, this groups all similar expression types together.
2494  GroupByComplexity(Ops, LI);
2495
2496  // If there are any constants, fold them together.
2497  unsigned Idx = 0;
2498  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2499    ++Idx;
2500    assert(Idx < Ops.size());
2501    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2502      // We found two constants, fold them together!
2503      ConstantInt *Fold = ConstantInt::get(getContext(),
2504                              APIntOps::umax(LHSC->getValue()->getValue(),
2505                                             RHSC->getValue()->getValue()));
2506      Ops[0] = getConstant(Fold);
2507      Ops.erase(Ops.begin()+1);  // Erase the folded element
2508      if (Ops.size() == 1) return Ops[0];
2509      LHSC = cast<SCEVConstant>(Ops[0]);
2510    }
2511
2512    // If we are left with a constant minimum-int, strip it off.
2513    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2514      Ops.erase(Ops.begin());
2515      --Idx;
2516    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2517      // If we have an umax with a constant maximum-int, it will always be
2518      // maximum-int.
2519      return Ops[0];
2520    }
2521
2522    if (Ops.size() == 1) return Ops[0];
2523  }
2524
2525  // Find the first UMax
2526  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2527    ++Idx;
2528
2529  // Check to see if one of the operands is a UMax. If so, expand its operands
2530  // onto our operand list, and recurse to simplify.
2531  if (Idx < Ops.size()) {
2532    bool DeletedUMax = false;
2533    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2534      Ops.erase(Ops.begin()+Idx);
2535      Ops.append(UMax->op_begin(), UMax->op_end());
2536      DeletedUMax = true;
2537    }
2538
2539    if (DeletedUMax)
2540      return getUMaxExpr(Ops);
2541  }
2542
2543  // Okay, check to see if the same value occurs in the operand list twice.  If
2544  // so, delete one.  Since we sorted the list, these values are required to
2545  // be adjacent.
2546  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2547    //  X umax Y umax Y  -->  X umax Y
2548    //  X umax Y         -->  X, if X is always greater than Y
2549    if (Ops[i] == Ops[i+1] ||
2550        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2551      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552      --i; --e;
2553    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2554      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555      --i; --e;
2556    }
2557
2558  if (Ops.size() == 1) return Ops[0];
2559
2560  assert(!Ops.empty() && "Reduced umax down to nothing!");
2561
2562  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2563  // already have one, otherwise create a new one.
2564  FoldingSetNodeID ID;
2565  ID.AddInteger(scUMaxExpr);
2566  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567    ID.AddPointer(Ops[i]);
2568  void *IP = 0;
2569  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2570  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2572  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2573                                             O, Ops.size());
2574  UniqueSCEVs.InsertNode(S, IP);
2575  return S;
2576}
2577
2578const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2579                                         const SCEV *RHS) {
2580  // ~smax(~x, ~y) == smin(x, y).
2581  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
2584const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2585                                         const SCEV *RHS) {
2586  // ~umax(~x, ~y) == umin(x, y)
2587  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
2590const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2591  // If we have DataLayout, we can bypass creating a target-independent
2592  // constant expression and then folding it back into a ConstantInt.
2593  // This is just a compile-time optimization.
2594  if (TD)
2595    return getConstant(TD->getIntPtrType(getContext()),
2596                       TD->getTypeAllocSize(AllocTy));
2597
2598  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2599  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2600    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2601      C = Folded;
2602  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2603  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2604}
2605
2606const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2607  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2608  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2609    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2610      C = Folded;
2611  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2612  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2613}
2614
2615const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2616                                             unsigned FieldNo) {
2617  // If we have DataLayout, we can bypass creating a target-independent
2618  // constant expression and then folding it back into a ConstantInt.
2619  // This is just a compile-time optimization.
2620  if (TD)
2621    return getConstant(TD->getIntPtrType(getContext()),
2622                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2623
2624  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2625  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2626    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2627      C = Folded;
2628  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2629  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2630}
2631
2632const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2633                                             Constant *FieldNo) {
2634  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2635  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2636    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2637      C = Folded;
2638  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2639  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2640}
2641
2642const SCEV *ScalarEvolution::getUnknown(Value *V) {
2643  // Don't attempt to do anything other than create a SCEVUnknown object
2644  // here.  createSCEV only calls getUnknown after checking for all other
2645  // interesting possibilities, and any other code that calls getUnknown
2646  // is doing so in order to hide a value from SCEV canonicalization.
2647
2648  FoldingSetNodeID ID;
2649  ID.AddInteger(scUnknown);
2650  ID.AddPointer(V);
2651  void *IP = 0;
2652  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2653    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2654           "Stale SCEVUnknown in uniquing map!");
2655    return S;
2656  }
2657  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2658                                            FirstUnknown);
2659  FirstUnknown = cast<SCEVUnknown>(S);
2660  UniqueSCEVs.InsertNode(S, IP);
2661  return S;
2662}
2663
2664//===----------------------------------------------------------------------===//
2665//            Basic SCEV Analysis and PHI Idiom Recognition Code
2666//
2667
2668/// isSCEVable - Test if values of the given type are analyzable within
2669/// the SCEV framework. This primarily includes integer types, and it
2670/// can optionally include pointer types if the ScalarEvolution class
2671/// has access to target-specific information.
2672bool ScalarEvolution::isSCEVable(Type *Ty) const {
2673  // Integers and pointers are always SCEVable.
2674  return Ty->isIntegerTy() || Ty->isPointerTy();
2675}
2676
2677/// getTypeSizeInBits - Return the size in bits of the specified type,
2678/// for which isSCEVable must return true.
2679uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2680  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2681
2682  // If we have a DataLayout, use it!
2683  if (TD)
2684    return TD->getTypeSizeInBits(Ty);
2685
2686  // Integer types have fixed sizes.
2687  if (Ty->isIntegerTy())
2688    return Ty->getPrimitiveSizeInBits();
2689
2690  // The only other support type is pointer. Without DataLayout, conservatively
2691  // assume pointers are 64-bit.
2692  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2693  return 64;
2694}
2695
2696/// getEffectiveSCEVType - Return a type with the same bitwidth as
2697/// the given type and which represents how SCEV will treat the given
2698/// type, for which isSCEVable must return true. For pointer types,
2699/// this is the pointer-sized integer type.
2700Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2701  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2702
2703  if (Ty->isIntegerTy())
2704    return Ty;
2705
2706  // The only other support type is pointer.
2707  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2708  if (TD) return TD->getIntPtrType(getContext());
2709
2710  // Without DataLayout, conservatively assume pointers are 64-bit.
2711  return Type::getInt64Ty(getContext());
2712}
2713
2714const SCEV *ScalarEvolution::getCouldNotCompute() {
2715  return &CouldNotCompute;
2716}
2717
2718/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2719/// expression and create a new one.
2720const SCEV *ScalarEvolution::getSCEV(Value *V) {
2721  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2722
2723  ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
2724  if (I != ValueExprMap.end()) return I->second;
2725  const SCEV *S = createSCEV(V);
2726
2727  // The process of creating a SCEV for V may have caused other SCEVs
2728  // to have been created, so it's necessary to insert the new entry
2729  // from scratch, rather than trying to remember the insert position
2730  // above.
2731  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2732  return S;
2733}
2734
2735/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2736///
2737const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2738  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2739    return getConstant(
2740               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2741
2742  Type *Ty = V->getType();
2743  Ty = getEffectiveSCEVType(Ty);
2744  return getMulExpr(V,
2745                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2746}
2747
2748/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2749const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2750  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2751    return getConstant(
2752                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2753
2754  Type *Ty = V->getType();
2755  Ty = getEffectiveSCEVType(Ty);
2756  const SCEV *AllOnes =
2757                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2758  return getMinusSCEV(AllOnes, V);
2759}
2760
2761/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2762const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2763                                          SCEV::NoWrapFlags Flags) {
2764  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2765
2766  // Fast path: X - X --> 0.
2767  if (LHS == RHS)
2768    return getConstant(LHS->getType(), 0);
2769
2770  // X - Y --> X + -Y
2771  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2772}
2773
2774/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2775/// input value to the specified type.  If the type must be extended, it is zero
2776/// extended.
2777const SCEV *
2778ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2779  Type *SrcTy = V->getType();
2780  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2781         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2782         "Cannot truncate or zero extend with non-integer arguments!");
2783  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2784    return V;  // No conversion
2785  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2786    return getTruncateExpr(V, Ty);
2787  return getZeroExtendExpr(V, Ty);
2788}
2789
2790/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2791/// input value to the specified type.  If the type must be extended, it is sign
2792/// extended.
2793const SCEV *
2794ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2795                                         Type *Ty) {
2796  Type *SrcTy = V->getType();
2797  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2798         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2799         "Cannot truncate or zero extend with non-integer arguments!");
2800  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2801    return V;  // No conversion
2802  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2803    return getTruncateExpr(V, Ty);
2804  return getSignExtendExpr(V, Ty);
2805}
2806
2807/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2808/// input value to the specified type.  If the type must be extended, it is zero
2809/// extended.  The conversion must not be narrowing.
2810const SCEV *
2811ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2812  Type *SrcTy = V->getType();
2813  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2814         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2815         "Cannot noop or zero extend with non-integer arguments!");
2816  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2817         "getNoopOrZeroExtend cannot truncate!");
2818  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2819    return V;  // No conversion
2820  return getZeroExtendExpr(V, Ty);
2821}
2822
2823/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2824/// input value to the specified type.  If the type must be extended, it is sign
2825/// extended.  The conversion must not be narrowing.
2826const SCEV *
2827ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2828  Type *SrcTy = V->getType();
2829  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2830         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2831         "Cannot noop or sign extend with non-integer arguments!");
2832  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2833         "getNoopOrSignExtend cannot truncate!");
2834  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2835    return V;  // No conversion
2836  return getSignExtendExpr(V, Ty);
2837}
2838
2839/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2840/// the input value to the specified type. If the type must be extended,
2841/// it is extended with unspecified bits. The conversion must not be
2842/// narrowing.
2843const SCEV *
2844ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2845  Type *SrcTy = V->getType();
2846  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2847         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2848         "Cannot noop or any extend with non-integer arguments!");
2849  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2850         "getNoopOrAnyExtend cannot truncate!");
2851  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2852    return V;  // No conversion
2853  return getAnyExtendExpr(V, Ty);
2854}
2855
2856/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2857/// input value to the specified type.  The conversion must not be widening.
2858const SCEV *
2859ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2860  Type *SrcTy = V->getType();
2861  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2862         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2863         "Cannot truncate or noop with non-integer arguments!");
2864  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2865         "getTruncateOrNoop cannot extend!");
2866  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2867    return V;  // No conversion
2868  return getTruncateExpr(V, Ty);
2869}
2870
2871/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2872/// the types using zero-extension, and then perform a umax operation
2873/// with them.
2874const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2875                                                        const SCEV *RHS) {
2876  const SCEV *PromotedLHS = LHS;
2877  const SCEV *PromotedRHS = RHS;
2878
2879  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2880    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2881  else
2882    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2883
2884  return getUMaxExpr(PromotedLHS, PromotedRHS);
2885}
2886
2887/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2888/// the types using zero-extension, and then perform a umin operation
2889/// with them.
2890const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2891                                                        const SCEV *RHS) {
2892  const SCEV *PromotedLHS = LHS;
2893  const SCEV *PromotedRHS = RHS;
2894
2895  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2896    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2897  else
2898    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2899
2900  return getUMinExpr(PromotedLHS, PromotedRHS);
2901}
2902
2903/// getPointerBase - Transitively follow the chain of pointer-type operands
2904/// until reaching a SCEV that does not have a single pointer operand. This
2905/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2906/// but corner cases do exist.
2907const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2908  // A pointer operand may evaluate to a nonpointer expression, such as null.
2909  if (!V->getType()->isPointerTy())
2910    return V;
2911
2912  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2913    return getPointerBase(Cast->getOperand());
2914  }
2915  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2916    const SCEV *PtrOp = 0;
2917    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2918         I != E; ++I) {
2919      if ((*I)->getType()->isPointerTy()) {
2920        // Cannot find the base of an expression with multiple pointer operands.
2921        if (PtrOp)
2922          return V;
2923        PtrOp = *I;
2924      }
2925    }
2926    if (!PtrOp)
2927      return V;
2928    return getPointerBase(PtrOp);
2929  }
2930  return V;
2931}
2932
2933/// PushDefUseChildren - Push users of the given Instruction
2934/// onto the given Worklist.
2935static void
2936PushDefUseChildren(Instruction *I,
2937                   SmallVectorImpl<Instruction *> &Worklist) {
2938  // Push the def-use children onto the Worklist stack.
2939  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2940       UI != UE; ++UI)
2941    Worklist.push_back(cast<Instruction>(*UI));
2942}
2943
2944/// ForgetSymbolicValue - This looks up computed SCEV values for all
2945/// instructions that depend on the given instruction and removes them from
2946/// the ValueExprMapType map if they reference SymName. This is used during PHI
2947/// resolution.
2948void
2949ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2950  SmallVector<Instruction *, 16> Worklist;
2951  PushDefUseChildren(PN, Worklist);
2952
2953  SmallPtrSet<Instruction *, 8> Visited;
2954  Visited.insert(PN);
2955  while (!Worklist.empty()) {
2956    Instruction *I = Worklist.pop_back_val();
2957    if (!Visited.insert(I)) continue;
2958
2959    ValueExprMapType::iterator It =
2960      ValueExprMap.find_as(static_cast<Value *>(I));
2961    if (It != ValueExprMap.end()) {
2962      const SCEV *Old = It->second;
2963
2964      // Short-circuit the def-use traversal if the symbolic name
2965      // ceases to appear in expressions.
2966      if (Old != SymName && !hasOperand(Old, SymName))
2967        continue;
2968
2969      // SCEVUnknown for a PHI either means that it has an unrecognized
2970      // structure, it's a PHI that's in the progress of being computed
2971      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2972      // additional loop trip count information isn't going to change anything.
2973      // In the second case, createNodeForPHI will perform the necessary
2974      // updates on its own when it gets to that point. In the third, we do
2975      // want to forget the SCEVUnknown.
2976      if (!isa<PHINode>(I) ||
2977          !isa<SCEVUnknown>(Old) ||
2978          (I != PN && Old == SymName)) {
2979        forgetMemoizedResults(Old);
2980        ValueExprMap.erase(It);
2981      }
2982    }
2983
2984    PushDefUseChildren(I, Worklist);
2985  }
2986}
2987
2988/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2989/// a loop header, making it a potential recurrence, or it doesn't.
2990///
2991const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2992  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2993    if (L->getHeader() == PN->getParent()) {
2994      // The loop may have multiple entrances or multiple exits; we can analyze
2995      // this phi as an addrec if it has a unique entry value and a unique
2996      // backedge value.
2997      Value *BEValueV = 0, *StartValueV = 0;
2998      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2999        Value *V = PN->getIncomingValue(i);
3000        if (L->contains(PN->getIncomingBlock(i))) {
3001          if (!BEValueV) {
3002            BEValueV = V;
3003          } else if (BEValueV != V) {
3004            BEValueV = 0;
3005            break;
3006          }
3007        } else if (!StartValueV) {
3008          StartValueV = V;
3009        } else if (StartValueV != V) {
3010          StartValueV = 0;
3011          break;
3012        }
3013      }
3014      if (BEValueV && StartValueV) {
3015        // While we are analyzing this PHI node, handle its value symbolically.
3016        const SCEV *SymbolicName = getUnknown(PN);
3017        assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3018               "PHI node already processed?");
3019        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3020
3021        // Using this symbolic name for the PHI, analyze the value coming around
3022        // the back-edge.
3023        const SCEV *BEValue = getSCEV(BEValueV);
3024
3025        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3026        // has a special value for the first iteration of the loop.
3027
3028        // If the value coming around the backedge is an add with the symbolic
3029        // value we just inserted, then we found a simple induction variable!
3030        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3031          // If there is a single occurrence of the symbolic value, replace it
3032          // with a recurrence.
3033          unsigned FoundIndex = Add->getNumOperands();
3034          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3035            if (Add->getOperand(i) == SymbolicName)
3036              if (FoundIndex == e) {
3037                FoundIndex = i;
3038                break;
3039              }
3040
3041          if (FoundIndex != Add->getNumOperands()) {
3042            // Create an add with everything but the specified operand.
3043            SmallVector<const SCEV *, 8> Ops;
3044            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3045              if (i != FoundIndex)
3046                Ops.push_back(Add->getOperand(i));
3047            const SCEV *Accum = getAddExpr(Ops);
3048
3049            // This is not a valid addrec if the step amount is varying each
3050            // loop iteration, but is not itself an addrec in this loop.
3051            if (isLoopInvariant(Accum, L) ||
3052                (isa<SCEVAddRecExpr>(Accum) &&
3053                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3054              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3055
3056              // If the increment doesn't overflow, then neither the addrec nor
3057              // the post-increment will overflow.
3058              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3059                if (OBO->hasNoUnsignedWrap())
3060                  Flags = setFlags(Flags, SCEV::FlagNUW);
3061                if (OBO->hasNoSignedWrap())
3062                  Flags = setFlags(Flags, SCEV::FlagNSW);
3063              } else if (const GEPOperator *GEP =
3064                         dyn_cast<GEPOperator>(BEValueV)) {
3065                // If the increment is an inbounds GEP, then we know the address
3066                // space cannot be wrapped around. We cannot make any guarantee
3067                // about signed or unsigned overflow because pointers are
3068                // unsigned but we may have a negative index from the base
3069                // pointer.
3070                if (GEP->isInBounds())
3071                  Flags = setFlags(Flags, SCEV::FlagNW);
3072              }
3073
3074              const SCEV *StartVal = getSCEV(StartValueV);
3075              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3076
3077              // Since the no-wrap flags are on the increment, they apply to the
3078              // post-incremented value as well.
3079              if (isLoopInvariant(Accum, L))
3080                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3081                                    Accum, L, Flags);
3082
3083              // Okay, for the entire analysis of this edge we assumed the PHI
3084              // to be symbolic.  We now need to go back and purge all of the
3085              // entries for the scalars that use the symbolic expression.
3086              ForgetSymbolicName(PN, SymbolicName);
3087              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3088              return PHISCEV;
3089            }
3090          }
3091        } else if (const SCEVAddRecExpr *AddRec =
3092                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3093          // Otherwise, this could be a loop like this:
3094          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3095          // In this case, j = {1,+,1}  and BEValue is j.
