ScalarEvolution.cpp revision 193574
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <algorithm>
84using namespace llvm;
85
86STATISTIC(NumArrayLenItCounts,
87          "Number of trip counts computed with array length");
88STATISTIC(NumTripCountsComputed,
89          "Number of loops with predictable loop counts");
90STATISTIC(NumTripCountsNotComputed,
91          "Number of loops without predictable loop counts");
92STATISTIC(NumBruteForceTripCountsComputed,
93          "Number of loops with trip counts computed by force");
94
95static cl::opt<unsigned>
96MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97                        cl::desc("Maximum number of iterations SCEV will "
98                                 "symbolically execute a constant derived loop"),
99                        cl::init(100));
100
101static RegisterPass<ScalarEvolution>
102R("scalar-evolution", "Scalar Evolution Analysis", false, true);
103char ScalarEvolution::ID = 0;
104
105//===----------------------------------------------------------------------===//
106//                           SCEV class definitions
107//===----------------------------------------------------------------------===//
108
109//===----------------------------------------------------------------------===//
110// Implementation of the SCEV class.
111//
112SCEV::~SCEV() {}
113void SCEV::dump() const {
114  print(errs());
115  errs() << '\n';
116}
117
118void SCEV::print(std::ostream &o) const {
119  raw_os_ostream OS(o);
120  print(OS);
121}
122
123bool SCEV::isZero() const {
124  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125    return SC->getValue()->isZero();
126  return false;
127}
128
129bool SCEV::isOne() const {
130  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131    return SC->getValue()->isOne();
132  return false;
133}
134
135SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
136SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
137
138bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
139  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
140  return false;
141}
142
143const Type *SCEVCouldNotCompute::getType() const {
144  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
145  return 0;
146}
147
148bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
149  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
150  return false;
151}
152
153SCEVHandle SCEVCouldNotCompute::
154replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
155                                  const SCEVHandle &Conc,
156                                  ScalarEvolution &SE) const {
157  return this;
158}
159
160void SCEVCouldNotCompute::print(raw_ostream &OS) const {
161  OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165  return S->getSCEVType() == scCouldNotCompute;
166}
167
168
169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value.  Don't use a SCEVHandle here, or else the object will
171// never be deleted!
172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
173
174
175SCEVConstant::~SCEVConstant() {
176  SCEVConstants->erase(V);
177}
178
179SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
180  SCEVConstant *&R = (*SCEVConstants)[V];
181  if (R == 0) R = new SCEVConstant(V);
182  return R;
183}
184
185SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(Val));
187}
188
189const Type *SCEVConstant::getType() const { return V->getType(); }
190
191void SCEVConstant::print(raw_ostream &OS) const {
192  WriteAsOperand(OS, V, false);
193}
194
195SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
196                           const SCEVHandle &op, const Type *ty)
197  : SCEV(SCEVTy), Op(op), Ty(ty) {}
198
199SCEVCastExpr::~SCEVCastExpr() {}
200
201bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
202  return Op->dominates(BB, DT);
203}
204
205// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
206// particular input.  Don't use a SCEVHandle here, or else the object will
207// never be deleted!
208static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
209                     SCEVTruncateExpr*> > SCEVTruncates;
210
211SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
212  : SCEVCastExpr(scTruncate, op, ty) {
213  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
214         (Ty->isInteger() || isa<PointerType>(Ty)) &&
215         "Cannot truncate non-integer value!");
216}
217
218SCEVTruncateExpr::~SCEVTruncateExpr() {
219  SCEVTruncates->erase(std::make_pair(Op, Ty));
220}
221
222void SCEVTruncateExpr::print(raw_ostream &OS) const {
223  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
224}
225
226// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
227// particular input.  Don't use a SCEVHandle here, or else the object will never
228// be deleted!
229static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
230                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
231
232SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
233  : SCEVCastExpr(scZeroExtend, op, ty) {
234  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
235         (Ty->isInteger() || isa<PointerType>(Ty)) &&
236         "Cannot zero extend non-integer value!");
237}
238
239SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
240  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
241}
242
243void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
244  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
251                     SCEVSignExtendExpr*> > SCEVSignExtends;
252
253SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
254  : SCEVCastExpr(scSignExtend, op, ty) {
255  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
256         (Ty->isInteger() || isa<PointerType>(Ty)) &&
257         "Cannot sign extend non-integer value!");
258}
259
260SCEVSignExtendExpr::~SCEVSignExtendExpr() {
261  SCEVSignExtends->erase(std::make_pair(Op, Ty));
262}
263
264void SCEVSignExtendExpr::print(raw_ostream &OS) const {
265  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
266}
267
268// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
269// particular input.  Don't use a SCEVHandle here, or else the object will never
270// be deleted!
271static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
272                     SCEVCommutativeExpr*> > SCEVCommExprs;
273
274SCEVCommutativeExpr::~SCEVCommutativeExpr() {
275  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
276  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
277}
278
279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
280  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281  const char *OpStr = getOperationStr();
282  OS << "(" << *Operands[0];
283  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284    OS << OpStr << *Operands[i];
285  OS << ")";
286}
287
288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
290                                  const SCEVHandle &Conc,
291                                  ScalarEvolution &SE) const {
292  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
293    SCEVHandle H =
294      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
295    if (H != getOperand(i)) {
296      std::vector<SCEVHandle> NewOps;
297      NewOps.reserve(getNumOperands());
298      for (unsigned j = 0; j != i; ++j)
299        NewOps.push_back(getOperand(j));
300      NewOps.push_back(H);
301      for (++i; i != e; ++i)
302        NewOps.push_back(getOperand(i)->
303                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
304
305      if (isa<SCEVAddExpr>(this))
306        return SE.getAddExpr(NewOps);
307      else if (isa<SCEVMulExpr>(this))
308        return SE.getMulExpr(NewOps);
309      else if (isa<SCEVSMaxExpr>(this))
310        return SE.getSMaxExpr(NewOps);
311      else if (isa<SCEVUMaxExpr>(this))
312        return SE.getUMaxExpr(NewOps);
313      else
314        assert(0 && "Unknown commutative expr!");
315    }
316  }
317  return this;
318}
319
320bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322    if (!getOperand(i)->dominates(BB, DT))
323      return false;
324  }
325  return true;
326}
327
328
329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330// input.  Don't use a SCEVHandle here, or else the object will never be
331// deleted!
332static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
333                     SCEVUDivExpr*> > SCEVUDivs;
334
335SCEVUDivExpr::~SCEVUDivExpr() {
336  SCEVUDivs->erase(std::make_pair(LHS, RHS));
337}
338
339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
343void SCEVUDivExpr::print(raw_ostream &OS) const {
344  OS << "(" << *LHS << " /u " << *RHS << ")";
345}
346
347const Type *SCEVUDivExpr::getType() const {
348  // In most cases the types of LHS and RHS will be the same, but in some
349  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
350  // depend on the type for correctness, but handling types carefully can
351  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
352  // a pointer type than the RHS, so use the RHS' type here.
353  return RHS->getType();
354}
355
356// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
357// particular input.  Don't use a SCEVHandle here, or else the object will never
358// be deleted!
359static ManagedStatic<std::map<std::pair<const Loop *,
360                                        std::vector<const SCEV*> >,
361                     SCEVAddRecExpr*> > SCEVAddRecExprs;
362
363SCEVAddRecExpr::~SCEVAddRecExpr() {
364  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
365  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
366}
367
368SCEVHandle SCEVAddRecExpr::
369replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
370                                  const SCEVHandle &Conc,
371                                  ScalarEvolution &SE) const {
372  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
373    SCEVHandle H =
374      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
375    if (H != getOperand(i)) {
376      std::vector<SCEVHandle> NewOps;
377      NewOps.reserve(getNumOperands());
378      for (unsigned j = 0; j != i; ++j)
379        NewOps.push_back(getOperand(j));
380      NewOps.push_back(H);
381      for (++i; i != e; ++i)
382        NewOps.push_back(getOperand(i)->
383                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
384
385      return SE.getAddRecExpr(NewOps, L);
386    }
387  }
388  return this;
389}
390
391
392bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
393  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
394  // contain L and if the start is invariant.
395  // Add recurrences are never invariant in the function-body (null loop).
396  return QueryLoop &&
397         !QueryLoop->contains(L->getHeader()) &&
398         getOperand(0)->isLoopInvariant(QueryLoop);
399}
400
401
402void SCEVAddRecExpr::print(raw_ostream &OS) const {
403  OS << "{" << *Operands[0];
404  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
405    OS << ",+," << *Operands[i];
406  OS << "}<" << L->getHeader()->getName() + ">";
407}
408
409// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
410// value.  Don't use a SCEVHandle here, or else the object will never be
411// deleted!
412static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
413
414SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
415
416bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
417  // All non-instruction values are loop invariant.  All instructions are loop
418  // invariant if they are not contained in the specified loop.
419  // Instructions are never considered invariant in the function body
420  // (null loop) because they are defined within the "loop".
421  if (Instruction *I = dyn_cast<Instruction>(V))
422    return L && !L->contains(I->getParent());
423  return true;
424}
425
426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427  if (Instruction *I = dyn_cast<Instruction>(getValue()))
428    return DT->dominates(I->getParent(), BB);
429  return true;
430}
431
432const Type *SCEVUnknown::getType() const {
433  return V->getType();
434}
435
436void SCEVUnknown::print(raw_ostream &OS) const {
437  WriteAsOperand(OS, V, false);
438}
439
440//===----------------------------------------------------------------------===//
441//                               SCEV Utilities
442//===----------------------------------------------------------------------===//
443
444namespace {
445  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
446  /// than the complexity of the RHS.  This comparator is used to canonicalize
447  /// expressions.
