ScalarEvolution.cpp revision 212904
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262    if (!(*I)->dominates(BB, DT))
263      return false;
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269    if (!(*I)->properlyDominates(BB, DT))
270      return false;
271  return true;
272}
273
274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276    if (!(*I)->isLoopInvariant(L))
277      return false;
278  return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285  bool HasVarying = false;
286  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287    const SCEV *S = *I;
288    if (!S->isLoopInvariant(L)) {
289      if (S->hasComputableLoopEvolution(L))
290        HasVarying = true;
291      else
292        return false;
293    }
294  }
295  return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300    const SCEV *S = *I;
301    if (O == S || S->hasOperand(O))
302      return true;
303  }
304  return false;
305}
306
307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
315void SCEVUDivExpr::print(raw_ostream &OS) const {
316  OS << "(" << *LHS << " /u " << *RHS << ")";
317}
318
319const Type *SCEVUDivExpr::getType() const {
320  // In most cases the types of LHS and RHS will be the same, but in some
321  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322  // depend on the type for correctness, but handling types carefully can
323  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324  // a pointer type than the RHS, so use the RHS' type here.
325  return RHS->getType();
326}
327
328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
329  // Add recurrences are never invariant in the function-body (null loop).
330  if (!QueryLoop)
331    return false;
332
333  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
334  if (QueryLoop->contains(L))
335    return false;
336
337  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338  if (L->contains(QueryLoop))
339    return true;
340
341  // This recurrence is variant w.r.t. QueryLoop if any of its operands
342  // are variant.
343  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344    if (!(*I)->isLoopInvariant(QueryLoop))
345      return false;
346
347  // Otherwise it's loop-invariant.
348  return true;
349}
350
351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353  return DT->dominates(L->getHeader(), BB) &&
354         SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359  // This uses a "dominates" query instead of "properly dominates" query because
360  // the instruction which produces the addrec's value is a PHI, and a PHI
361  // effectively properly dominates its entire containing block.
362  return DT->dominates(L->getHeader(), BB) &&
363         SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
366void SCEVAddRecExpr::print(raw_ostream &OS) const {
367  OS << "{" << *Operands[0];
368  for (unsigned i = 1, e = NumOperands; i != e; ++i)
369    OS << ",+," << *Operands[i];
370  OS << "}<";
371  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372  OS << ">";
373}
374
375void SCEVUnknown::deleted() {
376  // Clear this SCEVUnknown from ValuesAtScopes.
377  SE->ValuesAtScopes.erase(this);
378
379  // Remove this SCEVUnknown from the uniquing map.
380  SE->UniqueSCEVs.RemoveNode(this);
381
382  // Release the value.
383  setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387  // Clear this SCEVUnknown from ValuesAtScopes.
388  SE->ValuesAtScopes.erase(this);
389
390  // Remove this SCEVUnknown from the uniquing map.
391  SE->UniqueSCEVs.RemoveNode(this);
392
393  // Update this SCEVUnknown to point to the new value. This is needed
394  // because there may still be outstanding SCEVs which still point to
395  // this SCEVUnknown.
396  setValPtr(New);
397}
398
399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400  // All non-instruction values are loop invariant.  All instructions are loop
401  // invariant if they are not contained in the specified loop.
402  // Instructions are never considered invariant in the function body
403  // (null loop) because they are defined within the "loop".
404  if (Instruction *I = dyn_cast<Instruction>(getValue()))
405    return L && !L->contains(I);
406  return true;
407}
408
409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410  if (Instruction *I = dyn_cast<Instruction>(getValue()))
411    return DT->dominates(I->getParent(), BB);
412  return true;
413}
414
415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416  if (Instruction *I = dyn_cast<Instruction>(getValue()))
417    return DT->properlyDominates(I->getParent(), BB);
418  return true;
419}
420
421const Type *SCEVUnknown::getType() const {
422  return getValue()->getType();
423}
424
425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
426  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427    if (VCE->getOpcode() == Instruction::PtrToInt)
428      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429        if (CE->getOpcode() == Instruction::GetElementPtr &&
430            CE->getOperand(0)->isNullValue() &&
431            CE->getNumOperands() == 2)
432          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433            if (CI->isOne()) {
434              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435                                 ->getElementType();
436              return true;
437            }
438
439  return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
443  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
444    if (VCE->getOpcode() == Instruction::PtrToInt)
445      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
446        if (CE->getOpcode() == Instruction::GetElementPtr &&
447            CE->getOperand(0)->isNullValue()) {
448          const Type *Ty =
449            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450          if (const StructType *STy = dyn_cast<StructType>(Ty))
451            if (!STy->isPacked() &&
452                CE->getNumOperands() == 3 &&
453                CE->getOperand(1)->isNullValue()) {
454              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455                if (CI->isOne() &&
456                    STy->getNumElements() == 2 &&
457                    STy->getElementType(0)->isIntegerTy(1)) {
458                  AllocTy = STy->getElementType(1);
459                  return true;
460                }
461            }
462        }
463
464  return false;
465}
466
467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
468  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
469    if (VCE->getOpcode() == Instruction::PtrToInt)
470      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471        if (CE->getOpcode() == Instruction::GetElementPtr &&
472            CE->getNumOperands() == 3 &&
473            CE->getOperand(0)->isNullValue() &&
474            CE->getOperand(1)->isNullValue()) {
475          const Type *Ty =
476            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477          // Ignore vector types here so that ScalarEvolutionExpander doesn't
478          // emit getelementptrs that index into vectors.
479          if (Ty->isStructTy() || Ty->isArrayTy()) {
480            CTy = Ty;
481            FieldNo = CE->getOperand(2);
482            return true;
483          }
484        }
485
486  return false;
487}
488
489void SCEVUnknown::print(raw_ostream &OS) const {
490  const Type *AllocTy;
491  if (isSizeOf(AllocTy)) {
492    OS << "sizeof(" << *AllocTy << ")";
493    return;
494  }
495  if (isAlignOf(AllocTy)) {
496    OS << "alignof(" << *AllocTy << ")";
497    return;
498  }
499
500  const Type *CTy;
501  Constant *FieldNo;
502  if (isOffsetOf(CTy, FieldNo)) {
503    OS << "offsetof(" << *CTy << ", ";
504    WriteAsOperand(OS, FieldNo, false);
505    OS << ")";
506    return;
507  }
508
509  // Otherwise just print it normally.
510  WriteAsOperand(OS, getValue(), false);
511}
512
513//===----------------------------------------------------------------------===//
514//                               SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519  /// than the complexity of the RHS.  This comparator is used to canonicalize
520  /// expressions.
521  class SCEVComplexityCompare {
522    const LoopInfo *const LI;
523  public:
524    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
525
526    // Return true or false if LHS is less than, or at least RHS, respectively.
527    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
528      return compare(LHS, RHS) < 0;
529    }
530
531    // Return negative, zero, or positive, if LHS is less than, equal to, or
532    // greater than RHS, respectively. A three-way result allows recursive
533    // comparisons to be more efficient.
534    int compare(const SCEV *LHS, const SCEV *RHS) const {
535      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536      if (LHS == RHS)
537        return 0;
538
539      // Primarily, sort the SCEVs by their getSCEVType().
540      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541      if (LType != RType)
542        return (int)LType - (int)RType;
543
544      // Aside from the getSCEVType() ordering, the particular ordering
545      // isn't very important except that it's beneficial to be consistent,
546      // so that (a + b) and (b + a) don't end up as different expressions.
547      switch (LType) {
548      case scUnknown: {
549        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
550        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
551
552        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553        // not as complete as it could be.
554        const Value *LV = LU->getValue(), *RV = RU->getValue();
555
556        // Order pointer values after integer values. This helps SCEVExpander
557        // form GEPs.
558        bool LIsPointer = LV->getType()->isPointerTy(),
559             RIsPointer = RV->getType()->isPointerTy();
560        if (LIsPointer != RIsPointer)
561          return (int)LIsPointer - (int)RIsPointer;
562
563        // Compare getValueID values.
564        unsigned LID = LV->getValueID(),
565                 RID = RV->getValueID();
566        if (LID != RID)
567          return (int)LID - (int)RID;
568
569        // Sort arguments by their position.
570        if (const Argument *LA = dyn_cast<Argument>(LV)) {
571          const Argument *RA = cast<Argument>(RV);
572          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573          return (int)LArgNo - (int)RArgNo;
574        }
575
576        // For instructions, compare their loop depth, and their operand
577        // count.  This is pretty loose.
578        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579          const Instruction *RInst = cast<Instruction>(RV);
580
581          // Compare loop depths.
582          const BasicBlock *LParent = LInst->getParent(),
583                           *RParent = RInst->getParent();
584          if (LParent != RParent) {
585            unsigned LDepth = LI->getLoopDepth(LParent),
586                     RDepth = LI->getLoopDepth(RParent);
587            if (LDepth != RDepth)
588              return (int)LDepth - (int)RDepth;
589          }
590
591          // Compare the number of operands.
592          unsigned LNumOps = LInst->getNumOperands(),
593                   RNumOps = RInst->getNumOperands();
594          return (int)LNumOps - (int)RNumOps;
595        }
596
597        return 0;
598      }
599
600      case scConstant: {
601        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
602        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
603
604        // Compare constant values.
605        const APInt &LA = LC->getValue()->getValue();
606        const APInt &RA = RC->getValue()->getValue();
607        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
608        if (LBitWidth != RBitWidth)
609          return (int)LBitWidth - (int)RBitWidth;
610        return LA.ult(RA) ? -1 : 1;
611      }
612
613      case scAddRecExpr: {
614        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
615        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
616
617        // Compare addrec loop depths.
618        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619        if (LLoop != RLoop) {
620          unsigned LDepth = LLoop->getLoopDepth(),
621                   RDepth = RLoop->getLoopDepth();
622          if (LDepth != RDepth)
623            return (int)LDepth - (int)RDepth;
624        }
625
626        // Addrec complexity grows with operand count.
627        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628        if (LNumOps != RNumOps)
629          return (int)LNumOps - (int)RNumOps;
630
631        // Lexicographically compare.
632        for (unsigned i = 0; i != LNumOps; ++i) {
633          long X = compare(LA->getOperand(i), RA->getOperand(i));
634          if (X != 0)
635            return X;
636        }
637
638        return 0;
639      }
640
641      case scAddExpr:
642      case scMulExpr:
643      case scSMaxExpr:
644      case scUMaxExpr: {
645        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
646        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
647
648        // Lexicographically compare n-ary expressions.
649        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650        for (unsigned i = 0; i != LNumOps; ++i) {
651          if (i >= RNumOps)
652            return 1;
653          long X = compare(LC->getOperand(i), RC->getOperand(i));
654          if (X != 0)
655            return X;
656        }
657        return (int)LNumOps - (int)RNumOps;
658      }
659
660      case scUDivExpr: {
661        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
662        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
663
664        // Lexicographically compare udiv expressions.
665        long X = compare(LC->getLHS(), RC->getLHS());
666        if (X != 0)
667          return X;
668        return compare(LC->getRHS(), RC->getRHS());
669      }
670
671      case scTruncate:
672      case scZeroExtend:
673      case scSignExtend: {
674        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
675        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
676
677        // Compare cast expressions by operand.
678        return compare(LC->getOperand(), RC->getOperand());
679      }
680
681      default:
682        break;
683      }
684
685      llvm_unreachable("Unknown SCEV kind!");
686      return 0;
687    }
688  };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
696/// Note that we go take special precautions to ensure that we get deterministic
697/// results from this routine.  In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
702                              LoopInfo *LI) {
703  if (Ops.size() < 2) return;  // Noop
704  if (Ops.size() == 2) {
705    // This is the common case, which also happens to be trivially simple.
706    // Special case it.
707    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
708    if (SCEVComplexityCompare(LI)(RHS, LHS))
709      std::swap(LHS, RHS);
710    return;
711  }
712
713  // Do the rough sort by complexity.
714  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
715
716  // Now that we are sorted by complexity, group elements of the same
717  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
718  // be extremely short in practice.  Note that we take this approach because we
719  // do not want to depend on the addresses of the objects we are grouping.
720  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
721    const SCEV *S = Ops[i];
722    unsigned Complexity = S->getSCEVType();
723
724    // If there are any objects of the same complexity and same value as this
725    // one, group them.
726    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
727      if (Ops[j] == S) { // Found a duplicate.
728        // Move it to immediately after i'th element.
729        std::swap(Ops[i+1], Ops[j]);
730        ++i;   // no need to rescan it.
731        if (i == e-2) return;  // Done!
732      }
733    }
734  }
735}
736
737
738
739//===----------------------------------------------------------------------===//
740//                      Simple SCEV method implementations
741//===----------------------------------------------------------------------===//
742
743/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
744/// Assume, K > 0.
745static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
746                                       ScalarEvolution &SE,
747                                       const Type* ResultTy) {
748  // Handle the simplest case efficiently.
749  if (K == 1)
750    return SE.getTruncateOrZeroExtend(It, ResultTy);
751
752  // We are using the following formula for BC(It, K):
753  //
754  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
755  //
756  // Suppose, W is the bitwidth of the return value.  We must be prepared for
757  // overflow.  Hence, we must assure that the result of our computation is
758  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
759  // safe in modular arithmetic.
760  //
761  // However, this code doesn't use exactly that formula; the formula it uses
762  // is something like the following, where T is the number of factors of 2 in
763  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
764  // exponentiation:
765  //
766  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
767  //
768  // This formula is trivially equivalent to the previous formula.  However,
769  // this formula can be implemented much more efficiently.  The trick is that
770  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
771  // arithmetic.  To do exact division in modular arithmetic, all we have
772  // to do is multiply by the inverse.  Therefore, this step can be done at
773  // width W.
774  //
775  // The next issue is how to safely do the division by 2^T.  The way this
776  // is done is by doing the multiplication step at a width of at least W + T
777  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
778  // when we perform the division by 2^T (which is equivalent to a right shift
779  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
780  // truncated out after the division by 2^T.
781  //
782  // In comparison to just directly using the first formula, this technique
783  // is much more efficient; using the first formula requires W * K bits,
784  // but this formula less than W + K bits. Also, the first formula requires
785  // a division step, whereas this formula only requires multiplies and shifts.
786  //
787  // It doesn't matter whether the subtraction step is done in the calculation
788  // width or the input iteration count's width; if the subtraction overflows,
789  // the result must be zero anyway.  We prefer here to do it in the width of
790  // the induction variable because it helps a lot for certain cases; CodeGen
791  // isn't smart enough to ignore the overflow, which leads to much less
792  // efficient code if the width of the subtraction is wider than the native
793  // register width.
794  //
795  // (It's possible to not widen at all by pulling out factors of 2 before
796  // the multiplication; for example, K=2 can be calculated as
797  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
798  // extra arithmetic, so it's not an obvious win, and it gets
799  // much more complicated for K > 3.)
800
801  // Protection from insane SCEVs; this bound is conservative,
802  // but it probably doesn't matter.
803  if (K > 1000)
804    return SE.getCouldNotCompute();
805
806  unsigned W = SE.getTypeSizeInBits(ResultTy);
807
808  // Calculate K! / 2^T and T; we divide out the factors of two before
809  // multiplying for calculating K! / 2^T to avoid overflow.
810  // Other overflow doesn't matter because we only care about the bottom
811  // W bits of the result.
812  APInt OddFactorial(W, 1);
813  unsigned T = 1;
814  for (unsigned i = 3; i <= K; ++i) {
815    APInt Mult(W, i);
816    unsigned TwoFactors = Mult.countTrailingZeros();
817    T += TwoFactors;
818    Mult = Mult.lshr(TwoFactors);
819    OddFactorial *= Mult;
820  }
821
822  // We need at least W + T bits for the multiplication step
823  unsigned CalculationBits = W + T;
824
825  // Calculate 2^T, at width T+W.
826  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
827
828  // Calculate the multiplicative inverse of K! / 2^T;
829  // this multiplication factor will perform the exact division by
830  // K! / 2^T.
831  APInt Mod = APInt::getSignedMinValue(W+1);
832  APInt MultiplyFactor = OddFactorial.zext(W+1);
833  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
834  MultiplyFactor = MultiplyFactor.trunc(W);
835
836  // Calculate the product, at width T+W
837  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
838                                                      CalculationBits);
839  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
840  for (unsigned i = 1; i != K; ++i) {
841    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
842    Dividend = SE.getMulExpr(Dividend,
843                             SE.getTruncateOrZeroExtend(S, CalculationTy));
844  }
845
846  // Divide by 2^T
847  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
848
849  // Truncate the result, and divide by K! / 2^T.
850
851  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
852                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
853}
854
855/// evaluateAtIteration - Return the value of this chain of recurrences at
856/// the specified iteration number.  We can evaluate this recurrence by
857/// multiplying each element in the chain by the binomial coefficient
858/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
859///
860///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
861///
862/// where BC(It, k) stands for binomial coefficient.
863///
864const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
865                                                ScalarEvolution &SE) const {
866  const SCEV *Result = getStart();
867  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
868    // The computation is correct in the face of overflow provided that the
869    // multiplication is performed _after_ the evaluation of the binomial
870    // coefficient.
871    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
872    if (isa<SCEVCouldNotCompute>(Coeff))
873      return Coeff;
874
875    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
876  }
877  return Result;
878}
879
880//===----------------------------------------------------------------------===//
881//                    SCEV Expression folder implementations
882//===----------------------------------------------------------------------===//
883
884const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
885                                             const Type *Ty) {
886  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
887         "This is not a truncating conversion!");
888  assert(isSCEVable(Ty) &&
889         "This is not a conversion to a SCEVable type!");
890  Ty = getEffectiveSCEVType(Ty);
891
892  FoldingSetNodeID ID;
893  ID.AddInteger(scTruncate);
894  ID.AddPointer(Op);
895  ID.AddPointer(Ty);
896  void *IP = 0;
897  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
898
899  // Fold if the operand is constant.
900  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
901    return getConstant(
902      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
903                                               getEffectiveSCEVType(Ty))));
904
905  // trunc(trunc(x)) --> trunc(x)
906  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
907    return getTruncateExpr(ST->getOperand(), Ty);
908
909  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
910  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
911    return getTruncateOrSignExtend(SS->getOperand(), Ty);
912
913  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
914  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
915    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
916
917  // If the input value is a chrec scev, truncate the chrec's operands.
918  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
919    SmallVector<const SCEV *, 4> Operands;
920    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
921      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
922    return getAddRecExpr(Operands, AddRec->getLoop());
923  }
924
925  // As a special case, fold trunc(undef) to undef. We don't want to
926  // know too much about SCEVUnknowns, but this special case is handy
927  // and harmless.
928  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
929    if (isa<UndefValue>(U->getValue()))
930      return getSCEV(UndefValue::get(Ty));
931
932  // The cast wasn't folded; create an explicit cast node. We can reuse
933  // the existing insert position since if we get here, we won't have
934  // made any changes which would invalidate it.
935  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
936                                                 Op, Ty);
937  UniqueSCEVs.InsertNode(S, IP);
938  return S;
939}
940
941const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
942                                               const Type *Ty) {
943  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
944         "This is not an extending conversion!");
945  assert(isSCEVable(Ty) &&
946         "This is not a conversion to a SCEVable type!");
947  Ty = getEffectiveSCEVType(Ty);
948
949  // Fold if the operand is constant.
950  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
951    return getConstant(
952      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
953                                              getEffectiveSCEVType(Ty))));
954
955  // zext(zext(x)) --> zext(x)
956  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
957    return getZeroExtendExpr(SZ->getOperand(), Ty);
958
959  // Before doing any expensive analysis, check to see if we've already
960  // computed a SCEV for this Op and Ty.
961  FoldingSetNodeID ID;
962  ID.AddInteger(scZeroExtend);
963  ID.AddPointer(Op);
964  ID.AddPointer(Ty);
965  void *IP = 0;
966  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
967
968  // If the input value is a chrec scev, and we can prove that the value
969  // did not overflow the old, smaller, value, we can zero extend all of the
970  // operands (often constants).  This allows analysis of something like
971  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
972  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
973    if (AR->isAffine()) {
974      const SCEV *Start = AR->getStart();
975      const SCEV *Step = AR->getStepRecurrence(*this);
976      unsigned BitWidth = getTypeSizeInBits(AR->getType());
977      const Loop *L = AR->getLoop();
978
979      // If we have special knowledge that this addrec won't overflow,
980      // we don't need to do any further analysis.
981      if (AR->hasNoUnsignedWrap())
982        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983                             getZeroExtendExpr(Step, Ty),
984                             L);
985
986      // Check whether the backedge-taken count is SCEVCouldNotCompute.
987      // Note that this serves two purposes: It filters out loops that are
988      // simply not analyzable, and it covers the case where this code is
989      // being called from within backedge-taken count analysis, such that
990      // attempting to ask for the backedge-taken count would likely result
991      // in infinite recursion. In the later case, the analysis code will
992      // cope with a conservative value, and it will take care to purge
993      // that value once it has finished.
994      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
995      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
996        // Manually compute the final value for AR, checking for
997        // overflow.
998
999        // Check whether the backedge-taken count can be losslessly casted to
1000        // the addrec's type. The count is always unsigned.
1001        const SCEV *CastedMaxBECount =
1002          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1003        const SCEV *RecastedMaxBECount =
1004          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1005        if (MaxBECount == RecastedMaxBECount) {
1006          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1007          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1008          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1009          const SCEV *Add = getAddExpr(Start, ZMul);
1010          const SCEV *OperandExtendedAdd =
1011            getAddExpr(getZeroExtendExpr(Start, WideTy),
1012                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1013                                  getZeroExtendExpr(Step, WideTy)));
1014          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1015            // Return the expression with the addrec on the outside.
1016            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017                                 getZeroExtendExpr(Step, Ty),
1018                                 L);
1019
1020          // Similar to above, only this time treat the step value as signed.
1021          // This covers loops that count down.
1022          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1023          Add = getAddExpr(Start, SMul);
1024          OperandExtendedAdd =
1025            getAddExpr(getZeroExtendExpr(Start, WideTy),
1026                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1027                                  getSignExtendExpr(Step, WideTy)));
1028          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1029            // Return the expression with the addrec on the outside.
1030            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031                                 getSignExtendExpr(Step, Ty),
1032                                 L);
1033        }
1034
1035        // If the backedge is guarded by a comparison with the pre-inc value
1036        // the addrec is safe. Also, if the entry is guarded by a comparison
1037        // with the start value and the backedge is guarded by a comparison
1038        // with the post-inc value, the addrec is safe.