3096          // Because the other in-value of i (0) fits the evolution of BEValue
3097          // i really is an addrec evolution.
3098          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3099            const SCEV *StartVal = getSCEV(StartValueV);
3100
3101            // If StartVal = j.start - j.stride, we can use StartVal as the
3102            // initial step of the addrec evolution.
3103            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3104                                         AddRec->getOperand(1))) {
3105              // FIXME: For constant StartVal, we should be able to infer
3106              // no-wrap flags.
3107              const SCEV *PHISCEV =
3108                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3109                              SCEV::FlagAnyWrap);
3110
3111              // Okay, for the entire analysis of this edge we assumed the PHI
3112              // to be symbolic.  We now need to go back and purge all of the
3113              // entries for the scalars that use the symbolic expression.
3114              ForgetSymbolicName(PN, SymbolicName);
3115              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3116              return PHISCEV;
3117            }
3118          }
3119        }
3120      }
3121    }
3122
3123  // If the PHI has a single incoming value, follow that value, unless the
3124  // PHI's incoming blocks are in a different loop, in which case doing so
3125  // risks breaking LCSSA form. Instcombine would normally zap these, but
3126  // it doesn't have DominatorTree information, so it may miss cases.
3127  if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3128    if (LI->replacementPreservesLCSSAForm(PN, V))
3129      return getSCEV(V);
3130
3131  // If it's not a loop phi, we can't handle it yet.
3132  return getUnknown(PN);
3133}
3134
3135/// createNodeForGEP - Expand GEP instructions into add and multiply
3136/// operations. This allows them to be analyzed by regular SCEV code.
3137///
3138const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3139
3140  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3141  // Add expression, because the Instruction may be guarded by control flow
3142  // and the no-overflow bits may not be valid for the expression in any
3143  // context.
3144  bool isInBounds = GEP->isInBounds();
3145
3146  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3147  Value *Base = GEP->getOperand(0);
3148  // Don't attempt to analyze GEPs over unsized objects.
3149  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3150    return getUnknown(GEP);
3151  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3152  gep_type_iterator GTI = gep_type_begin(GEP);
3153  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3154                                      E = GEP->op_end();
3155       I != E; ++I) {
3156    Value *Index = *I;
3157    // Compute the (potentially symbolic) offset in bytes for this index.
3158    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3159      // For a struct, add the member offset.
3160      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3161      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3162
3163      // Add the field offset to the running total offset.
3164      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3165    } else {
3166      // For an array, add the element offset, explicitly scaled.
3167      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3168      const SCEV *IndexS = getSCEV(Index);
3169      // Getelementptr indices are signed.
3170      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3171
3172      // Multiply the index by the element size to compute the element offset.
3173      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3174                                           isInBounds ? SCEV::FlagNSW :
3175                                           SCEV::FlagAnyWrap);
3176
3177      // Add the element offset to the running total offset.
3178      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3179    }
3180  }
3181
3182  // Get the SCEV for the GEP base.
3183  const SCEV *BaseS = getSCEV(Base);
3184
3185  // Add the total offset from all the GEP indices to the base.
3186  return getAddExpr(BaseS, TotalOffset,
3187                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3188}
3189
3190/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3191/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3192/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3193/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3194uint32_t
3195ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3196  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3197    return C->getValue()->getValue().countTrailingZeros();
3198
3199  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3200    return std::min(GetMinTrailingZeros(T->getOperand()),
3201                    (uint32_t)getTypeSizeInBits(T->getType()));
3202
3203  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3204    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206             getTypeSizeInBits(E->getType()) : OpRes;
3207  }
3208
3209  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3210    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3211    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3212             getTypeSizeInBits(E->getType()) : OpRes;
3213  }
3214
3215  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3216    // The result is the min of all operands results.
3217    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3218    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3219      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3220    return MinOpRes;
3221  }
3222
3223  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3224    // The result is the sum of all operands results.
3225    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3226    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3227    for (unsigned i = 1, e = M->getNumOperands();
3228         SumOpRes != BitWidth && i != e; ++i)
3229      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3230                          BitWidth);
3231    return SumOpRes;
3232  }
3233
3234  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3235    // The result is the min of all operands results.
3236    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3237    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3238      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3239    return MinOpRes;
3240  }
3241
3242  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3243    // The result is the min of all operands results.
3244    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3245    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3246      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3247    return MinOpRes;
3248  }
3249
3250  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3251    // The result is the min of all operands results.
3252    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3253    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3254      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3255    return MinOpRes;
3256  }
3257
3258  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3259    // For a SCEVUnknown, ask ValueTracking.
3260    unsigned BitWidth = getTypeSizeInBits(U->getType());
3261    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3262    ComputeMaskedBits(U->getValue(), Zeros, Ones);
3263    return Zeros.countTrailingOnes();
3264  }
3265
3266  // SCEVUDivExpr
3267  return 0;
3268}
3269
3270/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3271///
3272ConstantRange
3273ScalarEvolution::getUnsignedRange(const SCEV *S) {
3274  // See if we've computed this range already.
3275  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3276  if (I != UnsignedRanges.end())
3277    return I->second;
3278
3279  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3280    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3281
3282  unsigned BitWidth = getTypeSizeInBits(S->getType());
3283  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3284
3285  // If the value has known zeros, the maximum unsigned value will have those
3286  // known zeros as well.
3287  uint32_t TZ = GetMinTrailingZeros(S);
3288  if (TZ != 0)
3289    ConservativeResult =
3290      ConstantRange(APInt::getMinValue(BitWidth),
3291                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3292
3293  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3294    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3295    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3296      X = X.add(getUnsignedRange(Add->getOperand(i)));
3297    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3298  }
3299
3300  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3301    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3302    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3303      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3304    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3305  }
3306
3307  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3308    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3309    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3310      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3311    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3312  }
3313
3314  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3315    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3316    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3317      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3318    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3319  }
3320
3321  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3322    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3323    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3324    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3325  }
3326
3327  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3328    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3329    return setUnsignedRange(ZExt,
3330      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3331  }
3332
3333  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3334    ConstantRange X = getUnsignedRange(SExt->getOperand());
3335    return setUnsignedRange(SExt,
3336      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3337  }
3338
3339  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3340    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3341    return setUnsignedRange(Trunc,
3342      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3343  }
3344
3345  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3346    // If there's no unsigned wrap, the value will never be less than its
3347    // initial value.
3348    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3349      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3350        if (!C->getValue()->isZero())
3351          ConservativeResult =
3352            ConservativeResult.intersectWith(
3353              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3354
3355    // TODO: non-affine addrec
3356    if (AddRec->isAffine()) {
3357      Type *Ty = AddRec->getType();
3358      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3359      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3360          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3361        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3362
3363        const SCEV *Start = AddRec->getStart();
3364        const SCEV *Step = AddRec->getStepRecurrence(*this);
3365
3366        ConstantRange StartRange = getUnsignedRange(Start);
3367        ConstantRange StepRange = getSignedRange(Step);
3368        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3369        ConstantRange EndRange =
3370          StartRange.add(MaxBECountRange.multiply(StepRange));
3371
3372        // Check for overflow. This must be done with ConstantRange arithmetic
3373        // because we could be called from within the ScalarEvolution overflow
3374        // checking code.
3375        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3376        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3377        ConstantRange ExtMaxBECountRange =
3378          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3379        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3380        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3381            ExtEndRange)
3382          return setUnsignedRange(AddRec, ConservativeResult);
3383
3384        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3385                                   EndRange.getUnsignedMin());
3386        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3387                                   EndRange.getUnsignedMax());
3388        if (Min.isMinValue() && Max.isMaxValue())
3389          return setUnsignedRange(AddRec, ConservativeResult);
3390        return setUnsignedRange(AddRec,
3391          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3392      }
3393    }
3394
3395    return setUnsignedRange(AddRec, ConservativeResult);
3396  }
3397
3398  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3399    // For a SCEVUnknown, ask ValueTracking.
3400    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3401    ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3402    if (Ones == ~Zeros + 1)
3403      return setUnsignedRange(U, ConservativeResult);
3404    return setUnsignedRange(U,
3405      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3406  }
3407
3408  return setUnsignedRange(S, ConservativeResult);
3409}
3410
3411/// getSignedRange - Determine the signed range for a particular SCEV.
3412///
3413ConstantRange
3414ScalarEvolution::getSignedRange(const SCEV *S) {
3415  // See if we've computed this range already.
3416  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3417  if (I != SignedRanges.end())
3418    return I->second;
3419
3420  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3421    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3422
3423  unsigned BitWidth = getTypeSizeInBits(S->getType());
3424  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3425
3426  // If the value has known zeros, the maximum signed value will have those
3427  // known zeros as well.
3428  uint32_t TZ = GetMinTrailingZeros(S);
3429  if (TZ != 0)
3430    ConservativeResult =
3431      ConstantRange(APInt::getSignedMinValue(BitWidth),
3432                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3433
3434  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3435    ConstantRange X = getSignedRange(Add->getOperand(0));
3436    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3437      X = X.add(getSignedRange(Add->getOperand(i)));
3438    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3439  }
3440
3441  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3442    ConstantRange X = getSignedRange(Mul->getOperand(0));
3443    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3444      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3445    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3446  }
3447
3448  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3449    ConstantRange X = getSignedRange(SMax->getOperand(0));
3450    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3451      X = X.smax(getSignedRange(SMax->getOperand(i)));
3452    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3453  }
3454
3455  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3456    ConstantRange X = getSignedRange(UMax->getOperand(0));
3457    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3458      X = X.umax(getSignedRange(UMax->getOperand(i)));
3459    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3460  }
3461
3462  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3463    ConstantRange X = getSignedRange(UDiv->getLHS());
3464    ConstantRange Y = getSignedRange(UDiv->getRHS());
3465    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3466  }
3467
3468  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3469    ConstantRange X = getSignedRange(ZExt->getOperand());
3470    return setSignedRange(ZExt,
3471      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3472  }
3473
3474  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3475    ConstantRange X = getSignedRange(SExt->getOperand());
3476    return setSignedRange(SExt,
3477      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3478  }
3479
3480  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3481    ConstantRange X = getSignedRange(Trunc->getOperand());
3482    return setSignedRange(Trunc,
3483      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3484  }
3485
3486  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3487    // If there's no signed wrap, and all the operands have the same sign or
3488    // zero, the value won't ever change sign.
3489    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3490      bool AllNonNeg = true;
3491      bool AllNonPos = true;
3492      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3493        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3494        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3495      }
3496      if (AllNonNeg)
3497        ConservativeResult = ConservativeResult.intersectWith(
3498          ConstantRange(APInt(BitWidth, 0),
3499                        APInt::getSignedMinValue(BitWidth)));
3500      else if (AllNonPos)
3501        ConservativeResult = ConservativeResult.intersectWith(
3502          ConstantRange(APInt::getSignedMinValue(BitWidth),
3503                        APInt(BitWidth, 1)));
3504    }
3505
3506    // TODO: non-affine addrec
3507    if (AddRec->isAffine()) {
3508      Type *Ty = AddRec->getType();
3509      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3510      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3511          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3512        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3513
3514        const SCEV *Start = AddRec->getStart();
3515        const SCEV *Step = AddRec->getStepRecurrence(*this);
3516
3517        ConstantRange StartRange = getSignedRange(Start);
3518        ConstantRange StepRange = getSignedRange(Step);
3519        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3520        ConstantRange EndRange =
3521          StartRange.add(MaxBECountRange.multiply(StepRange));
3522
3523        // Check for overflow. This must be done with ConstantRange arithmetic
3524        // because we could be called from within the ScalarEvolution overflow
3525        // checking code.
3526        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3527        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3528        ConstantRange ExtMaxBECountRange =
3529          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3530        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3531        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3532            ExtEndRange)
3533          return setSignedRange(AddRec, ConservativeResult);
3534
3535        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3536                                   EndRange.getSignedMin());
3537        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3538                                   EndRange.getSignedMax());
3539        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3540          return setSignedRange(AddRec, ConservativeResult);
3541        return setSignedRange(AddRec,
3542          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3543      }
3544    }
3545
3546    return setSignedRange(AddRec, ConservativeResult);
3547  }
3548
3549  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3550    // For a SCEVUnknown, ask ValueTracking.
3551    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3552      return setSignedRange(U, ConservativeResult);
3553    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3554    if (NS == 1)
3555      return setSignedRange(U, ConservativeResult);
3556    return setSignedRange(U, ConservativeResult.intersectWith(
3557      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3558                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3559  }
3560
3561  return setSignedRange(S, ConservativeResult);
3562}
3563
3564/// createSCEV - We know that there is no SCEV for the specified value.
3565/// Analyze the expression.
3566///
3567const SCEV *ScalarEvolution::createSCEV(Value *V) {
3568  if (!isSCEVable(V->getType()))
3569    return getUnknown(V);
3570
3571  unsigned Opcode = Instruction::UserOp1;
3572  if (Instruction *I = dyn_cast<Instruction>(V)) {
3573    Opcode = I->getOpcode();
3574
3575    // Don't attempt to analyze instructions in blocks that aren't
3576    // reachable. Such instructions don't matter, and they aren't required
3577    // to obey basic rules for definitions dominating uses which this
3578    // analysis depends on.
3579    if (!DT->isReachableFromEntry(I->getParent()))
3580      return getUnknown(V);
3581  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3582    Opcode = CE->getOpcode();
3583  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3584    return getConstant(CI);
3585  else if (isa<ConstantPointerNull>(V))
3586    return getConstant(V->getType(), 0);
3587  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3588    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3589  else
3590    return getUnknown(V);
3591
3592  Operator *U = cast<Operator>(V);
3593  switch (Opcode) {
3594  case Instruction::Add: {
3595    // The simple thing to do would be to just call getSCEV on both operands
3596    // and call getAddExpr with the result. However if we're looking at a
3597    // bunch of things all added together, this can be quite inefficient,
3598    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3599    // Instead, gather up all the operands and make a single getAddExpr call.
3600    // LLVM IR canonical form means we need only traverse the left operands.
3601    //
3602    // Don't apply this instruction's NSW or NUW flags to the new
3603    // expression. The instruction may be guarded by control flow that the
3604    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3605    // mapped to the same SCEV expression, and it would be incorrect to transfer
3606    // NSW/NUW semantics to those operations.
3607    SmallVector<const SCEV *, 4> AddOps;
3608    AddOps.push_back(getSCEV(U->getOperand(1)));
3609    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3610      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3611      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3612        break;
3613      U = cast<Operator>(Op);
3614      const SCEV *Op1 = getSCEV(U->getOperand(1));
3615      if (Opcode == Instruction::Sub)
3616        AddOps.push_back(getNegativeSCEV(Op1));
3617      else
3618        AddOps.push_back(Op1);
3619    }
3620    AddOps.push_back(getSCEV(U->getOperand(0)));
3621    return getAddExpr(AddOps);
3622  }
3623  case Instruction::Mul: {
3624    // Don't transfer NSW/NUW for the same reason as AddExpr.
3625    SmallVector<const SCEV *, 4> MulOps;
3626    MulOps.push_back(getSCEV(U->getOperand(1)));
3627    for (Value *Op = U->getOperand(0);
3628         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3629         Op = U->getOperand(0)) {
3630      U = cast<Operator>(Op);
3631      MulOps.push_back(getSCEV(U->getOperand(1)));
3632    }
3633    MulOps.push_back(getSCEV(U->getOperand(0)));
3634    return getMulExpr(MulOps);
3635  }
3636  case Instruction::UDiv:
3637    return getUDivExpr(getSCEV(U->getOperand(0)),
3638                       getSCEV(U->getOperand(1)));
3639  case Instruction::Sub:
3640    return getMinusSCEV(getSCEV(U->getOperand(0)),
3641                        getSCEV(U->getOperand(1)));
3642  case Instruction::And:
3643    // For an expression like x&255 that merely masks off the high bits,
3644    // use zext(trunc(x)) as the SCEV expression.
3645    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3646      if (CI->isNullValue())
3647        return getSCEV(U->getOperand(1));
3648      if (CI->isAllOnesValue())
3649        return getSCEV(U->getOperand(0));
3650      const APInt &A = CI->getValue();
3651
3652      // Instcombine's ShrinkDemandedConstant may strip bits out of
3653      // constants, obscuring what would otherwise be a low-bits mask.
3654      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3655      // knew about to reconstruct a low-bits mask value.
3656      unsigned LZ = A.countLeadingZeros();
3657      unsigned BitWidth = A.getBitWidth();
3658      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3659      ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3660
3661      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3662
3663      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3664        return
3665          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3666                                IntegerType::get(getContext(), BitWidth - LZ)),
3667                            U->getType());
3668    }
3669    break;
3670
3671  case Instruction::Or:
3672    // If the RHS of the Or is a constant, we may have something like:
3673    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3674    // optimizations will transparently handle this case.
3675    //
3676    // In order for this transformation to be safe, the LHS must be of the
3677    // form X*(2^n) and the Or constant must be less than 2^n.
3678    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3679      const SCEV *LHS = getSCEV(U->getOperand(0));
3680      const APInt &CIVal = CI->getValue();
3681      if (GetMinTrailingZeros(LHS) >=
3682          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3683        // Build a plain add SCEV.
3684        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3685        // If the LHS of the add was an addrec and it has no-wrap flags,
3686        // transfer the no-wrap flags, since an or won't introduce a wrap.
3687        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3688          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3689          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3690            OldAR->getNoWrapFlags());
3691        }
3692        return S;
3693      }
3694    }
3695    break;
3696  case Instruction::Xor:
3697    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3698      // If the RHS of the xor is a signbit, then this is just an add.
3699      // Instcombine turns add of signbit into xor as a strength reduction step.
3700      if (CI->getValue().isSignBit())
3701        return getAddExpr(getSCEV(U->getOperand(0)),
3702                          getSCEV(U->getOperand(1)));
3703
3704      // If the RHS of xor is -1, then this is a not operation.
3705      if (CI->isAllOnesValue())
3706        return getNotSCEV(getSCEV(U->getOperand(0)));
3707
3708      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3709      // This is a variant of the check for xor with -1, and it handles
3710      // the case where instcombine has trimmed non-demanded bits out
3711      // of an xor with -1.