448  class VISIBILITY_HIDDEN SCEVComplexityCompare {
449    LoopInfo *LI;
450  public:
451    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
452
453    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
454      // Primarily, sort the SCEVs by their getSCEVType().
455      if (LHS->getSCEVType() != RHS->getSCEVType())
456        return LHS->getSCEVType() < RHS->getSCEVType();
457
458      // Aside from the getSCEVType() ordering, the particular ordering
459      // isn't very important except that it's beneficial to be consistent,
460      // so that (a + b) and (b + a) don't end up as different expressions.
461
462      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
463      // not as complete as it could be.
464      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
465        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
466
467        // Order pointer values after integer values. This helps SCEVExpander
468        // form GEPs.
469        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
470          return false;
471        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
472          return true;
473
474        // Compare getValueID values.
475        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
476          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
477
478        // Sort arguments by their position.
479        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
480          const Argument *RA = cast<Argument>(RU->getValue());
481          return LA->getArgNo() < RA->getArgNo();
482        }
483
484        // For instructions, compare their loop depth, and their opcode.
485        // This is pretty loose.
486        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
487          Instruction *RV = cast<Instruction>(RU->getValue());
488
489          // Compare loop depths.
490          if (LI->getLoopDepth(LV->getParent()) !=
491              LI->getLoopDepth(RV->getParent()))
492            return LI->getLoopDepth(LV->getParent()) <
493                   LI->getLoopDepth(RV->getParent());
494
495          // Compare opcodes.
496          if (LV->getOpcode() != RV->getOpcode())
497            return LV->getOpcode() < RV->getOpcode();
498
499          // Compare the number of operands.
500          if (LV->getNumOperands() != RV->getNumOperands())
501            return LV->getNumOperands() < RV->getNumOperands();
502        }
503
504        return false;
505      }
506
507      // Constant sorting doesn't matter since they'll be folded.
508      if (isa<SCEVConstant>(LHS))
509        return false;
510
511      // Lexicographically compare n-ary expressions.
512      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
513        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
514        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
515          if (i >= RC->getNumOperands())
516            return false;
517          if (operator()(LC->getOperand(i), RC->getOperand(i)))
518            return true;
519          if (operator()(RC->getOperand(i), LC->getOperand(i)))
520            return false;
521        }
522        return LC->getNumOperands() < RC->getNumOperands();
523      }
524
525      // Lexicographically compare udiv expressions.
526      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
527        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
528        if (operator()(LC->getLHS(), RC->getLHS()))
529          return true;
530        if (operator()(RC->getLHS(), LC->getLHS()))
531          return false;
532        if (operator()(LC->getRHS(), RC->getRHS()))
533          return true;
534        if (operator()(RC->getRHS(), LC->getRHS()))
535          return false;
536        return false;
537      }
538
539      // Compare cast expressions by operand.
540      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
541        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
542        return operator()(LC->getOperand(), RC->getOperand());
543      }
544
545      assert(0 && "Unknown SCEV kind!");
546      return false;
547    }
548  };
549}
550
551/// GroupByComplexity - Given a list of SCEV objects, order them by their
552/// complexity, and group objects of the same complexity together by value.
553/// When this routine is finished, we know that any duplicates in the vector are
554/// consecutive and that complexity is monotonically increasing.
555///
556/// Note that we go take special precautions to ensure that we get determinstic
557/// results from this routine.  In other words, we don't want the results of
558/// this to depend on where the addresses of various SCEV objects happened to
559/// land in memory.
560///
561static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
562                              LoopInfo *LI) {
563  if (Ops.size() < 2) return;  // Noop
564  if (Ops.size() == 2) {
565    // This is the common case, which also happens to be trivially simple.
566    // Special case it.
567    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
568      std::swap(Ops[0], Ops[1]);
569    return;
570  }
571
572  // Do the rough sort by complexity.
573  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
574
575  // Now that we are sorted by complexity, group elements of the same
576  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
577  // be extremely short in practice.  Note that we take this approach because we
578  // do not want to depend on the addresses of the objects we are grouping.
579  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
580    const SCEV *S = Ops[i];
581    unsigned Complexity = S->getSCEVType();
582
583    // If there are any objects of the same complexity and same value as this
584    // one, group them.
585    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
586      if (Ops[j] == S) { // Found a duplicate.
587        // Move it to immediately after i'th element.
588        std::swap(Ops[i+1], Ops[j]);
589        ++i;   // no need to rescan it.
590        if (i == e-2) return;  // Done!
591      }
592    }
593  }
594}
595
596
597
598//===----------------------------------------------------------------------===//
599//                      Simple SCEV method implementations
600//===----------------------------------------------------------------------===//
601
602/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
603/// Assume, K > 0.
604static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
605                                      ScalarEvolution &SE,
606                                      const Type* ResultTy) {
607  // Handle the simplest case efficiently.
608  if (K == 1)
609    return SE.getTruncateOrZeroExtend(It, ResultTy);
610
611  // We are using the following formula for BC(It, K):
612  //
613  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
614  //
615  // Suppose, W is the bitwidth of the return value.  We must be prepared for
616  // overflow.  Hence, we must assure that the result of our computation is
617  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
618  // safe in modular arithmetic.
619  //
620  // However, this code doesn't use exactly that formula; the formula it uses
621  // is something like the following, where T is the number of factors of 2 in
622  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
623  // exponentiation:
624  //
625  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
626  //
627  // This formula is trivially equivalent to the previous formula.  However,
628  // this formula can be implemented much more efficiently.  The trick is that
629  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
630  // arithmetic.  To do exact division in modular arithmetic, all we have
631  // to do is multiply by the inverse.  Therefore, this step can be done at
632  // width W.
633  //
634  // The next issue is how to safely do the division by 2^T.  The way this
635  // is done is by doing the multiplication step at a width of at least W + T
636  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
637  // when we perform the division by 2^T (which is equivalent to a right shift
638  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
639  // truncated out after the division by 2^T.
640  //
641  // In comparison to just directly using the first formula, this technique
642  // is much more efficient; using the first formula requires W * K bits,
643  // but this formula less than W + K bits. Also, the first formula requires
644  // a division step, whereas this formula only requires multiplies and shifts.
645  //
646  // It doesn't matter whether the subtraction step is done in the calculation
647  // width or the input iteration count's width; if the subtraction overflows,
648  // the result must be zero anyway.  We prefer here to do it in the width of
649  // the induction variable because it helps a lot for certain cases; CodeGen
650  // isn't smart enough to ignore the overflow, which leads to much less
651  // efficient code if the width of the subtraction is wider than the native
652  // register width.
653  //
654  // (It's possible to not widen at all by pulling out factors of 2 before
655  // the multiplication; for example, K=2 can be calculated as
656  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
657  // extra arithmetic, so it's not an obvious win, and it gets
658  // much more complicated for K > 3.)
659
660  // Protection from insane SCEVs; this bound is conservative,
661  // but it probably doesn't matter.
662  if (K > 1000)
663    return SE.getCouldNotCompute();
664
665  unsigned W = SE.getTypeSizeInBits(ResultTy);
666
667  // Calculate K! / 2^T and T; we divide out the factors of two before
668  // multiplying for calculating K! / 2^T to avoid overflow.
669  // Other overflow doesn't matter because we only care about the bottom
670  // W bits of the result.
671  APInt OddFactorial(W, 1);
672  unsigned T = 1;
673  for (unsigned i = 3; i <= K; ++i) {
674    APInt Mult(W, i);
675    unsigned TwoFactors = Mult.countTrailingZeros();
676    T += TwoFactors;
677    Mult = Mult.lshr(TwoFactors);
678    OddFactorial *= Mult;
679  }
680
681  // We need at least W + T bits for the multiplication step
682  unsigned CalculationBits = W + T;
683
684  // Calcuate 2^T, at width T+W.
685  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
686
687  // Calculate the multiplicative inverse of K! / 2^T;
688  // this multiplication factor will perform the exact division by
689  // K! / 2^T.
690  APInt Mod = APInt::getSignedMinValue(W+1);
691  APInt MultiplyFactor = OddFactorial.zext(W+1);
692  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
693  MultiplyFactor = MultiplyFactor.trunc(W);
694
695  // Calculate the product, at width T+W
696  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
697  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
698  for (unsigned i = 1; i != K; ++i) {
699    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
700    Dividend = SE.getMulExpr(Dividend,
701                             SE.getTruncateOrZeroExtend(S, CalculationTy));
702  }
703
704  // Divide by 2^T
705  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
706
707  // Truncate the result, and divide by K! / 2^T.
708
709  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
710                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
711}
712
713/// evaluateAtIteration - Return the value of this chain of recurrences at
714/// the specified iteration number.  We can evaluate this recurrence by
715/// multiplying each element in the chain by the binomial coefficient
716/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
717///
718///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
719///
720/// where BC(It, k) stands for binomial coefficient.
721///
722SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
723                                               ScalarEvolution &SE) const {
724  SCEVHandle Result = getStart();
725  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
726    // The computation is correct in the face of overflow provided that the
727    // multiplication is performed _after_ the evaluation of the binomial
728    // coefficient.
729    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
730    if (isa<SCEVCouldNotCompute>(Coeff))
731      return Coeff;
732
733    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
734  }
735  return Result;
736}
737
738//===----------------------------------------------------------------------===//
739//                    SCEV Expression folder implementations
740//===----------------------------------------------------------------------===//
741
742SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
743                                            const Type *Ty) {
744  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
745         "This is not a truncating conversion!");
746  assert(isSCEVable(Ty) &&
747         "This is not a conversion to a SCEVable type!");
748  Ty = getEffectiveSCEVType(Ty);
749
750  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
751    return getUnknown(
752        ConstantExpr::getTrunc(SC->getValue(), Ty));
753
754  // trunc(trunc(x)) --> trunc(x)
755  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
756    return getTruncateExpr(ST->getOperand(), Ty);
757
758  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
759  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
760    return getTruncateOrSignExtend(SS->getOperand(), Ty);
761
762  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
763  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
764    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
765
766  // If the input value is a chrec scev made out of constants, truncate
767  // all of the constants.