1039        if (isKnownPositive(Step)) {
1040          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1041                                      getUnsignedRange(Step).getUnsignedMax());
1042          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1043              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1044               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1045                                           AR->getPostIncExpr(*this), N)))
1046            // Return the expression with the addrec on the outside.
1047            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1048                                 getZeroExtendExpr(Step, Ty),
1049                                 L);
1050        } else if (isKnownNegative(Step)) {
1051          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1052                                      getSignedRange(Step).getSignedMin());
1053          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1054              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1055               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1056                                           AR->getPostIncExpr(*this), N)))
1057            // Return the expression with the addrec on the outside.
1058            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1059                                 getSignExtendExpr(Step, Ty),
1060                                 L);
1061        }
1062      }
1063    }
1064
1065  // The cast wasn't folded; create an explicit cast node.
1066  // Recompute the insert position, as it may have been invalidated.
1067  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1068  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1069                                                   Op, Ty);
1070  UniqueSCEVs.InsertNode(S, IP);
1071  return S;
1072}
1073
1074const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1075                                               const Type *Ty) {
1076  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1077         "This is not an extending conversion!");
1078  assert(isSCEVable(Ty) &&
1079         "This is not a conversion to a SCEVable type!");
1080  Ty = getEffectiveSCEVType(Ty);
1081
1082  // Fold if the operand is constant.
1083  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084    return getConstant(
1085      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1086                                              getEffectiveSCEVType(Ty))));
1087
1088  // sext(sext(x)) --> sext(x)
1089  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1090    return getSignExtendExpr(SS->getOperand(), Ty);
1091
1092  // Before doing any expensive analysis, check to see if we've already
1093  // computed a SCEV for this Op and Ty.
1094  FoldingSetNodeID ID;
1095  ID.AddInteger(scSignExtend);
1096  ID.AddPointer(Op);
1097  ID.AddPointer(Ty);
1098  void *IP = 0;
1099  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1100
1101  // If the input value is a chrec scev, and we can prove that the value
1102  // did not overflow the old, smaller, value, we can sign extend all of the
1103  // operands (often constants).  This allows analysis of something like
1104  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1105  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1106    if (AR->isAffine()) {
1107      const SCEV *Start = AR->getStart();
1108      const SCEV *Step = AR->getStepRecurrence(*this);
1109      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1110      const Loop *L = AR->getLoop();
1111
1112      // If we have special knowledge that this addrec won't overflow,
1113      // we don't need to do any further analysis.
1114      if (AR->hasNoSignedWrap())
1115        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1116                             getSignExtendExpr(Step, Ty),
1117                             L);
1118
1119      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1120      // Note that this serves two purposes: It filters out loops that are
1121      // simply not analyzable, and it covers the case where this code is
1122      // being called from within backedge-taken count analysis, such that
1123      // attempting to ask for the backedge-taken count would likely result
1124      // in infinite recursion. In the later case, the analysis code will
1125      // cope with a conservative value, and it will take care to purge
1126      // that value once it has finished.
1127      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1128      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1129        // Manually compute the final value for AR, checking for
1130        // overflow.
1131
1132        // Check whether the backedge-taken count can be losslessly casted to
1133        // the addrec's type. The count is always unsigned.
1134        const SCEV *CastedMaxBECount =
1135          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1136        const SCEV *RecastedMaxBECount =
1137          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1138        if (MaxBECount == RecastedMaxBECount) {
1139          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1140          // Check whether Start+Step*MaxBECount has no signed overflow.
1141          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1142          const SCEV *Add = getAddExpr(Start, SMul);
1143          const SCEV *OperandExtendedAdd =
1144            getAddExpr(getSignExtendExpr(Start, WideTy),
1145                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1146                                  getSignExtendExpr(Step, WideTy)));
1147          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1148            // Return the expression with the addrec on the outside.
1149            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150                                 getSignExtendExpr(Step, Ty),
1151                                 L);
1152
1153          // Similar to above, only this time treat the step value as unsigned.
1154          // This covers loops that count up with an unsigned step.
1155          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1156          Add = getAddExpr(Start, UMul);
1157          OperandExtendedAdd =
1158            getAddExpr(getSignExtendExpr(Start, WideTy),
1159                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1160                                  getZeroExtendExpr(Step, WideTy)));
1161          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1162            // Return the expression with the addrec on the outside.
1163            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1164                                 getZeroExtendExpr(Step, Ty),
1165                                 L);
1166        }
1167
1168        // If the backedge is guarded by a comparison with the pre-inc value
1169        // the addrec is safe. Also, if the entry is guarded by a comparison
1170        // with the start value and the backedge is guarded by a comparison
1171        // with the post-inc value, the addrec is safe.
1172        if (isKnownPositive(Step)) {
1173          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1174                                      getSignedRange(Step).getSignedMax());
1175          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1176              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1177               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1178                                           AR->getPostIncExpr(*this), N)))
1179            // Return the expression with the addrec on the outside.
1180            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1181                                 getSignExtendExpr(Step, Ty),
1182                                 L);
1183        } else if (isKnownNegative(Step)) {
1184          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1185                                      getSignedRange(Step).getSignedMin());
1186          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1187              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1188               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1189                                           AR->getPostIncExpr(*this), N)))
1190            // Return the expression with the addrec on the outside.
1191            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1192                                 getSignExtendExpr(Step, Ty),
1193                                 L);
1194        }
1195      }
1196    }
1197
1198  // The cast wasn't folded; create an explicit cast node.
1199  // Recompute the insert position, as it may have been invalidated.
1200  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1202                                                   Op, Ty);
1203  UniqueSCEVs.InsertNode(S, IP);
1204  return S;
1205}
1206
1207/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1208/// unspecified bits out to the given type.
1209///
1210const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1211                                              const Type *Ty) {
1212  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1213         "This is not an extending conversion!");
1214  assert(isSCEVable(Ty) &&
1215         "This is not a conversion to a SCEVable type!");
1216  Ty = getEffectiveSCEVType(Ty);
1217
1218  // Sign-extend negative constants.
1219  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1220    if (SC->getValue()->getValue().isNegative())
1221      return getSignExtendExpr(Op, Ty);
1222
1223  // Peel off a truncate cast.
1224  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1225    const SCEV *NewOp = T->getOperand();
1226    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1227      return getAnyExtendExpr(NewOp, Ty);
1228    return getTruncateOrNoop(NewOp, Ty);
1229  }
1230
1231  // Next try a zext cast. If the cast is folded, use it.
1232  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1233  if (!isa<SCEVZeroExtendExpr>(ZExt))
1234    return ZExt;
1235
1236  // Next try a sext cast. If the cast is folded, use it.
1237  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1238  if (!isa<SCEVSignExtendExpr>(SExt))
1239    return SExt;
1240
1241  // Force the cast to be folded into the operands of an addrec.
1242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1243    SmallVector<const SCEV *, 4> Ops;
1244    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1245         I != E; ++I)
1246      Ops.push_back(getAnyExtendExpr(*I, Ty));
1247    return getAddRecExpr(Ops, AR->getLoop());
1248  }
1249
1250  // As a special case, fold anyext(undef) to undef. We don't want to
1251  // know too much about SCEVUnknowns, but this special case is handy
1252  // and harmless.
1253  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1254    if (isa<UndefValue>(U->getValue()))
1255      return getSCEV(UndefValue::get(Ty));
1256
1257  // If the expression is obviously signed, use the sext cast value.
1258  if (isa<SCEVSMaxExpr>(Op))
1259    return SExt;
1260
1261  // Absent any other information, use the zext cast value.
1262  return ZExt;
1263}
1264
1265/// CollectAddOperandsWithScales - Process the given Ops list, which is
1266/// a list of operands to be added under the given scale, update the given
1267/// map. This is a helper function for getAddRecExpr. As an example of
1268/// what it does, given a sequence of operands that would form an add
1269/// expression like this:
1270///
1271///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1272///
1273/// where A and B are constants, update the map with these values:
1274///
1275///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1276///
1277/// and add 13 + A*B*29 to AccumulatedConstant.
1278/// This will allow getAddRecExpr to produce this:
1279///
1280///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1281///
1282/// This form often exposes folding opportunities that are hidden in
1283/// the original operand list.
1284///
1285/// Return true iff it appears that any interesting folding opportunities
1286/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1287/// the common case where no interesting opportunities are present, and
1288/// is also used as a check to avoid infinite recursion.
1289///
1290static bool
1291CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1292                             SmallVector<const SCEV *, 8> &NewOps,
1293                             APInt &AccumulatedConstant,
1294                             const SCEV *const *Ops, size_t NumOperands,
1295                             const APInt &Scale,
1296                             ScalarEvolution &SE) {
1297  bool Interesting = false;
1298
1299  // Iterate over the add operands. They are sorted, with constants first.
1300  unsigned i = 0;
1301  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1302    ++i;
1303    // Pull a buried constant out to the outside.
1304    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1305      Interesting = true;
1306    AccumulatedConstant += Scale * C->getValue()->getValue();
1307  }
1308
1309  // Next comes everything else. We're especially interested in multiplies
1310  // here, but they're in the middle, so just visit the rest with one loop.
1311  for (; i != NumOperands; ++i) {
1312    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1313    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1314      APInt NewScale =
1315        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1316      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1317        // A multiplication of a constant with another add; recurse.
1318        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1319        Interesting |=
1320          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1321                                       Add->op_begin(), Add->getNumOperands(),
1322                                       NewScale, SE);
1323      } else {
1324        // A multiplication of a constant with some other value. Update
1325        // the map.
1326        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1327        const SCEV *Key = SE.getMulExpr(MulOps);
1328        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1329          M.insert(std::make_pair(Key, NewScale));
1330        if (Pair.second) {
1331          NewOps.push_back(Pair.first->first);
1332        } else {
1333          Pair.first->second += NewScale;
1334          // The map already had an entry for this value, which may indicate
1335          // a folding opportunity.
1336          Interesting = true;
1337        }
1338      }
1339    } else {
1340      // An ordinary operand. Update the map.
1341      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1342        M.insert(std::make_pair(Ops[i], Scale));
1343      if (Pair.second) {
1344        NewOps.push_back(Pair.first->first);
1345      } else {
1346        Pair.first->second += Scale;
1347        // The map already had an entry for this value, which may indicate
1348        // a folding opportunity.
1349        Interesting = true;
1350      }
1351    }
1352  }
1353
1354  return Interesting;
1355}
1356
1357namespace {
1358  struct APIntCompare {
1359    bool operator()(const APInt &LHS, const APInt &RHS) const {
1360      return LHS.ult(RHS);
1361    }
1362  };
1363}
1364
1365/// getAddExpr - Get a canonical add expression, or something simpler if
1366/// possible.
1367const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1368                                        bool HasNUW, bool HasNSW) {
1369  assert(!Ops.empty() && "Cannot get empty add!");
1370  if (Ops.size() == 1) return Ops[0];
1371#ifndef NDEBUG
1372  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1373  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1374    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1375           "SCEVAddExpr operand types don't match!");
1376#endif
1377
1378  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1379  if (!HasNUW && HasNSW) {
1380    bool All = true;
1381    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1382         E = Ops.end(); I != E; ++I)
1383      if (!isKnownNonNegative(*I)) {
1384        All = false;
1385        break;
1386      }
1387    if (All) HasNUW = true;
1388  }
1389
1390  // Sort by complexity, this groups all similar expression types together.
1391  GroupByComplexity(Ops, LI);
1392
1393  // If there are any constants, fold them together.
1394  unsigned Idx = 0;
1395  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1396    ++Idx;
1397    assert(Idx < Ops.size());
1398    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1399      // We found two constants, fold them together!
1400      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1401                           RHSC->getValue()->getValue());
1402      if (Ops.size() == 2) return Ops[0];
1403      Ops.erase(Ops.begin()+1);  // Erase the folded element
1404      LHSC = cast<SCEVConstant>(Ops[0]);
1405    }
1406
1407    // If we are left with a constant zero being added, strip it off.
1408    if (LHSC->getValue()->isZero()) {
1409      Ops.erase(Ops.begin());
1410      --Idx;
1411    }
1412
1413    if (Ops.size() == 1) return Ops[0];
1414  }
1415
1416  // Okay, check to see if the same value occurs in the operand list more than
1417  // once.  If so, merge them together into an multiply expression.  Since we
1418  // sorted the list, these values are required to be adjacent.
1419  const Type *Ty = Ops[0]->getType();
1420  bool FoundMatch = false;
1421  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1422    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1423      // Scan ahead to count how many equal operands there are.
1424      unsigned Count = 2;
1425      while (i+Count != e && Ops[i+Count] == Ops[i])
1426        ++Count;
1427      // Merge the values into a multiply.
1428      const SCEV *Scale = getConstant(Ty, Count);
1429      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1430      if (Ops.size() == Count)
1431        return Mul;
1432      Ops[i] = Mul;
1433      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1434      --i; e -= Count - 1;
1435      FoundMatch = true;
1436    }
1437  if (FoundMatch)
1438    return getAddExpr(Ops, HasNUW, HasNSW);
1439
1440  // Check for truncates. If all the operands are truncated from the same
1441  // type, see if factoring out the truncate would permit the result to be
1442  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1443  // if the contents of the resulting outer trunc fold to something simple.
1444  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1445    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1446    const Type *DstType = Trunc->getType();
1447    const Type *SrcType = Trunc->getOperand()->getType();
1448    SmallVector<const SCEV *, 8> LargeOps;
1449    bool Ok = true;
1450    // Check all the operands to see if they can be represented in the
1451    // source type of the truncate.
1452    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1454        if (T->getOperand()->getType() != SrcType) {
1455          Ok = false;
1456          break;
1457        }
1458        LargeOps.push_back(T->getOperand());
1459      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1460        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1461      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1462        SmallVector<const SCEV *, 8> LargeMulOps;
1463        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1464          if (const SCEVTruncateExpr *T =
1465                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1466            if (T->getOperand()->getType() != SrcType) {
1467              Ok = false;
1468              break;
1469            }
1470            LargeMulOps.push_back(T->getOperand());
1471          } else if (const SCEVConstant *C =
1472                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1473            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1474          } else {
1475            Ok = false;
1476            break;
1477          }
1478        }
1479        if (Ok)
1480          LargeOps.push_back(getMulExpr(LargeMulOps));
1481      } else {
1482        Ok = false;
1483        break;
1484      }
1485    }
1486    if (Ok) {
1487      // Evaluate the expression in the larger type.
1488      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1489      // If it folds to something simple, use it. Otherwise, don't.
1490      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1491        return getTruncateExpr(Fold, DstType);
1492    }
1493  }
1494
1495  // Skip past any other cast SCEVs.
1496  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1497    ++Idx;
1498
1499  // If there are add operands they would be next.
1500  if (Idx < Ops.size()) {
1501    bool DeletedAdd = false;
1502    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1503      // If we have an add, expand the add operands onto the end of the operands
1504      // list.
1505      Ops.erase(Ops.begin()+Idx);
1506      Ops.append(Add->op_begin(), Add->op_end());
1507      DeletedAdd = true;
1508    }
1509
1510    // If we deleted at least one add, we added operands to the end of the list,
1511    // and they are not necessarily sorted.  Recurse to resort and resimplify
1512    // any operands we just acquired.
1513    if (DeletedAdd)
1514      return getAddExpr(Ops);
1515  }
1516
1517  // Skip over the add expression until we get to a multiply.
1518  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1519    ++Idx;
1520
1521  // Check to see if there are any folding opportunities present with
1522  // operands multiplied by constant values.
1523  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1524    uint64_t BitWidth = getTypeSizeInBits(Ty);
1525    DenseMap<const SCEV *, APInt> M;
1526    SmallVector<const SCEV *, 8> NewOps;
1527    APInt AccumulatedConstant(BitWidth, 0);
1528    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1529                                     Ops.data(), Ops.size(),
1530                                     APInt(BitWidth, 1), *this)) {
1531      // Some interesting folding opportunity is present, so its worthwhile to
1532      // re-generate the operands list. Group the operands by constant scale,
1533      // to avoid multiplying by the same constant scale multiple times.
1534      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1535      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1536           E = NewOps.end(); I != E; ++I)
1537        MulOpLists[M.find(*I)->second].push_back(*I);
1538      // Re-generate the operands list.
1539      Ops.clear();
1540      if (AccumulatedConstant != 0)
1541        Ops.push_back(getConstant(AccumulatedConstant));
1542      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1543           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1544        if (I->first != 0)
1545          Ops.push_back(getMulExpr(getConstant(I->first),
1546                                   getAddExpr(I->second)));
1547      if (Ops.empty())
1548        return getConstant(Ty, 0);
1549      if (Ops.size() == 1)
1550        return Ops[0];
1551      return getAddExpr(Ops);
1552    }
1553  }
1554
1555  // If we are adding something to a multiply expression, make sure the
1556  // something is not already an operand of the multiply.  If so, merge it into
1557  // the multiply.
1558  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1559    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1560    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1561      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1562      if (isa<SCEVConstant>(MulOpSCEV))
1563        continue;
1564      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1565        if (MulOpSCEV == Ops[AddOp]) {
1566          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1567          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1568          if (Mul->getNumOperands() != 2) {
1569            // If the multiply has more than two operands, we must get the
1570            // Y*Z term.
1571            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1572                                                Mul->op_begin()+MulOp);
1573            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1574            InnerMul = getMulExpr(MulOps);
1575          }
1576          const SCEV *One = getConstant(Ty, 1);
1577          const SCEV *AddOne = getAddExpr(One, InnerMul);
1578          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1579          if (Ops.size() == 2) return OuterMul;
1580          if (AddOp < Idx) {
1581            Ops.erase(Ops.begin()+AddOp);
1582            Ops.erase(Ops.begin()+Idx-1);
1583          } else {
1584            Ops.erase(Ops.begin()+Idx);
1585            Ops.erase(Ops.begin()+AddOp-1);
1586          }
1587          Ops.push_back(OuterMul);
1588          return getAddExpr(Ops);
1589        }
1590
1591      // Check this multiply against other multiplies being added together.
1592      for (unsigned OtherMulIdx = Idx+1;
1593           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1594           ++OtherMulIdx) {
1595        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1596        // If MulOp occurs in OtherMul, we can fold the two multiplies
1597        // together.
1598        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1599             OMulOp != e; ++OMulOp)
1600          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1601            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1602            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1603            if (Mul->getNumOperands() != 2) {
1604              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1605                                                  Mul->op_begin()+MulOp);
1606              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1607              InnerMul1 = getMulExpr(MulOps);
1608            }
1609            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1610            if (OtherMul->getNumOperands() != 2) {
1611              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1612                                                  OtherMul->op_begin()+OMulOp);
1613              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1614              InnerMul2 = getMulExpr(MulOps);
1615            }
1616            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1617            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1618            if (Ops.size() == 2) return OuterMul;
1619            Ops.erase(Ops.begin()+Idx);
1620            Ops.erase(Ops.begin()+OtherMulIdx-1);
1621            Ops.push_back(OuterMul);
1622            return getAddExpr(Ops);
1623          }
1624      }
1625    }
1626  }
1627
1628  // If there are any add recurrences in the operands list, see if any other
1629  // added values are loop invariant.  If so, we can fold them into the
1630  // recurrence.
1631  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1632    ++Idx;
1633
1634  // Scan over all recurrences, trying to fold loop invariants into them.
1635  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1636    // Scan all of the other operands to this add and add them to the vector if
1637    // they are loop invariant w.r.t. the recurrence.
1638    SmallVector<const SCEV *, 8> LIOps;
1639    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1640    const Loop *AddRecLoop = AddRec->getLoop();
1641    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1642      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1643        LIOps.push_back(Ops[i]);
1644        Ops.erase(Ops.begin()+i);
1645        --i; --e;
1646      }
1647
1648    // If we found some loop invariants, fold them into the recurrence.
1649    if (!LIOps.empty()) {
1650      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1651      LIOps.push_back(AddRec->getStart());
1652
1653      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1654                                             AddRec->op_end());
1655      AddRecOps[0] = getAddExpr(LIOps);
1656
1657      // Build the new addrec. Propagate the NUW and NSW flags if both the
1658      // outer add and the inner addrec are guaranteed to have no overflow.
1659      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1660                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1661                                         HasNSW && AddRec->hasNoSignedWrap());
1662
1663      // If all of the other operands were loop invariant, we are done.
1664      if (Ops.size() == 1) return NewRec;
1665
1666      // Otherwise, add the folded AddRec by the non-liv parts.
1667      for (unsigned i = 0;; ++i)
1668        if (Ops[i] == AddRec) {
1669          Ops[i] = NewRec;
1670          break;
1671        }
1672      return getAddExpr(Ops);
1673    }
1674
1675    // Okay, if there weren't any loop invariants to be folded, check to see if
1676    // there are multiple AddRec's with the same loop induction variable being
1677    // added together.  If so, we can fold them.
1678    for (unsigned OtherIdx = Idx+1;
1679         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1680         ++OtherIdx)
1681      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1682        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1683        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1684                                               AddRec->op_end());
1685        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1686             ++OtherIdx)
1687          if (const SCEVAddRecExpr *OtherAddRec =
1688                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1689            if (OtherAddRec->getLoop() == AddRecLoop) {
1690              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1691                   i != e; ++i) {
1692                if (i >= AddRecOps.size()) {
1693                  AddRecOps.append(OtherAddRec->op_begin()+i,
1694                                   OtherAddRec->op_end());
1695                  break;
1696                }
1697                AddRecOps[i] = getAddExpr(AddRecOps[i],
1698                                          OtherAddRec->getOperand(i));
1699              }
1700              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1701            }
1702        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1703        return getAddExpr(Ops);
1704      }
1705
1706    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1707    // next one.
1708  }
1709
1710  // Okay, it looks like we really DO need an add expr.  Check to see if we
1711  // already have one, otherwise create a new one.
1712  FoldingSetNodeID ID;
1713  ID.AddInteger(scAddExpr);
1714  ID.AddInteger(Ops.size());
1715  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1716    ID.AddPointer(Ops[i]);
1717  void *IP = 0;
1718  SCEVAddExpr *S =
1719    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1720  if (!S) {
1721    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1722    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1723    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1724                                        O, Ops.size());
1725    UniqueSCEVs.InsertNode(S, IP);
1726  }
1727  if (HasNUW) S->setHasNoUnsignedWrap(true);
1728  if (HasNSW) S->setHasNoSignedWrap(true);
1729  return S;
1730}
1731
1732/// getMulExpr - Get a canonical multiply expression, or something simpler if
1733/// possible.