3712      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3713        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3714          if (BO->getOpcode() == Instruction::And &&
3715              LCI->getValue() == CI->getValue())
3716            if (const SCEVZeroExtendExpr *Z =
3717                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3718              Type *UTy = U->getType();
3719              const SCEV *Z0 = Z->getOperand();
3720              Type *Z0Ty = Z0->getType();
3721              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3722
3723              // If C is a low-bits mask, the zero extend is serving to
3724              // mask off the high bits. Complement the operand and
3725              // re-apply the zext.
3726              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3727                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3728
3729              // If C is a single bit, it may be in the sign-bit position
3730              // before the zero-extend. In this case, represent the xor
3731              // using an add, which is equivalent, and re-apply the zext.
3732              APInt Trunc = CI->getValue().trunc(Z0TySize);
3733              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3734                  Trunc.isSignBit())
3735                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3736                                         UTy);
3737            }
3738    }
3739    break;
3740
3741  case Instruction::Shl:
3742    // Turn shift left of a constant amount into a multiply.
3743    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3744      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3745
3746      // If the shift count is not less than the bitwidth, the result of
3747      // the shift is undefined. Don't try to analyze it, because the
3748      // resolution chosen here may differ from the resolution chosen in
3749      // other parts of the compiler.
3750      if (SA->getValue().uge(BitWidth))
3751        break;
3752
3753      Constant *X = ConstantInt::get(getContext(),
3754        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3755      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3756    }
3757    break;
3758
3759  case Instruction::LShr:
3760    // Turn logical shift right of a constant into a unsigned divide.
3761    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3762      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3763
3764      // If the shift count is not less than the bitwidth, the result of
3765      // the shift is undefined. Don't try to analyze it, because the
3766      // resolution chosen here may differ from the resolution chosen in
3767      // other parts of the compiler.
3768      if (SA->getValue().uge(BitWidth))
3769        break;
3770
3771      Constant *X = ConstantInt::get(getContext(),
3772        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3773      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3774    }
3775    break;
3776
3777  case Instruction::AShr:
3778    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3779    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3780      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3781        if (L->getOpcode() == Instruction::Shl &&
3782            L->getOperand(1) == U->getOperand(1)) {
3783          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3784
3785          // If the shift count is not less than the bitwidth, the result of
3786          // the shift is undefined. Don't try to analyze it, because the
3787          // resolution chosen here may differ from the resolution chosen in
3788          // other parts of the compiler.
3789          if (CI->getValue().uge(BitWidth))
3790            break;
3791
3792          uint64_t Amt = BitWidth - CI->getZExtValue();
3793          if (Amt == BitWidth)
3794            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3795          return
3796            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3797                                              IntegerType::get(getContext(),
3798                                                               Amt)),
3799                              U->getType());
3800        }
3801    break;
3802
3803  case Instruction::Trunc:
3804    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3805
3806  case Instruction::ZExt:
3807    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3808
3809  case Instruction::SExt:
3810    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3811
3812  case Instruction::BitCast:
3813    // BitCasts are no-op casts so we just eliminate the cast.
3814    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3815      return getSCEV(U->getOperand(0));
3816    break;
3817
3818  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3819  // lead to pointer expressions which cannot safely be expanded to GEPs,
3820  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3821  // simplifying integer expressions.
3822
3823  case Instruction::GetElementPtr:
3824    return createNodeForGEP(cast<GEPOperator>(U));
3825
3826  case Instruction::PHI:
3827    return createNodeForPHI(cast<PHINode>(U));
3828
3829  case Instruction::Select:
3830    // This could be a smax or umax that was lowered earlier.
3831    // Try to recover it.
3832    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3833      Value *LHS = ICI->getOperand(0);
3834      Value *RHS = ICI->getOperand(1);
3835      switch (ICI->getPredicate()) {
3836      case ICmpInst::ICMP_SLT:
3837      case ICmpInst::ICMP_SLE:
3838        std::swap(LHS, RHS);
3839        // fall through
3840      case ICmpInst::ICMP_SGT:
3841      case ICmpInst::ICMP_SGE:
3842        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3843        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3844        if (LHS->getType() == U->getType()) {
3845          const SCEV *LS = getSCEV(LHS);
3846          const SCEV *RS = getSCEV(RHS);
3847          const SCEV *LA = getSCEV(U->getOperand(1));
3848          const SCEV *RA = getSCEV(U->getOperand(2));
3849          const SCEV *LDiff = getMinusSCEV(LA, LS);
3850          const SCEV *RDiff = getMinusSCEV(RA, RS);
3851          if (LDiff == RDiff)
3852            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3853          LDiff = getMinusSCEV(LA, RS);
3854          RDiff = getMinusSCEV(RA, LS);
3855          if (LDiff == RDiff)
3856            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3857        }
3858        break;
3859      case ICmpInst::ICMP_ULT:
3860      case ICmpInst::ICMP_ULE:
3861        std::swap(LHS, RHS);
3862        // fall through
3863      case ICmpInst::ICMP_UGT:
3864      case ICmpInst::ICMP_UGE:
3865        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3866        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3867        if (LHS->getType() == U->getType()) {
3868          const SCEV *LS = getSCEV(LHS);
3869          const SCEV *RS = getSCEV(RHS);
3870          const SCEV *LA = getSCEV(U->getOperand(1));
3871          const SCEV *RA = getSCEV(U->getOperand(2));
3872          const SCEV *LDiff = getMinusSCEV(LA, LS);
3873          const SCEV *RDiff = getMinusSCEV(RA, RS);
3874          if (LDiff == RDiff)
3875            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3876          LDiff = getMinusSCEV(LA, RS);
3877          RDiff = getMinusSCEV(RA, LS);
3878          if (LDiff == RDiff)
3879            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3880        }
3881        break;
3882      case ICmpInst::ICMP_NE:
3883        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3884        if (LHS->getType() == U->getType() &&
3885            isa<ConstantInt>(RHS) &&
3886            cast<ConstantInt>(RHS)->isZero()) {
3887          const SCEV *One = getConstant(LHS->getType(), 1);
3888          const SCEV *LS = getSCEV(LHS);
3889          const SCEV *LA = getSCEV(U->getOperand(1));
3890          const SCEV *RA = getSCEV(U->getOperand(2));
3891          const SCEV *LDiff = getMinusSCEV(LA, LS);
3892          const SCEV *RDiff = getMinusSCEV(RA, One);
3893          if (LDiff == RDiff)
3894            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3895        }
3896        break;
3897      case ICmpInst::ICMP_EQ:
3898        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3899        if (LHS->getType() == U->getType() &&
3900            isa<ConstantInt>(RHS) &&
3901            cast<ConstantInt>(RHS)->isZero()) {
3902          const SCEV *One = getConstant(LHS->getType(), 1);
3903          const SCEV *LS = getSCEV(LHS);
3904          const SCEV *LA = getSCEV(U->getOperand(1));
3905          const SCEV *RA = getSCEV(U->getOperand(2));
3906          const SCEV *LDiff = getMinusSCEV(LA, One);
3907          const SCEV *RDiff = getMinusSCEV(RA, LS);
3908          if (LDiff == RDiff)
3909            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3910        }
3911        break;
3912      default:
3913        break;
3914      }
3915    }
3916
3917  default: // We cannot analyze this expression.
3918    break;
3919  }
3920
3921  return getUnknown(V);
3922}
3923
3924
3925
3926//===----------------------------------------------------------------------===//
3927//                   Iteration Count Computation Code
3928//
3929
3930/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3931/// normal unsigned value. Returns 0 if the trip count is unknown or not
3932/// constant. Will also return 0 if the maximum trip count is very large (>=
3933/// 2^32).
3934///
3935/// This "trip count" assumes that control exits via ExitingBlock. More
3936/// precisely, it is the number of times that control may reach ExitingBlock
3937/// before taking the branch. For loops with multiple exits, it may not be the
3938/// number times that the loop header executes because the loop may exit
3939/// prematurely via another branch.
3940///
3941/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3942/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3943/// loop exits. getExitCount() may return an exact count for this branch
3944/// assuming no-signed-wrap. The number of well-defined iterations may actually
3945/// be higher than this trip count if this exit test is skipped and the loop
3946/// exits via a different branch. Ideally, getExitCount() would know whether it
3947/// depends on a NSW assumption, and we would only fall back to a conservative
3948/// trip count in that case.
3949unsigned ScalarEvolution::
3950getSmallConstantTripCount(Loop *L, BasicBlock */*ExitingBlock*/) {
3951  const SCEVConstant *ExitCount =
3952    dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
3953  if (!ExitCount)
3954    return 0;
3955
3956  ConstantInt *ExitConst = ExitCount->getValue();
3957
3958  // Guard against huge trip counts.
3959  if (ExitConst->getValue().getActiveBits() > 32)
3960    return 0;
3961
3962  // In case of integer overflow, this returns 0, which is correct.
3963  return ((unsigned)ExitConst->getZExtValue()) + 1;
3964}
3965
3966/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3967/// trip count of this loop as a normal unsigned value, if possible. This
3968/// means that the actual trip count is always a multiple of the returned
3969/// value (don't forget the trip count could very well be zero as well!).
3970///
3971/// Returns 1 if the trip count is unknown or not guaranteed to be the
3972/// multiple of a constant (which is also the case if the trip count is simply
3973/// constant, use getSmallConstantTripCount for that case), Will also return 1
3974/// if the trip count is very large (>= 2^32).
3975///
3976/// As explained in the comments for getSmallConstantTripCount, this assumes
3977/// that control exits the loop via ExitingBlock.
3978unsigned ScalarEvolution::
3979getSmallConstantTripMultiple(Loop *L, BasicBlock */*ExitingBlock*/) {
3980  const SCEV *ExitCount = getBackedgeTakenCount(L);
3981  if (ExitCount == getCouldNotCompute())
3982    return 1;
3983
3984  // Get the trip count from the BE count by adding 1.
3985  const SCEV *TCMul = getAddExpr(ExitCount,
3986                                 getConstant(ExitCount->getType(), 1));
3987  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3988  // to factor simple cases.
3989  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3990    TCMul = Mul->getOperand(0);
3991
3992  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3993  if (!MulC)
3994    return 1;
3995
3996  ConstantInt *Result = MulC->getValue();
3997
3998  // Guard against huge trip counts (this requires checking
3999  // for zero to handle the case where the trip count == -1 and the
4000  // addition wraps).
4001  if (!Result || Result->getValue().getActiveBits() > 32 ||
4002      Result->getValue().getActiveBits() == 0)
4003    return 1;
4004
4005  return (unsigned)Result->getZExtValue();
4006}
4007
4008// getExitCount - Get the expression for the number of loop iterations for which
4009// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4010// SCEVCouldNotCompute.
4011const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4012  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4013}
4014
4015/// getBackedgeTakenCount - If the specified loop has a predictable
4016/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4017/// object. The backedge-taken count is the number of times the loop header
4018/// will be branched to from within the loop. This is one less than the
4019/// trip count of the loop, since it doesn't count the first iteration,
4020/// when the header is branched to from outside the loop.
4021///
4022/// Note that it is not valid to call this method on a loop without a
4023/// loop-invariant backedge-taken count (see
4024/// hasLoopInvariantBackedgeTakenCount).
4025///
4026const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4027  return getBackedgeTakenInfo(L).getExact(this);
4028}
4029
4030/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4031/// return the least SCEV value that is known never to be less than the
4032/// actual backedge taken count.
4033const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4034  return getBackedgeTakenInfo(L).getMax(this);
4035}
4036
4037/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4038/// onto the given Worklist.
4039static void
4040PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4041  BasicBlock *Header = L->getHeader();
4042
4043  // Push all Loop-header PHIs onto the Worklist stack.
4044  for (BasicBlock::iterator I = Header->begin();
4045       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4046    Worklist.push_back(PN);
4047}
4048
4049const ScalarEvolution::BackedgeTakenInfo &
4050ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4051  // Initially insert an invalid entry for this loop. If the insertion
4052  // succeeds, proceed to actually compute a backedge-taken count and
4053  // update the value. The temporary CouldNotCompute value tells SCEV
4054  // code elsewhere that it shouldn't attempt to request a new
4055  // backedge-taken count, which could result in infinite recursion.
4056  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4057    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4058  if (!Pair.second)
4059    return Pair.first->second;
4060
4061  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4062  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4063  // must be cleared in this scope.
4064  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4065
4066  if (Result.getExact(this) != getCouldNotCompute()) {
4067    assert(isLoopInvariant(Result.getExact(this), L) &&
4068           isLoopInvariant(Result.getMax(this), L) &&
4069           "Computed backedge-taken count isn't loop invariant for loop!");
4070    ++NumTripCountsComputed;
4071  }
4072  else if (Result.getMax(this) == getCouldNotCompute() &&
4073           isa<PHINode>(L->getHeader()->begin())) {
4074    // Only count loops that have phi nodes as not being computable.
4075    ++NumTripCountsNotComputed;
4076  }
4077
4078  // Now that we know more about the trip count for this loop, forget any
4079  // existing SCEV values for PHI nodes in this loop since they are only
4080  // conservative estimates made without the benefit of trip count
4081  // information. This is similar to the code in forgetLoop, except that
4082  // it handles SCEVUnknown PHI nodes specially.
4083  if (Result.hasAnyInfo()) {
4084    SmallVector<Instruction *, 16> Worklist;
4085    PushLoopPHIs(L, Worklist);
4086
4087    SmallPtrSet<Instruction *, 8> Visited;
4088    while (!Worklist.empty()) {
4089      Instruction *I = Worklist.pop_back_val();
4090      if (!Visited.insert(I)) continue;
4091
4092      ValueExprMapType::iterator It =
4093        ValueExprMap.find_as(static_cast<Value *>(I));
4094      if (It != ValueExprMap.end()) {
4095        const SCEV *Old = It->second;
4096
4097        // SCEVUnknown for a PHI either means that it has an unrecognized
4098        // structure, or it's a PHI that's in the progress of being computed
4099        // by createNodeForPHI.  In the former case, additional loop trip
4100        // count information isn't going to change anything. In the later
4101        // case, createNodeForPHI will perform the necessary updates on its
4102        // own when it gets to that point.
4103        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4104          forgetMemoizedResults(Old);
4105          ValueExprMap.erase(It);
4106        }
4107        if (PHINode *PN = dyn_cast<PHINode>(I))
4108          ConstantEvolutionLoopExitValue.erase(PN);
4109      }
4110
4111      PushDefUseChildren(I, Worklist);
4112    }
4113  }
4114
4115  // Re-lookup the insert position, since the call to
4116  // ComputeBackedgeTakenCount above could result in a
4117  // recusive call to getBackedgeTakenInfo (on a different
4118  // loop), which would invalidate the iterator computed
4119  // earlier.
4120  return BackedgeTakenCounts.find(L)->second = Result;
4121}
4122
4123/// forgetLoop - This method should be called by the client when it has
4124/// changed a loop in a way that may effect ScalarEvolution's ability to
4125/// compute a trip count, or if the loop is deleted.
4126void ScalarEvolution::forgetLoop(const Loop *L) {
4127  // Drop any stored trip count value.
4128  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4129    BackedgeTakenCounts.find(L);
4130  if (BTCPos != BackedgeTakenCounts.end()) {
4131    BTCPos->second.clear();
4132    BackedgeTakenCounts.erase(BTCPos);
4133  }
4134
4135  // Drop information about expressions based on loop-header PHIs.
4136  SmallVector<Instruction *, 16> Worklist;
4137  PushLoopPHIs(L, Worklist);
4138
4139  SmallPtrSet<Instruction *, 8> Visited;
4140  while (!Worklist.empty()) {
4141    Instruction *I = Worklist.pop_back_val();
4142    if (!Visited.insert(I)) continue;
4143
4144    ValueExprMapType::iterator It =
4145      ValueExprMap.find_as(static_cast<Value *>(I));
4146    if (It != ValueExprMap.end()) {
4147      forgetMemoizedResults(It->second);
4148      ValueExprMap.erase(It);
4149      if (PHINode *PN = dyn_cast<PHINode>(I))
4150        ConstantEvolutionLoopExitValue.erase(PN);
4151    }
4152
4153    PushDefUseChildren(I, Worklist);
4154  }
4155
4156  // Forget all contained loops too, to avoid dangling entries in the
4157  // ValuesAtScopes map.
4158  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4159    forgetLoop(*I);
4160}
4161
4162/// forgetValue - This method should be called by the client when it has
4163/// changed a value in a way that may effect its value, or which may
4164/// disconnect it from a def-use chain linking it to a loop.
4165void ScalarEvolution::forgetValue(Value *V) {
4166  Instruction *I = dyn_cast<Instruction>(V);
4167  if (!I) return;
4168
4169  // Drop information about expressions based on loop-header PHIs.
4170  SmallVector<Instruction *, 16> Worklist;
4171  Worklist.push_back(I);
4172
4173  SmallPtrSet<Instruction *, 8> Visited;
4174  while (!Worklist.empty()) {
4175    I = Worklist.pop_back_val();
4176    if (!Visited.insert(I)) continue;
4177
4178    ValueExprMapType::iterator It =
4179      ValueExprMap.find_as(static_cast<Value *>(I));
4180    if (It != ValueExprMap.end()) {
4181      forgetMemoizedResults(It->second);
4182      ValueExprMap.erase(It);
4183      if (PHINode *PN = dyn_cast<PHINode>(I))
4184        ConstantEvolutionLoopExitValue.erase(PN);
4185    }
4186
4187    PushDefUseChildren(I, Worklist);
4188  }
4189}
4190
4191/// getExact - Get the exact loop backedge taken count considering all loop
4192/// exits. A computable result can only be return for loops with a single exit.
4193/// Returning the minimum taken count among all exits is incorrect because one
4194/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4195/// the limit of each loop test is never skipped. This is a valid assumption as
4196/// long as the loop exits via that test. For precise results, it is the
4197/// caller's responsibility to specify the relevant loop exit using
4198/// getExact(ExitingBlock, SE).
4199const SCEV *
4200ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4201  // If any exits were not computable, the loop is not computable.
4202  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4203
4204  // We need exactly one computable exit.
4205  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4206  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4207
4208  const SCEV *BECount = 0;
4209  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4210       ENT != 0; ENT = ENT->getNextExit()) {
4211
4212    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4213
4214    if (!BECount)
4215      BECount = ENT->ExactNotTaken;
4216    else if (BECount != ENT->ExactNotTaken)
4217      return SE->getCouldNotCompute();
4218  }
4219  assert(BECount && "Invalid not taken count for loop exit");
4220  return BECount;
4221}
4222
4223/// getExact - Get the exact not taken count for this loop exit.