768  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
769    std::vector<SCEVHandle> Operands;
770    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
771      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
772    return getAddRecExpr(Operands, AddRec->getLoop());
773  }
774
775  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
776  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
777  return Result;
778}
779
780SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
781                                              const Type *Ty) {
782  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
783         "This is not an extending conversion!");
784  assert(isSCEVable(Ty) &&
785         "This is not a conversion to a SCEVable type!");
786  Ty = getEffectiveSCEVType(Ty);
787
788  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
789    const Type *IntTy = getEffectiveSCEVType(Ty);
790    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
791    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
792    return getUnknown(C);
793  }
794
795  // zext(zext(x)) --> zext(x)
796  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
797    return getZeroExtendExpr(SZ->getOperand(), Ty);
798
799  // If the input value is a chrec scev, and we can prove that the value
800  // did not overflow the old, smaller, value, we can zero extend all of the
801  // operands (often constants).  This allows analysis of something like
802  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
803  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
804    if (AR->isAffine()) {
805      // Check whether the backedge-taken count is SCEVCouldNotCompute.
806      // Note that this serves two purposes: It filters out loops that are
807      // simply not analyzable, and it covers the case where this code is
808      // being called from within backedge-taken count analysis, such that
809      // attempting to ask for the backedge-taken count would likely result
810      // in infinite recursion. In the later case, the analysis code will
811      // cope with a conservative value, and it will take care to purge
812      // that value once it has finished.
813      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
814      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
815        // Manually compute the final value for AR, checking for
816        // overflow.
817        SCEVHandle Start = AR->getStart();
818        SCEVHandle Step = AR->getStepRecurrence(*this);
819
820        // Check whether the backedge-taken count can be losslessly casted to
821        // the addrec's type. The count is always unsigned.
822        SCEVHandle CastedMaxBECount =
823          getTruncateOrZeroExtend(MaxBECount, Start->getType());
824        SCEVHandle RecastedMaxBECount =
825          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
826        if (MaxBECount == RecastedMaxBECount) {
827          const Type *WideTy =
828            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
829          // Check whether Start+Step*MaxBECount has no unsigned overflow.
830          SCEVHandle ZMul =
831            getMulExpr(CastedMaxBECount,
832                       getTruncateOrZeroExtend(Step, Start->getType()));
833          SCEVHandle Add = getAddExpr(Start, ZMul);
834          SCEVHandle OperandExtendedAdd =
835            getAddExpr(getZeroExtendExpr(Start, WideTy),
836                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837                                  getZeroExtendExpr(Step, WideTy)));
838          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
839            // Return the expression with the addrec on the outside.
840            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841                                 getZeroExtendExpr(Step, Ty),
842                                 AR->getLoop());
843
844          // Similar to above, only this time treat the step value as signed.
845          // This covers loops that count down.
846          SCEVHandle SMul =
847            getMulExpr(CastedMaxBECount,
848                       getTruncateOrSignExtend(Step, Start->getType()));
849          Add = getAddExpr(Start, SMul);
850          OperandExtendedAdd =
851            getAddExpr(getZeroExtendExpr(Start, WideTy),
852                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853                                  getSignExtendExpr(Step, WideTy)));
854          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
855            // Return the expression with the addrec on the outside.
856            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857                                 getSignExtendExpr(Step, Ty),
858                                 AR->getLoop());
859        }
860      }
861    }
862
863  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
864  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
865  return Result;
866}
867
868SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
869                                              const Type *Ty) {
870  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
871         "This is not an extending conversion!");
872  assert(isSCEVable(Ty) &&
873         "This is not a conversion to a SCEVable type!");
874  Ty = getEffectiveSCEVType(Ty);
875
876  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
877    const Type *IntTy = getEffectiveSCEVType(Ty);
878    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
879    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
880    return getUnknown(C);
881  }
882
883  // sext(sext(x)) --> sext(x)
884  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
885    return getSignExtendExpr(SS->getOperand(), Ty);
886
887  // If the input value is a chrec scev, and we can prove that the value
888  // did not overflow the old, smaller, value, we can sign extend all of the
889  // operands (often constants).  This allows analysis of something like
890  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
891  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
892    if (AR->isAffine()) {
893      // Check whether the backedge-taken count is SCEVCouldNotCompute.
894      // Note that this serves two purposes: It filters out loops that are
895      // simply not analyzable, and it covers the case where this code is
896      // being called from within backedge-taken count analysis, such that
897      // attempting to ask for the backedge-taken count would likely result
898      // in infinite recursion. In the later case, the analysis code will
899      // cope with a conservative value, and it will take care to purge
900      // that value once it has finished.
901      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
902      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
903        // Manually compute the final value for AR, checking for
904        // overflow.
905        SCEVHandle Start = AR->getStart();
906        SCEVHandle Step = AR->getStepRecurrence(*this);
907
908        // Check whether the backedge-taken count can be losslessly casted to
909        // the addrec's type. The count is always unsigned.
910        SCEVHandle CastedMaxBECount =
911          getTruncateOrZeroExtend(MaxBECount, Start->getType());
912        SCEVHandle RecastedMaxBECount =
913          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
914        if (MaxBECount == RecastedMaxBECount) {
915          const Type *WideTy =
916            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
917          // Check whether Start+Step*MaxBECount has no signed overflow.
918          SCEVHandle SMul =
919            getMulExpr(CastedMaxBECount,
920                       getTruncateOrSignExtend(Step, Start->getType()));
921          SCEVHandle Add = getAddExpr(Start, SMul);
922          SCEVHandle OperandExtendedAdd =
923            getAddExpr(getSignExtendExpr(Start, WideTy),
924                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
925                                  getSignExtendExpr(Step, WideTy)));
926          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
927            // Return the expression with the addrec on the outside.
928            return getAddRecExpr(getSignExtendExpr(Start, Ty),
929                                 getSignExtendExpr(Step, Ty),
930                                 AR->getLoop());
931        }
932      }
933    }
934
935  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
936  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
937  return Result;
938}
939
940/// getAddExpr - Get a canonical add expression, or something simpler if
941/// possible.
942SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
943  assert(!Ops.empty() && "Cannot get empty add!");
944  if (Ops.size() == 1) return Ops[0];
945#ifndef NDEBUG
946  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
947    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
948           getEffectiveSCEVType(Ops[0]->getType()) &&
949           "SCEVAddExpr operand types don't match!");
950#endif
951
952  // Sort by complexity, this groups all similar expression types together.
953  GroupByComplexity(Ops, LI);
954
955  // If there are any constants, fold them together.
956  unsigned Idx = 0;
957  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
958    ++Idx;
959    assert(Idx < Ops.size());
960    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
961      // We found two constants, fold them together!
962      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
963                                           RHSC->getValue()->getValue());
964      Ops[0] = getConstant(Fold);
965      Ops.erase(Ops.begin()+1);  // Erase the folded element
966      if (Ops.size() == 1) return Ops[0];
967      LHSC = cast<SCEVConstant>(Ops[0]);
968    }
969
970    // If we are left with a constant zero being added, strip it off.
971    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
972      Ops.erase(Ops.begin());
973      --Idx;
974    }
975  }
976
977  if (Ops.size() == 1) return Ops[0];
978
979  // Okay, check to see if the same value occurs in the operand list twice.  If
980  // so, merge them together into an multiply expression.  Since we sorted the
981  // list, these values are required to be adjacent.
982  const Type *Ty = Ops[0]->getType();
983  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
984    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
985      // Found a match, merge the two values into a multiply, and add any
986      // remaining values to the result.
987      SCEVHandle Two = getIntegerSCEV(2, Ty);
988      SCEVHandle Mul = getMulExpr(Ops[i], Two);
989      if (Ops.size() == 2)
990        return Mul;
991      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
992      Ops.push_back(Mul);
993      return getAddExpr(Ops);
994    }
995
996  // Check for truncates. If all the operands are truncated from the same
997  // type, see if factoring out the truncate would permit the result to be
998  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
999  // if the contents of the resulting outer trunc fold to something simple.
1000  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1001    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1002    const Type *DstType = Trunc->getType();
1003    const Type *SrcType = Trunc->getOperand()->getType();
1004    std::vector<SCEVHandle> LargeOps;
1005    bool Ok = true;
1006    // Check all the operands to see if they can be represented in the
1007    // source type of the truncate.
1008    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1009      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1010        if (T->getOperand()->getType() != SrcType) {
1011          Ok = false;
1012          break;
1013        }
1014        LargeOps.push_back(T->getOperand());
1015      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1016        // This could be either sign or zero extension, but sign extension
1017        // is much more likely to be foldable here.
1018        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1019      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1020        std::vector<SCEVHandle> LargeMulOps;
1021        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1022          if (const SCEVTruncateExpr *T =
1023                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1024            if (T->getOperand()->getType() != SrcType) {
1025              Ok = false;
1026              break;
1027            }
1028            LargeMulOps.push_back(T->getOperand());
1029          } else if (const SCEVConstant *C =
1030                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1031            // This could be either sign or zero extension, but sign extension
1032            // is much more likely to be foldable here.
1033            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1034          } else {
1035            Ok = false;
1036            break;
1037          }
1038        }
1039        if (Ok)
1040          LargeOps.push_back(getMulExpr(LargeMulOps));
1041      } else {
1042        Ok = false;
1043        break;
1044      }
1045    }
1046    if (Ok) {
1047      // Evaluate the expression in the larger type.