1734const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1735                                        bool HasNUW, bool HasNSW) {
1736  assert(!Ops.empty() && "Cannot get empty mul!");
1737  if (Ops.size() == 1) return Ops[0];
1738#ifndef NDEBUG
1739  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1740  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1741    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1742           "SCEVMulExpr operand types don't match!");
1743#endif
1744
1745  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1746  if (!HasNUW && HasNSW) {
1747    bool All = true;
1748    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1749         E = Ops.end(); I != E; ++I)
1750      if (!isKnownNonNegative(*I)) {
1751        All = false;
1752        break;
1753      }
1754    if (All) HasNUW = true;
1755  }
1756
1757  // Sort by complexity, this groups all similar expression types together.
1758  GroupByComplexity(Ops, LI);
1759
1760  // If there are any constants, fold them together.
1761  unsigned Idx = 0;
1762  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1763
1764    // C1*(C2+V) -> C1*C2 + C1*V
1765    if (Ops.size() == 2)
1766      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1767        if (Add->getNumOperands() == 2 &&
1768            isa<SCEVConstant>(Add->getOperand(0)))
1769          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1770                            getMulExpr(LHSC, Add->getOperand(1)));
1771
1772    ++Idx;
1773    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1774      // We found two constants, fold them together!
1775      ConstantInt *Fold = ConstantInt::get(getContext(),
1776                                           LHSC->getValue()->getValue() *
1777                                           RHSC->getValue()->getValue());
1778      Ops[0] = getConstant(Fold);
1779      Ops.erase(Ops.begin()+1);  // Erase the folded element
1780      if (Ops.size() == 1) return Ops[0];
1781      LHSC = cast<SCEVConstant>(Ops[0]);
1782    }
1783
1784    // If we are left with a constant one being multiplied, strip it off.
1785    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1786      Ops.erase(Ops.begin());
1787      --Idx;
1788    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1789      // If we have a multiply of zero, it will always be zero.
1790      return Ops[0];
1791    } else if (Ops[0]->isAllOnesValue()) {
1792      // If we have a mul by -1 of an add, try distributing the -1 among the
1793      // add operands.
1794      if (Ops.size() == 2)
1795        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1796          SmallVector<const SCEV *, 4> NewOps;
1797          bool AnyFolded = false;
1798          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1799               I != E; ++I) {
1800            const SCEV *Mul = getMulExpr(Ops[0], *I);
1801            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1802            NewOps.push_back(Mul);
1803          }
1804          if (AnyFolded)
1805            return getAddExpr(NewOps);
1806        }
1807    }
1808
1809    if (Ops.size() == 1)
1810      return Ops[0];
1811  }
1812
1813  // Skip over the add expression until we get to a multiply.
1814  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1815    ++Idx;
1816
1817  // If there are mul operands inline them all into this expression.
1818  if (Idx < Ops.size()) {
1819    bool DeletedMul = false;
1820    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1821      // If we have an mul, expand the mul operands onto the end of the operands
1822      // list.
1823      Ops.erase(Ops.begin()+Idx);
1824      Ops.append(Mul->op_begin(), Mul->op_end());
1825      DeletedMul = true;
1826    }
1827
1828    // If we deleted at least one mul, we added operands to the end of the list,
1829    // and they are not necessarily sorted.  Recurse to resort and resimplify
1830    // any operands we just acquired.
1831    if (DeletedMul)
1832      return getMulExpr(Ops);
1833  }
1834
1835  // If there are any add recurrences in the operands list, see if any other
1836  // added values are loop invariant.  If so, we can fold them into the
1837  // recurrence.
1838  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1839    ++Idx;
1840
1841  // Scan over all recurrences, trying to fold loop invariants into them.
1842  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1843    // Scan all of the other operands to this mul and add them to the vector if
1844    // they are loop invariant w.r.t. the recurrence.
1845    SmallVector<const SCEV *, 8> LIOps;
1846    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1847    const Loop *AddRecLoop = AddRec->getLoop();
1848    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1849      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1850        LIOps.push_back(Ops[i]);
1851        Ops.erase(Ops.begin()+i);
1852        --i; --e;
1853      }
1854
1855    // If we found some loop invariants, fold them into the recurrence.
1856    if (!LIOps.empty()) {
1857      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1858      SmallVector<const SCEV *, 4> NewOps;
1859      NewOps.reserve(AddRec->getNumOperands());
1860      const SCEV *Scale = getMulExpr(LIOps);
1861      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1862        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1863
1864      // Build the new addrec. Propagate the NUW and NSW flags if both the
1865      // outer mul and the inner addrec are guaranteed to have no overflow.
1866      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1867                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1868                                         HasNSW && AddRec->hasNoSignedWrap());
1869
1870      // If all of the other operands were loop invariant, we are done.
1871      if (Ops.size() == 1) return NewRec;
1872
1873      // Otherwise, multiply the folded AddRec by the non-liv parts.
1874      for (unsigned i = 0;; ++i)
1875        if (Ops[i] == AddRec) {
1876          Ops[i] = NewRec;
1877          break;
1878        }
1879      return getMulExpr(Ops);
1880    }
1881
1882    // Okay, if there weren't any loop invariants to be folded, check to see if
1883    // there are multiple AddRec's with the same loop induction variable being
1884    // multiplied together.  If so, we can fold them.
1885    for (unsigned OtherIdx = Idx+1;
1886         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1887         ++OtherIdx)
1888      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1889        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1890        // {A*C,+,F*D + G*B + B*D}<L>
1891        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1892             ++OtherIdx)
1893          if (const SCEVAddRecExpr *OtherAddRec =
1894                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1895            if (OtherAddRec->getLoop() == AddRecLoop) {
1896              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1897              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1898              const SCEV *B = F->getStepRecurrence(*this);
1899              const SCEV *D = G->getStepRecurrence(*this);
1900              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1901                                               getMulExpr(G, B),
1902                                               getMulExpr(B, D));
1903              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1904                                                    F->getLoop());
1905              if (Ops.size() == 2) return NewAddRec;
1906              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1907              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1908            }
1909        return getMulExpr(Ops);
1910      }
1911
1912    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1913    // next one.
1914  }
1915
1916  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1917  // already have one, otherwise create a new one.
1918  FoldingSetNodeID ID;
1919  ID.AddInteger(scMulExpr);
1920  ID.AddInteger(Ops.size());
1921  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1922    ID.AddPointer(Ops[i]);
1923  void *IP = 0;
1924  SCEVMulExpr *S =
1925    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1926  if (!S) {
1927    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1928    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1929    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1930                                        O, Ops.size());
1931    UniqueSCEVs.InsertNode(S, IP);
1932  }
1933  if (HasNUW) S->setHasNoUnsignedWrap(true);
1934  if (HasNSW) S->setHasNoSignedWrap(true);
1935  return S;
1936}
1937
1938/// getUDivExpr - Get a canonical unsigned division expression, or something
1939/// simpler if possible.
1940const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1941                                         const SCEV *RHS) {
1942  assert(getEffectiveSCEVType(LHS->getType()) ==
1943         getEffectiveSCEVType(RHS->getType()) &&
1944         "SCEVUDivExpr operand types don't match!");
1945
1946  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1947    if (RHSC->getValue()->equalsInt(1))
1948      return LHS;                               // X udiv 1 --> x
1949    // If the denominator is zero, the result of the udiv is undefined. Don't
1950    // try to analyze it, because the resolution chosen here may differ from
1951    // the resolution chosen in other parts of the compiler.
1952    if (!RHSC->getValue()->isZero()) {
1953      // Determine if the division can be folded into the operands of
1954      // its operands.
1955      // TODO: Generalize this to non-constants by using known-bits information.
1956      const Type *Ty = LHS->getType();
1957      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1958      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1959      // For non-power-of-two values, effectively round the value up to the
1960      // nearest power of two.
1961      if (!RHSC->getValue()->getValue().isPowerOf2())
1962        ++MaxShiftAmt;
1963      const IntegerType *ExtTy =
1964        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1965      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1966      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1967        if (const SCEVConstant *Step =
1968              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1969          if (!Step->getValue()->getValue()
1970                .urem(RHSC->getValue()->getValue()) &&
1971              getZeroExtendExpr(AR, ExtTy) ==
1972              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1973                            getZeroExtendExpr(Step, ExtTy),
1974                            AR->getLoop())) {
1975            SmallVector<const SCEV *, 4> Operands;
1976            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1977              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1978            return getAddRecExpr(Operands, AR->getLoop());
1979          }
1980      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1981      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1982        SmallVector<const SCEV *, 4> Operands;
1983        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1984          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1985        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1986          // Find an operand that's safely divisible.
1987          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1988            const SCEV *Op = M->getOperand(i);
1989            const SCEV *Div = getUDivExpr(Op, RHSC);
1990            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1991              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1992                                                      M->op_end());
1993              Operands[i] = Div;
1994              return getMulExpr(Operands);
1995            }
1996          }
1997      }
1998      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1999      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2000        SmallVector<const SCEV *, 4> Operands;
2001        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2002          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2003        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2004          Operands.clear();
2005          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2006            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2007            if (isa<SCEVUDivExpr>(Op) ||
2008                getMulExpr(Op, RHS) != A->getOperand(i))
2009              break;
2010            Operands.push_back(Op);
2011          }
2012          if (Operands.size() == A->getNumOperands())
2013            return getAddExpr(Operands);
2014        }
2015      }
2016
2017      // Fold if both operands are constant.
2018      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2019        Constant *LHSCV = LHSC->getValue();
2020        Constant *RHSCV = RHSC->getValue();
2021        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2022                                                                   RHSCV)));
2023      }
2024    }
2025  }
2026
2027  FoldingSetNodeID ID;
2028  ID.AddInteger(scUDivExpr);
2029  ID.AddPointer(LHS);
2030  ID.AddPointer(RHS);
2031  void *IP = 0;
2032  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2033  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2034                                             LHS, RHS);
2035  UniqueSCEVs.InsertNode(S, IP);
2036  return S;
2037}
2038
2039
2040/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2041/// Simplify the expression as much as possible.
2042const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2043                                           const SCEV *Step, const Loop *L,
2044                                           bool HasNUW, bool HasNSW) {
2045  SmallVector<const SCEV *, 4> Operands;
2046  Operands.push_back(Start);
2047  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2048    if (StepChrec->getLoop() == L) {
2049      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2050      return getAddRecExpr(Operands, L);
2051    }
2052
2053  Operands.push_back(Step);
2054  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2055}
2056
2057/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2058/// Simplify the expression as much as possible.
2059const SCEV *
2060ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2061                               const Loop *L,
2062                               bool HasNUW, bool HasNSW) {
2063  if (Operands.size() == 1) return Operands[0];
2064#ifndef NDEBUG
2065  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2066  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2067    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2068           "SCEVAddRecExpr operand types don't match!");
2069#endif
2070
2071  if (Operands.back()->isZero()) {
2072    Operands.pop_back();
2073    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2074  }
2075
2076  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2077  // use that information to infer NUW and NSW flags. However, computing a
2078  // BE count requires calling getAddRecExpr, so we may not yet have a
2079  // meaningful BE count at this point (and if we don't, we'd be stuck
2080  // with a SCEVCouldNotCompute as the cached BE count).
2081
2082  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2083  if (!HasNUW && HasNSW) {
2084    bool All = true;
2085    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2086         E = Operands.end(); I != E; ++I)
2087      if (!isKnownNonNegative(*I)) {
2088        All = false;
2089        break;
2090      }
2091    if (All) HasNUW = true;
2092  }
2093
2094  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2095  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2096    const Loop *NestedLoop = NestedAR->getLoop();
2097    if (L->contains(NestedLoop) ?
2098        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2099        (!NestedLoop->contains(L) &&
2100         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2101      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2102                                                  NestedAR->op_end());
2103      Operands[0] = NestedAR->getStart();
2104      // AddRecs require their operands be loop-invariant with respect to their
2105      // loops. Don't perform this transformation if it would break this
2106      // requirement.
2107      bool AllInvariant = true;
2108      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2109        if (!Operands[i]->isLoopInvariant(L)) {
2110          AllInvariant = false;
2111          break;
2112        }
2113      if (AllInvariant) {
2114        NestedOperands[0] = getAddRecExpr(Operands, L);
2115        AllInvariant = true;
2116        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2117          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2118            AllInvariant = false;
2119            break;
2120          }
2121        if (AllInvariant)
2122          // Ok, both add recurrences are valid after the transformation.
2123          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2124      }
2125      // Reset Operands to its original state.
2126      Operands[0] = NestedAR;
2127    }
2128  }
2129
2130  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2131  // already have one, otherwise create a new one.
2132  FoldingSetNodeID ID;
2133  ID.AddInteger(scAddRecExpr);
2134  ID.AddInteger(Operands.size());
2135  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2136    ID.AddPointer(Operands[i]);
2137  ID.AddPointer(L);
2138  void *IP = 0;
2139  SCEVAddRecExpr *S =
2140    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2141  if (!S) {
2142    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2143    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2144    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2145                                           O, Operands.size(), L);
2146    UniqueSCEVs.InsertNode(S, IP);
2147  }
2148  if (HasNUW) S->setHasNoUnsignedWrap(true);
2149  if (HasNSW) S->setHasNoSignedWrap(true);
2150  return S;
2151}
2152
2153const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2154                                         const SCEV *RHS) {
2155  SmallVector<const SCEV *, 2> Ops;
2156  Ops.push_back(LHS);
2157  Ops.push_back(RHS);
2158  return getSMaxExpr(Ops);
2159}
2160
2161const SCEV *
2162ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2163  assert(!Ops.empty() && "Cannot get empty smax!");
2164  if (Ops.size() == 1) return Ops[0];
2165#ifndef NDEBUG
2166  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2167  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2168    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2169           "SCEVSMaxExpr operand types don't match!");
2170#endif
2171
2172  // Sort by complexity, this groups all similar expression types together.
2173  GroupByComplexity(Ops, LI);
2174
2175  // If there are any constants, fold them together.
2176  unsigned Idx = 0;
2177  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2178    ++Idx;
2179    assert(Idx < Ops.size());
2180    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2181      // We found two constants, fold them together!
2182      ConstantInt *Fold = ConstantInt::get(getContext(),
2183                              APIntOps::smax(LHSC->getValue()->getValue(),
2184                                             RHSC->getValue()->getValue()));
2185      Ops[0] = getConstant(Fold);
2186      Ops.erase(Ops.begin()+1);  // Erase the folded element
2187      if (Ops.size() == 1) return Ops[0];
2188      LHSC = cast<SCEVConstant>(Ops[0]);
2189    }
2190
2191    // If we are left with a constant minimum-int, strip it off.
2192    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2193      Ops.erase(Ops.begin());
2194      --Idx;
2195    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2196      // If we have an smax with a constant maximum-int, it will always be
2197      // maximum-int.
2198      return Ops[0];
2199    }
2200
2201    if (Ops.size() == 1) return Ops[0];
2202  }
2203
2204  // Find the first SMax
2205  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2206    ++Idx;
2207
2208  // Check to see if one of the operands is an SMax. If so, expand its operands
2209  // onto our operand list, and recurse to simplify.
2210  if (Idx < Ops.size()) {
2211    bool DeletedSMax = false;
2212    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2213      Ops.erase(Ops.begin()+Idx);
2214      Ops.append(SMax->op_begin(), SMax->op_end());
2215      DeletedSMax = true;
2216    }
2217
2218    if (DeletedSMax)
2219      return getSMaxExpr(Ops);
2220  }
2221
2222  // Okay, check to see if the same value occurs in the operand list twice.  If
2223  // so, delete one.  Since we sorted the list, these values are required to
2224  // be adjacent.
2225  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2226    //  X smax Y smax Y  -->  X smax Y
2227    //  X smax Y         -->  X, if X is always greater than Y
2228    if (Ops[i] == Ops[i+1] ||
2229        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2230      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2231      --i; --e;
2232    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2233      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2234      --i; --e;
2235    }
2236
2237  if (Ops.size() == 1) return Ops[0];
2238
2239  assert(!Ops.empty() && "Reduced smax down to nothing!");
2240
2241  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2242  // already have one, otherwise create a new one.
2243  FoldingSetNodeID ID;
2244  ID.AddInteger(scSMaxExpr);
2245  ID.AddInteger(Ops.size());
2246  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247    ID.AddPointer(Ops[i]);
2248  void *IP = 0;
2249  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2250  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2252  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253                                             O, Ops.size());
2254  UniqueSCEVs.InsertNode(S, IP);
2255  return S;
2256}
2257
2258const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259                                         const SCEV *RHS) {
2260  SmallVector<const SCEV *, 2> Ops;
2261  Ops.push_back(LHS);
2262  Ops.push_back(RHS);
2263  return getUMaxExpr(Ops);
2264}
2265
2266const SCEV *
2267ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2268  assert(!Ops.empty() && "Cannot get empty umax!");
2269  if (Ops.size() == 1) return Ops[0];
2270#ifndef NDEBUG
2271  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2272  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2273    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2274           "SCEVUMaxExpr operand types don't match!");
2275#endif
2276
2277  // Sort by complexity, this groups all similar expression types together.
2278  GroupByComplexity(Ops, LI);
2279
2280  // If there are any constants, fold them together.
2281  unsigned Idx = 0;
2282  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2283    ++Idx;
2284    assert(Idx < Ops.size());
2285    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2286      // We found two constants, fold them together!
2287      ConstantInt *Fold = ConstantInt::get(getContext(),
2288                              APIntOps::umax(LHSC->getValue()->getValue(),
2289                                             RHSC->getValue()->getValue()));
2290      Ops[0] = getConstant(Fold);
2291      Ops.erase(Ops.begin()+1);  // Erase the folded element
2292      if (Ops.size() == 1) return Ops[0];
2293      LHSC = cast<SCEVConstant>(Ops[0]);
2294    }
2295
2296    // If we are left with a constant minimum-int, strip it off.
2297    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298      Ops.erase(Ops.begin());
2299      --Idx;
2300    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301      // If we have an umax with a constant maximum-int, it will always be
2302      // maximum-int.
2303      return Ops[0];
2304    }
2305
2306    if (Ops.size() == 1) return Ops[0];
2307  }
2308
2309  // Find the first UMax
2310  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311    ++Idx;
2312
2313  // Check to see if one of the operands is a UMax. If so, expand its operands
2314  // onto our operand list, and recurse to simplify.
2315  if (Idx < Ops.size()) {
2316    bool DeletedUMax = false;
2317    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2318      Ops.erase(Ops.begin()+Idx);
2319      Ops.append(UMax->op_begin(), UMax->op_end());
2320      DeletedUMax = true;
2321    }
2322
2323    if (DeletedUMax)
2324      return getUMaxExpr(Ops);
2325  }
2326
2327  // Okay, check to see if the same value occurs in the operand list twice.  If
2328  // so, delete one.  Since we sorted the list, these values are required to
2329  // be adjacent.
2330  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2331    //  X umax Y umax Y  -->  X umax Y
2332    //  X umax Y         -->  X, if X is always greater than Y
2333    if (Ops[i] == Ops[i+1] ||
2334        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336      --i; --e;
2337    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2338      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339      --i; --e;
2340    }
2341
2342  if (Ops.size() == 1) return Ops[0];
2343
2344  assert(!Ops.empty() && "Reduced umax down to nothing!");
2345
2346  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2347  // already have one, otherwise create a new one.
2348  FoldingSetNodeID ID;
2349  ID.AddInteger(scUMaxExpr);
2350  ID.AddInteger(Ops.size());
2351  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2352    ID.AddPointer(Ops[i]);
2353  void *IP = 0;
2354  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2355  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2356  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2357  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2358                                             O, Ops.size());
2359  UniqueSCEVs.InsertNode(S, IP);
2360  return S;
2361}
2362
2363const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2364                                         const SCEV *RHS) {
2365  // ~smax(~x, ~y) == smin(x, y).
2366  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2367}
2368
2369const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2370                                         const SCEV *RHS) {
2371  // ~umax(~x, ~y) == umin(x, y)
2372  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2373}
2374
2375const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2376  // If we have TargetData, we can bypass creating a target-independent
2377  // constant expression and then folding it back into a ConstantInt.
2378  // This is just a compile-time optimization.
2379  if (TD)
2380    return getConstant(TD->getIntPtrType(getContext()),
2381                       TD->getTypeAllocSize(AllocTy));
2382
2383  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2384  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2385    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2386      C = Folded;
2387  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2388  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2389}
2390
2391const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2392  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2393  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2394    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2395      C = Folded;
2396  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2397  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2398}
2399
2400const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2401                                             unsigned FieldNo) {
2402  // If we have TargetData, we can bypass creating a target-independent
2403  // constant expression and then folding it back into a ConstantInt.
2404  // This is just a compile-time optimization.
2405  if (TD)
2406    return getConstant(TD->getIntPtrType(getContext()),
2407                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2408
2409  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2410  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2411    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2412      C = Folded;
2413  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2414  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2415}
2416
2417const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2418                                             Constant *FieldNo) {
2419  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2420  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2421    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2422      C = Folded;
2423  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2424  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2425}
2426
2427const SCEV *ScalarEvolution::getUnknown(Value *V) {
2428  // Don't attempt to do anything other than create a SCEVUnknown object
2429  // here.  createSCEV only calls getUnknown after checking for all other
2430  // interesting possibilities, and any other code that calls getUnknown
2431  // is doing so in order to hide a value from SCEV canonicalization.
2432
2433  FoldingSetNodeID ID;
2434  ID.AddInteger(scUnknown);
2435  ID.AddPointer(V);
2436  void *IP = 0;
2437  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2438    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2439           "Stale SCEVUnknown in uniquing map!");
2440    return S;
2441  }
2442  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2443                                            FirstUnknown);
2444  FirstUnknown = cast<SCEVUnknown>(S);
2445  UniqueSCEVs.InsertNode(S, IP);
2446  return S;
2447}
2448
2449//===----------------------------------------------------------------------===//
2450//            Basic SCEV Analysis and PHI Idiom Recognition Code
2451//
2452
2453/// isSCEVable - Test if values of the given type are analyzable within
2454/// the SCEV framework. This primarily includes integer types, and it
2455/// can optionally include pointer types if the ScalarEvolution class
2456/// has access to target-specific information.