4224const SCEV *
4225ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4226                                             ScalarEvolution *SE) const {
4227  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4228       ENT != 0; ENT = ENT->getNextExit()) {
4229
4230    if (ENT->ExitingBlock == ExitingBlock)
4231      return ENT->ExactNotTaken;
4232  }
4233  return SE->getCouldNotCompute();
4234}
4235
4236/// getMax - Get the max backedge taken count for the loop.
4237const SCEV *
4238ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4239  return Max ? Max : SE->getCouldNotCompute();
4240}
4241
4242bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4243                                                    ScalarEvolution *SE) const {
4244  if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4245    return true;
4246
4247  if (!ExitNotTaken.ExitingBlock)
4248    return false;
4249
4250  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4251       ENT != 0; ENT = ENT->getNextExit()) {
4252
4253    if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4254        && SE->hasOperand(ENT->ExactNotTaken, S)) {
4255      return true;
4256    }
4257  }
4258  return false;
4259}
4260
4261/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4262/// computable exit into a persistent ExitNotTakenInfo array.
4263ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4264  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4265  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4266
4267  if (!Complete)
4268    ExitNotTaken.setIncomplete();
4269
4270  unsigned NumExits = ExitCounts.size();
4271  if (NumExits == 0) return;
4272
4273  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4274  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4275  if (NumExits == 1) return;
4276
4277  // Handle the rare case of multiple computable exits.
4278  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4279
4280  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4281  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4282    PrevENT->setNextExit(ENT);
4283    ENT->ExitingBlock = ExitCounts[i].first;
4284    ENT->ExactNotTaken = ExitCounts[i].second;
4285  }
4286}
4287
4288/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4289void ScalarEvolution::BackedgeTakenInfo::clear() {
4290  ExitNotTaken.ExitingBlock = 0;
4291  ExitNotTaken.ExactNotTaken = 0;
4292  delete[] ExitNotTaken.getNextExit();
4293}
4294
4295/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4296/// of the specified loop will execute.
4297ScalarEvolution::BackedgeTakenInfo
4298ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4299  SmallVector<BasicBlock *, 8> ExitingBlocks;
4300  L->getExitingBlocks(ExitingBlocks);
4301
4302  // Examine all exits and pick the most conservative values.
4303  const SCEV *MaxBECount = getCouldNotCompute();
4304  bool CouldComputeBECount = true;
4305  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4306  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4307    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4308    if (EL.Exact == getCouldNotCompute())
4309      // We couldn't compute an exact value for this exit, so
4310      // we won't be able to compute an exact value for the loop.
4311      CouldComputeBECount = false;
4312    else
4313      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4314
4315    if (MaxBECount == getCouldNotCompute())
4316      MaxBECount = EL.Max;
4317    else if (EL.Max != getCouldNotCompute()) {
4318      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4319      // skip some loop tests. Taking the max over the exits is sufficiently
4320      // conservative.  TODO: We could do better taking into consideration
4321      // that (1) the loop has unit stride (2) the last loop test is
4322      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4323      // falls-through some constant times less then the other tests.
4324      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4325    }
4326  }
4327
4328  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4329}
4330
4331/// ComputeExitLimit - Compute the number of times the backedge of the specified
4332/// loop will execute if it exits via the specified block.
4333ScalarEvolution::ExitLimit
4334ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4335
4336  // Okay, we've chosen an exiting block.  See what condition causes us to
4337  // exit at this block.
4338  //
4339  // FIXME: we should be able to handle switch instructions (with a single exit)
4340  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4341  if (ExitBr == 0) return getCouldNotCompute();
4342  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4343
4344  // At this point, we know we have a conditional branch that determines whether
4345  // the loop is exited.  However, we don't know if the branch is executed each
4346  // time through the loop.  If not, then the execution count of the branch will
4347  // not be equal to the trip count of the loop.
4348  //
4349  // Currently we check for this by checking to see if the Exit branch goes to
4350  // the loop header.  If so, we know it will always execute the same number of
4351  // times as the loop.  We also handle the case where the exit block *is* the
4352  // loop header.  This is common for un-rotated loops.
4353  //
4354  // If both of those tests fail, walk up the unique predecessor chain to the
4355  // header, stopping if there is an edge that doesn't exit the loop. If the
4356  // header is reached, the execution count of the branch will be equal to the
4357  // trip count of the loop.
4358  //
4359  //  More extensive analysis could be done to handle more cases here.
4360  //
4361  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4362      ExitBr->getSuccessor(1) != L->getHeader() &&
4363      ExitBr->getParent() != L->getHeader()) {
4364    // The simple checks failed, try climbing the unique predecessor chain
4365    // up to the header.
4366    bool Ok = false;
4367    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4368      BasicBlock *Pred = BB->getUniquePredecessor();
4369      if (!Pred)
4370        return getCouldNotCompute();
4371      TerminatorInst *PredTerm = Pred->getTerminator();
4372      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4373        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4374        if (PredSucc == BB)
4375          continue;
4376        // If the predecessor has a successor that isn't BB and isn't
4377        // outside the loop, assume the worst.
4378        if (L->contains(PredSucc))
4379          return getCouldNotCompute();
4380      }
4381      if (Pred == L->getHeader()) {
4382        Ok = true;
4383        break;
4384      }
4385      BB = Pred;
4386    }
4387    if (!Ok)
4388      return getCouldNotCompute();
4389  }
4390
4391  // Proceed to the next level to examine the exit condition expression.
4392  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4393                                  ExitBr->getSuccessor(0),
4394                                  ExitBr->getSuccessor(1),
4395                                  /*IsSubExpr=*/false);
4396}
4397
4398/// ComputeExitLimitFromCond - Compute the number of times the
4399/// backedge of the specified loop will execute if its exit condition
4400/// were a conditional branch of ExitCond, TBB, and FBB.
4401///
4402/// @param IsSubExpr is true if ExitCond does not directly control the exit
4403/// branch. In this case, we cannot assume that the loop only exits when the
4404/// condition is true and cannot infer that failing to meet the condition prior
4405/// to integer wraparound results in undefined behavior.
4406ScalarEvolution::ExitLimit
4407ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4408                                          Value *ExitCond,
4409                                          BasicBlock *TBB,
4410                                          BasicBlock *FBB,
4411                                          bool IsSubExpr) {
4412  // Check if the controlling expression for this loop is an And or Or.
4413  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4414    if (BO->getOpcode() == Instruction::And) {
4415      // Recurse on the operands of the and.
4416      bool EitherMayExit = L->contains(TBB);
4417      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4418                                               IsSubExpr || EitherMayExit);
4419      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4420                                               IsSubExpr || EitherMayExit);
4421      const SCEV *BECount = getCouldNotCompute();
4422      const SCEV *MaxBECount = getCouldNotCompute();
4423      if (EitherMayExit) {
4424        // Both conditions must be true for the loop to continue executing.
4425        // Choose the less conservative count.
4426        if (EL0.Exact == getCouldNotCompute() ||
4427            EL1.Exact == getCouldNotCompute())
4428          BECount = getCouldNotCompute();
4429        else
4430          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4431        if (EL0.Max == getCouldNotCompute())
4432          MaxBECount = EL1.Max;
4433        else if (EL1.Max == getCouldNotCompute())
4434          MaxBECount = EL0.Max;
4435        else
4436          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4437      } else {
4438        // Both conditions must be true at the same time for the loop to exit.
4439        // For now, be conservative.
4440        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4441        if (EL0.Max == EL1.Max)
4442          MaxBECount = EL0.Max;
4443        if (EL0.Exact == EL1.Exact)
4444          BECount = EL0.Exact;
4445      }
4446
4447      return ExitLimit(BECount, MaxBECount);
4448    }
4449    if (BO->getOpcode() == Instruction::Or) {
4450      // Recurse on the operands of the or.
4451      bool EitherMayExit = L->contains(FBB);
4452      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4453                                               IsSubExpr || EitherMayExit);
4454      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4455                                               IsSubExpr || EitherMayExit);
4456      const SCEV *BECount = getCouldNotCompute();
4457      const SCEV *MaxBECount = getCouldNotCompute();
4458      if (EitherMayExit) {
4459        // Both conditions must be false for the loop to continue executing.
4460        // Choose the less conservative count.
4461        if (EL0.Exact == getCouldNotCompute() ||
4462            EL1.Exact == getCouldNotCompute())
4463          BECount = getCouldNotCompute();
4464        else
4465          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4466        if (EL0.Max == getCouldNotCompute())
4467          MaxBECount = EL1.Max;
4468        else if (EL1.Max == getCouldNotCompute())
4469          MaxBECount = EL0.Max;
4470        else
4471          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4472      } else {
4473        // Both conditions must be false at the same time for the loop to exit.
4474        // For now, be conservative.
4475        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4476        if (EL0.Max == EL1.Max)
4477          MaxBECount = EL0.Max;
4478        if (EL0.Exact == EL1.Exact)
4479          BECount = EL0.Exact;
4480      }
4481
4482      return ExitLimit(BECount, MaxBECount);
4483    }
4484  }
4485
4486  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4487  // Proceed to the next level to examine the icmp.
4488  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4489    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4490
4491  // Check for a constant condition. These are normally stripped out by
4492  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4493  // preserve the CFG and is temporarily leaving constant conditions
4494  // in place.
4495  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4496    if (L->contains(FBB) == !CI->getZExtValue())
4497      // The backedge is always taken.
4498      return getCouldNotCompute();
4499    else
4500      // The backedge is never taken.
4501      return getConstant(CI->getType(), 0);
4502  }
4503
4504  // If it's not an integer or pointer comparison then compute it the hard way.
4505  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4506}
4507
4508/// ComputeExitLimitFromICmp - Compute the number of times the
4509/// backedge of the specified loop will execute if its exit condition
4510/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4511ScalarEvolution::ExitLimit
4512ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4513                                          ICmpInst *ExitCond,
4514                                          BasicBlock *TBB,
4515                                          BasicBlock *FBB,
4516                                          bool IsSubExpr) {
4517
4518  // If the condition was exit on true, convert the condition to exit on false
4519  ICmpInst::Predicate Cond;
4520  if (!L->contains(FBB))
4521    Cond = ExitCond->getPredicate();
4522  else
4523    Cond = ExitCond->getInversePredicate();
4524
4525  // Handle common loops like: for (X = "string"; *X; ++X)
4526  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4527    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4528      ExitLimit ItCnt =
4529        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4530      if (ItCnt.hasAnyInfo())
4531        return ItCnt;
4532    }
4533
4534  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4535  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4536
4537  // Try to evaluate any dependencies out of the loop.
4538  LHS = getSCEVAtScope(LHS, L);
4539  RHS = getSCEVAtScope(RHS, L);
4540
4541  // At this point, we would like to compute how many iterations of the
4542  // loop the predicate will return true for these inputs.
4543  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4544    // If there is a loop-invariant, force it into the RHS.
4545    std::swap(LHS, RHS);
4546    Cond = ICmpInst::getSwappedPredicate(Cond);
4547  }
4548
4549  // Simplify the operands before analyzing them.
4550  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4551
4552  // If we have a comparison of a chrec against a constant, try to use value
4553  // ranges to answer this query.
4554  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4555    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4556      if (AddRec->getLoop() == L) {
4557        // Form the constant range.
4558        ConstantRange CompRange(
4559            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4560
4561        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4562        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4563      }
4564
4565  switch (Cond) {
4566  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4567    // Convert to: while (X-Y != 0)
4568    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4569    if (EL.hasAnyInfo()) return EL;
4570    break;
4571  }
4572  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4573    // Convert to: while (X-Y == 0)
4574    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4575    if (EL.hasAnyInfo()) return EL;
4576    break;
4577  }
4578  case ICmpInst::ICMP_SLT: {
4579    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
4580    if (EL.hasAnyInfo()) return EL;
4581    break;
4582  }
4583  case ICmpInst::ICMP_SGT: {
4584    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4585                                    getNotSCEV(RHS), L, true, IsSubExpr);
4586    if (EL.hasAnyInfo()) return EL;
4587    break;
4588  }
4589  case ICmpInst::ICMP_ULT: {
4590    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
4591    if (EL.hasAnyInfo()) return EL;
4592    break;
4593  }
4594  case ICmpInst::ICMP_UGT: {
4595    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4596                                    getNotSCEV(RHS), L, false, IsSubExpr);
4597    if (EL.hasAnyInfo()) return EL;
4598    break;
4599  }
4600  default:
4601#if 0
4602    dbgs() << "ComputeBackedgeTakenCount ";
4603    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4604      dbgs() << "[unsigned] ";
4605    dbgs() << *LHS << "   "
4606         << Instruction::getOpcodeName(Instruction::ICmp)
4607         << "   " << *RHS << "\n";
4608#endif
4609    break;
4610  }
4611  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4612}
4613
4614static ConstantInt *
4615EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4616                                ScalarEvolution &SE) {
4617  const SCEV *InVal = SE.getConstant(C);
4618  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4619  assert(isa<SCEVConstant>(Val) &&
4620         "Evaluation of SCEV at constant didn't fold correctly?");
4621  return cast<SCEVConstant>(Val)->getValue();
4622}
4623
4624/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4625/// 'icmp op load X, cst', try to see if we can compute the backedge
4626/// execution count.
4627ScalarEvolution::ExitLimit
4628ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4629  LoadInst *LI,
4630  Constant *RHS,
4631  const Loop *L,
4632  ICmpInst::Predicate predicate) {
4633
4634  if (LI->isVolatile()) return getCouldNotCompute();
4635
4636  // Check to see if the loaded pointer is a getelementptr of a global.
4637  // TODO: Use SCEV instead of manually grubbing with GEPs.
4638  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4639  if (!GEP) return getCouldNotCompute();
4640
4641  // Make sure that it is really a constant global we are gepping, with an
4642  // initializer, and make sure the first IDX is really 0.
4643  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4644  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4645      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4646      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4647    return getCouldNotCompute();
4648
4649  // Okay, we allow one non-constant index into the GEP instruction.
4650  Value *VarIdx = 0;
4651  std::vector<Constant*> Indexes;
4652  unsigned VarIdxNum = 0;
4653  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4654    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4655      Indexes.push_back(CI);
4656    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4657      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4658      VarIdx = GEP->getOperand(i);
4659      VarIdxNum = i-2;
4660      Indexes.push_back(0);
4661    }
4662
4663  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4664  if (!VarIdx)
4665    return getCouldNotCompute();
4666
4667  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4668  // Check to see if X is a loop variant variable value now.
4669  const SCEV *Idx = getSCEV(VarIdx);
4670  Idx = getSCEVAtScope(Idx, L);
4671
4672  // We can only recognize very limited forms of loop index expressions, in
4673  // particular, only affine AddRec's like {C1,+,C2}.
4674  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4675  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4676      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4677      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4678    return getCouldNotCompute();
4679
4680  unsigned MaxSteps = MaxBruteForceIterations;
4681  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4682    ConstantInt *ItCst = ConstantInt::get(
4683                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4684    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4685
4686    // Form the GEP offset.
4687    Indexes[VarIdxNum] = Val;
4688
4689    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4690                                                         Indexes);
4691    if (Result == 0) break;  // Cannot compute!
4692
4693    // Evaluate the condition for this iteration.
4694    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4695    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4696    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4697#if 0
4698      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4699             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4700             << "***\n";
4701#endif
4702      ++NumArrayLenItCounts;
4703      return getConstant(ItCst);   // Found terminating iteration!
4704    }
4705  }
4706  return getCouldNotCompute();
4707}
4708
4709
4710/// CanConstantFold - Return true if we can constant fold an instruction of the
4711/// specified type, assuming that all operands were constants.
4712static bool CanConstantFold(const Instruction *I) {
4713  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4714      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4715      isa<LoadInst>(I))
4716    return true;
4717
4718  if (const CallInst *CI = dyn_cast<CallInst>(I))
4719    if (const Function *F = CI->getCalledFunction())
4720      return canConstantFoldCallTo(F);
4721  return false;
4722}
4723
4724/// Determine whether this instruction can constant evolve within this loop
4725/// assuming its operands can all constant evolve.
4726static bool canConstantEvolve(Instruction *I, const Loop *L) {
4727  // An instruction outside of the loop can't be derived from a loop PHI.
4728  if (!L->contains(I)) return false;
4729
4730  if (isa<PHINode>(I)) {
4731    if (L->getHeader() == I->getParent())
4732      return true;
4733    else
4734      // We don't currently keep track of the control flow needed to evaluate
4735      // PHIs, so we cannot handle PHIs inside of loops.
4736      return false;
4737  }
4738
4739  // If we won't be able to constant fold this expression even if the operands
4740  // are constants, bail early.
4741  return CanConstantFold(I);
4742}
4743
4744/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4745/// recursing through each instruction operand until reaching a loop header phi.
4746static PHINode *
4747getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4748                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4749
4750  // Otherwise, we can evaluate this instruction if all of its operands are
4751  // constant or derived from a PHI node themselves.
4752  PHINode *PHI = 0;
4753  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4754         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4755
4756    if (isa<Constant>(*OpI)) continue;
4757
4758    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4759    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4760
4761    PHINode *P = dyn_cast<PHINode>(OpInst);
4762    if (!P)
4763      // If this operand is already visited, reuse the prior result.
4764      // We may have P != PHI if this is the deepest point at which the
4765      // inconsistent paths meet.
4766      P = PHIMap.lookup(OpInst);
4767    if (!P) {
4768      // Recurse and memoize the results, whether a phi is found or not.
4769      // This recursive call invalidates pointers into PHIMap.
4770      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4771      PHIMap[OpInst] = P;
4772    }
4773    if (P == 0) return 0;        // Not evolving from PHI
4774    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4775    PHI = P;
4776  }
4777  // This is a expression evolving from a constant PHI!
4778  return PHI;
4779}
4780
4781/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4782/// in the loop that V is derived from.  We allow arbitrary operations along the
4783/// way, but the operands of an operation must either be constants or a value
4784/// derived from a constant PHI.  If this expression does not fit with these
4785/// constraints, return null.
4786static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4787  Instruction *I = dyn_cast<Instruction>(V);
4788  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4789
4790  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4791    return PN;
4792  }
4793
4794  // Record non-constant instructions contained by the loop.