1048      SCEVHandle Fold = getAddExpr(LargeOps);
1049      // If it folds to something simple, use it. Otherwise, don't.
1050      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1051        return getTruncateExpr(Fold, DstType);
1052    }
1053  }
1054
1055  // Skip past any other cast SCEVs.
1056  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1057    ++Idx;
1058
1059  // If there are add operands they would be next.
1060  if (Idx < Ops.size()) {
1061    bool DeletedAdd = false;
1062    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1063      // If we have an add, expand the add operands onto the end of the operands
1064      // list.
1065      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1066      Ops.erase(Ops.begin()+Idx);
1067      DeletedAdd = true;
1068    }
1069
1070    // If we deleted at least one add, we added operands to the end of the list,
1071    // and they are not necessarily sorted.  Recurse to resort and resimplify
1072    // any operands we just aquired.
1073    if (DeletedAdd)
1074      return getAddExpr(Ops);
1075  }
1076
1077  // Skip over the add expression until we get to a multiply.
1078  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1079    ++Idx;
1080
1081  // If we are adding something to a multiply expression, make sure the
1082  // something is not already an operand of the multiply.  If so, merge it into
1083  // the multiply.
1084  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1085    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1086    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1087      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1088      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1089        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1090          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1091          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1092          if (Mul->getNumOperands() != 2) {
1093            // If the multiply has more than two operands, we must get the
1094            // Y*Z term.
1095            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1096            MulOps.erase(MulOps.begin()+MulOp);
1097            InnerMul = getMulExpr(MulOps);
1098          }
1099          SCEVHandle One = getIntegerSCEV(1, Ty);
1100          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1101          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1102          if (Ops.size() == 2) return OuterMul;
1103          if (AddOp < Idx) {
1104            Ops.erase(Ops.begin()+AddOp);
1105            Ops.erase(Ops.begin()+Idx-1);
1106          } else {
1107            Ops.erase(Ops.begin()+Idx);
1108            Ops.erase(Ops.begin()+AddOp-1);
1109          }
1110          Ops.push_back(OuterMul);
1111          return getAddExpr(Ops);
1112        }
1113
1114      // Check this multiply against other multiplies being added together.
1115      for (unsigned OtherMulIdx = Idx+1;
1116           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1117           ++OtherMulIdx) {
1118        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1119        // If MulOp occurs in OtherMul, we can fold the two multiplies
1120        // together.
1121        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1122             OMulOp != e; ++OMulOp)
1123          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1124            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1125            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1126            if (Mul->getNumOperands() != 2) {
1127              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1128              MulOps.erase(MulOps.begin()+MulOp);
1129              InnerMul1 = getMulExpr(MulOps);
1130            }
1131            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1132            if (OtherMul->getNumOperands() != 2) {
1133              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1134                                             OtherMul->op_end());
1135              MulOps.erase(MulOps.begin()+OMulOp);
1136              InnerMul2 = getMulExpr(MulOps);
1137            }
1138            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1139            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1140            if (Ops.size() == 2) return OuterMul;
1141            Ops.erase(Ops.begin()+Idx);
1142            Ops.erase(Ops.begin()+OtherMulIdx-1);
1143            Ops.push_back(OuterMul);
1144            return getAddExpr(Ops);
1145          }
1146      }
1147    }
1148  }
1149
1150  // If there are any add recurrences in the operands list, see if any other
1151  // added values are loop invariant.  If so, we can fold them into the
1152  // recurrence.
1153  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1154    ++Idx;
1155
1156  // Scan over all recurrences, trying to fold loop invariants into them.
1157  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1158    // Scan all of the other operands to this add and add them to the vector if
1159    // they are loop invariant w.r.t. the recurrence.
1160    std::vector<SCEVHandle> LIOps;
1161    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1162    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1163      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1164        LIOps.push_back(Ops[i]);
1165        Ops.erase(Ops.begin()+i);
1166        --i; --e;
1167      }
1168
1169    // If we found some loop invariants, fold them into the recurrence.
1170    if (!LIOps.empty()) {
1171      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1172      LIOps.push_back(AddRec->getStart());
1173
1174      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1175      AddRecOps[0] = getAddExpr(LIOps);
1176
1177      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1178      // If all of the other operands were loop invariant, we are done.
1179      if (Ops.size() == 1) return NewRec;
1180
1181      // Otherwise, add the folded AddRec by the non-liv parts.
1182      for (unsigned i = 0;; ++i)
1183        if (Ops[i] == AddRec) {
1184          Ops[i] = NewRec;
1185          break;
1186        }
1187      return getAddExpr(Ops);
1188    }
1189
1190    // Okay, if there weren't any loop invariants to be folded, check to see if
1191    // there are multiple AddRec's with the same loop induction variable being
1192    // added together.  If so, we can fold them.
1193    for (unsigned OtherIdx = Idx+1;
1194         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1195      if (OtherIdx != Idx) {
1196        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1197        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1198          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1199          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1200          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1201            if (i >= NewOps.size()) {
1202              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1203                            OtherAddRec->op_end());
1204              break;
1205            }
1206            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1207          }
1208          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1209
1210          if (Ops.size() == 2) return NewAddRec;
1211
1212          Ops.erase(Ops.begin()+Idx);
1213          Ops.erase(Ops.begin()+OtherIdx-1);
1214          Ops.push_back(NewAddRec);
1215          return getAddExpr(Ops);
1216        }
1217      }
1218
1219    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1220    // next one.
1221  }
1222
1223  // Okay, it looks like we really DO need an add expr.  Check to see if we
1224  // already have one, otherwise create a new one.
1225  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1226  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1227                                                                 SCEVOps)];
1228  if (Result == 0) Result = new SCEVAddExpr(Ops);
1229  return Result;
1230}
1231
1232
1233/// getMulExpr - Get a canonical multiply expression, or something simpler if
1234/// possible.
1235SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1236  assert(!Ops.empty() && "Cannot get empty mul!");
1237#ifndef NDEBUG
1238  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1239    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1240           getEffectiveSCEVType(Ops[0]->getType()) &&
1241           "SCEVMulExpr operand types don't match!");
1242#endif
1243
1244  // Sort by complexity, this groups all similar expression types together.
1245  GroupByComplexity(Ops, LI);
1246
1247  // If there are any constants, fold them together.
1248  unsigned Idx = 0;
1249  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1250
1251    // C1*(C2+V) -> C1*C2 + C1*V
1252    if (Ops.size() == 2)
1253      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1254        if (Add->getNumOperands() == 2 &&
1255            isa<SCEVConstant>(Add->getOperand(0)))
1256          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1257                            getMulExpr(LHSC, Add->getOperand(1)));
1258
1259
1260    ++Idx;
1261    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1262      // We found two constants, fold them together!
1263      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1264                                           RHSC->getValue()->getValue());
1265      Ops[0] = getConstant(Fold);
1266      Ops.erase(Ops.begin()+1);  // Erase the folded element
1267      if (Ops.size() == 1) return Ops[0];
1268      LHSC = cast<SCEVConstant>(Ops[0]);
1269    }
1270
1271    // If we are left with a constant one being multiplied, strip it off.
1272    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1273      Ops.erase(Ops.begin());
1274      --Idx;
1275    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1276      // If we have a multiply of zero, it will always be zero.
1277      return Ops[0];
1278    }
1279  }
1280
1281  // Skip over the add expression until we get to a multiply.
1282  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1283    ++Idx;
1284
1285  if (Ops.size() == 1)
1286    return Ops[0];
1287
1288  // If there are mul operands inline them all into this expression.
1289  if (Idx < Ops.size()) {
1290    bool DeletedMul = false;
1291    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1292      // If we have an mul, expand the mul operands onto the end of the operands
1293      // list.
1294      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1295      Ops.erase(Ops.begin()+Idx);
1296      DeletedMul = true;
1297    }
1298
1299    // If we deleted at least one mul, we added operands to the end of the list,
1300    // and they are not necessarily sorted.  Recurse to resort and resimplify
1301    // any operands we just aquired.
1302    if (DeletedMul)
1303      return getMulExpr(Ops);
1304  }
1305
1306  // If there are any add recurrences in the operands list, see if any other
1307  // added values are loop invariant.  If so, we can fold them into the
1308  // recurrence.
1309  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1310    ++Idx;
1311
1312  // Scan over all recurrences, trying to fold loop invariants into them.
1313  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1314    // Scan all of the other operands to this mul and add them to the vector if
1315    // they are loop invariant w.r.t. the recurrence.
1316    std::vector<SCEVHandle> LIOps;
1317    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1318    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1319      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1320        LIOps.push_back(Ops[i]);
1321        Ops.erase(Ops.begin()+i);
1322        --i; --e;
1323      }
1324
1325    // If we found some loop invariants, fold them into the recurrence.
1326    if (!LIOps.empty()) {
1327      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1328      std::vector<SCEVHandle> NewOps;
1329      NewOps.reserve(AddRec->getNumOperands());
1330      if (LIOps.size() == 1) {
1331        const SCEV *Scale = LIOps[0];
1332        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1333          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1334      } else {
1335        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1336          std::vector<SCEVHandle> MulOps(LIOps);
1337          MulOps.push_back(AddRec->getOperand(i));
1338          NewOps.push_back(getMulExpr(MulOps));
1339        }
1340      }
1341
1342      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1343
1344      // If all of the other operands were loop invariant, we are done.
1345      if (Ops.size() == 1) return NewRec;
1346
1347      // Otherwise, multiply the folded AddRec by the non-liv parts.