2457bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2458  // Integers and pointers are always SCEVable.
2459  return Ty->isIntegerTy() || Ty->isPointerTy();
2460}
2461
2462/// getTypeSizeInBits - Return the size in bits of the specified type,
2463/// for which isSCEVable must return true.
2464uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2465  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2466
2467  // If we have a TargetData, use it!
2468  if (TD)
2469    return TD->getTypeSizeInBits(Ty);
2470
2471  // Integer types have fixed sizes.
2472  if (Ty->isIntegerTy())
2473    return Ty->getPrimitiveSizeInBits();
2474
2475  // The only other support type is pointer. Without TargetData, conservatively
2476  // assume pointers are 64-bit.
2477  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2478  return 64;
2479}
2480
2481/// getEffectiveSCEVType - Return a type with the same bitwidth as
2482/// the given type and which represents how SCEV will treat the given
2483/// type, for which isSCEVable must return true. For pointer types,
2484/// this is the pointer-sized integer type.
2485const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2486  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2487
2488  if (Ty->isIntegerTy())
2489    return Ty;
2490
2491  // The only other support type is pointer.
2492  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2493  if (TD) return TD->getIntPtrType(getContext());
2494
2495  // Without TargetData, conservatively assume pointers are 64-bit.
2496  return Type::getInt64Ty(getContext());
2497}
2498
2499const SCEV *ScalarEvolution::getCouldNotCompute() {
2500  return &CouldNotCompute;
2501}
2502
2503/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2504/// expression and create a new one.
2505const SCEV *ScalarEvolution::getSCEV(Value *V) {
2506  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2507
2508  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2509  if (I != ValueExprMap.end()) return I->second;
2510  const SCEV *S = createSCEV(V);
2511
2512  // The process of creating a SCEV for V may have caused other SCEVs
2513  // to have been created, so it's necessary to insert the new entry
2514  // from scratch, rather than trying to remember the insert position
2515  // above.
2516  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2517  return S;
2518}
2519
2520/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2521///
2522const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2523  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2524    return getConstant(
2525               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2526
2527  const Type *Ty = V->getType();
2528  Ty = getEffectiveSCEVType(Ty);
2529  return getMulExpr(V,
2530                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2531}
2532
2533/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2534const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2535  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2536    return getConstant(
2537                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2538
2539  const Type *Ty = V->getType();
2540  Ty = getEffectiveSCEVType(Ty);
2541  const SCEV *AllOnes =
2542                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2543  return getMinusSCEV(AllOnes, V);
2544}
2545
2546/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2547///
2548const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2549                                          const SCEV *RHS) {
2550  // Fast path: X - X --> 0.
2551  if (LHS == RHS)
2552    return getConstant(LHS->getType(), 0);
2553
2554  // X - Y --> X + -Y
2555  return getAddExpr(LHS, getNegativeSCEV(RHS));
2556}
2557
2558/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2559/// input value to the specified type.  If the type must be extended, it is zero
2560/// extended.
2561const SCEV *
2562ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2563                                         const Type *Ty) {
2564  const Type *SrcTy = V->getType();
2565  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2566         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2567         "Cannot truncate or zero extend with non-integer arguments!");
2568  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2569    return V;  // No conversion
2570  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2571    return getTruncateExpr(V, Ty);
2572  return getZeroExtendExpr(V, Ty);
2573}
2574
2575/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2576/// input value to the specified type.  If the type must be extended, it is sign
2577/// extended.
2578const SCEV *
2579ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2580                                         const Type *Ty) {
2581  const Type *SrcTy = V->getType();
2582  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2583         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2584         "Cannot truncate or zero extend with non-integer arguments!");
2585  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2586    return V;  // No conversion
2587  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2588    return getTruncateExpr(V, Ty);
2589  return getSignExtendExpr(V, Ty);
2590}
2591
2592/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2593/// input value to the specified type.  If the type must be extended, it is zero
2594/// extended.  The conversion must not be narrowing.
2595const SCEV *
2596ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2597  const Type *SrcTy = V->getType();
2598  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2599         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2600         "Cannot noop or zero extend with non-integer arguments!");
2601  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2602         "getNoopOrZeroExtend cannot truncate!");
2603  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2604    return V;  // No conversion
2605  return getZeroExtendExpr(V, Ty);
2606}
2607
2608/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2609/// input value to the specified type.  If the type must be extended, it is sign
2610/// extended.  The conversion must not be narrowing.
2611const SCEV *
2612ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2613  const Type *SrcTy = V->getType();
2614  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2615         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2616         "Cannot noop or sign extend with non-integer arguments!");
2617  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2618         "getNoopOrSignExtend cannot truncate!");
2619  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2620    return V;  // No conversion
2621  return getSignExtendExpr(V, Ty);
2622}
2623
2624/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2625/// the input value to the specified type. If the type must be extended,
2626/// it is extended with unspecified bits. The conversion must not be
2627/// narrowing.
2628const SCEV *
2629ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2630  const Type *SrcTy = V->getType();
2631  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2632         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2633         "Cannot noop or any extend with non-integer arguments!");
2634  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2635         "getNoopOrAnyExtend cannot truncate!");
2636  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2637    return V;  // No conversion
2638  return getAnyExtendExpr(V, Ty);
2639}
2640
2641/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2642/// input value to the specified type.  The conversion must not be widening.
2643const SCEV *
2644ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2645  const Type *SrcTy = V->getType();
2646  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2647         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2648         "Cannot truncate or noop with non-integer arguments!");
2649  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2650         "getTruncateOrNoop cannot extend!");
2651  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2652    return V;  // No conversion
2653  return getTruncateExpr(V, Ty);
2654}
2655
2656/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2657/// the types using zero-extension, and then perform a umax operation
2658/// with them.
2659const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2660                                                        const SCEV *RHS) {
2661  const SCEV *PromotedLHS = LHS;
2662  const SCEV *PromotedRHS = RHS;
2663
2664  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2665    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2666  else
2667    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2668
2669  return getUMaxExpr(PromotedLHS, PromotedRHS);
2670}
2671
2672/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2673/// the types using zero-extension, and then perform a umin operation
2674/// with them.
2675const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2676                                                        const SCEV *RHS) {
2677  const SCEV *PromotedLHS = LHS;
2678  const SCEV *PromotedRHS = RHS;
2679
2680  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2681    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2682  else
2683    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2684
2685  return getUMinExpr(PromotedLHS, PromotedRHS);
2686}
2687
2688/// PushDefUseChildren - Push users of the given Instruction
2689/// onto the given Worklist.
2690static void
2691PushDefUseChildren(Instruction *I,
2692                   SmallVectorImpl<Instruction *> &Worklist) {
2693  // Push the def-use children onto the Worklist stack.
2694  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2695       UI != UE; ++UI)
2696    Worklist.push_back(cast<Instruction>(*UI));
2697}
2698
2699/// ForgetSymbolicValue - This looks up computed SCEV values for all
2700/// instructions that depend on the given instruction and removes them from
2701/// the ValueExprMapType map if they reference SymName. This is used during PHI
2702/// resolution.
2703void
2704ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2705  SmallVector<Instruction *, 16> Worklist;
2706  PushDefUseChildren(PN, Worklist);
2707
2708  SmallPtrSet<Instruction *, 8> Visited;
2709  Visited.insert(PN);
2710  while (!Worklist.empty()) {
2711    Instruction *I = Worklist.pop_back_val();
2712    if (!Visited.insert(I)) continue;
2713
2714    ValueExprMapType::iterator It =
2715      ValueExprMap.find(static_cast<Value *>(I));
2716    if (It != ValueExprMap.end()) {
2717      // Short-circuit the def-use traversal if the symbolic name
2718      // ceases to appear in expressions.
2719      if (It->second != SymName && !It->second->hasOperand(SymName))
2720        continue;
2721
2722      // SCEVUnknown for a PHI either means that it has an unrecognized
2723      // structure, it's a PHI that's in the progress of being computed
2724      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2725      // additional loop trip count information isn't going to change anything.
2726      // In the second case, createNodeForPHI will perform the necessary
2727      // updates on its own when it gets to that point. In the third, we do
2728      // want to forget the SCEVUnknown.
2729      if (!isa<PHINode>(I) ||
2730          !isa<SCEVUnknown>(It->second) ||
2731          (I != PN && It->second == SymName)) {
2732        ValuesAtScopes.erase(It->second);
2733        ValueExprMap.erase(It);
2734      }
2735    }
2736
2737    PushDefUseChildren(I, Worklist);
2738  }
2739}
2740
2741/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2742/// a loop header, making it a potential recurrence, or it doesn't.
2743///
2744const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2745  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2746    if (L->getHeader() == PN->getParent()) {
2747      // The loop may have multiple entrances or multiple exits; we can analyze
2748      // this phi as an addrec if it has a unique entry value and a unique
2749      // backedge value.
2750      Value *BEValueV = 0, *StartValueV = 0;
2751      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2752        Value *V = PN->getIncomingValue(i);
2753        if (L->contains(PN->getIncomingBlock(i))) {
2754          if (!BEValueV) {
2755            BEValueV = V;
2756          } else if (BEValueV != V) {
2757            BEValueV = 0;
2758            break;
2759          }
2760        } else if (!StartValueV) {
2761          StartValueV = V;
2762        } else if (StartValueV != V) {
2763          StartValueV = 0;
2764          break;
2765        }
2766      }
2767      if (BEValueV && StartValueV) {
2768        // While we are analyzing this PHI node, handle its value symbolically.
2769        const SCEV *SymbolicName = getUnknown(PN);
2770        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2771               "PHI node already processed?");
2772        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2773
2774        // Using this symbolic name for the PHI, analyze the value coming around
2775        // the back-edge.
2776        const SCEV *BEValue = getSCEV(BEValueV);
2777
2778        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2779        // has a special value for the first iteration of the loop.
2780
2781        // If the value coming around the backedge is an add with the symbolic
2782        // value we just inserted, then we found a simple induction variable!
2783        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2784          // If there is a single occurrence of the symbolic value, replace it
2785          // with a recurrence.
2786          unsigned FoundIndex = Add->getNumOperands();
2787          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2788            if (Add->getOperand(i) == SymbolicName)
2789              if (FoundIndex == e) {
2790                FoundIndex = i;
2791                break;
2792              }
2793
2794          if (FoundIndex != Add->getNumOperands()) {
2795            // Create an add with everything but the specified operand.
2796            SmallVector<const SCEV *, 8> Ops;
2797            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2798              if (i != FoundIndex)
2799                Ops.push_back(Add->getOperand(i));
2800            const SCEV *Accum = getAddExpr(Ops);
2801
2802            // This is not a valid addrec if the step amount is varying each
2803            // loop iteration, but is not itself an addrec in this loop.
2804            if (Accum->isLoopInvariant(L) ||
2805                (isa<SCEVAddRecExpr>(Accum) &&
2806                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2807              bool HasNUW = false;
2808              bool HasNSW = false;
2809
2810              // If the increment doesn't overflow, then neither the addrec nor
2811              // the post-increment will overflow.
2812              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2813                if (OBO->hasNoUnsignedWrap())
2814                  HasNUW = true;
2815                if (OBO->hasNoSignedWrap())
2816                  HasNSW = true;
2817              }
2818
2819              const SCEV *StartVal = getSCEV(StartValueV);
2820              const SCEV *PHISCEV =
2821                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2822
2823              // Since the no-wrap flags are on the increment, they apply to the
2824              // post-incremented value as well.
2825              if (Accum->isLoopInvariant(L))
2826                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2827                                    Accum, L, HasNUW, HasNSW);
2828
2829              // Okay, for the entire analysis of this edge we assumed the PHI
2830              // to be symbolic.  We now need to go back and purge all of the
2831              // entries for the scalars that use the symbolic expression.
2832              ForgetSymbolicName(PN, SymbolicName);
2833              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2834              return PHISCEV;
2835            }
2836          }
2837        } else if (const SCEVAddRecExpr *AddRec =
2838                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2839          // Otherwise, this could be a loop like this:
2840          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2841          // In this case, j = {1,+,1}  and BEValue is j.
2842          // Because the other in-value of i (0) fits the evolution of BEValue
2843          // i really is an addrec evolution.
2844          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2845            const SCEV *StartVal = getSCEV(StartValueV);
2846
2847            // If StartVal = j.start - j.stride, we can use StartVal as the
2848            // initial step of the addrec evolution.
2849            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2850                                         AddRec->getOperand(1))) {
2851              const SCEV *PHISCEV =
2852                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2853
2854              // Okay, for the entire analysis of this edge we assumed the PHI
2855              // to be symbolic.  We now need to go back and purge all of the
2856              // entries for the scalars that use the symbolic expression.
2857              ForgetSymbolicName(PN, SymbolicName);
2858              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2859              return PHISCEV;
2860            }
2861          }
2862        }
2863      }
2864    }
2865
2866  // If the PHI has a single incoming value, follow that value, unless the
2867  // PHI's incoming blocks are in a different loop, in which case doing so
2868  // risks breaking LCSSA form. Instcombine would normally zap these, but
2869  // it doesn't have DominatorTree information, so it may miss cases.
2870  if (Value *V = PN->hasConstantValue(DT)) {
2871    bool AllSameLoop = true;
2872    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2873    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2874      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2875        AllSameLoop = false;
2876        break;
2877      }
2878    if (AllSameLoop)
2879      return getSCEV(V);
2880  }
2881
2882  // If it's not a loop phi, we can't handle it yet.
2883  return getUnknown(PN);
2884}
2885
2886/// createNodeForGEP - Expand GEP instructions into add and multiply
2887/// operations. This allows them to be analyzed by regular SCEV code.
2888///
2889const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2890
2891  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2892  // Add expression, because the Instruction may be guarded by control flow
2893  // and the no-overflow bits may not be valid for the expression in any
2894  // context.
2895
2896  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2897  Value *Base = GEP->getOperand(0);
2898  // Don't attempt to analyze GEPs over unsized objects.
2899  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2900    return getUnknown(GEP);
2901  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2902  gep_type_iterator GTI = gep_type_begin(GEP);
2903  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2904                                      E = GEP->op_end();
2905       I != E; ++I) {
2906    Value *Index = *I;
2907    // Compute the (potentially symbolic) offset in bytes for this index.
2908    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2909      // For a struct, add the member offset.
2910      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2911      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2912
2913      // Add the field offset to the running total offset.
2914      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2915    } else {
2916      // For an array, add the element offset, explicitly scaled.
2917      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2918      const SCEV *IndexS = getSCEV(Index);
2919      // Getelementptr indices are signed.
2920      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2921
2922      // Multiply the index by the element size to compute the element offset.
2923      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2924
2925      // Add the element offset to the running total offset.
2926      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2927    }
2928  }
2929
2930  // Get the SCEV for the GEP base.
2931  const SCEV *BaseS = getSCEV(Base);
2932
2933  // Add the total offset from all the GEP indices to the base.
2934  return getAddExpr(BaseS, TotalOffset);
2935}
2936
2937/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2938/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2939/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2940/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2941uint32_t
2942ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2943  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2944    return C->getValue()->getValue().countTrailingZeros();
2945
2946  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2947    return std::min(GetMinTrailingZeros(T->getOperand()),
2948                    (uint32_t)getTypeSizeInBits(T->getType()));
2949
2950  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2951    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2952    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2953             getTypeSizeInBits(E->getType()) : OpRes;
2954  }
2955
2956  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2957    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2958    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2959             getTypeSizeInBits(E->getType()) : OpRes;
2960  }
2961
2962  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2963    // The result is the min of all operands results.
2964    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2965    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2966      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2967    return MinOpRes;
2968  }
2969
2970  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2971    // The result is the sum of all operands results.
2972    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2973    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2974    for (unsigned i = 1, e = M->getNumOperands();
2975         SumOpRes != BitWidth && i != e; ++i)
2976      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2977                          BitWidth);
2978    return SumOpRes;
2979  }
2980
2981  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2982    // The result is the min of all operands results.
2983    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2984    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2985      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2986    return MinOpRes;
2987  }
2988
2989  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2990    // The result is the min of all operands results.
2991    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2992    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2993      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2994    return MinOpRes;
2995  }
2996
2997  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2998    // The result is the min of all operands results.
2999    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3000    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3001      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3002    return MinOpRes;
3003  }
3004
3005  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3006    // For a SCEVUnknown, ask ValueTracking.
3007    unsigned BitWidth = getTypeSizeInBits(U->getType());
3008    APInt Mask = APInt::getAllOnesValue(BitWidth);
3009    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3010    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3011    return Zeros.countTrailingOnes();
3012  }
3013
3014  // SCEVUDivExpr
3015  return 0;
3016}
3017
3018/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3019///
3020ConstantRange
3021ScalarEvolution::getUnsignedRange(const SCEV *S) {
3022
3023  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3024    return ConstantRange(C->getValue()->getValue());
3025
3026  unsigned BitWidth = getTypeSizeInBits(S->getType());
3027  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3028
3029  // If the value has known zeros, the maximum unsigned value will have those
3030  // known zeros as well.
3031  uint32_t TZ = GetMinTrailingZeros(S);
3032  if (TZ != 0)
3033    ConservativeResult =
3034      ConstantRange(APInt::getMinValue(BitWidth),
3035                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3036
3037  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3038    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3039    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3040      X = X.add(getUnsignedRange(Add->getOperand(i)));
3041    return ConservativeResult.intersectWith(X);
3042  }
3043
3044  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3045    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3046    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3047      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3048    return ConservativeResult.intersectWith(X);
3049  }
3050
3051  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3052    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3053    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3054      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3055    return ConservativeResult.intersectWith(X);
3056  }
3057
3058  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3059    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3060    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3061      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3062    return ConservativeResult.intersectWith(X);
3063  }
3064
3065  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3066    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3067    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3068    return ConservativeResult.intersectWith(X.udiv(Y));
3069  }
3070
3071  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3072    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3073    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3074  }
3075
3076  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3077    ConstantRange X = getUnsignedRange(SExt->getOperand());
3078    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3079  }
3080
3081  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3082    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3083    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3084  }
3085
3086  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3087    // If there's no unsigned wrap, the value will never be less than its
3088    // initial value.
3089    if (AddRec->hasNoUnsignedWrap())
3090      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3091        if (!C->getValue()->isZero())
3092          ConservativeResult =
3093            ConservativeResult.intersectWith(
3094              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3095
3096    // TODO: non-affine addrec
3097    if (AddRec->isAffine()) {
3098      const Type *Ty = AddRec->getType();
3099      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3100      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3101          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3102        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3103
3104        const SCEV *Start = AddRec->getStart();
3105        const SCEV *Step = AddRec->getStepRecurrence(*this);
3106
3107        ConstantRange StartRange = getUnsignedRange(Start);
3108        ConstantRange StepRange = getSignedRange(Step);
3109        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3110        ConstantRange EndRange =
3111          StartRange.add(MaxBECountRange.multiply(StepRange));
3112
3113        // Check for overflow. This must be done with ConstantRange arithmetic
3114        // because we could be called from within the ScalarEvolution overflow
3115        // checking code.
3116        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3117        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3118        ConstantRange ExtMaxBECountRange =
3119          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3120        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3121        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3122            ExtEndRange)
3123          return ConservativeResult;
3124
3125        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3126                                   EndRange.getUnsignedMin());
3127        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3128                                   EndRange.getUnsignedMax());
3129        if (Min.isMinValue() && Max.isMaxValue())
3130          return ConservativeResult;
3131        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3132      }
3133    }
3134
3135    return ConservativeResult;
3136  }
3137
3138  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3139    // For a SCEVUnknown, ask ValueTracking.
3140    APInt Mask = APInt::getAllOnesValue(BitWidth);
3141    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3142    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3143    if (Ones == ~Zeros + 1)
3144      return ConservativeResult;
3145    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3146  }
3147
3148  return ConservativeResult;
3149}
3150
3151/// getSignedRange - Determine the signed range for a particular SCEV.
3152///
3153ConstantRange
3154ScalarEvolution::getSignedRange(const SCEV *S) {
3155
3156  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3157    return ConstantRange(C->getValue()->getValue());
3158
3159  unsigned BitWidth = getTypeSizeInBits(S->getType());
3160  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3161
3162  // If the value has known zeros, the maximum signed value will have those
3163  // known zeros as well.
3164  uint32_t TZ = GetMinTrailingZeros(S);
3165  if (TZ != 0)
3166    ConservativeResult =
3167      ConstantRange(APInt::getSignedMinValue(BitWidth),
3168                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3169
3170  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3171    ConstantRange X = getSignedRange(Add->getOperand(0));
3172    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3173      X = X.add(getSignedRange(Add->getOperand(i)));
3174    return ConservativeResult.intersectWith(X);
3175  }
3176
3177  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3178    ConstantRange X = getSignedRange(Mul->getOperand(0));
3179    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3180      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3181    return ConservativeResult.intersectWith(X);
3182  }
3183
3184  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3185    ConstantRange X = getSignedRange(SMax->getOperand(0));
3186    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3187      X = X.smax(getSignedRange(SMax->getOperand(i)));
3188    return ConservativeResult.intersectWith(X);
3189  }
3190
3191  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3192    ConstantRange X = getSignedRange(UMax->getOperand(0));
3193    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3194      X = X.umax(getSignedRange(UMax->getOperand(i)));
3195    return ConservativeResult.intersectWith(X);
3196  }
3197
3198  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3199    ConstantRange X = getSignedRange(UDiv->getLHS());
3200    ConstantRange Y = getSignedRange(UDiv->getRHS());
3201    return ConservativeResult.intersectWith(X.udiv(Y));
3202  }
3203
3204  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3205    ConstantRange X = getSignedRange(ZExt->getOperand());
3206    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3207  }
3208
3209  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3210    ConstantRange X = getSignedRange(SExt->getOperand());
3211    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3212  }
3213
3214  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3215    ConstantRange X = getSignedRange(Trunc->getOperand());
3216    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3217  }
3218
3219  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3220    // If there's no signed wrap, and all the operands have the same sign or
3221    // zero, the value won't ever change sign.