4795  DenseMap<Instruction *, PHINode *> PHIMap;
4796  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4797}
4798
4799/// EvaluateExpression - Given an expression that passes the
4800/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4801/// in the loop has the value PHIVal.  If we can't fold this expression for some
4802/// reason, return null.
4803static Constant *EvaluateExpression(Value *V, const Loop *L,
4804                                    DenseMap<Instruction *, Constant *> &Vals,
4805                                    const DataLayout *TD,
4806                                    const TargetLibraryInfo *TLI) {
4807  // Convenient constant check, but redundant for recursive calls.
4808  if (Constant *C = dyn_cast<Constant>(V)) return C;
4809  Instruction *I = dyn_cast<Instruction>(V);
4810  if (!I) return 0;
4811
4812  if (Constant *C = Vals.lookup(I)) return C;
4813
4814  // An instruction inside the loop depends on a value outside the loop that we
4815  // weren't given a mapping for, or a value such as a call inside the loop.
4816  if (!canConstantEvolve(I, L)) return 0;
4817
4818  // An unmapped PHI can be due to a branch or another loop inside this loop,
4819  // or due to this not being the initial iteration through a loop where we
4820  // couldn't compute the evolution of this particular PHI last time.
4821  if (isa<PHINode>(I)) return 0;
4822
4823  std::vector<Constant*> Operands(I->getNumOperands());
4824
4825  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4826    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4827    if (!Operand) {
4828      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4829      if (!Operands[i]) return 0;
4830      continue;
4831    }
4832    Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4833    Vals[Operand] = C;
4834    if (!C) return 0;
4835    Operands[i] = C;
4836  }
4837
4838  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4839    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4840                                           Operands[1], TD, TLI);
4841  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4842    if (!LI->isVolatile())
4843      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4844  }
4845  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4846                                  TLI);
4847}
4848
4849/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4850/// in the header of its containing loop, we know the loop executes a
4851/// constant number of times, and the PHI node is just a recurrence
4852/// involving constants, fold it.
4853Constant *
4854ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4855                                                   const APInt &BEs,
4856                                                   const Loop *L) {
4857  DenseMap<PHINode*, Constant*>::const_iterator I =
4858    ConstantEvolutionLoopExitValue.find(PN);
4859  if (I != ConstantEvolutionLoopExitValue.end())
4860    return I->second;
4861
4862  if (BEs.ugt(MaxBruteForceIterations))
4863    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4864
4865  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4866
4867  DenseMap<Instruction *, Constant *> CurrentIterVals;
4868  BasicBlock *Header = L->getHeader();
4869  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4870
4871  // Since the loop is canonicalized, the PHI node must have two entries.  One
4872  // entry must be a constant (coming in from outside of the loop), and the
4873  // second must be derived from the same PHI.
4874  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4875  PHINode *PHI = 0;
4876  for (BasicBlock::iterator I = Header->begin();
4877       (PHI = dyn_cast<PHINode>(I)); ++I) {
4878    Constant *StartCST =
4879      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4880    if (StartCST == 0) continue;
4881    CurrentIterVals[PHI] = StartCST;
4882  }
4883  if (!CurrentIterVals.count(PN))
4884    return RetVal = 0;
4885
4886  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4887
4888  // Execute the loop symbolically to determine the exit value.
4889  if (BEs.getActiveBits() >= 32)
4890    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4891
4892  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4893  unsigned IterationNum = 0;
4894  for (; ; ++IterationNum) {
4895    if (IterationNum == NumIterations)
4896      return RetVal = CurrentIterVals[PN];  // Got exit value!
4897
4898    // Compute the value of the PHIs for the next iteration.
4899    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4900    DenseMap<Instruction *, Constant *> NextIterVals;
4901    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4902                                           TLI);
4903    if (NextPHI == 0)
4904      return 0;        // Couldn't evaluate!
4905    NextIterVals[PN] = NextPHI;
4906
4907    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4908
4909    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4910    // cease to be able to evaluate one of them or if they stop evolving,
4911    // because that doesn't necessarily prevent us from computing PN.
4912    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4913    for (DenseMap<Instruction *, Constant *>::const_iterator
4914           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4915      PHINode *PHI = dyn_cast<PHINode>(I->first);
4916      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4917      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4918    }
4919    // We use two distinct loops because EvaluateExpression may invalidate any
4920    // iterators into CurrentIterVals.
4921    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4922             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4923      PHINode *PHI = I->first;
4924      Constant *&NextPHI = NextIterVals[PHI];
4925      if (!NextPHI) {   // Not already computed.
4926        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4927        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4928      }
4929      if (NextPHI != I->second)
4930        StoppedEvolving = false;
4931    }
4932
4933    // If all entries in CurrentIterVals == NextIterVals then we can stop
4934    // iterating, the loop can't continue to change.
4935    if (StoppedEvolving)
4936      return RetVal = CurrentIterVals[PN];
4937
4938    CurrentIterVals.swap(NextIterVals);
4939  }
4940}
4941
4942/// ComputeExitCountExhaustively - If the loop is known to execute a
4943/// constant number of times (the condition evolves only from constants),
4944/// try to evaluate a few iterations of the loop until we get the exit
4945/// condition gets a value of ExitWhen (true or false).  If we cannot
4946/// evaluate the trip count of the loop, return getCouldNotCompute().
4947const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4948                                                          Value *Cond,
4949                                                          bool ExitWhen) {
4950  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4951  if (PN == 0) return getCouldNotCompute();
4952
4953  // If the loop is canonicalized, the PHI will have exactly two entries.
4954  // That's the only form we support here.
4955  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4956
4957  DenseMap<Instruction *, Constant *> CurrentIterVals;
4958  BasicBlock *Header = L->getHeader();
4959  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4960
4961  // One entry must be a constant (coming in from outside of the loop), and the
4962  // second must be derived from the same PHI.
4963  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4964  PHINode *PHI = 0;
4965  for (BasicBlock::iterator I = Header->begin();
4966       (PHI = dyn_cast<PHINode>(I)); ++I) {
4967    Constant *StartCST =
4968      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4969    if (StartCST == 0) continue;
4970    CurrentIterVals[PHI] = StartCST;
4971  }
4972  if (!CurrentIterVals.count(PN))
4973    return getCouldNotCompute();
4974
4975  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4976  // the loop symbolically to determine when the condition gets a value of
4977  // "ExitWhen".
4978
4979  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4980  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
4981    ConstantInt *CondVal =
4982      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4983                                                       TD, TLI));
4984
4985    // Couldn't symbolically evaluate.
4986    if (!CondVal) return getCouldNotCompute();
4987
4988    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4989      ++NumBruteForceTripCountsComputed;
4990      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4991    }
4992
4993    // Update all the PHI nodes for the next iteration.
4994    DenseMap<Instruction *, Constant *> NextIterVals;
4995
4996    // Create a list of which PHIs we need to compute. We want to do this before
4997    // calling EvaluateExpression on them because that may invalidate iterators
4998    // into CurrentIterVals.
4999    SmallVector<PHINode *, 8> PHIsToCompute;
5000    for (DenseMap<Instruction *, Constant *>::const_iterator
5001           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5002      PHINode *PHI = dyn_cast<PHINode>(I->first);
5003      if (!PHI || PHI->getParent() != Header) continue;
5004      PHIsToCompute.push_back(PHI);
5005    }
5006    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5007             E = PHIsToCompute.end(); I != E; ++I) {
5008      PHINode *PHI = *I;
5009      Constant *&NextPHI = NextIterVals[PHI];
5010      if (NextPHI) continue;    // Already computed!
5011
5012      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5013      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
5014    }
5015    CurrentIterVals.swap(NextIterVals);
5016  }
5017
5018  // Too many iterations were needed to evaluate.
5019  return getCouldNotCompute();
5020}
5021
5022/// getSCEVAtScope - Return a SCEV expression for the specified value
5023/// at the specified scope in the program.  The L value specifies a loop
5024/// nest to evaluate the expression at, where null is the top-level or a
5025/// specified loop is immediately inside of the loop.
5026///
5027/// This method can be used to compute the exit value for a variable defined
5028/// in a loop by querying what the value will hold in the parent loop.
5029///
5030/// In the case that a relevant loop exit value cannot be computed, the
5031/// original value V is returned.
5032const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5033  // Check to see if we've folded this expression at this loop before.
5034  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5035  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5036    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5037  if (!Pair.second)
5038    return Pair.first->second ? Pair.first->second : V;
5039
5040  // Otherwise compute it.
5041  const SCEV *C = computeSCEVAtScope(V, L);
5042  ValuesAtScopes[V][L] = C;
5043  return C;
5044}
5045
5046/// This builds up a Constant using the ConstantExpr interface.  That way, we
5047/// will return Constants for objects which aren't represented by a
5048/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5049/// Returns NULL if the SCEV isn't representable as a Constant.
5050static Constant *BuildConstantFromSCEV(const SCEV *V) {
5051  switch (V->getSCEVType()) {
5052    default:  // TODO: smax, umax.
5053    case scCouldNotCompute:
5054    case scAddRecExpr:
5055      break;
5056    case scConstant:
5057      return cast<SCEVConstant>(V)->getValue();
5058    case scUnknown:
5059      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5060    case scSignExtend: {
5061      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5062      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5063        return ConstantExpr::getSExt(CastOp, SS->getType());
5064      break;
5065    }
5066    case scZeroExtend: {
5067      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5068      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5069        return ConstantExpr::getZExt(CastOp, SZ->getType());
5070      break;
5071    }
5072    case scTruncate: {
5073      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5074      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5075        return ConstantExpr::getTrunc(CastOp, ST->getType());
5076      break;
5077    }
5078    case scAddExpr: {
5079      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5080      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5081        if (C->getType()->isPointerTy())
5082          C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5083        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5084          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5085          if (!C2) return 0;
5086
5087          // First pointer!
5088          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5089            std::swap(C, C2);
5090            // The offsets have been converted to bytes.  We can add bytes to an
5091            // i8* by GEP with the byte count in the first index.
5092            C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5093          }
5094
5095          // Don't bother trying to sum two pointers. We probably can't
5096          // statically compute a load that results from it anyway.
5097          if (C2->getType()->isPointerTy())
5098            return 0;
5099
5100          if (C->getType()->isPointerTy()) {
5101            if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5102              C2 = ConstantExpr::getIntegerCast(
5103                  C2, Type::getInt32Ty(C->getContext()), true);
5104            C = ConstantExpr::getGetElementPtr(C, C2);
5105          } else
5106            C = ConstantExpr::getAdd(C, C2);
5107        }
5108        return C;
5109      }
5110      break;
5111    }
5112    case scMulExpr: {
5113      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5114      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5115        // Don't bother with pointers at all.
5116        if (C->getType()->isPointerTy()) return 0;
5117        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5118          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5119          if (!C2 || C2->getType()->isPointerTy()) return 0;
5120          C = ConstantExpr::getMul(C, C2);
5121        }
5122        return C;
5123      }
5124      break;
5125    }
5126    case scUDivExpr: {
5127      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5128      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5129        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5130          if (LHS->getType() == RHS->getType())
5131            return ConstantExpr::getUDiv(LHS, RHS);
5132      break;
5133    }
5134  }
5135  return 0;
5136}
5137
5138const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5139  if (isa<SCEVConstant>(V)) return V;
5140
5141  // If this instruction is evolved from a constant-evolving PHI, compute the
5142  // exit value from the loop without using SCEVs.
5143  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5144    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5145      const Loop *LI = (*this->LI)[I->getParent()];
5146      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5147        if (PHINode *PN = dyn_cast<PHINode>(I))
5148          if (PN->getParent() == LI->getHeader()) {
5149            // Okay, there is no closed form solution for the PHI node.  Check
5150            // to see if the loop that contains it has a known backedge-taken
5151            // count.  If so, we may be able to force computation of the exit
5152            // value.
5153            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5154            if (const SCEVConstant *BTCC =
5155                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5156              // Okay, we know how many times the containing loop executes.  If
5157              // this is a constant evolving PHI node, get the final value at
5158              // the specified iteration number.
5159              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5160                                                   BTCC->getValue()->getValue(),
5161                                                               LI);
5162              if (RV) return getSCEV(RV);
5163            }
5164          }
5165
5166      // Okay, this is an expression that we cannot symbolically evaluate
5167      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5168      // the arguments into constants, and if so, try to constant propagate the
5169      // result.  This is particularly useful for computing loop exit values.
5170      if (CanConstantFold(I)) {
5171        SmallVector<Constant *, 4> Operands;
5172        bool MadeImprovement = false;
5173        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5174          Value *Op = I->getOperand(i);
5175          if (Constant *C = dyn_cast<Constant>(Op)) {
5176            Operands.push_back(C);
5177            continue;
5178          }
5179
5180          // If any of the operands is non-constant and if they are
5181          // non-integer and non-pointer, don't even try to analyze them
5182          // with scev techniques.
5183          if (!isSCEVable(Op->getType()))
5184            return V;
5185
5186          const SCEV *OrigV = getSCEV(Op);
5187          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5188          MadeImprovement |= OrigV != OpV;
5189
5190          Constant *C = BuildConstantFromSCEV(OpV);
5191          if (!C) return V;
5192          if (C->getType() != Op->getType())
5193            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5194                                                              Op->getType(),
5195                                                              false),
5196                                      C, Op->getType());
5197          Operands.push_back(C);
5198        }
5199
5200        // Check to see if getSCEVAtScope actually made an improvement.
5201        if (MadeImprovement) {
5202          Constant *C = 0;
5203          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5204            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5205                                                Operands[0], Operands[1], TD,
5206                                                TLI);
5207          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5208            if (!LI->isVolatile())
5209              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5210          } else
5211            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5212                                         Operands, TD, TLI);
5213          if (!C) return V;
5214          return getSCEV(C);
5215        }
5216      }
5217    }
5218
5219    // This is some other type of SCEVUnknown, just return it.
5220    return V;
5221  }
5222
5223  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5224    // Avoid performing the look-up in the common case where the specified
5225    // expression has no loop-variant portions.
5226    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5227      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5228      if (OpAtScope != Comm->getOperand(i)) {
5229        // Okay, at least one of these operands is loop variant but might be
5230        // foldable.  Build a new instance of the folded commutative expression.
5231        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5232                                            Comm->op_begin()+i);
5233        NewOps.push_back(OpAtScope);
5234
5235        for (++i; i != e; ++i) {
5236          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5237          NewOps.push_back(OpAtScope);
5238        }
5239        if (isa<SCEVAddExpr>(Comm))
5240          return getAddExpr(NewOps);
5241        if (isa<SCEVMulExpr>(Comm))
5242          return getMulExpr(NewOps);
5243        if (isa<SCEVSMaxExpr>(Comm))
5244          return getSMaxExpr(NewOps);
5245        if (isa<SCEVUMaxExpr>(Comm))
5246          return getUMaxExpr(NewOps);
5247        llvm_unreachable("Unknown commutative SCEV type!");
5248      }
5249    }
5250    // If we got here, all operands are loop invariant.
5251    return Comm;
5252  }
5253
5254  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5255    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5256    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5257    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5258      return Div;   // must be loop invariant
5259    return getUDivExpr(LHS, RHS);
5260  }
5261
5262  // If this is a loop recurrence for a loop that does not contain L, then we
5263  // are dealing with the final value computed by the loop.
5264  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5265    // First, attempt to evaluate each operand.
5266    // Avoid performing the look-up in the common case where the specified
5267    // expression has no loop-variant portions.
5268    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5269      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5270      if (OpAtScope == AddRec->getOperand(i))
5271        continue;
5272
5273      // Okay, at least one of these operands is loop variant but might be
5274      // foldable.  Build a new instance of the folded commutative expression.
5275      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5276                                          AddRec->op_begin()+i);
5277      NewOps.push_back(OpAtScope);
5278      for (++i; i != e; ++i)
5279        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5280
5281      const SCEV *FoldedRec =
5282        getAddRecExpr(NewOps, AddRec->getLoop(),
5283                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5284      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5285      // The addrec may be folded to a nonrecurrence, for example, if the
5286      // induction variable is multiplied by zero after constant folding. Go
5287      // ahead and return the folded value.
5288      if (!AddRec)
5289        return FoldedRec;
5290      break;
5291    }
5292
5293    // If the scope is outside the addrec's loop, evaluate it by using the
5294    // loop exit value of the addrec.
5295    if (!AddRec->getLoop()->contains(L)) {
5296      // To evaluate this recurrence, we need to know how many times the AddRec
5297      // loop iterates.  Compute this now.
5298      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5299      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5300
5301      // Then, evaluate the AddRec.
5302      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5303    }
5304
5305    return AddRec;
5306  }
5307
5308  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5309    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5310    if (Op == Cast->getOperand())
5311      return Cast;  // must be loop invariant
5312    return getZeroExtendExpr(Op, Cast->getType());
5313  }
5314
5315  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5316    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5317    if (Op == Cast->getOperand())
5318      return Cast;  // must be loop invariant
5319    return getSignExtendExpr(Op, Cast->getType());
5320  }
5321
5322  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5323    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5324    if (Op == Cast->getOperand())
5325      return Cast;  // must be loop invariant
5326    return getTruncateExpr(Op, Cast->getType());
5327  }
5328
5329  llvm_unreachable("Unknown SCEV type!");
5330}
5331
5332/// getSCEVAtScope - This is a convenience function which does
5333/// getSCEVAtScope(getSCEV(V), L).
5334const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5335  return getSCEVAtScope(getSCEV(V), L);
5336}
5337
5338/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5339/// following equation:
5340///
5341///     A * X = B (mod N)
5342///
5343/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5344/// A and B isn't important.
5345///
5346/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5347static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5348                                               ScalarEvolution &SE) {
5349  uint32_t BW = A.getBitWidth();
5350  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5351  assert(A != 0 && "A must be non-zero.");
5352
5353  // 1. D = gcd(A, N)
5354  //
5355  // The gcd of A and N may have only one prime factor: 2. The number of
5356  // trailing zeros in A is its multiplicity
5357  uint32_t Mult2 = A.countTrailingZeros();
5358  // D = 2^Mult2
5359
5360  // 2. Check if B is divisible by D.
5361  //
5362  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5363  // is not less than multiplicity of this prime factor for D.
5364  if (B.countTrailingZeros() < Mult2)
5365    return SE.getCouldNotCompute();
5366
5367  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5368  // modulo (N / D).
5369  //
5370  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5371  // bit width during computations.