1348      for (unsigned i = 0;; ++i)
1349        if (Ops[i] == AddRec) {
1350          Ops[i] = NewRec;
1351          break;
1352        }
1353      return getMulExpr(Ops);
1354    }
1355
1356    // Okay, if there weren't any loop invariants to be folded, check to see if
1357    // there are multiple AddRec's with the same loop induction variable being
1358    // multiplied together.  If so, we can fold them.
1359    for (unsigned OtherIdx = Idx+1;
1360         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1361      if (OtherIdx != Idx) {
1362        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1363        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1364          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1365          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1366          SCEVHandle NewStart = getMulExpr(F->getStart(),
1367                                                 G->getStart());
1368          SCEVHandle B = F->getStepRecurrence(*this);
1369          SCEVHandle D = G->getStepRecurrence(*this);
1370          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1371                                          getMulExpr(G, B),
1372                                          getMulExpr(B, D));
1373          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1374                                               F->getLoop());
1375          if (Ops.size() == 2) return NewAddRec;
1376
1377          Ops.erase(Ops.begin()+Idx);
1378          Ops.erase(Ops.begin()+OtherIdx-1);
1379          Ops.push_back(NewAddRec);
1380          return getMulExpr(Ops);
1381        }
1382      }
1383
1384    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1385    // next one.
1386  }
1387
1388  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1389  // already have one, otherwise create a new one.
1390  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1391  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1392                                                                 SCEVOps)];
1393  if (Result == 0)
1394    Result = new SCEVMulExpr(Ops);
1395  return Result;
1396}
1397
1398/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1399/// possible.
1400SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1401                                        const SCEVHandle &RHS) {
1402  assert(getEffectiveSCEVType(LHS->getType()) ==
1403         getEffectiveSCEVType(RHS->getType()) &&
1404         "SCEVUDivExpr operand types don't match!");
1405
1406  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1407    if (RHSC->getValue()->equalsInt(1))
1408      return LHS;                            // X udiv 1 --> x
1409    if (RHSC->isZero())
1410      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1411
1412    // Determine if the division can be folded into the operands of
1413    // its operands.
1414    // TODO: Generalize this to non-constants by using known-bits information.
1415    const Type *Ty = LHS->getType();
1416    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1417    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1418    // For non-power-of-two values, effectively round the value up to the
1419    // nearest power of two.
1420    if (!RHSC->getValue()->getValue().isPowerOf2())
1421      ++MaxShiftAmt;
1422    const IntegerType *ExtTy =
1423      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1424    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1425    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1426      if (const SCEVConstant *Step =
1427            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1428        if (!Step->getValue()->getValue()
1429              .urem(RHSC->getValue()->getValue()) &&
1430            getZeroExtendExpr(AR, ExtTy) ==
1431            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1432                          getZeroExtendExpr(Step, ExtTy),
1433                          AR->getLoop())) {
1434          std::vector<SCEVHandle> Operands;
1435          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1436            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1437          return getAddRecExpr(Operands, AR->getLoop());
1438        }
1439    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1440    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1441      std::vector<SCEVHandle> Operands;
1442      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1443        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1444      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1445        // Find an operand that's safely divisible.
1446        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1447          SCEVHandle Op = M->getOperand(i);
1448          SCEVHandle Div = getUDivExpr(Op, RHSC);
1449          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1450            Operands = M->getOperands();
1451            Operands[i] = Div;
1452            return getMulExpr(Operands);
1453          }
1454        }
1455    }
1456    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1457    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1458      std::vector<SCEVHandle> Operands;
1459      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1460        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1461      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1462        Operands.clear();
1463        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1464          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1465          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1466            break;
1467          Operands.push_back(Op);
1468        }
1469        if (Operands.size() == A->getNumOperands())
1470          return getAddExpr(Operands);
1471      }
1472    }
1473
1474    // Fold if both operands are constant.
1475    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1476      Constant *LHSCV = LHSC->getValue();
1477      Constant *RHSCV = RHSC->getValue();
1478      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1479    }
1480  }
1481
1482  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1483  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1484  return Result;
1485}
1486
1487
1488/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1489/// Simplify the expression as much as possible.
1490SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1491                               const SCEVHandle &Step, const Loop *L) {
1492  std::vector<SCEVHandle> Operands;
1493  Operands.push_back(Start);
1494  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1495    if (StepChrec->getLoop() == L) {
1496      Operands.insert(Operands.end(), StepChrec->op_begin(),
1497                      StepChrec->op_end());
1498      return getAddRecExpr(Operands, L);
1499    }
1500
1501  Operands.push_back(Step);
1502  return getAddRecExpr(Operands, L);
1503}
1504
1505/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1506/// Simplify the expression as much as possible.
1507SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1508                                          const Loop *L) {
1509  if (Operands.size() == 1) return Operands[0];
1510#ifndef NDEBUG
1511  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1512    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1513           getEffectiveSCEVType(Operands[0]->getType()) &&
1514           "SCEVAddRecExpr operand types don't match!");
1515#endif
1516
1517  if (Operands.back()->isZero()) {
1518    Operands.pop_back();
1519    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1520  }
1521
1522  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1523  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1524    const Loop* NestedLoop = NestedAR->getLoop();
1525    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1526      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1527                                             NestedAR->op_end());
1528      SCEVHandle NestedARHandle(NestedAR);
1529      Operands[0] = NestedAR->getStart();
1530      NestedOperands[0] = getAddRecExpr(Operands, L);
1531      return getAddRecExpr(NestedOperands, NestedLoop);
1532    }
1533  }
1534
1535  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1536  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1537  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1538  return Result;
1539}
1540
1541SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1542                                        const SCEVHandle &RHS) {
1543  std::vector<SCEVHandle> Ops;
1544  Ops.push_back(LHS);
1545  Ops.push_back(RHS);
1546  return getSMaxExpr(Ops);
1547}
1548
1549SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1550  assert(!Ops.empty() && "Cannot get empty smax!");
1551  if (Ops.size() == 1) return Ops[0];
1552#ifndef NDEBUG
1553  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1554    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1555           getEffectiveSCEVType(Ops[0]->getType()) &&
1556           "SCEVSMaxExpr operand types don't match!");
1557#endif
1558
1559  // Sort by complexity, this groups all similar expression types together.
1560  GroupByComplexity(Ops, LI);
1561
1562  // If there are any constants, fold them together.
1563  unsigned Idx = 0;
1564  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1565    ++Idx;
1566    assert(Idx < Ops.size());
1567    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1568      // We found two constants, fold them together!
1569      ConstantInt *Fold = ConstantInt::get(
1570                              APIntOps::smax(LHSC->getValue()->getValue(),
1571                                             RHSC->getValue()->getValue()));
1572      Ops[0] = getConstant(Fold);
1573      Ops.erase(Ops.begin()+1);  // Erase the folded element
1574      if (Ops.size() == 1) return Ops[0];
1575      LHSC = cast<SCEVConstant>(Ops[0]);
1576    }
1577
1578    // If we are left with a constant -inf, strip it off.
1579    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1580      Ops.erase(Ops.begin());
1581      --Idx;
1582    }
1583  }
1584
1585  if (Ops.size() == 1) return Ops[0];
1586
1587  // Find the first SMax
1588  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1589    ++Idx;
1590
1591  // Check to see if one of the operands is an SMax. If so, expand its operands
1592  // onto our operand list, and recurse to simplify.
1593  if (Idx < Ops.size()) {
1594    bool DeletedSMax = false;
1595    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1596      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1597      Ops.erase(Ops.begin()+Idx);
1598      DeletedSMax = true;
1599    }
1600
1601    if (DeletedSMax)
1602      return getSMaxExpr(Ops);
1603  }
1604
1605  // Okay, check to see if the same value occurs in the operand list twice.  If
1606  // so, delete one.  Since we sorted the list, these values are required to
1607  // be adjacent.
1608  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1609    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1610      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1611      --i; --e;
1612    }
1613
1614  if (Ops.size() == 1) return Ops[0];
1615
1616  assert(!Ops.empty() && "Reduced smax down to nothing!");
1617
1618  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1619  // already have one, otherwise create a new one.
1620  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1621  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1622                                                                 SCEVOps)];
1623  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1624  return Result;
1625}
1626
1627SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1628                                        const SCEVHandle &RHS) {
1629  std::vector<SCEVHandle> Ops;
1630  Ops.push_back(LHS);
1631  Ops.push_back(RHS);
1632  return getUMaxExpr(Ops);
1633}
1634
1635SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1636  assert(!Ops.empty() && "Cannot get empty umax!");
1637  if (Ops.size() == 1) return Ops[0];
1638#ifndef NDEBUG
1639  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1640    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1641           getEffectiveSCEVType(Ops[0]->getType()) &&
1642           "SCEVUMaxExpr operand types don't match!");
1643#endif
1644
1645  // Sort by complexity, this groups all similar expression types together.
1646  GroupByComplexity(Ops, LI);
1647
1648  // If there are any constants, fold them together.
1649  unsigned Idx = 0;
1650  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1651    ++Idx;
1652    assert(Idx < Ops.size());
1653    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1654      // We found two constants, fold them together!
1655      ConstantInt *Fold = ConstantInt::get(
1656                              APIntOps::umax(LHSC->getValue()->getValue(),
1657                                             RHSC->getValue()->getValue()));
1658      Ops[0] = getConstant(Fold);
1659      Ops.erase(Ops.begin()+1);  // Erase the folded element
1660      if (Ops.size() == 1) return Ops[0];
1661      LHSC = cast<SCEVConstant>(Ops[0]);
1662    }
1663
1664    // If we are left with a constant zero, strip it off.
1665    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1666      Ops.erase(Ops.begin());
1667      --Idx;
1668    }
1669  }
1670
1671  if (Ops.size() == 1) return Ops[0];
1672
1673  // Find the first UMax
1674  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1675    ++Idx;
1676
1677  // Check to see if one of the operands is a UMax. If so, expand its operands
1678  // onto our operand list, and recurse to simplify.