3222    if (AddRec->hasNoSignedWrap()) {
3223      bool AllNonNeg = true;
3224      bool AllNonPos = true;
3225      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3226        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3227        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3228      }
3229      if (AllNonNeg)
3230        ConservativeResult = ConservativeResult.intersectWith(
3231          ConstantRange(APInt(BitWidth, 0),
3232                        APInt::getSignedMinValue(BitWidth)));
3233      else if (AllNonPos)
3234        ConservativeResult = ConservativeResult.intersectWith(
3235          ConstantRange(APInt::getSignedMinValue(BitWidth),
3236                        APInt(BitWidth, 1)));
3237    }
3238
3239    // TODO: non-affine addrec
3240    if (AddRec->isAffine()) {
3241      const Type *Ty = AddRec->getType();
3242      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3243      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3244          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3245        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3246
3247        const SCEV *Start = AddRec->getStart();
3248        const SCEV *Step = AddRec->getStepRecurrence(*this);
3249
3250        ConstantRange StartRange = getSignedRange(Start);
3251        ConstantRange StepRange = getSignedRange(Step);
3252        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3253        ConstantRange EndRange =
3254          StartRange.add(MaxBECountRange.multiply(StepRange));
3255
3256        // Check for overflow. This must be done with ConstantRange arithmetic
3257        // because we could be called from within the ScalarEvolution overflow
3258        // checking code.
3259        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3260        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3261        ConstantRange ExtMaxBECountRange =
3262          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3263        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3264        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3265            ExtEndRange)
3266          return ConservativeResult;
3267
3268        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3269                                   EndRange.getSignedMin());
3270        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3271                                   EndRange.getSignedMax());
3272        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3273          return ConservativeResult;
3274        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3275      }
3276    }
3277
3278    return ConservativeResult;
3279  }
3280
3281  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3282    // For a SCEVUnknown, ask ValueTracking.
3283    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3284      return ConservativeResult;
3285    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3286    if (NS == 1)
3287      return ConservativeResult;
3288    return ConservativeResult.intersectWith(
3289      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3290                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3291  }
3292
3293  return ConservativeResult;
3294}
3295
3296/// createSCEV - We know that there is no SCEV for the specified value.
3297/// Analyze the expression.
3298///
3299const SCEV *ScalarEvolution::createSCEV(Value *V) {
3300  if (!isSCEVable(V->getType()))
3301    return getUnknown(V);
3302
3303  unsigned Opcode = Instruction::UserOp1;
3304  if (Instruction *I = dyn_cast<Instruction>(V)) {
3305    Opcode = I->getOpcode();
3306
3307    // Don't attempt to analyze instructions in blocks that aren't
3308    // reachable. Such instructions don't matter, and they aren't required
3309    // to obey basic rules for definitions dominating uses which this
3310    // analysis depends on.
3311    if (!DT->isReachableFromEntry(I->getParent()))
3312      return getUnknown(V);
3313  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3314    Opcode = CE->getOpcode();
3315  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3316    return getConstant(CI);
3317  else if (isa<ConstantPointerNull>(V))
3318    return getConstant(V->getType(), 0);
3319  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3320    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3321  else
3322    return getUnknown(V);
3323
3324  Operator *U = cast<Operator>(V);
3325  switch (Opcode) {
3326  case Instruction::Add: {
3327    // The simple thing to do would be to just call getSCEV on both operands
3328    // and call getAddExpr with the result. However if we're looking at a
3329    // bunch of things all added together, this can be quite inefficient,
3330    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3331    // Instead, gather up all the operands and make a single getAddExpr call.
3332    // LLVM IR canonical form means we need only traverse the left operands.
3333    SmallVector<const SCEV *, 4> AddOps;
3334    AddOps.push_back(getSCEV(U->getOperand(1)));
3335    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3336      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3337      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3338        break;
3339      U = cast<Operator>(Op);
3340      const SCEV *Op1 = getSCEV(U->getOperand(1));
3341      if (Opcode == Instruction::Sub)
3342        AddOps.push_back(getNegativeSCEV(Op1));
3343      else
3344        AddOps.push_back(Op1);
3345    }
3346    AddOps.push_back(getSCEV(U->getOperand(0)));
3347    return getAddExpr(AddOps);
3348  }
3349  case Instruction::Mul: {
3350    // See the Add code above.
3351    SmallVector<const SCEV *, 4> MulOps;
3352    MulOps.push_back(getSCEV(U->getOperand(1)));
3353    for (Value *Op = U->getOperand(0);
3354         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3355         Op = U->getOperand(0)) {
3356      U = cast<Operator>(Op);
3357      MulOps.push_back(getSCEV(U->getOperand(1)));
3358    }
3359    MulOps.push_back(getSCEV(U->getOperand(0)));
3360    return getMulExpr(MulOps);
3361  }
3362  case Instruction::UDiv:
3363    return getUDivExpr(getSCEV(U->getOperand(0)),
3364                       getSCEV(U->getOperand(1)));
3365  case Instruction::Sub:
3366    return getMinusSCEV(getSCEV(U->getOperand(0)),
3367                        getSCEV(U->getOperand(1)));
3368  case Instruction::And:
3369    // For an expression like x&255 that merely masks off the high bits,
3370    // use zext(trunc(x)) as the SCEV expression.
3371    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3372      if (CI->isNullValue())
3373        return getSCEV(U->getOperand(1));
3374      if (CI->isAllOnesValue())
3375        return getSCEV(U->getOperand(0));
3376      const APInt &A = CI->getValue();
3377
3378      // Instcombine's ShrinkDemandedConstant may strip bits out of
3379      // constants, obscuring what would otherwise be a low-bits mask.
3380      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3381      // knew about to reconstruct a low-bits mask value.
3382      unsigned LZ = A.countLeadingZeros();
3383      unsigned BitWidth = A.getBitWidth();
3384      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3385      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3386      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3387
3388      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3389
3390      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3391        return
3392          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3393                                IntegerType::get(getContext(), BitWidth - LZ)),
3394                            U->getType());
3395    }
3396    break;
3397
3398  case Instruction::Or:
3399    // If the RHS of the Or is a constant, we may have something like:
3400    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3401    // optimizations will transparently handle this case.
3402    //
3403    // In order for this transformation to be safe, the LHS must be of the
3404    // form X*(2^n) and the Or constant must be less than 2^n.
3405    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3406      const SCEV *LHS = getSCEV(U->getOperand(0));
3407      const APInt &CIVal = CI->getValue();
3408      if (GetMinTrailingZeros(LHS) >=
3409          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3410        // Build a plain add SCEV.
3411        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3412        // If the LHS of the add was an addrec and it has no-wrap flags,
3413        // transfer the no-wrap flags, since an or won't introduce a wrap.
3414        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3415          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3416          if (OldAR->hasNoUnsignedWrap())
3417            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3418          if (OldAR->hasNoSignedWrap())
3419            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3420        }
3421        return S;
3422      }
3423    }
3424    break;
3425  case Instruction::Xor:
3426    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3427      // If the RHS of the xor is a signbit, then this is just an add.
3428      // Instcombine turns add of signbit into xor as a strength reduction step.
3429      if (CI->getValue().isSignBit())
3430        return getAddExpr(getSCEV(U->getOperand(0)),
3431                          getSCEV(U->getOperand(1)));
3432
3433      // If the RHS of xor is -1, then this is a not operation.
3434      if (CI->isAllOnesValue())
3435        return getNotSCEV(getSCEV(U->getOperand(0)));
3436
3437      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3438      // This is a variant of the check for xor with -1, and it handles
3439      // the case where instcombine has trimmed non-demanded bits out
3440      // of an xor with -1.
3441      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3442        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3443          if (BO->getOpcode() == Instruction::And &&
3444              LCI->getValue() == CI->getValue())
3445            if (const SCEVZeroExtendExpr *Z =
3446                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3447              const Type *UTy = U->getType();
3448              const SCEV *Z0 = Z->getOperand();
3449              const Type *Z0Ty = Z0->getType();
3450              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3451
3452              // If C is a low-bits mask, the zero extend is serving to
3453              // mask off the high bits. Complement the operand and
3454              // re-apply the zext.
3455              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3456                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3457
3458              // If C is a single bit, it may be in the sign-bit position
3459              // before the zero-extend. In this case, represent the xor
3460              // using an add, which is equivalent, and re-apply the zext.
3461              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3462              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3463                  Trunc.isSignBit())
3464                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3465                                         UTy);
3466            }
3467    }
3468    break;
3469
3470  case Instruction::Shl:
3471    // Turn shift left of a constant amount into a multiply.
3472    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3473      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3474
3475      // If the shift count is not less than the bitwidth, the result of
3476      // the shift is undefined. Don't try to analyze it, because the
3477      // resolution chosen here may differ from the resolution chosen in
3478      // other parts of the compiler.
3479      if (SA->getValue().uge(BitWidth))
3480        break;
3481
3482      Constant *X = ConstantInt::get(getContext(),
3483        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3484      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3485    }
3486    break;
3487
3488  case Instruction::LShr:
3489    // Turn logical shift right of a constant into a unsigned divide.
3490    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3491      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3492
3493      // If the shift count is not less than the bitwidth, the result of
3494      // the shift is undefined. Don't try to analyze it, because the
3495      // resolution chosen here may differ from the resolution chosen in
3496      // other parts of the compiler.
3497      if (SA->getValue().uge(BitWidth))
3498        break;
3499
3500      Constant *X = ConstantInt::get(getContext(),
3501        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3502      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3503    }
3504    break;
3505
3506  case Instruction::AShr:
3507    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3508    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3509      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3510        if (L->getOpcode() == Instruction::Shl &&
3511            L->getOperand(1) == U->getOperand(1)) {
3512          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3513
3514          // If the shift count is not less than the bitwidth, the result of
3515          // the shift is undefined. Don't try to analyze it, because the
3516          // resolution chosen here may differ from the resolution chosen in
3517          // other parts of the compiler.
3518          if (CI->getValue().uge(BitWidth))
3519            break;
3520
3521          uint64_t Amt = BitWidth - CI->getZExtValue();
3522          if (Amt == BitWidth)
3523            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3524          return
3525            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3526                                              IntegerType::get(getContext(),
3527                                                               Amt)),
3528                              U->getType());
3529        }
3530    break;
3531
3532  case Instruction::Trunc:
3533    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3534
3535  case Instruction::ZExt:
3536    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3537
3538  case Instruction::SExt:
3539    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3540
3541  case Instruction::BitCast:
3542    // BitCasts are no-op casts so we just eliminate the cast.
3543    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3544      return getSCEV(U->getOperand(0));
3545    break;
3546
3547  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3548  // lead to pointer expressions which cannot safely be expanded to GEPs,
3549  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3550  // simplifying integer expressions.
3551
3552  case Instruction::GetElementPtr:
3553    return createNodeForGEP(cast<GEPOperator>(U));
3554
3555  case Instruction::PHI:
3556    return createNodeForPHI(cast<PHINode>(U));
3557
3558  case Instruction::Select:
3559    // This could be a smax or umax that was lowered earlier.
3560    // Try to recover it.
3561    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3562      Value *LHS = ICI->getOperand(0);
3563      Value *RHS = ICI->getOperand(1);
3564      switch (ICI->getPredicate()) {
3565      case ICmpInst::ICMP_SLT:
3566      case ICmpInst::ICMP_SLE:
3567        std::swap(LHS, RHS);
3568        // fall through
3569      case ICmpInst::ICMP_SGT:
3570      case ICmpInst::ICMP_SGE:
3571        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3572        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3573        if (LHS->getType() == U->getType()) {
3574          const SCEV *LS = getSCEV(LHS);
3575          const SCEV *RS = getSCEV(RHS);
3576          const SCEV *LA = getSCEV(U->getOperand(1));
3577          const SCEV *RA = getSCEV(U->getOperand(2));
3578          const SCEV *LDiff = getMinusSCEV(LA, LS);
3579          const SCEV *RDiff = getMinusSCEV(RA, RS);
3580          if (LDiff == RDiff)
3581            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3582          LDiff = getMinusSCEV(LA, RS);
3583          RDiff = getMinusSCEV(RA, LS);
3584          if (LDiff == RDiff)
3585            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3586        }
3587        break;
3588      case ICmpInst::ICMP_ULT:
3589      case ICmpInst::ICMP_ULE:
3590        std::swap(LHS, RHS);
3591        // fall through
3592      case ICmpInst::ICMP_UGT:
3593      case ICmpInst::ICMP_UGE:
3594        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3595        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3596        if (LHS->getType() == U->getType()) {
3597          const SCEV *LS = getSCEV(LHS);
3598          const SCEV *RS = getSCEV(RHS);
3599          const SCEV *LA = getSCEV(U->getOperand(1));
3600          const SCEV *RA = getSCEV(U->getOperand(2));
3601          const SCEV *LDiff = getMinusSCEV(LA, LS);
3602          const SCEV *RDiff = getMinusSCEV(RA, RS);
3603          if (LDiff == RDiff)
3604            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3605          LDiff = getMinusSCEV(LA, RS);
3606          RDiff = getMinusSCEV(RA, LS);
3607          if (LDiff == RDiff)
3608            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3609        }
3610        break;
3611      case ICmpInst::ICMP_NE:
3612        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3613        if (LHS->getType() == U->getType() &&
3614            isa<ConstantInt>(RHS) &&
3615            cast<ConstantInt>(RHS)->isZero()) {
3616          const SCEV *One = getConstant(LHS->getType(), 1);
3617          const SCEV *LS = getSCEV(LHS);
3618          const SCEV *LA = getSCEV(U->getOperand(1));
3619          const SCEV *RA = getSCEV(U->getOperand(2));
3620          const SCEV *LDiff = getMinusSCEV(LA, LS);
3621          const SCEV *RDiff = getMinusSCEV(RA, One);
3622          if (LDiff == RDiff)
3623            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3624        }
3625        break;
3626      case ICmpInst::ICMP_EQ:
3627        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3628        if (LHS->getType() == U->getType() &&
3629            isa<ConstantInt>(RHS) &&
3630            cast<ConstantInt>(RHS)->isZero()) {
3631          const SCEV *One = getConstant(LHS->getType(), 1);
3632          const SCEV *LS = getSCEV(LHS);
3633          const SCEV *LA = getSCEV(U->getOperand(1));
3634          const SCEV *RA = getSCEV(U->getOperand(2));
3635          const SCEV *LDiff = getMinusSCEV(LA, One);
3636          const SCEV *RDiff = getMinusSCEV(RA, LS);
3637          if (LDiff == RDiff)
3638            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3639        }
3640        break;
3641      default:
3642        break;
3643      }
3644    }
3645
3646  default: // We cannot analyze this expression.
3647    break;
3648  }
3649
3650  return getUnknown(V);
3651}
3652
3653
3654
3655//===----------------------------------------------------------------------===//
3656//                   Iteration Count Computation Code
3657//
3658
3659/// getBackedgeTakenCount - If the specified loop has a predictable
3660/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3661/// object. The backedge-taken count is the number of times the loop header
3662/// will be branched to from within the loop. This is one less than the
3663/// trip count of the loop, since it doesn't count the first iteration,
3664/// when the header is branched to from outside the loop.
3665///
3666/// Note that it is not valid to call this method on a loop without a
3667/// loop-invariant backedge-taken count (see
3668/// hasLoopInvariantBackedgeTakenCount).
3669///
3670const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3671  return getBackedgeTakenInfo(L).Exact;
3672}
3673
3674/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3675/// return the least SCEV value that is known never to be less than the
3676/// actual backedge taken count.
3677const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3678  return getBackedgeTakenInfo(L).Max;
3679}
3680
3681/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3682/// onto the given Worklist.
3683static void
3684PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3685  BasicBlock *Header = L->getHeader();
3686
3687  // Push all Loop-header PHIs onto the Worklist stack.
3688  for (BasicBlock::iterator I = Header->begin();
3689       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3690    Worklist.push_back(PN);
3691}
3692
3693const ScalarEvolution::BackedgeTakenInfo &
3694ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3695  // Initially insert a CouldNotCompute for this loop. If the insertion
3696  // succeeds, proceed to actually compute a backedge-taken count and
3697  // update the value. The temporary CouldNotCompute value tells SCEV
3698  // code elsewhere that it shouldn't attempt to request a new
3699  // backedge-taken count, which could result in infinite recursion.
3700  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3701    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3702  if (Pair.second) {
3703    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3704    if (BECount.Exact != getCouldNotCompute()) {
3705      assert(BECount.Exact->isLoopInvariant(L) &&
3706             BECount.Max->isLoopInvariant(L) &&
3707             "Computed backedge-taken count isn't loop invariant for loop!");
3708      ++NumTripCountsComputed;
3709
3710      // Update the value in the map.
3711      Pair.first->second = BECount;
3712    } else {
3713      if (BECount.Max != getCouldNotCompute())
3714        // Update the value in the map.
3715        Pair.first->second = BECount;
3716      if (isa<PHINode>(L->getHeader()->begin()))
3717        // Only count loops that have phi nodes as not being computable.
3718        ++NumTripCountsNotComputed;
3719    }
3720
3721    // Now that we know more about the trip count for this loop, forget any
3722    // existing SCEV values for PHI nodes in this loop since they are only
3723    // conservative estimates made without the benefit of trip count
3724    // information. This is similar to the code in forgetLoop, except that
3725    // it handles SCEVUnknown PHI nodes specially.
3726    if (BECount.hasAnyInfo()) {
3727      SmallVector<Instruction *, 16> Worklist;
3728      PushLoopPHIs(L, Worklist);
3729
3730      SmallPtrSet<Instruction *, 8> Visited;
3731      while (!Worklist.empty()) {
3732        Instruction *I = Worklist.pop_back_val();
3733        if (!Visited.insert(I)) continue;
3734
3735        ValueExprMapType::iterator It =
3736          ValueExprMap.find(static_cast<Value *>(I));
3737        if (It != ValueExprMap.end()) {
3738          // SCEVUnknown for a PHI either means that it has an unrecognized
3739          // structure, or it's a PHI that's in the progress of being computed
3740          // by createNodeForPHI.  In the former case, additional loop trip
3741          // count information isn't going to change anything. In the later
3742          // case, createNodeForPHI will perform the necessary updates on its
3743          // own when it gets to that point.
3744          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3745            ValuesAtScopes.erase(It->second);
3746            ValueExprMap.erase(It);
3747          }
3748          if (PHINode *PN = dyn_cast<PHINode>(I))
3749            ConstantEvolutionLoopExitValue.erase(PN);
3750        }
3751
3752        PushDefUseChildren(I, Worklist);
3753      }
3754    }
3755  }
3756  return Pair.first->second;
3757}
3758
3759/// forgetLoop - This method should be called by the client when it has
3760/// changed a loop in a way that may effect ScalarEvolution's ability to
3761/// compute a trip count, or if the loop is deleted.
3762void ScalarEvolution::forgetLoop(const Loop *L) {
3763  // Drop any stored trip count value.
3764  BackedgeTakenCounts.erase(L);
3765
3766  // Drop information about expressions based on loop-header PHIs.
3767  SmallVector<Instruction *, 16> Worklist;
3768  PushLoopPHIs(L, Worklist);
3769
3770  SmallPtrSet<Instruction *, 8> Visited;
3771  while (!Worklist.empty()) {
3772    Instruction *I = Worklist.pop_back_val();
3773    if (!Visited.insert(I)) continue;
3774
3775    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3776    if (It != ValueExprMap.end()) {
3777      ValuesAtScopes.erase(It->second);
3778      ValueExprMap.erase(It);
3779      if (PHINode *PN = dyn_cast<PHINode>(I))
3780        ConstantEvolutionLoopExitValue.erase(PN);
3781    }
3782
3783    PushDefUseChildren(I, Worklist);
3784  }
3785}
3786
3787/// forgetValue - This method should be called by the client when it has
3788/// changed a value in a way that may effect its value, or which may
3789/// disconnect it from a def-use chain linking it to a loop.
3790void ScalarEvolution::forgetValue(Value *V) {
3791  Instruction *I = dyn_cast<Instruction>(V);
3792  if (!I) return;
3793
3794  // Drop information about expressions based on loop-header PHIs.
3795  SmallVector<Instruction *, 16> Worklist;
3796  Worklist.push_back(I);
3797
3798  SmallPtrSet<Instruction *, 8> Visited;
3799  while (!Worklist.empty()) {
3800    I = Worklist.pop_back_val();
3801    if (!Visited.insert(I)) continue;
3802
3803    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3804    if (It != ValueExprMap.end()) {
3805      ValuesAtScopes.erase(It->second);
3806      ValueExprMap.erase(It);
3807      if (PHINode *PN = dyn_cast<PHINode>(I))
3808        ConstantEvolutionLoopExitValue.erase(PN);
3809    }
3810
3811    PushDefUseChildren(I, Worklist);
3812  }
3813}
3814
3815/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3816/// of the specified loop will execute.
3817ScalarEvolution::BackedgeTakenInfo
3818ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3819  SmallVector<BasicBlock *, 8> ExitingBlocks;
3820  L->getExitingBlocks(ExitingBlocks);
3821
3822  // Examine all exits and pick the most conservative values.
3823  const SCEV *BECount = getCouldNotCompute();
3824  const SCEV *MaxBECount = getCouldNotCompute();
3825  bool CouldNotComputeBECount = false;
3826  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3827    BackedgeTakenInfo NewBTI =
3828      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3829
3830    if (NewBTI.Exact == getCouldNotCompute()) {
3831      // We couldn't compute an exact value for this exit, so
3832      // we won't be able to compute an exact value for the loop.
3833      CouldNotComputeBECount = true;
3834      BECount = getCouldNotCompute();
3835    } else if (!CouldNotComputeBECount) {
3836      if (BECount == getCouldNotCompute())
3837        BECount = NewBTI.Exact;
3838      else
3839        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3840    }
3841    if (MaxBECount == getCouldNotCompute())
3842      MaxBECount = NewBTI.Max;
3843    else if (NewBTI.Max != getCouldNotCompute())
3844      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3845  }
3846
3847  return BackedgeTakenInfo(BECount, MaxBECount);
3848}
3849
3850/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3851/// of the specified loop will execute if it exits via the specified block.
3852ScalarEvolution::BackedgeTakenInfo
3853ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3854                                                   BasicBlock *ExitingBlock) {
3855
3856  // Okay, we've chosen an exiting block.  See what condition causes us to
3857  // exit at this block.
3858  //
3859  // FIXME: we should be able to handle switch instructions (with a single exit)
3860  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3861  if (ExitBr == 0) return getCouldNotCompute();
3862  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3863
3864  // At this point, we know we have a conditional branch that determines whether
3865  // the loop is exited.  However, we don't know if the branch is executed each
3866  // time through the loop.  If not, then the execution count of the branch will
3867  // not be equal to the trip count of the loop.