5372  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5373  APInt Mod(BW + 1, 0);
5374  Mod.setBit(BW - Mult2);  // Mod = N / D
5375  APInt I = AD.multiplicativeInverse(Mod);
5376
5377  // 4. Compute the minimum unsigned root of the equation:
5378  // I * (B / D) mod (N / D)
5379  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5380
5381  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5382  // bits.
5383  return SE.getConstant(Result.trunc(BW));
5384}
5385
5386/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5387/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5388/// might be the same) or two SCEVCouldNotCompute objects.
5389///
5390static std::pair<const SCEV *,const SCEV *>
5391SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5392  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5393  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5394  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5395  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5396
5397  // We currently can only solve this if the coefficients are constants.
5398  if (!LC || !MC || !NC) {
5399    const SCEV *CNC = SE.getCouldNotCompute();
5400    return std::make_pair(CNC, CNC);
5401  }
5402
5403  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5404  const APInt &L = LC->getValue()->getValue();
5405  const APInt &M = MC->getValue()->getValue();
5406  const APInt &N = NC->getValue()->getValue();
5407  APInt Two(BitWidth, 2);
5408  APInt Four(BitWidth, 4);
5409
5410  {
5411    using namespace APIntOps;
5412    const APInt& C = L;
5413    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5414    // The B coefficient is M-N/2
5415    APInt B(M);
5416    B -= sdiv(N,Two);
5417
5418    // The A coefficient is N/2
5419    APInt A(N.sdiv(Two));
5420
5421    // Compute the B^2-4ac term.
5422    APInt SqrtTerm(B);
5423    SqrtTerm *= B;
5424    SqrtTerm -= Four * (A * C);
5425
5426    if (SqrtTerm.isNegative()) {
5427      // The loop is provably infinite.
5428      const SCEV *CNC = SE.getCouldNotCompute();
5429      return std::make_pair(CNC, CNC);
5430    }
5431
5432    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5433    // integer value or else APInt::sqrt() will assert.
5434    APInt SqrtVal(SqrtTerm.sqrt());
5435
5436    // Compute the two solutions for the quadratic formula.
5437    // The divisions must be performed as signed divisions.
5438    APInt NegB(-B);
5439    APInt TwoA(A << 1);
5440    if (TwoA.isMinValue()) {
5441      const SCEV *CNC = SE.getCouldNotCompute();
5442      return std::make_pair(CNC, CNC);
5443    }
5444
5445    LLVMContext &Context = SE.getContext();
5446
5447    ConstantInt *Solution1 =
5448      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5449    ConstantInt *Solution2 =
5450      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5451
5452    return std::make_pair(SE.getConstant(Solution1),
5453                          SE.getConstant(Solution2));
5454  } // end APIntOps namespace
5455}
5456
5457/// HowFarToZero - Return the number of times a backedge comparing the specified
5458/// value to zero will execute.  If not computable, return CouldNotCompute.
5459///
5460/// This is only used for loops with a "x != y" exit test. The exit condition is
5461/// now expressed as a single expression, V = x-y. So the exit test is
5462/// effectively V != 0.  We know and take advantage of the fact that this
5463/// expression only being used in a comparison by zero context.
5464ScalarEvolution::ExitLimit
5465ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5466  // If the value is a constant
5467  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5468    // If the value is already zero, the branch will execute zero times.
5469    if (C->getValue()->isZero()) return C;
5470    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5471  }
5472
5473  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5474  if (!AddRec || AddRec->getLoop() != L)
5475    return getCouldNotCompute();
5476
5477  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5478  // the quadratic equation to solve it.
5479  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5480    std::pair<const SCEV *,const SCEV *> Roots =
5481      SolveQuadraticEquation(AddRec, *this);
5482    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5483    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5484    if (R1 && R2) {
5485#if 0
5486      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5487             << "  sol#2: " << *R2 << "\n";
5488#endif
5489      // Pick the smallest positive root value.
5490      if (ConstantInt *CB =
5491          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5492                                                      R1->getValue(),
5493                                                      R2->getValue()))) {
5494        if (CB->getZExtValue() == false)
5495          std::swap(R1, R2);   // R1 is the minimum root now.
5496
5497        // We can only use this value if the chrec ends up with an exact zero
5498        // value at this index.  When solving for "X*X != 5", for example, we
5499        // should not accept a root of 2.
5500        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5501        if (Val->isZero())
5502          return R1;  // We found a quadratic root!
5503      }
5504    }
5505    return getCouldNotCompute();
5506  }
5507
5508  // Otherwise we can only handle this if it is affine.
5509  if (!AddRec->isAffine())
5510    return getCouldNotCompute();
5511
5512  // If this is an affine expression, the execution count of this branch is
5513  // the minimum unsigned root of the following equation:
5514  //
5515  //     Start + Step*N = 0 (mod 2^BW)
5516  //
5517  // equivalent to:
5518  //
5519  //             Step*N = -Start (mod 2^BW)
5520  //
5521  // where BW is the common bit width of Start and Step.
5522
5523  // Get the initial value for the loop.
5524  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5525  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5526
5527  // For now we handle only constant steps.
5528  //
5529  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5530  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5531  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5532  // We have not yet seen any such cases.
5533  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5534  if (StepC == 0 || StepC->getValue()->equalsInt(0))
5535    return getCouldNotCompute();
5536
5537  // For positive steps (counting up until unsigned overflow):
5538  //   N = -Start/Step (as unsigned)
5539  // For negative steps (counting down to zero):
5540  //   N = Start/-Step
5541  // First compute the unsigned distance from zero in the direction of Step.
5542  bool CountDown = StepC->getValue()->getValue().isNegative();
5543  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5544
5545  // Handle unitary steps, which cannot wraparound.
5546  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5547  //   N = Distance (as unsigned)
5548  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5549    ConstantRange CR = getUnsignedRange(Start);
5550    const SCEV *MaxBECount;
5551    if (!CountDown && CR.getUnsignedMin().isMinValue())
5552      // When counting up, the worst starting value is 1, not 0.
5553      MaxBECount = CR.getUnsignedMax().isMinValue()
5554        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5555        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5556    else
5557      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5558                                         : -CR.getUnsignedMin());
5559    return ExitLimit(Distance, MaxBECount);
5560  }
5561
5562  // If the recurrence is known not to wraparound, unsigned divide computes the
5563  // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5564  // that the value will either become zero (and thus the loop terminates), that
5565  // the loop will terminate through some other exit condition first, or that
5566  // the loop has undefined behavior.  This means we can't "miss" the exit
5567  // value, even with nonunit stride.
5568  //
5569  // This is only valid for expressions that directly compute the loop exit. It
5570  // is invalid for subexpressions in which the loop may exit through this
5571  // branch even if this subexpression is false. In that case, the trip count
5572  // computed by this udiv could be smaller than the number of well-defined
5573  // iterations.
5574  if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
5575    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5576
5577  // Then, try to solve the above equation provided that Start is constant.
5578  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5579    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5580                                        -StartC->getValue()->getValue(),
5581                                        *this);
5582  return getCouldNotCompute();
5583}
5584
5585/// HowFarToNonZero - Return the number of times a backedge checking the
5586/// specified value for nonzero will execute.  If not computable, return
5587/// CouldNotCompute
5588ScalarEvolution::ExitLimit
5589ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5590  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5591  // handle them yet except for the trivial case.  This could be expanded in the
5592  // future as needed.
5593
5594  // If the value is a constant, check to see if it is known to be non-zero
5595  // already.  If so, the backedge will execute zero times.
5596  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5597    if (!C->getValue()->isNullValue())
5598      return getConstant(C->getType(), 0);
5599    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5600  }
5601
5602  // We could implement others, but I really doubt anyone writes loops like
5603  // this, and if they did, they would already be constant folded.
5604  return getCouldNotCompute();
5605}
5606
5607/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5608/// (which may not be an immediate predecessor) which has exactly one
5609/// successor from which BB is reachable, or null if no such block is
5610/// found.
5611///
5612std::pair<BasicBlock *, BasicBlock *>
5613ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5614  // If the block has a unique predecessor, then there is no path from the
5615  // predecessor to the block that does not go through the direct edge
5616  // from the predecessor to the block.
5617  if (BasicBlock *Pred = BB->getSinglePredecessor())
5618    return std::make_pair(Pred, BB);
5619
5620  // A loop's header is defined to be a block that dominates the loop.
5621  // If the header has a unique predecessor outside the loop, it must be
5622  // a block that has exactly one successor that can reach the loop.
5623  if (Loop *L = LI->getLoopFor(BB))
5624    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5625
5626  return std::pair<BasicBlock *, BasicBlock *>();
5627}
5628
5629/// HasSameValue - SCEV structural equivalence is usually sufficient for
5630/// testing whether two expressions are equal, however for the purposes of
5631/// looking for a condition guarding a loop, it can be useful to be a little
5632/// more general, since a front-end may have replicated the controlling
5633/// expression.
5634///
5635static bool HasSameValue(const SCEV *A, const SCEV *B) {
5636  // Quick check to see if they are the same SCEV.
5637  if (A == B) return true;
5638
5639  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5640  // two different instructions with the same value. Check for this case.
5641  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5642    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5643      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5644        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5645          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5646            return true;
5647
5648  // Otherwise assume they may have a different value.
5649  return false;
5650}
5651
5652/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5653/// predicate Pred. Return true iff any changes were made.
5654///
5655bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5656                                           const SCEV *&LHS, const SCEV *&RHS,
5657                                           unsigned Depth) {
5658  bool Changed = false;
5659
5660  // If we hit the max recursion limit bail out.
5661  if (Depth >= 3)
5662    return false;
5663
5664  // Canonicalize a constant to the right side.
5665  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5666    // Check for both operands constant.
5667    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5668      if (ConstantExpr::getICmp(Pred,
5669                                LHSC->getValue(),
5670                                RHSC->getValue())->isNullValue())
5671        goto trivially_false;
5672      else
5673        goto trivially_true;
5674    }
5675    // Otherwise swap the operands to put the constant on the right.
5676    std::swap(LHS, RHS);
5677    Pred = ICmpInst::getSwappedPredicate(Pred);
5678    Changed = true;
5679  }
5680
5681  // If we're comparing an addrec with a value which is loop-invariant in the
5682  // addrec's loop, put the addrec on the left. Also make a dominance check,
5683  // as both operands could be addrecs loop-invariant in each other's loop.
5684  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5685    const Loop *L = AR->getLoop();
5686    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5687      std::swap(LHS, RHS);
5688      Pred = ICmpInst::getSwappedPredicate(Pred);
5689      Changed = true;
5690    }
5691  }
5692
5693  // If there's a constant operand, canonicalize comparisons with boundary
5694  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5695  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5696    const APInt &RA = RC->getValue()->getValue();
5697    switch (Pred) {
5698    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5699    case ICmpInst::ICMP_EQ:
5700    case ICmpInst::ICMP_NE:
5701      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5702      if (!RA)
5703        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5704          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5705            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5706                ME->getOperand(0)->isAllOnesValue()) {
5707              RHS = AE->getOperand(1);
5708              LHS = ME->getOperand(1);
5709              Changed = true;
5710            }
5711      break;
5712    case ICmpInst::ICMP_UGE:
5713      if ((RA - 1).isMinValue()) {
5714        Pred = ICmpInst::ICMP_NE;
5715        RHS = getConstant(RA - 1);
5716        Changed = true;
5717        break;
5718      }
5719      if (RA.isMaxValue()) {
5720        Pred = ICmpInst::ICMP_EQ;
5721        Changed = true;
5722        break;
5723      }
5724      if (RA.isMinValue()) goto trivially_true;
5725
5726      Pred = ICmpInst::ICMP_UGT;
5727      RHS = getConstant(RA - 1);
5728      Changed = true;
5729      break;
5730    case ICmpInst::ICMP_ULE:
5731      if ((RA + 1).isMaxValue()) {
5732        Pred = ICmpInst::ICMP_NE;
5733        RHS = getConstant(RA + 1);
5734        Changed = true;
5735        break;
5736      }
5737      if (RA.isMinValue()) {
5738        Pred = ICmpInst::ICMP_EQ;
5739        Changed = true;
5740        break;
5741      }
5742      if (RA.isMaxValue()) goto trivially_true;
5743
5744      Pred = ICmpInst::ICMP_ULT;
5745      RHS = getConstant(RA + 1);
5746      Changed = true;
5747      break;
5748    case ICmpInst::ICMP_SGE:
5749      if ((RA - 1).isMinSignedValue()) {
5750        Pred = ICmpInst::ICMP_NE;
5751        RHS = getConstant(RA - 1);
5752        Changed = true;
5753        break;
5754      }
5755      if (RA.isMaxSignedValue()) {
5756        Pred = ICmpInst::ICMP_EQ;
5757        Changed = true;
5758        break;
5759      }
5760      if (RA.isMinSignedValue()) goto trivially_true;
5761
5762      Pred = ICmpInst::ICMP_SGT;
5763      RHS = getConstant(RA - 1);
5764      Changed = true;
5765      break;
5766    case ICmpInst::ICMP_SLE:
5767      if ((RA + 1).isMaxSignedValue()) {
5768        Pred = ICmpInst::ICMP_NE;
5769        RHS = getConstant(RA + 1);
5770        Changed = true;
5771        break;
5772      }
5773      if (RA.isMinSignedValue()) {
5774        Pred = ICmpInst::ICMP_EQ;
5775        Changed = true;
5776        break;
5777      }
5778      if (RA.isMaxSignedValue()) goto trivially_true;
5779
5780      Pred = ICmpInst::ICMP_SLT;
5781      RHS = getConstant(RA + 1);
5782      Changed = true;
5783      break;
5784    case ICmpInst::ICMP_UGT:
5785      if (RA.isMinValue()) {
5786        Pred = ICmpInst::ICMP_NE;
5787        Changed = true;
5788        break;
5789      }
5790      if ((RA + 1).isMaxValue()) {
5791        Pred = ICmpInst::ICMP_EQ;
5792        RHS = getConstant(RA + 1);
5793        Changed = true;
5794        break;
5795      }
5796      if (RA.isMaxValue()) goto trivially_false;
5797      break;
5798    case ICmpInst::ICMP_ULT:
5799      if (RA.isMaxValue()) {
5800        Pred = ICmpInst::ICMP_NE;
5801        Changed = true;
5802        break;
5803      }
5804      if ((RA - 1).isMinValue()) {
5805        Pred = ICmpInst::ICMP_EQ;
5806        RHS = getConstant(RA - 1);
5807        Changed = true;
5808        break;
5809      }
5810      if (RA.isMinValue()) goto trivially_false;
5811      break;
5812    case ICmpInst::ICMP_SGT:
5813      if (RA.isMinSignedValue()) {
5814        Pred = ICmpInst::ICMP_NE;
5815        Changed = true;
5816        break;
5817      }
5818      if ((RA + 1).isMaxSignedValue()) {
5819        Pred = ICmpInst::ICMP_EQ;
5820        RHS = getConstant(RA + 1);
5821        Changed = true;
5822        break;
5823      }
5824      if (RA.isMaxSignedValue()) goto trivially_false;
5825      break;
5826    case ICmpInst::ICMP_SLT:
5827      if (RA.isMaxSignedValue()) {
5828        Pred = ICmpInst::ICMP_NE;
5829        Changed = true;
5830        break;
5831      }
5832      if ((RA - 1).isMinSignedValue()) {
5833       Pred = ICmpInst::ICMP_EQ;
5834       RHS = getConstant(RA - 1);
5835        Changed = true;
5836       break;
5837      }
5838      if (RA.isMinSignedValue()) goto trivially_false;
5839      break;
5840    }
5841  }
5842
5843  // Check for obvious equality.
5844  if (HasSameValue(LHS, RHS)) {
5845    if (ICmpInst::isTrueWhenEqual(Pred))
5846      goto trivially_true;
5847    if (ICmpInst::isFalseWhenEqual(Pred))
5848      goto trivially_false;
5849  }
5850
5851  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5852  // adding or subtracting 1 from one of the operands.
5853  switch (Pred) {
5854  case ICmpInst::ICMP_SLE:
5855    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5856      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5857                       SCEV::FlagNSW);
5858      Pred = ICmpInst::ICMP_SLT;
5859      Changed = true;
5860    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5861      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5862                       SCEV::FlagNSW);
5863      Pred = ICmpInst::ICMP_SLT;
5864      Changed = true;
5865    }
5866    break;
5867  case ICmpInst::ICMP_SGE:
5868    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5869      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5870                       SCEV::FlagNSW);
5871      Pred = ICmpInst::ICMP_SGT;
5872      Changed = true;
5873    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5874      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5875                       SCEV::FlagNSW);
5876      Pred = ICmpInst::ICMP_SGT;
5877      Changed = true;
5878    }
5879    break;
5880  case ICmpInst::ICMP_ULE:
5881    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5882      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5883                       SCEV::FlagNUW);
5884      Pred = ICmpInst::ICMP_ULT;
5885      Changed = true;
5886    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5887      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5888                       SCEV::FlagNUW);
5889      Pred = ICmpInst::ICMP_ULT;
5890      Changed = true;
5891    }
5892    break;
5893  case ICmpInst::ICMP_UGE:
5894    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5895      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5896                       SCEV::FlagNUW);
5897      Pred = ICmpInst::ICMP_UGT;
5898      Changed = true;
5899    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5900      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5901                       SCEV::FlagNUW);
5902      Pred = ICmpInst::ICMP_UGT;
5903      Changed = true;
5904    }
5905    break;
5906  default:
5907    break;
5908  }
5909
5910  // TODO: More simplifications are possible here.
5911
5912  // Recursively simplify until we either hit a recursion limit or nothing
5913  // changes.
5914  if (Changed)
5915    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5916
5917  return Changed;
5918
5919trivially_true:
5920  // Return 0 == 0.
5921  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5922  Pred = ICmpInst::ICMP_EQ;
5923  return true;
5924
5925trivially_false:
5926  // Return 0 != 0.
5927  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5928  Pred = ICmpInst::ICMP_NE;
5929  return true;
5930}
5931
5932bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5933  return getSignedRange(S).getSignedMax().isNegative();
5934}
5935
5936bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5937  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5938}
5939
5940bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5941  return !getSignedRange(S).getSignedMin().isNegative();
5942}
5943
5944bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5945  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5946}
5947
5948bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5949  return isKnownNegative(S) || isKnownPositive(S);
5950}
5951
5952bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5953                                       const SCEV *LHS, const SCEV *RHS) {
5954  // Canonicalize the inputs first.