1679  if (Idx < Ops.size()) {
1680    bool DeletedUMax = false;
1681    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1682      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1683      Ops.erase(Ops.begin()+Idx);
1684      DeletedUMax = true;
1685    }
1686
1687    if (DeletedUMax)
1688      return getUMaxExpr(Ops);
1689  }
1690
1691  // Okay, check to see if the same value occurs in the operand list twice.  If
1692  // so, delete one.  Since we sorted the list, these values are required to
1693  // be adjacent.
1694  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1695    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1696      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1697      --i; --e;
1698    }
1699
1700  if (Ops.size() == 1) return Ops[0];
1701
1702  assert(!Ops.empty() && "Reduced umax down to nothing!");
1703
1704  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1705  // already have one, otherwise create a new one.
1706  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1707  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1708                                                                 SCEVOps)];
1709  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1710  return Result;
1711}
1712
1713SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1714  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1715    return getConstant(CI);
1716  if (isa<ConstantPointerNull>(V))
1717    return getIntegerSCEV(0, V->getType());
1718  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1719  if (Result == 0) Result = new SCEVUnknown(V);
1720  return Result;
1721}
1722
1723//===----------------------------------------------------------------------===//
1724//            Basic SCEV Analysis and PHI Idiom Recognition Code
1725//
1726
1727/// isSCEVable - Test if values of the given type are analyzable within
1728/// the SCEV framework. This primarily includes integer types, and it
1729/// can optionally include pointer types if the ScalarEvolution class
1730/// has access to target-specific information.
1731bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1732  // Integers are always SCEVable.
1733  if (Ty->isInteger())
1734    return true;
1735
1736  // Pointers are SCEVable if TargetData information is available
1737  // to provide pointer size information.
1738  if (isa<PointerType>(Ty))
1739    return TD != NULL;
1740
1741  // Otherwise it's not SCEVable.
1742  return false;
1743}
1744
1745/// getTypeSizeInBits - Return the size in bits of the specified type,
1746/// for which isSCEVable must return true.
1747uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1748  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1749
1750  // If we have a TargetData, use it!
1751  if (TD)
1752    return TD->getTypeSizeInBits(Ty);
1753
1754  // Otherwise, we support only integer types.
1755  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1756  return Ty->getPrimitiveSizeInBits();
1757}
1758
1759/// getEffectiveSCEVType - Return a type with the same bitwidth as
1760/// the given type and which represents how SCEV will treat the given
1761/// type, for which isSCEVable must return true. For pointer types,
1762/// this is the pointer-sized integer type.
1763const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1764  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1765
1766  if (Ty->isInteger())
1767    return Ty;
1768
1769  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1770  return TD->getIntPtrType();
1771}
1772
1773SCEVHandle ScalarEvolution::getCouldNotCompute() {
1774  return UnknownValue;
1775}
1776
1777/// hasSCEV - Return true if the SCEV for this value has already been
1778/// computed.
1779bool ScalarEvolution::hasSCEV(Value *V) const {
1780  return Scalars.count(V);
1781}
1782
1783/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1784/// expression and create a new one.
1785SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1786  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1787
1788  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1789  if (I != Scalars.end()) return I->second;
1790  SCEVHandle S = createSCEV(V);
1791  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1792  return S;
1793}
1794
1795/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1796/// specified signed integer value and return a SCEV for the constant.
1797SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1798  Ty = getEffectiveSCEVType(Ty);
1799  Constant *C;
1800  if (Val == 0)
1801    C = Constant::getNullValue(Ty);
1802  else if (Ty->isFloatingPoint())
1803    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1804                                APFloat::IEEEdouble, Val));
1805  else
1806    C = ConstantInt::get(Ty, Val);
1807  return getUnknown(C);
1808}
1809
1810/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1811///
1812SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1813  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1814    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1815
1816  const Type *Ty = V->getType();
1817  Ty = getEffectiveSCEVType(Ty);
1818  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1819}
1820
1821/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1822SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1823  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1824    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1825
1826  const Type *Ty = V->getType();
1827  Ty = getEffectiveSCEVType(Ty);
1828  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1829  return getMinusSCEV(AllOnes, V);
1830}
1831
1832/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1833///
1834SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1835                                         const SCEVHandle &RHS) {
1836  // X - Y --> X + -Y
1837  return getAddExpr(LHS, getNegativeSCEV(RHS));
1838}
1839
1840/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1841/// input value to the specified type.  If the type must be extended, it is zero
1842/// extended.
1843SCEVHandle
1844ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1845                                         const Type *Ty) {
1846  const Type *SrcTy = V->getType();
1847  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1848         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1849         "Cannot truncate or zero extend with non-integer arguments!");
1850  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1851    return V;  // No conversion
1852  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1853    return getTruncateExpr(V, Ty);
1854  return getZeroExtendExpr(V, Ty);
1855}
1856
1857/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1858/// input value to the specified type.  If the type must be extended, it is sign
1859/// extended.
1860SCEVHandle
1861ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1862                                         const Type *Ty) {
1863  const Type *SrcTy = V->getType();
1864  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1865         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1866         "Cannot truncate or zero extend with non-integer arguments!");
1867  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1868    return V;  // No conversion
1869  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1870    return getTruncateExpr(V, Ty);
1871  return getSignExtendExpr(V, Ty);
1872}
1873
1874/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1875/// input value to the specified type.  If the type must be extended, it is zero
1876/// extended.  The conversion must not be narrowing.
1877SCEVHandle
1878ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1879  const Type *SrcTy = V->getType();
1880  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1881         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1882         "Cannot noop or zero extend with non-integer arguments!");
1883  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1884         "getNoopOrZeroExtend cannot truncate!");
1885  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1886    return V;  // No conversion
1887  return getZeroExtendExpr(V, Ty);
1888}
1889
1890/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1891/// input value to the specified type.  If the type must be extended, it is sign
1892/// extended.  The conversion must not be narrowing.
1893SCEVHandle
1894ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1895  const Type *SrcTy = V->getType();
1896  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1897         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1898         "Cannot noop or sign extend with non-integer arguments!");
1899  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1900         "getNoopOrSignExtend cannot truncate!");
1901  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1902    return V;  // No conversion
1903  return getSignExtendExpr(V, Ty);
1904}
1905
1906/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1907/// input value to the specified type.  The conversion must not be widening.
1908SCEVHandle
1909ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1910  const Type *SrcTy = V->getType();
1911  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1912         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1913         "Cannot truncate or noop with non-integer arguments!");
1914  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1915         "getTruncateOrNoop cannot extend!");
1916  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1917    return V;  // No conversion
1918  return getTruncateExpr(V, Ty);
1919}
1920
1921/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1922/// the specified instruction and replaces any references to the symbolic value
1923/// SymName with the specified value.  This is used during PHI resolution.
1924void ScalarEvolution::
1925ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1926                                 const SCEVHandle &NewVal) {
1927  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1928    Scalars.find(SCEVCallbackVH(I, this));
1929  if (SI == Scalars.end()) return;
1930
1931  SCEVHandle NV =
1932    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1933  if (NV == SI->second) return;  // No change.
1934
1935  SI->second = NV;       // Update the scalars map!
1936
1937  // Any instruction values that use this instruction might also need to be
1938  // updated!
1939  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1940       UI != E; ++UI)
1941    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1942}
1943
1944/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1945/// a loop header, making it a potential recurrence, or it doesn't.
1946///
1947SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1948  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1949    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1950      if (L->getHeader() == PN->getParent()) {
1951        // If it lives in the loop header, it has two incoming values, one
1952        // from outside the loop, and one from inside.
1953        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1954        unsigned BackEdge     = IncomingEdge^1;
1955
1956        // While we are analyzing this PHI node, handle its value symbolically.
1957        SCEVHandle SymbolicName = getUnknown(PN);
1958        assert(Scalars.find(PN) == Scalars.end() &&
1959               "PHI node already processed?");
1960        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1961
1962        // Using this symbolic name for the PHI, analyze the value coming around
1963        // the back-edge.
1964        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1965
1966        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1967        // has a special value for the first iteration of the loop.
1968
1969        // If the value coming around the backedge is an add with the symbolic
1970        // value we just inserted, then we found a simple induction variable!
1971        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1972          // If there is a single occurrence of the symbolic value, replace it
1973          // with a recurrence.
1974          unsigned FoundIndex = Add->getNumOperands();
1975          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1976            if (Add->getOperand(i) == SymbolicName)
1977              if (FoundIndex == e) {
1978                FoundIndex = i;
1979                break;
1980              }
1981
1982          if (FoundIndex != Add->getNumOperands()) {
1983            // Create an add with everything but the specified operand.
1984            std::vector<SCEVHandle> Ops;
1985            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1986              if (i != FoundIndex)
1987                Ops.push_back(Add->getOperand(i));
1988            SCEVHandle Accum = getAddExpr(Ops);
1989
1990            // This is not a valid addrec if the step amount is varying each
1991            // loop iteration, but is not itself an addrec in this loop.
1992            if (Accum->isLoopInvariant(L) ||
1993                (isa<SCEVAddRecExpr>(Accum) &&
1994                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1995              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1996              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1997
1998              // Okay, for the entire analysis of this edge we assumed the PHI
1999              // to be symbolic.  We now need to go back and update all of the
2000              // entries for the scalars that use the PHI (except for the PHI
2001              // itself) to use the new analyzed value instead of the "symbolic"
2002              // value.
2003              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2004              return PHISCEV;
2005            }
2006          }
2007        } else if (const SCEVAddRecExpr *AddRec =
2008                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2009          // Otherwise, this could be a loop like this:
2010          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2011          // In this case, j = {1,+,1}  and BEValue is j.