3868  //
3869  // Currently we check for this by checking to see if the Exit branch goes to
3870  // the loop header.  If so, we know it will always execute the same number of
3871  // times as the loop.  We also handle the case where the exit block *is* the
3872  // loop header.  This is common for un-rotated loops.
3873  //
3874  // If both of those tests fail, walk up the unique predecessor chain to the
3875  // header, stopping if there is an edge that doesn't exit the loop. If the
3876  // header is reached, the execution count of the branch will be equal to the
3877  // trip count of the loop.
3878  //
3879  //  More extensive analysis could be done to handle more cases here.
3880  //
3881  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3882      ExitBr->getSuccessor(1) != L->getHeader() &&
3883      ExitBr->getParent() != L->getHeader()) {
3884    // The simple checks failed, try climbing the unique predecessor chain
3885    // up to the header.
3886    bool Ok = false;
3887    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3888      BasicBlock *Pred = BB->getUniquePredecessor();
3889      if (!Pred)
3890        return getCouldNotCompute();
3891      TerminatorInst *PredTerm = Pred->getTerminator();
3892      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3893        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3894        if (PredSucc == BB)
3895          continue;
3896        // If the predecessor has a successor that isn't BB and isn't
3897        // outside the loop, assume the worst.
3898        if (L->contains(PredSucc))
3899          return getCouldNotCompute();
3900      }
3901      if (Pred == L->getHeader()) {
3902        Ok = true;
3903        break;
3904      }
3905      BB = Pred;
3906    }
3907    if (!Ok)
3908      return getCouldNotCompute();
3909  }
3910
3911  // Proceed to the next level to examine the exit condition expression.
3912  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3913                                               ExitBr->getSuccessor(0),
3914                                               ExitBr->getSuccessor(1));
3915}
3916
3917/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3918/// backedge of the specified loop will execute if its exit condition
3919/// were a conditional branch of ExitCond, TBB, and FBB.
3920ScalarEvolution::BackedgeTakenInfo
3921ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3922                                                       Value *ExitCond,
3923                                                       BasicBlock *TBB,
3924                                                       BasicBlock *FBB) {
3925  // Check if the controlling expression for this loop is an And or Or.
3926  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3927    if (BO->getOpcode() == Instruction::And) {
3928      // Recurse on the operands of the and.
3929      BackedgeTakenInfo BTI0 =
3930        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3931      BackedgeTakenInfo BTI1 =
3932        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3933      const SCEV *BECount = getCouldNotCompute();
3934      const SCEV *MaxBECount = getCouldNotCompute();
3935      if (L->contains(TBB)) {
3936        // Both conditions must be true for the loop to continue executing.
3937        // Choose the less conservative count.
3938        if (BTI0.Exact == getCouldNotCompute() ||
3939            BTI1.Exact == getCouldNotCompute())
3940          BECount = getCouldNotCompute();
3941        else
3942          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3943        if (BTI0.Max == getCouldNotCompute())
3944          MaxBECount = BTI1.Max;
3945        else if (BTI1.Max == getCouldNotCompute())
3946          MaxBECount = BTI0.Max;
3947        else
3948          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3949      } else {
3950        // Both conditions must be true at the same time for the loop to exit.
3951        // For now, be conservative.
3952        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3953        if (BTI0.Max == BTI1.Max)
3954          MaxBECount = BTI0.Max;
3955        if (BTI0.Exact == BTI1.Exact)
3956          BECount = BTI0.Exact;
3957      }
3958
3959      return BackedgeTakenInfo(BECount, MaxBECount);
3960    }
3961    if (BO->getOpcode() == Instruction::Or) {
3962      // Recurse on the operands of the or.
3963      BackedgeTakenInfo BTI0 =
3964        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3965      BackedgeTakenInfo BTI1 =
3966        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3967      const SCEV *BECount = getCouldNotCompute();
3968      const SCEV *MaxBECount = getCouldNotCompute();
3969      if (L->contains(FBB)) {
3970        // Both conditions must be false for the loop to continue executing.
3971        // Choose the less conservative count.
3972        if (BTI0.Exact == getCouldNotCompute() ||
3973            BTI1.Exact == getCouldNotCompute())
3974          BECount = getCouldNotCompute();
3975        else
3976          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3977        if (BTI0.Max == getCouldNotCompute())
3978          MaxBECount = BTI1.Max;
3979        else if (BTI1.Max == getCouldNotCompute())
3980          MaxBECount = BTI0.Max;
3981        else
3982          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3983      } else {
3984        // Both conditions must be false at the same time for the loop to exit.
3985        // For now, be conservative.
3986        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3987        if (BTI0.Max == BTI1.Max)
3988          MaxBECount = BTI0.Max;
3989        if (BTI0.Exact == BTI1.Exact)
3990          BECount = BTI0.Exact;
3991      }
3992
3993      return BackedgeTakenInfo(BECount, MaxBECount);
3994    }
3995  }
3996
3997  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3998  // Proceed to the next level to examine the icmp.
3999  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4000    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
4001
4002  // Check for a constant condition. These are normally stripped out by
4003  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4004  // preserve the CFG and is temporarily leaving constant conditions
4005  // in place.
4006  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4007    if (L->contains(FBB) == !CI->getZExtValue())
4008      // The backedge is always taken.
4009      return getCouldNotCompute();
4010    else
4011      // The backedge is never taken.
4012      return getConstant(CI->getType(), 0);
4013  }
4014
4015  // If it's not an integer or pointer comparison then compute it the hard way.
4016  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4017}
4018
4019/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4020/// backedge of the specified loop will execute if its exit condition
4021/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4022ScalarEvolution::BackedgeTakenInfo
4023ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4024                                                           ICmpInst *ExitCond,
4025                                                           BasicBlock *TBB,
4026                                                           BasicBlock *FBB) {
4027
4028  // If the condition was exit on true, convert the condition to exit on false
4029  ICmpInst::Predicate Cond;
4030  if (!L->contains(FBB))
4031    Cond = ExitCond->getPredicate();
4032  else
4033    Cond = ExitCond->getInversePredicate();
4034
4035  // Handle common loops like: for (X = "string"; *X; ++X)
4036  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4037    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4038      BackedgeTakenInfo ItCnt =
4039        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4040      if (ItCnt.hasAnyInfo())
4041        return ItCnt;
4042    }
4043
4044  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4045  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4046
4047  // Try to evaluate any dependencies out of the loop.
4048  LHS = getSCEVAtScope(LHS, L);
4049  RHS = getSCEVAtScope(RHS, L);
4050
4051  // At this point, we would like to compute how many iterations of the
4052  // loop the predicate will return true for these inputs.
4053  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4054    // If there is a loop-invariant, force it into the RHS.
4055    std::swap(LHS, RHS);
4056    Cond = ICmpInst::getSwappedPredicate(Cond);
4057  }
4058
4059  // Simplify the operands before analyzing them.
4060  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4061
4062  // If we have a comparison of a chrec against a constant, try to use value
4063  // ranges to answer this query.
4064  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4065    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4066      if (AddRec->getLoop() == L) {
4067        // Form the constant range.
4068        ConstantRange CompRange(
4069            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4070
4071        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4072        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4073      }
4074
4075  switch (Cond) {
4076  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4077    // Convert to: while (X-Y != 0)
4078    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4079    if (BTI.hasAnyInfo()) return BTI;
4080    break;
4081  }
4082  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4083    // Convert to: while (X-Y == 0)
4084    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4085    if (BTI.hasAnyInfo()) return BTI;
4086    break;
4087  }
4088  case ICmpInst::ICMP_SLT: {
4089    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4090    if (BTI.hasAnyInfo()) return BTI;
4091    break;
4092  }
4093  case ICmpInst::ICMP_SGT: {
4094    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4095                                             getNotSCEV(RHS), L, true);
4096    if (BTI.hasAnyInfo()) return BTI;
4097    break;
4098  }
4099  case ICmpInst::ICMP_ULT: {
4100    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4101    if (BTI.hasAnyInfo()) return BTI;
4102    break;
4103  }
4104  case ICmpInst::ICMP_UGT: {
4105    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4106                                             getNotSCEV(RHS), L, false);
4107    if (BTI.hasAnyInfo()) return BTI;
4108    break;
4109  }
4110  default:
4111#if 0
4112    dbgs() << "ComputeBackedgeTakenCount ";
4113    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4114      dbgs() << "[unsigned] ";
4115    dbgs() << *LHS << "   "
4116         << Instruction::getOpcodeName(Instruction::ICmp)
4117         << "   " << *RHS << "\n";
4118#endif
4119    break;
4120  }
4121  return
4122    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4123}
4124
4125static ConstantInt *
4126EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4127                                ScalarEvolution &SE) {
4128  const SCEV *InVal = SE.getConstant(C);
4129  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4130  assert(isa<SCEVConstant>(Val) &&
4131         "Evaluation of SCEV at constant didn't fold correctly?");
4132  return cast<SCEVConstant>(Val)->getValue();
4133}
4134
4135/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4136/// and a GEP expression (missing the pointer index) indexing into it, return
4137/// the addressed element of the initializer or null if the index expression is
4138/// invalid.
4139static Constant *
4140GetAddressedElementFromGlobal(GlobalVariable *GV,
4141                              const std::vector<ConstantInt*> &Indices) {
4142  Constant *Init = GV->getInitializer();
4143  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4144    uint64_t Idx = Indices[i]->getZExtValue();
4145    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4146      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4147      Init = cast<Constant>(CS->getOperand(Idx));
4148    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4149      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4150      Init = cast<Constant>(CA->getOperand(Idx));
4151    } else if (isa<ConstantAggregateZero>(Init)) {
4152      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4153        assert(Idx < STy->getNumElements() && "Bad struct index!");
4154        Init = Constant::getNullValue(STy->getElementType(Idx));
4155      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4156        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4157        Init = Constant::getNullValue(ATy->getElementType());
4158      } else {
4159        llvm_unreachable("Unknown constant aggregate type!");
4160      }
4161      return 0;
4162    } else {
4163      return 0; // Unknown initializer type
4164    }
4165  }
4166  return Init;
4167}
4168
4169/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4170/// 'icmp op load X, cst', try to see if we can compute the backedge
4171/// execution count.
4172ScalarEvolution::BackedgeTakenInfo
4173ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4174                                                LoadInst *LI,
4175                                                Constant *RHS,
4176                                                const Loop *L,
4177                                                ICmpInst::Predicate predicate) {
4178  if (LI->isVolatile()) return getCouldNotCompute();
4179
4180  // Check to see if the loaded pointer is a getelementptr of a global.
4181  // TODO: Use SCEV instead of manually grubbing with GEPs.
4182  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4183  if (!GEP) return getCouldNotCompute();
4184
4185  // Make sure that it is really a constant global we are gepping, with an
4186  // initializer, and make sure the first IDX is really 0.
4187  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4188  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4189      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4190      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4191    return getCouldNotCompute();
4192
4193  // Okay, we allow one non-constant index into the GEP instruction.
4194  Value *VarIdx = 0;
4195  std::vector<ConstantInt*> Indexes;
4196  unsigned VarIdxNum = 0;
4197  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4198    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4199      Indexes.push_back(CI);
4200    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4201      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4202      VarIdx = GEP->getOperand(i);
4203      VarIdxNum = i-2;
4204      Indexes.push_back(0);
4205    }
4206
4207  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4208  // Check to see if X is a loop variant variable value now.
4209  const SCEV *Idx = getSCEV(VarIdx);
4210  Idx = getSCEVAtScope(Idx, L);
4211
4212  // We can only recognize very limited forms of loop index expressions, in
4213  // particular, only affine AddRec's like {C1,+,C2}.
4214  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4215  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4216      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4217      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4218    return getCouldNotCompute();
4219
4220  unsigned MaxSteps = MaxBruteForceIterations;
4221  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4222    ConstantInt *ItCst = ConstantInt::get(
4223                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4224    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4225
4226    // Form the GEP offset.
4227    Indexes[VarIdxNum] = Val;
4228
4229    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4230    if (Result == 0) break;  // Cannot compute!
4231
4232    // Evaluate the condition for this iteration.
4233    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4234    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4235    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4236#if 0
4237      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4238             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4239             << "***\n";
4240#endif
4241      ++NumArrayLenItCounts;
4242      return getConstant(ItCst);   // Found terminating iteration!
4243    }
4244  }
4245  return getCouldNotCompute();
4246}
4247
4248
4249/// CanConstantFold - Return true if we can constant fold an instruction of the
4250/// specified type, assuming that all operands were constants.
4251static bool CanConstantFold(const Instruction *I) {
4252  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4253      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4254    return true;
4255
4256  if (const CallInst *CI = dyn_cast<CallInst>(I))
4257    if (const Function *F = CI->getCalledFunction())
4258      return canConstantFoldCallTo(F);
4259  return false;
4260}
4261
4262/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4263/// in the loop that V is derived from.  We allow arbitrary operations along the
4264/// way, but the operands of an operation must either be constants or a value
4265/// derived from a constant PHI.  If this expression does not fit with these
4266/// constraints, return null.
4267static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4268  // If this is not an instruction, or if this is an instruction outside of the
4269  // loop, it can't be derived from a loop PHI.
4270  Instruction *I = dyn_cast<Instruction>(V);
4271  if (I == 0 || !L->contains(I)) return 0;
4272
4273  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4274    if (L->getHeader() == I->getParent())
4275      return PN;
4276    else
4277      // We don't currently keep track of the control flow needed to evaluate
4278      // PHIs, so we cannot handle PHIs inside of loops.
4279      return 0;
4280  }
4281
4282  // If we won't be able to constant fold this expression even if the operands
4283  // are constants, return early.
4284  if (!CanConstantFold(I)) return 0;
4285
4286  // Otherwise, we can evaluate this instruction if all of its operands are
4287  // constant or derived from a PHI node themselves.
4288  PHINode *PHI = 0;
4289  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4290    if (!isa<Constant>(I->getOperand(Op))) {
4291      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4292      if (P == 0) return 0;  // Not evolving from PHI
4293      if (PHI == 0)
4294        PHI = P;
4295      else if (PHI != P)
4296        return 0;  // Evolving from multiple different PHIs.
4297    }
4298
4299  // This is a expression evolving from a constant PHI!
4300  return PHI;
4301}
4302
4303/// EvaluateExpression - Given an expression that passes the
4304/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4305/// in the loop has the value PHIVal.  If we can't fold this expression for some
4306/// reason, return null.
4307static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4308                                    const TargetData *TD) {
4309  if (isa<PHINode>(V)) return PHIVal;
4310  if (Constant *C = dyn_cast<Constant>(V)) return C;
4311  Instruction *I = cast<Instruction>(V);
4312
4313  std::vector<Constant*> Operands(I->getNumOperands());
4314
4315  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4316    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4317    if (Operands[i] == 0) return 0;
4318  }
4319
4320  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4321    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4322                                           Operands[1], TD);
4323  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4324                                  &Operands[0], Operands.size(), TD);
4325}
4326
4327/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4328/// in the header of its containing loop, we know the loop executes a
4329/// constant number of times, and the PHI node is just a recurrence
4330/// involving constants, fold it.
4331Constant *
4332ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4333                                                   const APInt &BEs,
4334                                                   const Loop *L) {
4335  std::map<PHINode*, Constant*>::const_iterator I =
4336    ConstantEvolutionLoopExitValue.find(PN);
4337  if (I != ConstantEvolutionLoopExitValue.end())
4338    return I->second;
4339
4340  if (BEs.ugt(MaxBruteForceIterations))
4341    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4342
4343  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4344
4345  // Since the loop is canonicalized, the PHI node must have two entries.  One
4346  // entry must be a constant (coming in from outside of the loop), and the
4347  // second must be derived from the same PHI.
4348  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4349  Constant *StartCST =
4350    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4351  if (StartCST == 0)
4352    return RetVal = 0;  // Must be a constant.
4353
4354  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4355  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4356      !isa<Constant>(BEValue))
4357    return RetVal = 0;  // Not derived from same PHI.
4358
4359  // Execute the loop symbolically to determine the exit value.
4360  if (BEs.getActiveBits() >= 32)
4361    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4362
4363  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4364  unsigned IterationNum = 0;
4365  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4366    if (IterationNum == NumIterations)
4367      return RetVal = PHIVal;  // Got exit value!
4368
4369    // Compute the value of the PHI node for the next iteration.
4370    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4371    if (NextPHI == PHIVal)
4372      return RetVal = NextPHI;  // Stopped evolving!
4373    if (NextPHI == 0)
4374      return 0;        // Couldn't evaluate!
4375    PHIVal = NextPHI;
4376  }
4377}
4378
4379/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4380/// constant number of times (the condition evolves only from constants),
4381/// try to evaluate a few iterations of the loop until we get the exit
4382/// condition gets a value of ExitWhen (true or false).  If we cannot
4383/// evaluate the trip count of the loop, return getCouldNotCompute().
4384const SCEV *
4385ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4386                                                       Value *Cond,
4387                                                       bool ExitWhen) {
4388  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4389  if (PN == 0) return getCouldNotCompute();
4390
4391  // If the loop is canonicalized, the PHI will have exactly two entries.
4392  // That's the only form we support here.
4393  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4394
4395  // One entry must be a constant (coming in from outside of the loop), and the
4396  // second must be derived from the same PHI.
4397  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4398  Constant *StartCST =
4399    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4400  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4401
4402  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4403  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4404      !isa<Constant>(BEValue))
4405    return getCouldNotCompute();  // Not derived from same PHI.
4406
4407  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4408  // the loop symbolically to determine when the condition gets a value of
4409  // "ExitWhen".
4410  unsigned IterationNum = 0;
4411  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4412  for (Constant *PHIVal = StartCST;
4413       IterationNum != MaxIterations; ++IterationNum) {
4414    ConstantInt *CondVal =
4415      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4416
4417    // Couldn't symbolically evaluate.
4418    if (!CondVal) return getCouldNotCompute();
4419
4420    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4421      ++NumBruteForceTripCountsComputed;
4422      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4423    }
4424
4425    // Compute the value of the PHI node for the next iteration.
4426    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4427    if (NextPHI == 0 || NextPHI == PHIVal)
4428      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4429    PHIVal = NextPHI;
4430  }
4431
4432  // Too many iterations were needed to evaluate.
4433  return getCouldNotCompute();
4434}
4435
4436/// getSCEVAtScope - Return a SCEV expression for the specified value
4437/// at the specified scope in the program.  The L value specifies a loop
4438/// nest to evaluate the expression at, where null is the top-level or a
4439/// specified loop is immediately inside of the loop.
4440///
4441/// This method can be used to compute the exit value for a variable defined
4442/// in a loop by querying what the value will hold in the parent loop.
4443///
4444/// In the case that a relevant loop exit value cannot be computed, the
4445/// original value V is returned.
4446const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4447  // Check to see if we've folded this expression at this loop before.
4448  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4449  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4450    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4451  if (!Pair.second)
4452    return Pair.first->second ? Pair.first->second : V;
4453
4454  // Otherwise compute it.
4455  const SCEV *C = computeSCEVAtScope(V, L);
4456  ValuesAtScopes[V][L] = C;
4457  return C;
4458}
4459
4460const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4461  if (isa<SCEVConstant>(V)) return V;
4462
4463  // If this instruction is evolved from a constant-evolving PHI, compute the
4464  // exit value from the loop without using SCEVs.
4465  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4466    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4467      const Loop *LI = (*this->LI)[I->getParent()];
4468      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4469        if (PHINode *PN = dyn_cast<PHINode>(I))
4470          if (PN->getParent() == LI->getHeader()) {
4471            // Okay, there is no closed form solution for the PHI node.  Check
4472            // to see if the loop that contains it has a known backedge-taken
4473            // count.  If so, we may be able to force computation of the exit
4474            // value.
4475            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4476            if (const SCEVConstant *BTCC =
4477                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4478              // Okay, we know how many times the containing loop executes.  If
4479              // this is a constant evolving PHI node, get the final value at
4480              // the specified iteration number.
4481              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4482                                                   BTCC->getValue()->getValue(),
4483                                                               LI);
4484              if (RV) return getSCEV(RV);
4485            }
4486          }
4487
4488      // Okay, this is an expression that we cannot symbolically evaluate
4489      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4490      // the arguments into constants, and if so, try to constant propagate the
4491      // result.  This is particularly useful for computing loop exit values.
4492      if (CanConstantFold(I)) {
4493        SmallVector<Constant *, 4> Operands;
4494        bool MadeImprovement = false;
4495        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4496          Value *Op = I->getOperand(i);
4497          if (Constant *C = dyn_cast<Constant>(Op)) {
4498            Operands.push_back(C);
4499            continue;
4500          }
4501
4502          // If any of the operands is non-constant and if they are
4503          // non-integer and non-pointer, don't even try to analyze them
4504          // with scev techniques.
4505          if (!isSCEVable(Op->getType()))
4506            return V;
4507
4508          const SCEV *OrigV = getSCEV(Op);
4509          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4510          MadeImprovement |= OrigV != OpV;
4511
4512          Constant *C = 0;
4513          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4514            C = SC->getValue();
4515          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4516            C = dyn_cast<Constant>(SU->getValue());
4517          if (!C) return V;
4518          if (C->getType() != Op->getType())
4519            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4520                                                              Op->getType(),
4521                                                              false),
4522                                      C, Op->getType());
4523          Operands.push_back(C);
4524        }
4525
4526        // Check to see if getSCEVAtScope actually made an improvement.
4527        if (MadeImprovement) {
4528          Constant *C = 0;
4529          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4530            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4531                                                Operands[0], Operands[1], TD);
4532          else
4533            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4534                                         &Operands[0], Operands.size(), TD);
4535          if (!C) return V;
4536          return getSCEV(C);
4537        }
4538      }
4539    }
4540
4541    // This is some other type of SCEVUnknown, just return it.
4542    return V;
4543  }
4544
4545  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4546    // Avoid performing the look-up in the common case where the specified
4547    // expression has no loop-variant portions.
4548    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4549      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4550      if (OpAtScope != Comm->getOperand(i)) {
4551        // Okay, at least one of these operands is loop variant but might be
4552        // foldable.  Build a new instance of the folded commutative expression.