5955  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5956
5957  // If LHS or RHS is an addrec, check to see if the condition is true in
5958  // every iteration of the loop.
5959  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5960    if (isLoopEntryGuardedByCond(
5961          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5962        isLoopBackedgeGuardedByCond(
5963          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5964      return true;
5965  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5966    if (isLoopEntryGuardedByCond(
5967          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5968        isLoopBackedgeGuardedByCond(
5969          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5970      return true;
5971
5972  // Otherwise see what can be done with known constant ranges.
5973  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5974}
5975
5976bool
5977ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5978                                            const SCEV *LHS, const SCEV *RHS) {
5979  if (HasSameValue(LHS, RHS))
5980    return ICmpInst::isTrueWhenEqual(Pred);
5981
5982  // This code is split out from isKnownPredicate because it is called from
5983  // within isLoopEntryGuardedByCond.
5984  switch (Pred) {
5985  default:
5986    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5987  case ICmpInst::ICMP_SGT:
5988    Pred = ICmpInst::ICMP_SLT;
5989    std::swap(LHS, RHS);
5990  case ICmpInst::ICMP_SLT: {
5991    ConstantRange LHSRange = getSignedRange(LHS);
5992    ConstantRange RHSRange = getSignedRange(RHS);
5993    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5994      return true;
5995    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5996      return false;
5997    break;
5998  }
5999  case ICmpInst::ICMP_SGE:
6000    Pred = ICmpInst::ICMP_SLE;
6001    std::swap(LHS, RHS);
6002  case ICmpInst::ICMP_SLE: {
6003    ConstantRange LHSRange = getSignedRange(LHS);
6004    ConstantRange RHSRange = getSignedRange(RHS);
6005    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6006      return true;
6007    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6008      return false;
6009    break;
6010  }
6011  case ICmpInst::ICMP_UGT:
6012    Pred = ICmpInst::ICMP_ULT;
6013    std::swap(LHS, RHS);
6014  case ICmpInst::ICMP_ULT: {
6015    ConstantRange LHSRange = getUnsignedRange(LHS);
6016    ConstantRange RHSRange = getUnsignedRange(RHS);
6017    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6018      return true;
6019    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6020      return false;
6021    break;
6022  }
6023  case ICmpInst::ICMP_UGE:
6024    Pred = ICmpInst::ICMP_ULE;
6025    std::swap(LHS, RHS);
6026  case ICmpInst::ICMP_ULE: {
6027    ConstantRange LHSRange = getUnsignedRange(LHS);
6028    ConstantRange RHSRange = getUnsignedRange(RHS);
6029    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6030      return true;
6031    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6032      return false;
6033    break;
6034  }
6035  case ICmpInst::ICMP_NE: {
6036    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6037      return true;
6038    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6039      return true;
6040
6041    const SCEV *Diff = getMinusSCEV(LHS, RHS);
6042    if (isKnownNonZero(Diff))
6043      return true;
6044    break;
6045  }
6046  case ICmpInst::ICMP_EQ:
6047    // The check at the top of the function catches the case where
6048    // the values are known to be equal.
6049    break;
6050  }
6051  return false;
6052}
6053
6054/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6055/// protected by a conditional between LHS and RHS.  This is used to
6056/// to eliminate casts.
6057bool
6058ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6059                                             ICmpInst::Predicate Pred,
6060                                             const SCEV *LHS, const SCEV *RHS) {
6061  // Interpret a null as meaning no loop, where there is obviously no guard
6062  // (interprocedural conditions notwithstanding).
6063  if (!L) return true;
6064
6065  BasicBlock *Latch = L->getLoopLatch();
6066  if (!Latch)
6067    return false;
6068
6069  BranchInst *LoopContinuePredicate =
6070    dyn_cast<BranchInst>(Latch->getTerminator());
6071  if (!LoopContinuePredicate ||
6072      LoopContinuePredicate->isUnconditional())
6073    return false;
6074
6075  return isImpliedCond(Pred, LHS, RHS,
6076                       LoopContinuePredicate->getCondition(),
6077                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6078}
6079
6080/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6081/// by a conditional between LHS and RHS.  This is used to help avoid max
6082/// expressions in loop trip counts, and to eliminate casts.
6083bool
6084ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6085                                          ICmpInst::Predicate Pred,
6086                                          const SCEV *LHS, const SCEV *RHS) {
6087  // Interpret a null as meaning no loop, where there is obviously no guard
6088  // (interprocedural conditions notwithstanding).
6089  if (!L) return false;
6090
6091  // Starting at the loop predecessor, climb up the predecessor chain, as long
6092  // as there are predecessors that can be found that have unique successors
6093  // leading to the original header.
6094  for (std::pair<BasicBlock *, BasicBlock *>
6095         Pair(L->getLoopPredecessor(), L->getHeader());
6096       Pair.first;
6097       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6098
6099    BranchInst *LoopEntryPredicate =
6100      dyn_cast<BranchInst>(Pair.first->getTerminator());
6101    if (!LoopEntryPredicate ||
6102        LoopEntryPredicate->isUnconditional())
6103      continue;
6104
6105    if (isImpliedCond(Pred, LHS, RHS,
6106                      LoopEntryPredicate->getCondition(),
6107                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6108      return true;
6109  }
6110
6111  return false;
6112}
6113
6114/// RAII wrapper to prevent recursive application of isImpliedCond.
6115/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6116/// currently evaluating isImpliedCond.
6117struct MarkPendingLoopPredicate {
6118  Value *Cond;
6119  DenseSet<Value*> &LoopPreds;
6120  bool Pending;
6121
6122  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6123    : Cond(C), LoopPreds(LP) {
6124    Pending = !LoopPreds.insert(Cond).second;
6125  }
6126  ~MarkPendingLoopPredicate() {
6127    if (!Pending)
6128      LoopPreds.erase(Cond);
6129  }
6130};
6131
6132/// isImpliedCond - Test whether the condition described by Pred, LHS,
6133/// and RHS is true whenever the given Cond value evaluates to true.
6134bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6135                                    const SCEV *LHS, const SCEV *RHS,
6136                                    Value *FoundCondValue,
6137                                    bool Inverse) {
6138  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6139  if (Mark.Pending)
6140    return false;
6141
6142  // Recursively handle And and Or conditions.
6143  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6144    if (BO->getOpcode() == Instruction::And) {
6145      if (!Inverse)
6146        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6147               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6148    } else if (BO->getOpcode() == Instruction::Or) {
6149      if (Inverse)
6150        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6151               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6152    }
6153  }
6154
6155  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6156  if (!ICI) return false;
6157
6158  // Bail if the ICmp's operands' types are wider than the needed type
6159  // before attempting to call getSCEV on them. This avoids infinite
6160  // recursion, since the analysis of widening casts can require loop
6161  // exit condition information for overflow checking, which would
6162  // lead back here.
6163  if (getTypeSizeInBits(LHS->getType()) <
6164      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6165    return false;
6166
6167  // Now that we found a conditional branch that dominates the loop or controls
6168  // the loop latch. Check to see if it is the comparison we are looking for.
6169  ICmpInst::Predicate FoundPred;
6170  if (Inverse)
6171    FoundPred = ICI->getInversePredicate();
6172  else
6173    FoundPred = ICI->getPredicate();
6174
6175  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6176  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6177
6178  // Balance the types. The case where FoundLHS' type is wider than
6179  // LHS' type is checked for above.
6180  if (getTypeSizeInBits(LHS->getType()) >
6181      getTypeSizeInBits(FoundLHS->getType())) {
6182    if (CmpInst::isSigned(Pred)) {
6183      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6184      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6185    } else {
6186      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6187      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6188    }
6189  }
6190
6191  // Canonicalize the query to match the way instcombine will have
6192  // canonicalized the comparison.
6193  if (SimplifyICmpOperands(Pred, LHS, RHS))
6194    if (LHS == RHS)
6195      return CmpInst::isTrueWhenEqual(Pred);
6196  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6197    if (FoundLHS == FoundRHS)
6198      return CmpInst::isFalseWhenEqual(FoundPred);
6199
6200  // Check to see if we can make the LHS or RHS match.
6201  if (LHS == FoundRHS || RHS == FoundLHS) {
6202    if (isa<SCEVConstant>(RHS)) {
6203      std::swap(FoundLHS, FoundRHS);
6204      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6205    } else {
6206      std::swap(LHS, RHS);
6207      Pred = ICmpInst::getSwappedPredicate(Pred);
6208    }
6209  }
6210
6211  // Check whether the found predicate is the same as the desired predicate.
6212  if (FoundPred == Pred)
6213    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6214
6215  // Check whether swapping the found predicate makes it the same as the
6216  // desired predicate.
6217  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6218    if (isa<SCEVConstant>(RHS))
6219      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6220    else
6221      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6222                                   RHS, LHS, FoundLHS, FoundRHS);
6223  }
6224
6225  // Check whether the actual condition is beyond sufficient.
6226  if (FoundPred == ICmpInst::ICMP_EQ)
6227    if (ICmpInst::isTrueWhenEqual(Pred))
6228      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6229        return true;
6230  if (Pred == ICmpInst::ICMP_NE)
6231    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6232      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6233        return true;
6234
6235  // Otherwise assume the worst.
6236  return false;
6237}
6238
6239/// isImpliedCondOperands - Test whether the condition described by Pred,
6240/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6241/// and FoundRHS is true.
6242bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6243                                            const SCEV *LHS, const SCEV *RHS,
6244                                            const SCEV *FoundLHS,
6245                                            const SCEV *FoundRHS) {
6246  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6247                                     FoundLHS, FoundRHS) ||
6248         // ~x < ~y --> x > y
6249         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6250                                     getNotSCEV(FoundRHS),
6251                                     getNotSCEV(FoundLHS));
6252}
6253
6254/// isImpliedCondOperandsHelper - Test whether the condition described by
6255/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6256/// FoundLHS, and FoundRHS is true.
6257bool
6258ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6259                                             const SCEV *LHS, const SCEV *RHS,
6260                                             const SCEV *FoundLHS,
6261                                             const SCEV *FoundRHS) {
6262  switch (Pred) {
6263  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6264  case ICmpInst::ICMP_EQ:
6265  case ICmpInst::ICMP_NE:
6266    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6267      return true;
6268    break;
6269  case ICmpInst::ICMP_SLT:
6270  case ICmpInst::ICMP_SLE:
6271    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6272        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6273      return true;
6274    break;
6275  case ICmpInst::ICMP_SGT:
6276  case ICmpInst::ICMP_SGE:
6277    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6278        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6279      return true;
6280    break;
6281  case ICmpInst::ICMP_ULT:
6282  case ICmpInst::ICMP_ULE:
6283    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6284        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6285      return true;
6286    break;
6287  case ICmpInst::ICMP_UGT:
6288  case ICmpInst::ICMP_UGE:
6289    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6290        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6291      return true;
6292    break;
6293  }
6294
6295  return false;
6296}
6297
6298/// getBECount - Subtract the end and start values and divide by the step,
6299/// rounding up, to get the number of times the backedge is executed. Return
6300/// CouldNotCompute if an intermediate computation overflows.
6301const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6302                                        const SCEV *End,
6303                                        const SCEV *Step,
6304                                        bool NoWrap) {
6305  assert(!isKnownNegative(Step) &&
6306         "This code doesn't handle negative strides yet!");
6307
6308  Type *Ty = Start->getType();
6309
6310  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6311  // here because SCEV may not be able to determine that the unsigned division
6312  // after rounding is zero.
6313  if (Start == End)
6314    return getConstant(Ty, 0);
6315
6316  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6317  const SCEV *Diff = getMinusSCEV(End, Start);
6318  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6319
6320  // Add an adjustment to the difference between End and Start so that
6321  // the division will effectively round up.
6322  const SCEV *Add = getAddExpr(Diff, RoundUp);
6323
6324  if (!NoWrap) {
6325    // Check Add for unsigned overflow.
6326    // TODO: More sophisticated things could be done here.
6327    Type *WideTy = IntegerType::get(getContext(),
6328                                          getTypeSizeInBits(Ty) + 1);
6329    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6330    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6331    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6332    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6333      return getCouldNotCompute();
6334  }
6335
6336  return getUDivExpr(Add, Step);
6337}
6338
6339/// HowManyLessThans - Return the number of times a backedge containing the
6340/// specified less-than comparison will execute.  If not computable, return
6341/// CouldNotCompute.
6342///
6343/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6344/// control the branch. In this case, we can only compute an iteration count for
6345/// a subexpression that cannot overflow before evaluating true.
6346ScalarEvolution::ExitLimit
6347ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6348                                  const Loop *L, bool isSigned,
6349                                  bool IsSubExpr) {
6350  // Only handle:  "ADDREC < LoopInvariant".
6351  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6352
6353  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6354  if (!AddRec || AddRec->getLoop() != L)
6355    return getCouldNotCompute();
6356
6357  // Check to see if we have a flag which makes analysis easy.
6358  bool NoWrap = false;
6359  if (!IsSubExpr) {
6360    NoWrap = AddRec->getNoWrapFlags(
6361      (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
6362                          | SCEV::FlagNW));
6363  }
6364  if (AddRec->isAffine()) {
6365    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6366    const SCEV *Step = AddRec->getStepRecurrence(*this);
6367
6368    if (Step->isZero())
6369      return getCouldNotCompute();
6370    if (Step->isOne()) {
6371      // With unit stride, the iteration never steps past the limit value.
6372    } else if (isKnownPositive(Step)) {
6373      // Test whether a positive iteration can step past the limit
6374      // value and past the maximum value for its type in a single step.
6375      // Note that it's not sufficient to check NoWrap here, because even
6376      // though the value after a wrap is undefined, it's not undefined
6377      // behavior, so if wrap does occur, the loop could either terminate or
6378      // loop infinitely, but in either case, the loop is guaranteed to
6379      // iterate at least until the iteration where the wrapping occurs.
6380      const SCEV *One = getConstant(Step->getType(), 1);
6381      if (isSigned) {
6382        APInt Max = APInt::getSignedMaxValue(BitWidth);
6383        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6384              .slt(getSignedRange(RHS).getSignedMax()))
6385          return getCouldNotCompute();
6386      } else {
6387        APInt Max = APInt::getMaxValue(BitWidth);
6388        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6389              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6390          return getCouldNotCompute();
6391      }
6392    } else
6393      // TODO: Handle negative strides here and below.
6394      return getCouldNotCompute();
6395
6396    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6397    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6398    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6399    // treat m-n as signed nor unsigned due to overflow possibility.
6400
6401    // First, we get the value of the LHS in the first iteration: n
6402    const SCEV *Start = AddRec->getOperand(0);
6403
6404    // Determine the minimum constant start value.
6405    const SCEV *MinStart = getConstant(isSigned ?
6406      getSignedRange(Start).getSignedMin() :
6407      getUnsignedRange(Start).getUnsignedMin());
6408
6409    // If we know that the condition is true in order to enter the loop,
6410    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6411    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6412    // the division must round up.
6413    const SCEV *End = RHS;
6414    if (!isLoopEntryGuardedByCond(L,
6415                                  isSigned ? ICmpInst::ICMP_SLT :
6416                                             ICmpInst::ICMP_ULT,
6417                                  getMinusSCEV(Start, Step), RHS))
6418      End = isSigned ? getSMaxExpr(RHS, Start)
6419                     : getUMaxExpr(RHS, Start);
6420
6421    // Determine the maximum constant end value.
6422    const SCEV *MaxEnd = getConstant(isSigned ?
6423      getSignedRange(End).getSignedMax() :
6424      getUnsignedRange(End).getUnsignedMax());
6425
6426    // If MaxEnd is within a step of the maximum integer value in its type,
6427    // adjust it down to the minimum value which would produce the same effect.
6428    // This allows the subsequent ceiling division of (N+(step-1))/step to
6429    // compute the correct value.
6430    const SCEV *StepMinusOne = getMinusSCEV(Step,
6431                                            getConstant(Step->getType(), 1));
6432    MaxEnd = isSigned ?
6433      getSMinExpr(MaxEnd,
6434                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6435                               StepMinusOne)) :
6436      getUMinExpr(MaxEnd,
6437                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6438                               StepMinusOne));
6439
6440    // Finally, we subtract these two values and divide, rounding up, to get
6441    // the number of times the backedge is executed.
6442    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6443
6444    // The maximum backedge count is similar, except using the minimum start
6445    // value and the maximum end value.
6446    // If we already have an exact constant BECount, use it instead.
6447    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6448      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6449
6450    // If the stride is nonconstant, and NoWrap == true, then
6451    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6452    // exact BECount and invalid MaxBECount, which should be avoided to catch
6453    // more optimization opportunities.
6454    if (isa<SCEVCouldNotCompute>(MaxBECount))
6455      MaxBECount = BECount;
6456
6457    return ExitLimit(BECount, MaxBECount);
6458  }
6459
6460  return getCouldNotCompute();
6461}
6462
6463/// getNumIterationsInRange - Return the number of iterations of this loop that
6464/// produce values in the specified constant range.  Another way of looking at
6465/// this is that it returns the first iteration number where the value is not in
6466/// the condition, thus computing the exit count. If the iteration count can't
6467/// be computed, an instance of SCEVCouldNotCompute is returned.
6468const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6469                                                    ScalarEvolution &SE) const {
6470  if (Range.isFullSet())  // Infinite loop.
6471    return SE.getCouldNotCompute();
6472
6473  // If the start is a non-zero constant, shift the range to simplify things.
6474  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6475    if (!SC->getValue()->isZero()) {
6476      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6477      Operands[0] = SE.getConstant(SC->getType(), 0);
6478      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6479                                             getNoWrapFlags(FlagNW));
6480      if (const SCEVAddRecExpr *ShiftedAddRec =
6481            dyn_cast<SCEVAddRecExpr>(Shifted))
6482        return ShiftedAddRec->getNumIterationsInRange(
6483                           Range.subtract(SC->getValue()->getValue()), SE);
6484      // This is strange and shouldn't happen.
6485      return SE.getCouldNotCompute();
6486    }
6487
6488  // The only time we can solve this is when we have all constant indices.
6489  // Otherwise, we cannot determine the overflow conditions.
6490  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6491    if (!isa<SCEVConstant>(getOperand(i)))
6492      return SE.getCouldNotCompute();
6493
6494
6495  // Okay at this point we know that all elements of the chrec are constants and
6496  // that the start element is zero.