2012          // Because the other in-value of i (0) fits the evolution of BEValue
2013          // i really is an addrec evolution.
2014          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2015            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2016
2017            // If StartVal = j.start - j.stride, we can use StartVal as the
2018            // initial step of the addrec evolution.
2019            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2020                                            AddRec->getOperand(1))) {
2021              SCEVHandle PHISCEV =
2022                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2023
2024              // Okay, for the entire analysis of this edge we assumed the PHI
2025              // to be symbolic.  We now need to go back and update all of the
2026              // entries for the scalars that use the PHI (except for the PHI
2027              // itself) to use the new analyzed value instead of the "symbolic"
2028              // value.
2029              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2030              return PHISCEV;
2031            }
2032          }
2033        }
2034
2035        return SymbolicName;
2036      }
2037
2038  // If it's not a loop phi, we can't handle it yet.
2039  return getUnknown(PN);
2040}
2041
2042/// createNodeForGEP - Expand GEP instructions into add and multiply
2043/// operations. This allows them to be analyzed by regular SCEV code.
2044///
2045SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
2046
2047  const Type *IntPtrTy = TD->getIntPtrType();
2048  Value *Base = GEP->getOperand(0);
2049  // Don't attempt to analyze GEPs over unsized objects.
2050  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2051    return getUnknown(GEP);
2052  SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
2053  gep_type_iterator GTI = gep_type_begin(GEP);
2054  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2055                                      E = GEP->op_end();
2056       I != E; ++I) {
2057    Value *Index = *I;
2058    // Compute the (potentially symbolic) offset in bytes for this index.
2059    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2060      // For a struct, add the member offset.
2061      const StructLayout &SL = *TD->getStructLayout(STy);
2062      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2063      uint64_t Offset = SL.getElementOffset(FieldNo);
2064      TotalOffset = getAddExpr(TotalOffset,
2065                                  getIntegerSCEV(Offset, IntPtrTy));
2066    } else {
2067      // For an array, add the element offset, explicitly scaled.
2068      SCEVHandle LocalOffset = getSCEV(Index);
2069      if (!isa<PointerType>(LocalOffset->getType()))
2070        // Getelementptr indicies are signed.
2071        LocalOffset = getTruncateOrSignExtend(LocalOffset,
2072                                              IntPtrTy);
2073      LocalOffset =
2074        getMulExpr(LocalOffset,
2075                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2076                                  IntPtrTy));
2077      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2078    }
2079  }
2080  return getAddExpr(getSCEV(Base), TotalOffset);
2081}
2082
2083/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2084/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2085/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2086/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2087static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
2088  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2089    return C->getValue()->getValue().countTrailingZeros();
2090
2091  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2092    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2093                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
2094
2095  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2096    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2097    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2098             SE.getTypeSizeInBits(E->getType()) : OpRes;
2099  }
2100
2101  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2102    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2103    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2104             SE.getTypeSizeInBits(E->getType()) : OpRes;
2105  }
2106
2107  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2108    // The result is the min of all operands results.
2109    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2110    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2111      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2112    return MinOpRes;
2113  }
2114
2115  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2116    // The result is the sum of all operands results.
2117    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2118    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
2119    for (unsigned i = 1, e = M->getNumOperands();
2120         SumOpRes != BitWidth && i != e; ++i)
2121      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
2122                          BitWidth);
2123    return SumOpRes;
2124  }
2125
2126  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2127    // The result is the min of all operands results.
2128    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2129    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2130      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2131    return MinOpRes;
2132  }
2133
2134  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2135    // The result is the min of all operands results.
2136    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2137    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2138      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2139    return MinOpRes;
2140  }
2141
2142  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2143    // The result is the min of all operands results.
2144    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2145    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2146      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2147    return MinOpRes;
2148  }
2149
2150  // SCEVUDivExpr, SCEVUnknown
2151  return 0;
2152}
2153
2154/// createSCEV - We know that there is no SCEV for the specified value.
2155/// Analyze the expression.
2156///
2157SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2158  if (!isSCEVable(V->getType()))
2159    return getUnknown(V);
2160
2161  unsigned Opcode = Instruction::UserOp1;
2162  if (Instruction *I = dyn_cast<Instruction>(V))
2163    Opcode = I->getOpcode();
2164  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2165    Opcode = CE->getOpcode();
2166  else
2167    return getUnknown(V);
2168
2169  User *U = cast<User>(V);
2170  switch (Opcode) {
2171  case Instruction::Add:
2172    return getAddExpr(getSCEV(U->getOperand(0)),
2173                      getSCEV(U->getOperand(1)));
2174  case Instruction::Mul:
2175    return getMulExpr(getSCEV(U->getOperand(0)),
2176                      getSCEV(U->getOperand(1)));
2177  case Instruction::UDiv:
2178    return getUDivExpr(getSCEV(U->getOperand(0)),
2179                       getSCEV(U->getOperand(1)));
2180  case Instruction::Sub:
2181    return getMinusSCEV(getSCEV(U->getOperand(0)),
2182                        getSCEV(U->getOperand(1)));
2183  case Instruction::And:
2184    // For an expression like x&255 that merely masks off the high bits,
2185    // use zext(trunc(x)) as the SCEV expression.
2186    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2187      if (CI->isNullValue())
2188        return getSCEV(U->getOperand(1));
2189      if (CI->isAllOnesValue())
2190        return getSCEV(U->getOperand(0));
2191      const APInt &A = CI->getValue();
2192      unsigned Ones = A.countTrailingOnes();
2193      if (APIntOps::isMask(Ones, A))
2194        return
2195          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2196                                            IntegerType::get(Ones)),
2197                            U->getType());
2198    }
2199    break;
2200  case Instruction::Or:
2201    // If the RHS of the Or is a constant, we may have something like:
2202    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2203    // optimizations will transparently handle this case.
2204    //
2205    // In order for this transformation to be safe, the LHS must be of the
2206    // form X*(2^n) and the Or constant must be less than 2^n.
2207    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2208      SCEVHandle LHS = getSCEV(U->getOperand(0));
2209      const APInt &CIVal = CI->getValue();
2210      if (GetMinTrailingZeros(LHS, *this) >=
2211          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2212        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2213    }
2214    break;
2215  case Instruction::Xor:
2216    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2217      // If the RHS of the xor is a signbit, then this is just an add.
2218      // Instcombine turns add of signbit into xor as a strength reduction step.
2219      if (CI->getValue().isSignBit())
2220        return getAddExpr(getSCEV(U->getOperand(0)),
2221                          getSCEV(U->getOperand(1)));
2222
2223      // If the RHS of xor is -1, then this is a not operation.
2224      if (CI->isAllOnesValue())
2225        return getNotSCEV(getSCEV(U->getOperand(0)));
2226
2227      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2228      // This is a variant of the check for xor with -1, and it handles
2229      // the case where instcombine has trimmed non-demanded bits out
2230      // of an xor with -1.
2231      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2232        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2233          if (BO->getOpcode() == Instruction::And &&
2234              LCI->getValue() == CI->getValue())
2235            if (const SCEVZeroExtendExpr *Z =
2236                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0))))
2237              return getZeroExtendExpr(getNotSCEV(Z->getOperand()),
2238                                       U->getType());
2239    }
2240    break;
2241
2242  case Instruction::Shl:
2243    // Turn shift left of a constant amount into a multiply.
2244    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2245      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2246      Constant *X = ConstantInt::get(
2247        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2248      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2249    }
2250    break;
2251
2252  case Instruction::LShr:
2253    // Turn logical shift right of a constant into a unsigned divide.
2254    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2255      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2256      Constant *X = ConstantInt::get(
2257        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2258      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2259    }
2260    break;
2261
2262  case Instruction::AShr:
2263    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2264    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2265      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2266        if (L->getOpcode() == Instruction::Shl &&
2267            L->getOperand(1) == U->getOperand(1)) {
2268          unsigned BitWidth = getTypeSizeInBits(U->getType());
2269          uint64_t Amt = BitWidth - CI->getZExtValue();
2270          if (Amt == BitWidth)
2271            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2272          if (Amt > BitWidth)
2273            return getIntegerSCEV(0, U->getType()); // value is undefined
2274          return
2275            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2276                                                      IntegerType::get(Amt)),
2277                                 U->getType());
2278        }
2279    break;
2280
2281  case Instruction::Trunc:
2282    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2283
2284  case Instruction::ZExt:
2285    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2286
2287  case Instruction::SExt:
2288    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2289
2290  case Instruction::BitCast:
2291    // BitCasts are no-op casts so we just eliminate the cast.
2292    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2293      return getSCEV(U->getOperand(0));
2294    break;
2295
2296  case Instruction::IntToPtr:
2297    if (!TD) break; // Without TD we can't analyze pointers.
2298    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2299                                   TD->getIntPtrType());
2300
2301  case Instruction::PtrToInt:
2302    if (!TD) break; // Without TD we can't analyze pointers.
2303    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2304                                   U->getType());
2305
2306  case Instruction::GetElementPtr:
2307    if (!TD) break; // Without TD we can't analyze pointers.
2308    return createNodeForGEP(U);
2309
2310  case Instruction::PHI:
2311    return createNodeForPHI(cast<PHINode>(U));
2312
2313  case Instruction::Select:
2314    // This could be a smax or umax that was lowered earlier.
2315    // Try to recover it.
2316    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2317      Value *LHS = ICI->getOperand(0);
2318      Value *RHS = ICI->getOperand(1);
2319      switch (ICI->getPredicate()) {
2320      case ICmpInst::ICMP_SLT:
2321      case ICmpInst::ICMP_SLE:
2322        std::swap(LHS, RHS);
2323        // fall through
2324      case ICmpInst::ICMP_SGT:
2325      case ICmpInst::ICMP_SGE:
2326        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2327          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2328        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2329          // ~smax(~x, ~y) == smin(x, y).