4553        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4554                                            Comm->op_begin()+i);
4555        NewOps.push_back(OpAtScope);
4556
4557        for (++i; i != e; ++i) {
4558          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4559          NewOps.push_back(OpAtScope);
4560        }
4561        if (isa<SCEVAddExpr>(Comm))
4562          return getAddExpr(NewOps);
4563        if (isa<SCEVMulExpr>(Comm))
4564          return getMulExpr(NewOps);
4565        if (isa<SCEVSMaxExpr>(Comm))
4566          return getSMaxExpr(NewOps);
4567        if (isa<SCEVUMaxExpr>(Comm))
4568          return getUMaxExpr(NewOps);
4569        llvm_unreachable("Unknown commutative SCEV type!");
4570      }
4571    }
4572    // If we got here, all operands are loop invariant.
4573    return Comm;
4574  }
4575
4576  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4577    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4578    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4579    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4580      return Div;   // must be loop invariant
4581    return getUDivExpr(LHS, RHS);
4582  }
4583
4584  // If this is a loop recurrence for a loop that does not contain L, then we
4585  // are dealing with the final value computed by the loop.
4586  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4587    // First, attempt to evaluate each operand.
4588    // Avoid performing the look-up in the common case where the specified
4589    // expression has no loop-variant portions.
4590    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4591      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4592      if (OpAtScope == AddRec->getOperand(i))
4593        continue;
4594
4595      // Okay, at least one of these operands is loop variant but might be
4596      // foldable.  Build a new instance of the folded commutative expression.
4597      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4598                                          AddRec->op_begin()+i);
4599      NewOps.push_back(OpAtScope);
4600      for (++i; i != e; ++i)
4601        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4602
4603      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4604      break;
4605    }
4606
4607    // If the scope is outside the addrec's loop, evaluate it by using the
4608    // loop exit value of the addrec.
4609    if (!AddRec->getLoop()->contains(L)) {
4610      // To evaluate this recurrence, we need to know how many times the AddRec
4611      // loop iterates.  Compute this now.
4612      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4613      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4614
4615      // Then, evaluate the AddRec.
4616      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4617    }
4618
4619    return AddRec;
4620  }
4621
4622  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4623    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4624    if (Op == Cast->getOperand())
4625      return Cast;  // must be loop invariant
4626    return getZeroExtendExpr(Op, Cast->getType());
4627  }
4628
4629  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4630    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4631    if (Op == Cast->getOperand())
4632      return Cast;  // must be loop invariant
4633    return getSignExtendExpr(Op, Cast->getType());
4634  }
4635
4636  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4637    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4638    if (Op == Cast->getOperand())
4639      return Cast;  // must be loop invariant
4640    return getTruncateExpr(Op, Cast->getType());
4641  }
4642
4643  llvm_unreachable("Unknown SCEV type!");
4644  return 0;
4645}
4646
4647/// getSCEVAtScope - This is a convenience function which does
4648/// getSCEVAtScope(getSCEV(V), L).
4649const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4650  return getSCEVAtScope(getSCEV(V), L);
4651}
4652
4653/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4654/// following equation:
4655///
4656///     A * X = B (mod N)
4657///
4658/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4659/// A and B isn't important.
4660///
4661/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4662static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4663                                               ScalarEvolution &SE) {
4664  uint32_t BW = A.getBitWidth();
4665  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4666  assert(A != 0 && "A must be non-zero.");
4667
4668  // 1. D = gcd(A, N)
4669  //
4670  // The gcd of A and N may have only one prime factor: 2. The number of
4671  // trailing zeros in A is its multiplicity
4672  uint32_t Mult2 = A.countTrailingZeros();
4673  // D = 2^Mult2
4674
4675  // 2. Check if B is divisible by D.
4676  //
4677  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4678  // is not less than multiplicity of this prime factor for D.
4679  if (B.countTrailingZeros() < Mult2)
4680    return SE.getCouldNotCompute();
4681
4682  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4683  // modulo (N / D).
4684  //
4685  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4686  // bit width during computations.
4687  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4688  APInt Mod(BW + 1, 0);
4689  Mod.set(BW - Mult2);  // Mod = N / D
4690  APInt I = AD.multiplicativeInverse(Mod);
4691
4692  // 4. Compute the minimum unsigned root of the equation:
4693  // I * (B / D) mod (N / D)
4694  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4695
4696  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4697  // bits.
4698  return SE.getConstant(Result.trunc(BW));
4699}
4700
4701/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4702/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4703/// might be the same) or two SCEVCouldNotCompute objects.
4704///
4705static std::pair<const SCEV *,const SCEV *>
4706SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4707  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4708  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4709  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4710  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4711
4712  // We currently can only solve this if the coefficients are constants.
4713  if (!LC || !MC || !NC) {
4714    const SCEV *CNC = SE.getCouldNotCompute();
4715    return std::make_pair(CNC, CNC);
4716  }
4717
4718  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4719  const APInt &L = LC->getValue()->getValue();
4720  const APInt &M = MC->getValue()->getValue();
4721  const APInt &N = NC->getValue()->getValue();
4722  APInt Two(BitWidth, 2);
4723  APInt Four(BitWidth, 4);
4724
4725  {
4726    using namespace APIntOps;
4727    const APInt& C = L;
4728    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4729    // The B coefficient is M-N/2
4730    APInt B(M);
4731    B -= sdiv(N,Two);
4732
4733    // The A coefficient is N/2
4734    APInt A(N.sdiv(Two));
4735
4736    // Compute the B^2-4ac term.
4737    APInt SqrtTerm(B);
4738    SqrtTerm *= B;
4739    SqrtTerm -= Four * (A * C);
4740
4741    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4742    // integer value or else APInt::sqrt() will assert.
4743    APInt SqrtVal(SqrtTerm.sqrt());
4744
4745    // Compute the two solutions for the quadratic formula.
4746    // The divisions must be performed as signed divisions.
4747    APInt NegB(-B);
4748    APInt TwoA( A << 1 );
4749    if (TwoA.isMinValue()) {
4750      const SCEV *CNC = SE.getCouldNotCompute();
4751      return std::make_pair(CNC, CNC);
4752    }
4753
4754    LLVMContext &Context = SE.getContext();
4755
4756    ConstantInt *Solution1 =
4757      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4758    ConstantInt *Solution2 =
4759      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4760
4761    return std::make_pair(SE.getConstant(Solution1),
4762                          SE.getConstant(Solution2));
4763    } // end APIntOps namespace
4764}
4765
4766/// HowFarToZero - Return the number of times a backedge comparing the specified
4767/// value to zero will execute.  If not computable, return CouldNotCompute.
4768ScalarEvolution::BackedgeTakenInfo
4769ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4770  // If the value is a constant
4771  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4772    // If the value is already zero, the branch will execute zero times.
4773    if (C->getValue()->isZero()) return C;
4774    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4775  }
4776
4777  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4778  if (!AddRec || AddRec->getLoop() != L)
4779    return getCouldNotCompute();
4780
4781  if (AddRec->isAffine()) {
4782    // If this is an affine expression, the execution count of this branch is
4783    // the minimum unsigned root of the following equation:
4784    //
4785    //     Start + Step*N = 0 (mod 2^BW)
4786    //
4787    // equivalent to:
4788    //
4789    //             Step*N = -Start (mod 2^BW)
4790    //
4791    // where BW is the common bit width of Start and Step.
4792
4793    // Get the initial value for the loop.
4794    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4795                                       L->getParentLoop());
4796    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4797                                      L->getParentLoop());
4798
4799    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4800      // For now we handle only constant steps.
4801
4802      // First, handle unitary steps.
4803      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4804        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4805      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4806        return Start;                           //    N = Start (as unsigned)
4807
4808      // Then, try to solve the above equation provided that Start is constant.
4809      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4810        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4811                                            -StartC->getValue()->getValue(),
4812                                            *this);
4813    }
4814  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4815    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4816    // the quadratic equation to solve it.
4817    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4818                                                                    *this);
4819    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4820    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4821    if (R1) {
4822#if 0
4823      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4824             << "  sol#2: " << *R2 << "\n";
4825#endif
4826      // Pick the smallest positive root value.
4827      if (ConstantInt *CB =
4828          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4829                                   R1->getValue(), R2->getValue()))) {
4830        if (CB->getZExtValue() == false)
4831          std::swap(R1, R2);   // R1 is the minimum root now.
4832
4833        // We can only use this value if the chrec ends up with an exact zero
4834        // value at this index.  When solving for "X*X != 5", for example, we
4835        // should not accept a root of 2.
4836        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4837        if (Val->isZero())
4838          return R1;  // We found a quadratic root!
4839      }
4840    }
4841  }
4842
4843  return getCouldNotCompute();
4844}
4845
4846/// HowFarToNonZero - Return the number of times a backedge checking the
4847/// specified value for nonzero will execute.  If not computable, return
4848/// CouldNotCompute
4849ScalarEvolution::BackedgeTakenInfo
4850ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4851  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4852  // handle them yet except for the trivial case.  This could be expanded in the
4853  // future as needed.
4854
4855  // If the value is a constant, check to see if it is known to be non-zero
4856  // already.  If so, the backedge will execute zero times.
4857  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4858    if (!C->getValue()->isNullValue())
4859      return getConstant(C->getType(), 0);
4860    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4861  }
4862
4863  // We could implement others, but I really doubt anyone writes loops like
4864  // this, and if they did, they would already be constant folded.
4865  return getCouldNotCompute();
4866}
4867
4868/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4869/// (which may not be an immediate predecessor) which has exactly one
4870/// successor from which BB is reachable, or null if no such block is
4871/// found.
4872///
4873std::pair<BasicBlock *, BasicBlock *>
4874ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4875  // If the block has a unique predecessor, then there is no path from the
4876  // predecessor to the block that does not go through the direct edge
4877  // from the predecessor to the block.
4878  if (BasicBlock *Pred = BB->getSinglePredecessor())
4879    return std::make_pair(Pred, BB);
4880
4881  // A loop's header is defined to be a block that dominates the loop.
4882  // If the header has a unique predecessor outside the loop, it must be
4883  // a block that has exactly one successor that can reach the loop.
4884  if (Loop *L = LI->getLoopFor(BB))
4885    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4886
4887  return std::pair<BasicBlock *, BasicBlock *>();
4888}
4889
4890/// HasSameValue - SCEV structural equivalence is usually sufficient for
4891/// testing whether two expressions are equal, however for the purposes of
4892/// looking for a condition guarding a loop, it can be useful to be a little
4893/// more general, since a front-end may have replicated the controlling
4894/// expression.
4895///
4896static bool HasSameValue(const SCEV *A, const SCEV *B) {
4897  // Quick check to see if they are the same SCEV.
4898  if (A == B) return true;
4899
4900  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4901  // two different instructions with the same value. Check for this case.
4902  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4903    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4904      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4905        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4906          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4907            return true;
4908
4909  // Otherwise assume they may have a different value.
4910  return false;
4911}
4912
4913/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4914/// predicate Pred. Return true iff any changes were made.
4915///
4916bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4917                                           const SCEV *&LHS, const SCEV *&RHS) {
4918  bool Changed = false;
4919
4920  // Canonicalize a constant to the right side.
4921  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4922    // Check for both operands constant.
4923    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4924      if (ConstantExpr::getICmp(Pred,
4925                                LHSC->getValue(),
4926                                RHSC->getValue())->isNullValue())
4927        goto trivially_false;
4928      else
4929        goto trivially_true;
4930    }
4931    // Otherwise swap the operands to put the constant on the right.
4932    std::swap(LHS, RHS);
4933    Pred = ICmpInst::getSwappedPredicate(Pred);
4934    Changed = true;
4935  }
4936
4937  // If we're comparing an addrec with a value which is loop-invariant in the
4938  // addrec's loop, put the addrec on the left. Also make a dominance check,
4939  // as both operands could be addrecs loop-invariant in each other's loop.
4940  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4941    const Loop *L = AR->getLoop();
4942    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4943      std::swap(LHS, RHS);
4944      Pred = ICmpInst::getSwappedPredicate(Pred);
4945      Changed = true;
4946    }
4947  }
4948
4949  // If there's a constant operand, canonicalize comparisons with boundary
4950  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4951  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4952    const APInt &RA = RC->getValue()->getValue();
4953    switch (Pred) {
4954    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4955    case ICmpInst::ICMP_EQ:
4956    case ICmpInst::ICMP_NE:
4957      break;
4958    case ICmpInst::ICMP_UGE:
4959      if ((RA - 1).isMinValue()) {
4960        Pred = ICmpInst::ICMP_NE;
4961        RHS = getConstant(RA - 1);
4962        Changed = true;
4963        break;
4964      }
4965      if (RA.isMaxValue()) {
4966        Pred = ICmpInst::ICMP_EQ;
4967        Changed = true;
4968        break;
4969      }
4970      if (RA.isMinValue()) goto trivially_true;
4971
4972      Pred = ICmpInst::ICMP_UGT;
4973      RHS = getConstant(RA - 1);
4974      Changed = true;
4975      break;
4976    case ICmpInst::ICMP_ULE:
4977      if ((RA + 1).isMaxValue()) {
4978        Pred = ICmpInst::ICMP_NE;
4979        RHS = getConstant(RA + 1);
4980        Changed = true;
4981        break;
4982      }
4983      if (RA.isMinValue()) {
4984        Pred = ICmpInst::ICMP_EQ;
4985        Changed = true;
4986        break;
4987      }
4988      if (RA.isMaxValue()) goto trivially_true;
4989
4990      Pred = ICmpInst::ICMP_ULT;
4991      RHS = getConstant(RA + 1);
4992      Changed = true;
4993      break;
4994    case ICmpInst::ICMP_SGE:
4995      if ((RA - 1).isMinSignedValue()) {
4996        Pred = ICmpInst::ICMP_NE;
4997        RHS = getConstant(RA - 1);
4998        Changed = true;
4999        break;
5000      }
5001      if (RA.isMaxSignedValue()) {
5002        Pred = ICmpInst::ICMP_EQ;
5003        Changed = true;
5004        break;
5005      }
5006      if (RA.isMinSignedValue()) goto trivially_true;
5007
5008      Pred = ICmpInst::ICMP_SGT;
5009      RHS = getConstant(RA - 1);
5010      Changed = true;
5011      break;
5012    case ICmpInst::ICMP_SLE:
5013      if ((RA + 1).isMaxSignedValue()) {
5014        Pred = ICmpInst::ICMP_NE;
5015        RHS = getConstant(RA + 1);
5016        Changed = true;
5017        break;
5018      }
5019      if (RA.isMinSignedValue()) {
5020        Pred = ICmpInst::ICMP_EQ;
5021        Changed = true;
5022        break;
5023      }
5024      if (RA.isMaxSignedValue()) goto trivially_true;
5025
5026      Pred = ICmpInst::ICMP_SLT;
5027      RHS = getConstant(RA + 1);
5028      Changed = true;
5029      break;
5030    case ICmpInst::ICMP_UGT:
5031      if (RA.isMinValue()) {
5032        Pred = ICmpInst::ICMP_NE;
5033        Changed = true;
5034        break;
5035      }
5036      if ((RA + 1).isMaxValue()) {
5037        Pred = ICmpInst::ICMP_EQ;
5038        RHS = getConstant(RA + 1);
5039        Changed = true;
5040        break;
5041      }
5042      if (RA.isMaxValue()) goto trivially_false;
5043      break;
5044    case ICmpInst::ICMP_ULT:
5045      if (RA.isMaxValue()) {
5046        Pred = ICmpInst::ICMP_NE;
5047        Changed = true;
5048        break;
5049      }
5050      if ((RA - 1).isMinValue()) {
5051        Pred = ICmpInst::ICMP_EQ;
5052        RHS = getConstant(RA - 1);
5053        Changed = true;
5054        break;
5055      }
5056      if (RA.isMinValue()) goto trivially_false;
5057      break;
5058    case ICmpInst::ICMP_SGT:
5059      if (RA.isMinSignedValue()) {
5060        Pred = ICmpInst::ICMP_NE;
5061        Changed = true;
5062        break;
5063      }
5064      if ((RA + 1).isMaxSignedValue()) {
5065        Pred = ICmpInst::ICMP_EQ;
5066        RHS = getConstant(RA + 1);
5067        Changed = true;
5068        break;
5069      }
5070      if (RA.isMaxSignedValue()) goto trivially_false;
5071      break;
5072    case ICmpInst::ICMP_SLT:
5073      if (RA.isMaxSignedValue()) {
5074        Pred = ICmpInst::ICMP_NE;
5075        Changed = true;
5076        break;
5077      }
5078      if ((RA - 1).isMinSignedValue()) {
5079       Pred = ICmpInst::ICMP_EQ;
5080       RHS = getConstant(RA - 1);
5081        Changed = true;
5082       break;
5083      }
5084      if (RA.isMinSignedValue()) goto trivially_false;
5085      break;
5086    }
5087  }
5088
5089  // Check for obvious equality.
5090  if (HasSameValue(LHS, RHS)) {
5091    if (ICmpInst::isTrueWhenEqual(Pred))
5092      goto trivially_true;
5093    if (ICmpInst::isFalseWhenEqual(Pred))
5094      goto trivially_false;
5095  }
5096
5097  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5098  // adding or subtracting 1 from one of the operands.
5099  switch (Pred) {
5100  case ICmpInst::ICMP_SLE:
5101    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5102      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5103                       /*HasNUW=*/false, /*HasNSW=*/true);
5104      Pred = ICmpInst::ICMP_SLT;
5105      Changed = true;
5106    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5107      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5108                       /*HasNUW=*/false, /*HasNSW=*/true);
5109      Pred = ICmpInst::ICMP_SLT;
5110      Changed = true;
5111    }
5112    break;
5113  case ICmpInst::ICMP_SGE:
5114    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5115      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5116                       /*HasNUW=*/false, /*HasNSW=*/true);
5117      Pred = ICmpInst::ICMP_SGT;
5118      Changed = true;
5119    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5120      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5121                       /*HasNUW=*/false, /*HasNSW=*/true);
5122      Pred = ICmpInst::ICMP_SGT;
5123      Changed = true;
5124    }
5125    break;
5126  case ICmpInst::ICMP_ULE:
5127    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5128      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5129                       /*HasNUW=*/true, /*HasNSW=*/false);
5130      Pred = ICmpInst::ICMP_ULT;
5131      Changed = true;
5132    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5133      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5134                       /*HasNUW=*/true, /*HasNSW=*/false);
5135      Pred = ICmpInst::ICMP_ULT;
5136      Changed = true;
5137    }
5138    break;
5139  case ICmpInst::ICMP_UGE:
5140    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5141      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5142                       /*HasNUW=*/true, /*HasNSW=*/false);
5143      Pred = ICmpInst::ICMP_UGT;
5144      Changed = true;
5145    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5146      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5147                       /*HasNUW=*/true, /*HasNSW=*/false);
5148      Pred = ICmpInst::ICMP_UGT;
5149      Changed = true;
5150    }
5151    break;
5152  default:
5153    break;
5154  }
5155
5156  // TODO: More simplifications are possible here.
5157
5158  return Changed;
5159
5160trivially_true:
5161  // Return 0 == 0.
5162  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5163  Pred = ICmpInst::ICMP_EQ;
5164  return true;
5165
5166trivially_false:
5167  // Return 0 != 0.
5168  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5169  Pred = ICmpInst::ICMP_NE;
5170  return true;
5171}
5172
5173bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5174  return getSignedRange(S).getSignedMax().isNegative();
5175}
5176
5177bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5178  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5179}
5180
5181bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5182  return !getSignedRange(S).getSignedMin().isNegative();
5183}
5184
5185bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5186  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5187}
5188
5189bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5190  return isKnownNegative(S) || isKnownPositive(S);
5191}
5192
5193bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5194                                       const SCEV *LHS, const SCEV *RHS) {
5195  // Canonicalize the inputs first.
5196  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5197
5198  // If LHS or RHS is an addrec, check to see if the condition is true in
5199  // every iteration of the loop.
5200  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5201    if (isLoopEntryGuardedByCond(
5202          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5203        isLoopBackedgeGuardedByCond(
5204          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5205      return true;
5206  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5207    if (isLoopEntryGuardedByCond(
5208          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5209        isLoopBackedgeGuardedByCond(
5210          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5211      return true;
5212
5213  // Otherwise see what can be done with known constant ranges.
5214  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5215}
5216
5217bool
5218ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5219                                            const SCEV *LHS, const SCEV *RHS) {
5220  if (HasSameValue(LHS, RHS))
5221    return ICmpInst::isTrueWhenEqual(Pred);
5222
5223  // This code is split out from isKnownPredicate because it is called from
5224  // within isLoopEntryGuardedByCond.
5225  switch (Pred) {
5226  default:
5227    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5228    break;
5229  case ICmpInst::ICMP_SGT:
5230    Pred = ICmpInst::ICMP_SLT;
5231    std::swap(LHS, RHS);
5232  case ICmpInst::ICMP_SLT: {
5233    ConstantRange LHSRange = getSignedRange(LHS);
5234    ConstantRange RHSRange = getSignedRange(RHS);
5235    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5236      return true;
5237    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5238      return false;
5239    break;
5240  }
5241  case ICmpInst::ICMP_SGE:
5242    Pred = ICmpInst::ICMP_SLE;
5243    std::swap(LHS, RHS);
5244  case ICmpInst::ICMP_SLE: {
5245    ConstantRange LHSRange = getSignedRange(LHS);
5246    ConstantRange RHSRange = getSignedRange(RHS);
5247    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5248      return true;
5249    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5250      return false;
5251    break;
5252  }
5253  case ICmpInst::ICMP_UGT:
5254    Pred = ICmpInst::ICMP_ULT;
5255    std::swap(LHS, RHS);
5256  case ICmpInst::ICMP_ULT: {
5257    ConstantRange LHSRange = getUnsignedRange(LHS);
5258    ConstantRange RHSRange = getUnsignedRange(RHS);
5259    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5260      return true;
5261    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5262      return false;
5263    break;
5264  }
5265  case ICmpInst::ICMP_UGE:
5266    Pred = ICmpInst::ICMP_ULE;
5267    std::swap(LHS, RHS);
5268  case ICmpInst::ICMP_ULE: {
5269    ConstantRange LHSRange = getUnsignedRange(LHS);
5270    ConstantRange RHSRange = getUnsignedRange(RHS);
5271    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5272      return true;
5273    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5274      return false;
5275    break;
5276  }
5277  case ICmpInst::ICMP_NE: {
5278    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5279      return true;
5280    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5281      return true;
5282
5283    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5284    if (isKnownNonZero(Diff))
5285      return true;
5286    break;
5287  }
5288  case ICmpInst::ICMP_EQ:
5289    // The check at the top of the function catches the case where
5290    // the values are known to be equal.