6497
6498  // First check to see if the range contains zero.  If not, the first
6499  // iteration exits.
6500  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6501  if (!Range.contains(APInt(BitWidth, 0)))
6502    return SE.getConstant(getType(), 0);
6503
6504  if (isAffine()) {
6505    // If this is an affine expression then we have this situation:
6506    //   Solve {0,+,A} in Range  ===  Ax in Range
6507
6508    // We know that zero is in the range.  If A is positive then we know that
6509    // the upper value of the range must be the first possible exit value.
6510    // If A is negative then the lower of the range is the last possible loop
6511    // value.  Also note that we already checked for a full range.
6512    APInt One(BitWidth,1);
6513    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6514    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6515
6516    // The exit value should be (End+A)/A.
6517    APInt ExitVal = (End + A).udiv(A);
6518    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6519
6520    // Evaluate at the exit value.  If we really did fall out of the valid
6521    // range, then we computed our trip count, otherwise wrap around or other
6522    // things must have happened.
6523    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6524    if (Range.contains(Val->getValue()))
6525      return SE.getCouldNotCompute();  // Something strange happened
6526
6527    // Ensure that the previous value is in the range.  This is a sanity check.
6528    assert(Range.contains(
6529           EvaluateConstantChrecAtConstant(this,
6530           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6531           "Linear scev computation is off in a bad way!");
6532    return SE.getConstant(ExitValue);
6533  } else if (isQuadratic()) {
6534    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6535    // quadratic equation to solve it.  To do this, we must frame our problem in
6536    // terms of figuring out when zero is crossed, instead of when
6537    // Range.getUpper() is crossed.
6538    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6539    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6540    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6541                                             // getNoWrapFlags(FlagNW)
6542                                             FlagAnyWrap);
6543
6544    // Next, solve the constructed addrec
6545    std::pair<const SCEV *,const SCEV *> Roots =
6546      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6547    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6548    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6549    if (R1) {
6550      // Pick the smallest positive root value.
6551      if (ConstantInt *CB =
6552          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6553                         R1->getValue(), R2->getValue()))) {
6554        if (CB->getZExtValue() == false)
6555          std::swap(R1, R2);   // R1 is the minimum root now.
6556
6557        // Make sure the root is not off by one.  The returned iteration should
6558        // not be in the range, but the previous one should be.  When solving
6559        // for "X*X < 5", for example, we should not return a root of 2.
6560        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6561                                                             R1->getValue(),
6562                                                             SE);
6563        if (Range.contains(R1Val->getValue())) {
6564          // The next iteration must be out of the range...
6565          ConstantInt *NextVal =
6566                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6567
6568          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6569          if (!Range.contains(R1Val->getValue()))
6570            return SE.getConstant(NextVal);
6571          return SE.getCouldNotCompute();  // Something strange happened
6572        }
6573
6574        // If R1 was not in the range, then it is a good return value.  Make
6575        // sure that R1-1 WAS in the range though, just in case.
6576        ConstantInt *NextVal =
6577               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6578        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6579        if (Range.contains(R1Val->getValue()))
6580          return R1;
6581        return SE.getCouldNotCompute();  // Something strange happened
6582      }
6583    }
6584  }
6585
6586  return SE.getCouldNotCompute();
6587}
6588
6589
6590
6591//===----------------------------------------------------------------------===//
6592//                   SCEVCallbackVH Class Implementation
6593//===----------------------------------------------------------------------===//
6594
6595void ScalarEvolution::SCEVCallbackVH::deleted() {
6596  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6597  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6598    SE->ConstantEvolutionLoopExitValue.erase(PN);
6599  SE->ValueExprMap.erase(getValPtr());
6600  // this now dangles!
6601}
6602
6603void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6604  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6605
6606  // Forget all the expressions associated with users of the old value,
6607  // so that future queries will recompute the expressions using the new
6608  // value.
6609  Value *Old = getValPtr();
6610  SmallVector<User *, 16> Worklist;
6611  SmallPtrSet<User *, 8> Visited;
6612  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6613       UI != UE; ++UI)
6614    Worklist.push_back(*UI);
6615  while (!Worklist.empty()) {
6616    User *U = Worklist.pop_back_val();
6617    // Deleting the Old value will cause this to dangle. Postpone
6618    // that until everything else is done.
6619    if (U == Old)
6620      continue;
6621    if (!Visited.insert(U))
6622      continue;
6623    if (PHINode *PN = dyn_cast<PHINode>(U))
6624      SE->ConstantEvolutionLoopExitValue.erase(PN);
6625    SE->ValueExprMap.erase(U);
6626    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6627         UI != UE; ++UI)
6628      Worklist.push_back(*UI);
6629  }
6630  // Delete the Old value.
6631  if (PHINode *PN = dyn_cast<PHINode>(Old))
6632    SE->ConstantEvolutionLoopExitValue.erase(PN);
6633  SE->ValueExprMap.erase(Old);
6634  // this now dangles!
6635}
6636
6637ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6638  : CallbackVH(V), SE(se) {}
6639
6640//===----------------------------------------------------------------------===//
6641//                   ScalarEvolution Class Implementation
6642//===----------------------------------------------------------------------===//
6643
6644ScalarEvolution::ScalarEvolution()
6645  : FunctionPass(ID), FirstUnknown(0) {
6646  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6647}
6648
6649bool ScalarEvolution::runOnFunction(Function &F) {
6650  this->F = &F;
6651  LI = &getAnalysis<LoopInfo>();
6652  TD = getAnalysisIfAvailable<DataLayout>();
6653  TLI = &getAnalysis<TargetLibraryInfo>();
6654  DT = &getAnalysis<DominatorTree>();
6655  return false;
6656}
6657
6658void ScalarEvolution::releaseMemory() {
6659  // Iterate through all the SCEVUnknown instances and call their
6660  // destructors, so that they release their references to their values.
6661  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6662    U->~SCEVUnknown();
6663  FirstUnknown = 0;
6664
6665  ValueExprMap.clear();
6666
6667  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6668  // that a loop had multiple computable exits.
6669  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6670         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6671       I != E; ++I) {
6672    I->second.clear();
6673  }
6674
6675  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6676
6677  BackedgeTakenCounts.clear();
6678  ConstantEvolutionLoopExitValue.clear();
6679  ValuesAtScopes.clear();
6680  LoopDispositions.clear();
6681  BlockDispositions.clear();
6682  UnsignedRanges.clear();
6683  SignedRanges.clear();
6684  UniqueSCEVs.clear();
6685  SCEVAllocator.Reset();
6686}
6687
6688void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6689  AU.setPreservesAll();
6690  AU.addRequiredTransitive<LoopInfo>();
6691  AU.addRequiredTransitive<DominatorTree>();
6692  AU.addRequired<TargetLibraryInfo>();
6693}
6694
6695bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6696  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6697}
6698
6699static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6700                          const Loop *L) {
6701  // Print all inner loops first
6702  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6703    PrintLoopInfo(OS, SE, *I);
6704
6705  OS << "Loop ";
6706  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6707  OS << ": ";
6708
6709  SmallVector<BasicBlock *, 8> ExitBlocks;
6710  L->getExitBlocks(ExitBlocks);
6711  if (ExitBlocks.size() != 1)
6712    OS << "<multiple exits> ";
6713
6714  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6715    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6716  } else {
6717    OS << "Unpredictable backedge-taken count. ";
6718  }
6719
6720  OS << "\n"
6721        "Loop ";
6722  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6723  OS << ": ";
6724
6725  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6726    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6727  } else {
6728    OS << "Unpredictable max backedge-taken count. ";
6729  }
6730
6731  OS << "\n";
6732}
6733
6734void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6735  // ScalarEvolution's implementation of the print method is to print
6736  // out SCEV values of all instructions that are interesting. Doing
6737  // this potentially causes it to create new SCEV objects though,
6738  // which technically conflicts with the const qualifier. This isn't
6739  // observable from outside the class though, so casting away the
6740  // const isn't dangerous.
6741  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6742
6743  OS << "Classifying expressions for: ";
6744  WriteAsOperand(OS, F, /*PrintType=*/false);
6745  OS << "\n";
6746  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6747    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6748      OS << *I << '\n';
6749      OS << "  -->  ";
6750      const SCEV *SV = SE.getSCEV(&*I);
6751      SV->print(OS);
6752
6753      const Loop *L = LI->getLoopFor((*I).getParent());
6754
6755      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6756      if (AtUse != SV) {
6757        OS << "  -->  ";
6758        AtUse->print(OS);
6759      }
6760
6761      if (L) {
6762        OS << "\t\t" "Exits: ";
6763        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6764        if (!SE.isLoopInvariant(ExitValue, L)) {
6765          OS << "<<Unknown>>";
6766        } else {
6767          OS << *ExitValue;
6768        }
6769      }
6770
6771      OS << "\n";
6772    }
6773
6774  OS << "Determining loop execution counts for: ";
6775  WriteAsOperand(OS, F, /*PrintType=*/false);
6776  OS << "\n";
6777  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6778    PrintLoopInfo(OS, &SE, *I);
6779}
6780
6781ScalarEvolution::LoopDisposition
6782ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6783  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6784  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6785    Values.insert(std::make_pair(L, LoopVariant));
6786  if (!Pair.second)
6787    return Pair.first->second;
6788
6789  LoopDisposition D = computeLoopDisposition(S, L);
6790  return LoopDispositions[S][L] = D;
6791}
6792
6793ScalarEvolution::LoopDisposition
6794ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6795  switch (S->getSCEVType()) {
6796  case scConstant:
6797    return LoopInvariant;
6798  case scTruncate:
6799  case scZeroExtend:
6800  case scSignExtend:
6801    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6802  case scAddRecExpr: {
6803    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6804
6805    // If L is the addrec's loop, it's computable.
6806    if (AR->getLoop() == L)
6807      return LoopComputable;
6808
6809    // Add recurrences are never invariant in the function-body (null loop).
6810    if (!L)
6811      return LoopVariant;
6812
6813    // This recurrence is variant w.r.t. L if L contains AR's loop.
6814    if (L->contains(AR->getLoop()))
6815      return LoopVariant;
6816
6817    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6818    if (AR->getLoop()->contains(L))
6819      return LoopInvariant;
6820
6821    // This recurrence is variant w.r.t. L if any of its operands
6822    // are variant.
6823    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6824         I != E; ++I)
6825      if (!isLoopInvariant(*I, L))
6826        return LoopVariant;
6827
6828    // Otherwise it's loop-invariant.
6829    return LoopInvariant;
6830  }
6831  case scAddExpr:
6832  case scMulExpr:
6833  case scUMaxExpr:
6834  case scSMaxExpr: {
6835    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6836    bool HasVarying = false;
6837    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6838         I != E; ++I) {
6839      LoopDisposition D = getLoopDisposition(*I, L);
6840      if (D == LoopVariant)
6841        return LoopVariant;
6842      if (D == LoopComputable)
6843        HasVarying = true;
6844    }
6845    return HasVarying ? LoopComputable : LoopInvariant;
6846  }
6847  case scUDivExpr: {
6848    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6849    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6850    if (LD == LoopVariant)
6851      return LoopVariant;
6852    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6853    if (RD == LoopVariant)
6854      return LoopVariant;
6855    return (LD == LoopInvariant && RD == LoopInvariant) ?
6856           LoopInvariant : LoopComputable;
6857  }
6858  case scUnknown:
6859    // All non-instruction values are loop invariant.  All instructions are loop
6860    // invariant if they are not contained in the specified loop.
6861    // Instructions are never considered invariant in the function body
6862    // (null loop) because they are defined within the "loop".
6863    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6864      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6865    return LoopInvariant;
6866  case scCouldNotCompute:
6867    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6868  default: llvm_unreachable("Unknown SCEV kind!");
6869  }
6870}
6871
6872bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6873  return getLoopDisposition(S, L) == LoopInvariant;
6874}
6875
6876bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6877  return getLoopDisposition(S, L) == LoopComputable;
6878}
6879
6880ScalarEvolution::BlockDisposition
6881ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6882  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6883  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6884    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6885  if (!Pair.second)
6886    return Pair.first->second;
6887
6888  BlockDisposition D = computeBlockDisposition(S, BB);
6889  return BlockDispositions[S][BB] = D;
6890}
6891
6892ScalarEvolution::BlockDisposition
6893ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6894  switch (S->getSCEVType()) {
6895  case scConstant:
6896    return ProperlyDominatesBlock;
6897  case scTruncate:
6898  case scZeroExtend:
6899  case scSignExtend:
6900    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6901  case scAddRecExpr: {
6902    // This uses a "dominates" query instead of "properly dominates" query
6903    // to test for proper dominance too, because the instruction which
6904    // produces the addrec's value is a PHI, and a PHI effectively properly
6905    // dominates its entire containing block.
6906    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6907    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6908      return DoesNotDominateBlock;
6909  }
6910  // FALL THROUGH into SCEVNAryExpr handling.
6911  case scAddExpr:
6912  case scMulExpr:
6913  case scUMaxExpr:
6914  case scSMaxExpr: {
6915    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6916    bool Proper = true;
6917    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6918         I != E; ++I) {
6919      BlockDisposition D = getBlockDisposition(*I, BB);
6920      if (D == DoesNotDominateBlock)
6921        return DoesNotDominateBlock;
6922      if (D == DominatesBlock)
6923        Proper = false;
6924    }
6925    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6926  }
6927  case scUDivExpr: {
6928    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6929    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6930    BlockDisposition LD = getBlockDisposition(LHS, BB);
6931    if (LD == DoesNotDominateBlock)
6932      return DoesNotDominateBlock;
6933    BlockDisposition RD = getBlockDisposition(RHS, BB);
6934    if (RD == DoesNotDominateBlock)
6935      return DoesNotDominateBlock;
6936    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6937      ProperlyDominatesBlock : DominatesBlock;
6938  }
6939  case scUnknown:
6940    if (Instruction *I =
6941          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6942      if (I->getParent() == BB)
6943        return DominatesBlock;
6944      if (DT->properlyDominates(I->getParent(), BB))
6945        return ProperlyDominatesBlock;
6946      return DoesNotDominateBlock;
6947    }
6948    return ProperlyDominatesBlock;
6949  case scCouldNotCompute:
6950    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6951  default:
6952    llvm_unreachable("Unknown SCEV kind!");
6953  }
6954}
6955
6956bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6957  return getBlockDisposition(S, BB) >= DominatesBlock;
6958}
6959
6960bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6961  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6962}
6963
6964namespace {
6965// Search for a SCEV expression node within an expression tree.
6966// Implements SCEVTraversal::Visitor.
6967struct SCEVSearch {
6968  const SCEV *Node;
6969  bool IsFound;
6970
6971  SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6972
6973  bool follow(const SCEV *S) {
6974    IsFound |= (S == Node);
6975    return !IsFound;
6976  }
6977  bool isDone() const { return IsFound; }
6978};
6979}
6980
6981bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6982  SCEVSearch Search(Op);
6983  visitAll(S, Search);
6984  return Search.IsFound;
6985}
6986
6987void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6988  ValuesAtScopes.erase(S);
6989  LoopDispositions.erase(S);
6990  BlockDispositions.erase(S);
6991  UnsignedRanges.erase(S);
6992  SignedRanges.erase(S);
6993
6994  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6995         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
6996    BackedgeTakenInfo &BEInfo = I->second;
6997    if (BEInfo.hasOperand(S, this)) {
6998      BEInfo.clear();
6999      BackedgeTakenCounts.erase(I++);
7000    }
7001    else
7002      ++I;
7003  }
7004}
7005
7006typedef DenseMap<const Loop *, std::string> VerifyMap;
7007
7008/// replaceSubString - Replaces all occurences of From in Str with To.
7009static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7010  size_t Pos = 0;
7011  while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7012    Str.replace(Pos, From.size(), To.data(), To.size());
7013    Pos += To.size();
7014  }
7015}
7016
7017/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7018static void
7019getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7020  for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7021    getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7022
7023    std::string &S = Map[L];
7024    if (S.empty()) {
7025      raw_string_ostream OS(S);
7026      SE.getBackedgeTakenCount(L)->print(OS);
7027
7028      // false and 0 are semantically equivalent. This can happen in dead loops.
7029      replaceSubString(OS.str(), "false", "0");
7030      // Remove wrap flags, their use in SCEV is highly fragile.
7031      // FIXME: Remove this when SCEV gets smarter about them.
7032      replaceSubString(OS.str(), "<nw>", "");
7033      replaceSubString(OS.str(), "<nsw>", "");
7034      replaceSubString(OS.str(), "<nuw>", "");
7035    }
7036  }
7037}
7038
7039void ScalarEvolution::verifyAnalysis() const {
7040  if (!VerifySCEV)
7041    return;
7042
7043  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7044
7045  // Gather stringified backedge taken counts for all loops using SCEV's caches.
7046  // FIXME: It would be much better to store actual values instead of strings,
7047  //        but SCEV pointers will change if we drop the caches.
7048  VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7049  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7050    getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7051
7052  // Gather stringified backedge taken counts for all loops without using
7053  // SCEV's caches.
7054  SE.releaseMemory();
7055  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7056    getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7057
7058  // Now compare whether they're the same with and without caches. This allows
7059  // verifying that no pass changed the cache.
7060  assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7061         "New loops suddenly appeared!");
7062
7063  for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7064                           OldE = BackedgeDumpsOld.end(),
7065                           NewI = BackedgeDumpsNew.begin();
7066       OldI != OldE; ++OldI, ++NewI) {
7067    assert(OldI->first == NewI->first && "Loop order changed!");
7068
7069    // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7070    // changes.
7071    // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
7072    // means that a pass is buggy or SCEV has to learn a new pattern but is
7073    // usually not harmful.
7074    if (OldI->second != NewI->second &&
7075        OldI->second.find("undef") == std::string::npos &&
7076        NewI->second.find("undef") == std::string::npos &&
7077        OldI->second != "***COULDNOTCOMPUTE***" &&
7078        NewI->second != "***COULDNOTCOMPUTE***") {
7079      dbgs() << "SCEVValidator: SCEV for loop '"
7080             << OldI->first->getHeader()->getName()
7081             << "' changed from '" << OldI->second
7082             << "' to '" << NewI->second << "'!\n";
7083      std::abort();
7084    }
7085  }
7086
7087  // TODO: Verify more things.
7088}
7089