5291    break;
5292  }
5293  return false;
5294}
5295
5296/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5297/// protected by a conditional between LHS and RHS.  This is used to
5298/// to eliminate casts.
5299bool
5300ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5301                                             ICmpInst::Predicate Pred,
5302                                             const SCEV *LHS, const SCEV *RHS) {
5303  // Interpret a null as meaning no loop, where there is obviously no guard
5304  // (interprocedural conditions notwithstanding).
5305  if (!L) return true;
5306
5307  BasicBlock *Latch = L->getLoopLatch();
5308  if (!Latch)
5309    return false;
5310
5311  BranchInst *LoopContinuePredicate =
5312    dyn_cast<BranchInst>(Latch->getTerminator());
5313  if (!LoopContinuePredicate ||
5314      LoopContinuePredicate->isUnconditional())
5315    return false;
5316
5317  return isImpliedCond(Pred, LHS, RHS,
5318                       LoopContinuePredicate->getCondition(),
5319                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5320}
5321
5322/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5323/// by a conditional between LHS and RHS.  This is used to help avoid max
5324/// expressions in loop trip counts, and to eliminate casts.
5325bool
5326ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5327                                          ICmpInst::Predicate Pred,
5328                                          const SCEV *LHS, const SCEV *RHS) {
5329  // Interpret a null as meaning no loop, where there is obviously no guard
5330  // (interprocedural conditions notwithstanding).
5331  if (!L) return false;
5332
5333  // Starting at the loop predecessor, climb up the predecessor chain, as long
5334  // as there are predecessors that can be found that have unique successors
5335  // leading to the original header.
5336  for (std::pair<BasicBlock *, BasicBlock *>
5337         Pair(L->getLoopPredecessor(), L->getHeader());
5338       Pair.first;
5339       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5340
5341    BranchInst *LoopEntryPredicate =
5342      dyn_cast<BranchInst>(Pair.first->getTerminator());
5343    if (!LoopEntryPredicate ||
5344        LoopEntryPredicate->isUnconditional())
5345      continue;
5346
5347    if (isImpliedCond(Pred, LHS, RHS,
5348                      LoopEntryPredicate->getCondition(),
5349                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5350      return true;
5351  }
5352
5353  return false;
5354}
5355
5356/// isImpliedCond - Test whether the condition described by Pred, LHS,
5357/// and RHS is true whenever the given Cond value evaluates to true.
5358bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5359                                    const SCEV *LHS, const SCEV *RHS,
5360                                    Value *FoundCondValue,
5361                                    bool Inverse) {
5362  // Recursively handle And and Or conditions.
5363  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5364    if (BO->getOpcode() == Instruction::And) {
5365      if (!Inverse)
5366        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5367               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5368    } else if (BO->getOpcode() == Instruction::Or) {
5369      if (Inverse)
5370        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5371               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5372    }
5373  }
5374
5375  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5376  if (!ICI) return false;
5377
5378  // Bail if the ICmp's operands' types are wider than the needed type
5379  // before attempting to call getSCEV on them. This avoids infinite
5380  // recursion, since the analysis of widening casts can require loop
5381  // exit condition information for overflow checking, which would
5382  // lead back here.
5383  if (getTypeSizeInBits(LHS->getType()) <
5384      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5385    return false;
5386
5387  // Now that we found a conditional branch that dominates the loop, check to
5388  // see if it is the comparison we are looking for.
5389  ICmpInst::Predicate FoundPred;
5390  if (Inverse)
5391    FoundPred = ICI->getInversePredicate();
5392  else
5393    FoundPred = ICI->getPredicate();
5394
5395  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5396  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5397
5398  // Balance the types. The case where FoundLHS' type is wider than
5399  // LHS' type is checked for above.
5400  if (getTypeSizeInBits(LHS->getType()) >
5401      getTypeSizeInBits(FoundLHS->getType())) {
5402    if (CmpInst::isSigned(Pred)) {
5403      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5404      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5405    } else {
5406      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5407      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5408    }
5409  }
5410
5411  // Canonicalize the query to match the way instcombine will have
5412  // canonicalized the comparison.
5413  if (SimplifyICmpOperands(Pred, LHS, RHS))
5414    if (LHS == RHS)
5415      return CmpInst::isTrueWhenEqual(Pred);
5416  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5417    if (FoundLHS == FoundRHS)
5418      return CmpInst::isFalseWhenEqual(Pred);
5419
5420  // Check to see if we can make the LHS or RHS match.
5421  if (LHS == FoundRHS || RHS == FoundLHS) {
5422    if (isa<SCEVConstant>(RHS)) {
5423      std::swap(FoundLHS, FoundRHS);
5424      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5425    } else {
5426      std::swap(LHS, RHS);
5427      Pred = ICmpInst::getSwappedPredicate(Pred);
5428    }
5429  }
5430
5431  // Check whether the found predicate is the same as the desired predicate.
5432  if (FoundPred == Pred)
5433    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5434
5435  // Check whether swapping the found predicate makes it the same as the
5436  // desired predicate.
5437  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5438    if (isa<SCEVConstant>(RHS))
5439      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5440    else
5441      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5442                                   RHS, LHS, FoundLHS, FoundRHS);
5443  }
5444
5445  // Check whether the actual condition is beyond sufficient.
5446  if (FoundPred == ICmpInst::ICMP_EQ)
5447    if (ICmpInst::isTrueWhenEqual(Pred))
5448      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5449        return true;
5450  if (Pred == ICmpInst::ICMP_NE)
5451    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5452      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5453        return true;
5454
5455  // Otherwise assume the worst.
5456  return false;
5457}
5458
5459/// isImpliedCondOperands - Test whether the condition described by Pred,
5460/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5461/// and FoundRHS is true.
5462bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5463                                            const SCEV *LHS, const SCEV *RHS,
5464                                            const SCEV *FoundLHS,
5465                                            const SCEV *FoundRHS) {
5466  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5467                                     FoundLHS, FoundRHS) ||
5468         // ~x < ~y --> x > y
5469         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5470                                     getNotSCEV(FoundRHS),
5471                                     getNotSCEV(FoundLHS));
5472}
5473
5474/// isImpliedCondOperandsHelper - Test whether the condition described by
5475/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5476/// FoundLHS, and FoundRHS is true.
5477bool
5478ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5479                                             const SCEV *LHS, const SCEV *RHS,
5480                                             const SCEV *FoundLHS,
5481                                             const SCEV *FoundRHS) {
5482  switch (Pred) {
5483  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5484  case ICmpInst::ICMP_EQ:
5485  case ICmpInst::ICMP_NE:
5486    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5487      return true;
5488    break;
5489  case ICmpInst::ICMP_SLT:
5490  case ICmpInst::ICMP_SLE:
5491    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5492        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5493      return true;
5494    break;
5495  case ICmpInst::ICMP_SGT:
5496  case ICmpInst::ICMP_SGE:
5497    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5498        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5499      return true;
5500    break;
5501  case ICmpInst::ICMP_ULT:
5502  case ICmpInst::ICMP_ULE:
5503    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5504        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5505      return true;
5506    break;
5507  case ICmpInst::ICMP_UGT:
5508  case ICmpInst::ICMP_UGE:
5509    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5510        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5511      return true;
5512    break;
5513  }
5514
5515  return false;
5516}
5517
5518/// getBECount - Subtract the end and start values and divide by the step,
5519/// rounding up, to get the number of times the backedge is executed. Return
5520/// CouldNotCompute if an intermediate computation overflows.
5521const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5522                                        const SCEV *End,
5523                                        const SCEV *Step,
5524                                        bool NoWrap) {
5525  assert(!isKnownNegative(Step) &&
5526         "This code doesn't handle negative strides yet!");
5527
5528  const Type *Ty = Start->getType();
5529  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5530  const SCEV *Diff = getMinusSCEV(End, Start);
5531  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5532
5533  // Add an adjustment to the difference between End and Start so that
5534  // the division will effectively round up.
5535  const SCEV *Add = getAddExpr(Diff, RoundUp);
5536
5537  if (!NoWrap) {
5538    // Check Add for unsigned overflow.
5539    // TODO: More sophisticated things could be done here.
5540    const Type *WideTy = IntegerType::get(getContext(),
5541                                          getTypeSizeInBits(Ty) + 1);
5542    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5543    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5544    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5545    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5546      return getCouldNotCompute();
5547  }
5548
5549  return getUDivExpr(Add, Step);
5550}
5551
5552/// HowManyLessThans - Return the number of times a backedge containing the
5553/// specified less-than comparison will execute.  If not computable, return
5554/// CouldNotCompute.
5555ScalarEvolution::BackedgeTakenInfo
5556ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5557                                  const Loop *L, bool isSigned) {
5558  // Only handle:  "ADDREC < LoopInvariant".
5559  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5560
5561  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5562  if (!AddRec || AddRec->getLoop() != L)
5563    return getCouldNotCompute();
5564
5565  // Check to see if we have a flag which makes analysis easy.
5566  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5567                           AddRec->hasNoUnsignedWrap();
5568
5569  if (AddRec->isAffine()) {
5570    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5571    const SCEV *Step = AddRec->getStepRecurrence(*this);
5572
5573    if (Step->isZero())
5574      return getCouldNotCompute();
5575    if (Step->isOne()) {
5576      // With unit stride, the iteration never steps past the limit value.
5577    } else if (isKnownPositive(Step)) {
5578      // Test whether a positive iteration can step past the limit
5579      // value and past the maximum value for its type in a single step.
5580      // Note that it's not sufficient to check NoWrap here, because even
5581      // though the value after a wrap is undefined, it's not undefined
5582      // behavior, so if wrap does occur, the loop could either terminate or
5583      // loop infinitely, but in either case, the loop is guaranteed to
5584      // iterate at least until the iteration where the wrapping occurs.
5585      const SCEV *One = getConstant(Step->getType(), 1);
5586      if (isSigned) {
5587        APInt Max = APInt::getSignedMaxValue(BitWidth);
5588        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5589              .slt(getSignedRange(RHS).getSignedMax()))
5590          return getCouldNotCompute();
5591      } else {
5592        APInt Max = APInt::getMaxValue(BitWidth);
5593        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5594              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5595          return getCouldNotCompute();
5596      }
5597    } else
5598      // TODO: Handle negative strides here and below.
5599      return getCouldNotCompute();
5600
5601    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5602    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5603    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5604    // treat m-n as signed nor unsigned due to overflow possibility.
5605
5606    // First, we get the value of the LHS in the first iteration: n
5607    const SCEV *Start = AddRec->getOperand(0);
5608
5609    // Determine the minimum constant start value.
5610    const SCEV *MinStart = getConstant(isSigned ?
5611      getSignedRange(Start).getSignedMin() :
5612      getUnsignedRange(Start).getUnsignedMin());
5613
5614    // If we know that the condition is true in order to enter the loop,
5615    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5616    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5617    // the division must round up.
5618    const SCEV *End = RHS;
5619    if (!isLoopEntryGuardedByCond(L,
5620                                  isSigned ? ICmpInst::ICMP_SLT :
5621                                             ICmpInst::ICMP_ULT,
5622                                  getMinusSCEV(Start, Step), RHS))
5623      End = isSigned ? getSMaxExpr(RHS, Start)
5624                     : getUMaxExpr(RHS, Start);
5625
5626    // Determine the maximum constant end value.
5627    const SCEV *MaxEnd = getConstant(isSigned ?
5628      getSignedRange(End).getSignedMax() :
5629      getUnsignedRange(End).getUnsignedMax());
5630
5631    // If MaxEnd is within a step of the maximum integer value in its type,
5632    // adjust it down to the minimum value which would produce the same effect.
5633    // This allows the subsequent ceiling division of (N+(step-1))/step to
5634    // compute the correct value.
5635    const SCEV *StepMinusOne = getMinusSCEV(Step,
5636                                            getConstant(Step->getType(), 1));
5637    MaxEnd = isSigned ?
5638      getSMinExpr(MaxEnd,
5639                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5640                               StepMinusOne)) :
5641      getUMinExpr(MaxEnd,
5642                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5643                               StepMinusOne));
5644
5645    // Finally, we subtract these two values and divide, rounding up, to get
5646    // the number of times the backedge is executed.
5647    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5648
5649    // The maximum backedge count is similar, except using the minimum start
5650    // value and the maximum end value.
5651    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5652
5653    return BackedgeTakenInfo(BECount, MaxBECount);
5654  }
5655
5656  return getCouldNotCompute();
5657}
5658
5659/// getNumIterationsInRange - Return the number of iterations of this loop that
5660/// produce values in the specified constant range.  Another way of looking at
5661/// this is that it returns the first iteration number where the value is not in
5662/// the condition, thus computing the exit count. If the iteration count can't
5663/// be computed, an instance of SCEVCouldNotCompute is returned.
5664const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5665                                                    ScalarEvolution &SE) const {
5666  if (Range.isFullSet())  // Infinite loop.
5667    return SE.getCouldNotCompute();
5668
5669  // If the start is a non-zero constant, shift the range to simplify things.
5670  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5671    if (!SC->getValue()->isZero()) {
5672      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5673      Operands[0] = SE.getConstant(SC->getType(), 0);
5674      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5675      if (const SCEVAddRecExpr *ShiftedAddRec =
5676            dyn_cast<SCEVAddRecExpr>(Shifted))
5677        return ShiftedAddRec->getNumIterationsInRange(
5678                           Range.subtract(SC->getValue()->getValue()), SE);
5679      // This is strange and shouldn't happen.
5680      return SE.getCouldNotCompute();
5681    }
5682
5683  // The only time we can solve this is when we have all constant indices.
5684  // Otherwise, we cannot determine the overflow conditions.
5685  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5686    if (!isa<SCEVConstant>(getOperand(i)))
5687      return SE.getCouldNotCompute();
5688
5689
5690  // Okay at this point we know that all elements of the chrec are constants and
5691  // that the start element is zero.
5692
5693  // First check to see if the range contains zero.  If not, the first
5694  // iteration exits.
5695  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5696  if (!Range.contains(APInt(BitWidth, 0)))
5697    return SE.getConstant(getType(), 0);
5698
5699  if (isAffine()) {
5700    // If this is an affine expression then we have this situation:
5701    //   Solve {0,+,A} in Range  ===  Ax in Range
5702
5703    // We know that zero is in the range.  If A is positive then we know that
5704    // the upper value of the range must be the first possible exit value.
5705    // If A is negative then the lower of the range is the last possible loop
5706    // value.  Also note that we already checked for a full range.
5707    APInt One(BitWidth,1);
5708    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5709    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5710
5711    // The exit value should be (End+A)/A.
5712    APInt ExitVal = (End + A).udiv(A);
5713    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5714
5715    // Evaluate at the exit value.  If we really did fall out of the valid
5716    // range, then we computed our trip count, otherwise wrap around or other
5717    // things must have happened.
5718    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5719    if (Range.contains(Val->getValue()))
5720      return SE.getCouldNotCompute();  // Something strange happened
5721
5722    // Ensure that the previous value is in the range.  This is a sanity check.
5723    assert(Range.contains(
5724           EvaluateConstantChrecAtConstant(this,
5725           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5726           "Linear scev computation is off in a bad way!");
5727    return SE.getConstant(ExitValue);
5728  } else if (isQuadratic()) {
5729    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5730    // quadratic equation to solve it.  To do this, we must frame our problem in
5731    // terms of figuring out when zero is crossed, instead of when
5732    // Range.getUpper() is crossed.
5733    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5734    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5735    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5736
5737    // Next, solve the constructed addrec
5738    std::pair<const SCEV *,const SCEV *> Roots =
5739      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5740    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5741    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5742    if (R1) {
5743      // Pick the smallest positive root value.
5744      if (ConstantInt *CB =
5745          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5746                         R1->getValue(), R2->getValue()))) {
5747        if (CB->getZExtValue() == false)
5748          std::swap(R1, R2);   // R1 is the minimum root now.
5749
5750        // Make sure the root is not off by one.  The returned iteration should
5751        // not be in the range, but the previous one should be.  When solving
5752        // for "X*X < 5", for example, we should not return a root of 2.
5753        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5754                                                             R1->getValue(),
5755                                                             SE);
5756        if (Range.contains(R1Val->getValue())) {
5757          // The next iteration must be out of the range...
5758          ConstantInt *NextVal =
5759                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5760
5761          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5762          if (!Range.contains(R1Val->getValue()))
5763            return SE.getConstant(NextVal);
5764          return SE.getCouldNotCompute();  // Something strange happened
5765        }
5766
5767        // If R1 was not in the range, then it is a good return value.  Make
5768        // sure that R1-1 WAS in the range though, just in case.
5769        ConstantInt *NextVal =
5770               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5771        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5772        if (Range.contains(R1Val->getValue()))
5773          return R1;
5774        return SE.getCouldNotCompute();  // Something strange happened
5775      }
5776    }
5777  }
5778
5779  return SE.getCouldNotCompute();
5780}
5781
5782
5783
5784//===----------------------------------------------------------------------===//
5785//                   SCEVCallbackVH Class Implementation
5786//===----------------------------------------------------------------------===//
5787
5788void ScalarEvolution::SCEVCallbackVH::deleted() {
5789  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5790  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5791    SE->ConstantEvolutionLoopExitValue.erase(PN);
5792  SE->ValueExprMap.erase(getValPtr());
5793  // this now dangles!
5794}
5795
5796void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5797  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5798
5799  // Forget all the expressions associated with users of the old value,
5800  // so that future queries will recompute the expressions using the new
5801  // value.
5802  Value *Old = getValPtr();
5803  SmallVector<User *, 16> Worklist;
5804  SmallPtrSet<User *, 8> Visited;
5805  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5806       UI != UE; ++UI)
5807    Worklist.push_back(*UI);
5808  while (!Worklist.empty()) {
5809    User *U = Worklist.pop_back_val();
5810    // Deleting the Old value will cause this to dangle. Postpone
5811    // that until everything else is done.
5812    if (U == Old)
5813      continue;
5814    if (!Visited.insert(U))
5815      continue;
5816    if (PHINode *PN = dyn_cast<PHINode>(U))
5817      SE->ConstantEvolutionLoopExitValue.erase(PN);
5818    SE->ValueExprMap.erase(U);
5819    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5820         UI != UE; ++UI)
5821      Worklist.push_back(*UI);
5822  }
5823  // Delete the Old value.
5824  if (PHINode *PN = dyn_cast<PHINode>(Old))
5825    SE->ConstantEvolutionLoopExitValue.erase(PN);
5826  SE->ValueExprMap.erase(Old);
5827  // this now dangles!
5828}
5829
5830ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5831  : CallbackVH(V), SE(se) {}
5832
5833//===----------------------------------------------------------------------===//
5834//                   ScalarEvolution Class Implementation
5835//===----------------------------------------------------------------------===//
5836
5837ScalarEvolution::ScalarEvolution()
5838  : FunctionPass(ID), FirstUnknown(0) {
5839}
5840
5841bool ScalarEvolution::runOnFunction(Function &F) {
5842  this->F = &F;
5843  LI = &getAnalysis<LoopInfo>();
5844  TD = getAnalysisIfAvailable<TargetData>();
5845  DT = &getAnalysis<DominatorTree>();
5846  return false;
5847}
5848
5849void ScalarEvolution::releaseMemory() {
5850  // Iterate through all the SCEVUnknown instances and call their
5851  // destructors, so that they release their references to their values.
5852  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5853    U->~SCEVUnknown();
5854  FirstUnknown = 0;
5855
5856  ValueExprMap.clear();
5857  BackedgeTakenCounts.clear();
5858  ConstantEvolutionLoopExitValue.clear();
5859  ValuesAtScopes.clear();
5860  UniqueSCEVs.clear();
5861  SCEVAllocator.Reset();
5862}
5863
5864void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5865  AU.setPreservesAll();
5866  AU.addRequiredTransitive<LoopInfo>();
5867  AU.addRequiredTransitive<DominatorTree>();
5868}
5869
5870bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5871  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5872}
5873
5874static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5875                          const Loop *L) {
5876  // Print all inner loops first
5877  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5878    PrintLoopInfo(OS, SE, *I);
5879
5880  OS << "Loop ";
5881  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5882  OS << ": ";
5883
5884  SmallVector<BasicBlock *, 8> ExitBlocks;
5885  L->getExitBlocks(ExitBlocks);
5886  if (ExitBlocks.size() != 1)
5887    OS << "<multiple exits> ";
5888
5889  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5890    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5891  } else {
5892    OS << "Unpredictable backedge-taken count. ";
5893  }
5894
5895  OS << "\n"
5896        "Loop ";
5897  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5898  OS << ": ";
5899
5900  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5901    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5902  } else {
5903    OS << "Unpredictable max backedge-taken count. ";
5904  }
5905
5906  OS << "\n";
5907}
5908
5909void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5910  // ScalarEvolution's implementation of the print method is to print
5911  // out SCEV values of all instructions that are interesting. Doing
5912  // this potentially causes it to create new SCEV objects though,
5913  // which technically conflicts with the const qualifier. This isn't
5914  // observable from outside the class though, so casting away the
5915  // const isn't dangerous.
5916  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5917
5918  OS << "Classifying expressions for: ";
5919  WriteAsOperand(OS, F, /*PrintType=*/false);
5920  OS << "\n";
5921  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5922    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5923      OS << *I << '\n';
5924      OS << "  -->  ";
5925      const SCEV *SV = SE.getSCEV(&*I);
5926      SV->print(OS);
5927
5928      const Loop *L = LI->getLoopFor((*I).getParent());
5929
5930      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5931      if (AtUse != SV) {
5932        OS << "  -->  ";
5933        AtUse->print(OS);
5934      }
5935
5936      if (L) {
5937        OS << "\t\t" "Exits: ";
5938        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5939        if (!ExitValue->isLoopInvariant(L)) {
5940          OS << "<<Unknown>>";
5941        } else {
5942          OS << *ExitValue;
5943        }
5944      }
5945
5946      OS << "\n";
5947    }
5948
5949  OS << "Determining loop execution counts for: ";
5950  WriteAsOperand(OS, F, /*PrintType=*/false);
5951  OS << "\n";
5952  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5953    PrintLoopInfo(OS, &SE, *I);
5954}
5955
5956