2330          return getNotSCEV(getSMaxExpr(
2331                                   getNotSCEV(getSCEV(LHS)),
2332                                   getNotSCEV(getSCEV(RHS))));
2333        break;
2334      case ICmpInst::ICMP_ULT:
2335      case ICmpInst::ICMP_ULE:
2336        std::swap(LHS, RHS);
2337        // fall through
2338      case ICmpInst::ICMP_UGT:
2339      case ICmpInst::ICMP_UGE:
2340        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2341          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2342        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2343          // ~umax(~x, ~y) == umin(x, y)
2344          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2345                                        getNotSCEV(getSCEV(RHS))));
2346        break;
2347      default:
2348        break;
2349      }
2350    }
2351
2352  default: // We cannot analyze this expression.
2353    break;
2354  }
2355
2356  return getUnknown(V);
2357}
2358
2359
2360
2361//===----------------------------------------------------------------------===//
2362//                   Iteration Count Computation Code
2363//
2364
2365/// getBackedgeTakenCount - If the specified loop has a predictable
2366/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2367/// object. The backedge-taken count is the number of times the loop header
2368/// will be branched to from within the loop. This is one less than the
2369/// trip count of the loop, since it doesn't count the first iteration,
2370/// when the header is branched to from outside the loop.
2371///
2372/// Note that it is not valid to call this method on a loop without a
2373/// loop-invariant backedge-taken count (see
2374/// hasLoopInvariantBackedgeTakenCount).
2375///
2376SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2377  return getBackedgeTakenInfo(L).Exact;
2378}
2379
2380/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2381/// return the least SCEV value that is known never to be less than the
2382/// actual backedge taken count.
2383SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2384  return getBackedgeTakenInfo(L).Max;
2385}
2386
2387const ScalarEvolution::BackedgeTakenInfo &
2388ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2389  // Initially insert a CouldNotCompute for this loop. If the insertion
2390  // succeeds, procede to actually compute a backedge-taken count and
2391  // update the value. The temporary CouldNotCompute value tells SCEV
2392  // code elsewhere that it shouldn't attempt to request a new
2393  // backedge-taken count, which could result in infinite recursion.
2394  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2395    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2396  if (Pair.second) {
2397    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2398    if (ItCount.Exact != UnknownValue) {
2399      assert(ItCount.Exact->isLoopInvariant(L) &&
2400             ItCount.Max->isLoopInvariant(L) &&
2401             "Computed trip count isn't loop invariant for loop!");
2402      ++NumTripCountsComputed;
2403
2404      // Update the value in the map.
2405      Pair.first->second = ItCount;
2406    } else if (isa<PHINode>(L->getHeader()->begin())) {
2407      // Only count loops that have phi nodes as not being computable.
2408      ++NumTripCountsNotComputed;
2409    }
2410
2411    // Now that we know more about the trip count for this loop, forget any
2412    // existing SCEV values for PHI nodes in this loop since they are only
2413    // conservative estimates made without the benefit
2414    // of trip count information.
2415    if (ItCount.hasAnyInfo())
2416      forgetLoopPHIs(L);
2417  }
2418  return Pair.first->second;
2419}
2420
2421/// forgetLoopBackedgeTakenCount - This method should be called by the
2422/// client when it has changed a loop in a way that may effect
2423/// ScalarEvolution's ability to compute a trip count, or if the loop
2424/// is deleted.
2425void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2426  BackedgeTakenCounts.erase(L);
2427  forgetLoopPHIs(L);
2428}
2429
2430/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2431/// PHI nodes in the given loop. This is used when the trip count of
2432/// the loop may have changed.
2433void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2434  BasicBlock *Header = L->getHeader();
2435
2436  // Push all Loop-header PHIs onto the Worklist stack, except those
2437  // that are presently represented via a SCEVUnknown. SCEVUnknown for
2438  // a PHI either means that it has an unrecognized structure, or it's
2439  // a PHI that's in the progress of being computed by createNodeForPHI.
2440  // In the former case, additional loop trip count information isn't
2441  // going to change anything. In the later case, createNodeForPHI will
2442  // perform the necessary updates on its own when it gets to that point.
2443  SmallVector<Instruction *, 16> Worklist;
2444  for (BasicBlock::iterator I = Header->begin();
2445       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2446    std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2447    if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2448      Worklist.push_back(PN);
2449  }
2450
2451  while (!Worklist.empty()) {
2452    Instruction *I = Worklist.pop_back_val();
2453    if (Scalars.erase(I))
2454      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2455           UI != UE; ++UI)
2456        Worklist.push_back(cast<Instruction>(UI));
2457  }
2458}
2459
2460/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2461/// of the specified loop will execute.
2462ScalarEvolution::BackedgeTakenInfo
2463ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2464  // If the loop has a non-one exit block count, we can't analyze it.
2465  BasicBlock *ExitBlock = L->getExitBlock();
2466  if (!ExitBlock)
2467    return UnknownValue;
2468
2469  // Okay, there is one exit block.  Try to find the condition that causes the
2470  // loop to be exited.
2471  BasicBlock *ExitingBlock = L->getExitingBlock();
2472  if (!ExitingBlock)
2473    return UnknownValue;   // More than one block exiting!
2474
2475  // Okay, we've computed the exiting block.  See what condition causes us to
2476  // exit.
2477  //
2478  // FIXME: we should be able to handle switch instructions (with a single exit)
2479  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2480  if (ExitBr == 0) return UnknownValue;
2481  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2482
2483  // At this point, we know we have a conditional branch that determines whether
2484  // the loop is exited.  However, we don't know if the branch is executed each
2485  // time through the loop.  If not, then the execution count of the branch will
2486  // not be equal to the trip count of the loop.
2487  //
2488  // Currently we check for this by checking to see if the Exit branch goes to
2489  // the loop header.  If so, we know it will always execute the same number of
2490  // times as the loop.  We also handle the case where the exit block *is* the
2491  // loop header.  This is common for un-rotated loops.  More extensive analysis
2492  // could be done to handle more cases here.
2493  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2494      ExitBr->getSuccessor(1) != L->getHeader() &&
2495      ExitBr->getParent() != L->getHeader())
2496    return UnknownValue;
2497
2498  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2499
2500  // If it's not an integer or pointer comparison then compute it the hard way.
2501  if (ExitCond == 0)
2502    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2503                                          ExitBr->getSuccessor(0) == ExitBlock);
2504
2505  // If the condition was exit on true, convert the condition to exit on false
2506  ICmpInst::Predicate Cond;
2507  if (ExitBr->getSuccessor(1) == ExitBlock)
2508    Cond = ExitCond->getPredicate();
2509  else
2510    Cond = ExitCond->getInversePredicate();
2511
2512  // Handle common loops like: for (X = "string"; *X; ++X)
2513  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2514    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2515      SCEVHandle ItCnt =
2516        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2517      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2518    }
2519
2520  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2521  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2522
2523  // Try to evaluate any dependencies out of the loop.
2524  LHS = getSCEVAtScope(LHS, L);
2525  RHS = getSCEVAtScope(RHS, L);
2526
2527  // At this point, we would like to compute how many iterations of the
2528  // loop the predicate will return true for these inputs.
2529  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2530    // If there is a loop-invariant, force it into the RHS.
2531    std::swap(LHS, RHS);
2532    Cond = ICmpInst::getSwappedPredicate(Cond);
2533  }
2534
2535  // If we have a comparison of a chrec against a constant, try to use value
2536  // ranges to answer this query.
2537  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2538    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2539      if (AddRec->getLoop() == L) {
2540        // Form the constant range.
2541        ConstantRange CompRange(
2542            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
2543
2544        SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2545        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2546      }
2547
2548  switch (Cond) {
2549  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2550    // Convert to: while (X-Y != 0)
2551    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2552    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2553    break;
2554  }
2555  case ICmpInst::ICMP_EQ: {
2556    // Convert to: while (X-Y == 0)           // while (X == Y)
2557    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2558    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2559    break;
2560  }
2561  case ICmpInst::ICMP_SLT: {
2562    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2563    if (BTI.hasAnyInfo()) return BTI;
2564    break;
2565  }
2566  case ICmpInst::ICMP_SGT: {
2567    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2568                                             getNotSCEV(RHS), L, true);
2569    if (BTI.hasAnyInfo()) return BTI;
2570    break;
2571  }
2572  case ICmpInst::ICMP_ULT: {
2573    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2574    if (BTI.hasAnyInfo()) return BTI;
2575    break;
2576  }
2577  case ICmpInst::ICMP_UGT: {
2578    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2579                                             getNotSCEV(RHS), L, false);
2580    if (BTI.hasAnyInfo()) return BTI;
2581    break;
2582  }
2583  default:
2584#if 0
2585    errs() << "ComputeBackedgeTakenCount ";
2586    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2587      errs() << "[unsigned] ";
2588    errs() << *LHS << "   "
2589         << Instruction::getOpcodeName(Instruction::ICmp)
2590         << "   " << *RHS << "\n";
2591#endif
2592    break;
2593  }
2594  return
2595    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2596                                          ExitBr->getSuccessor(0) == ExitBlock);
2597}
2598
2599static ConstantInt *
2600EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2601                                ScalarEvolution &SE) {
2602  SCEVHandle InVal = SE.getConstant(C);
2603  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2604  assert(isa<SCEVConstant>(Val) &&
2605         "Evaluation of SCEV at constant didn't fold correctly?");
2606  return cast<SCEVConstant>(Val)->getValue();
2607}
2608
2609/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2610/// and a GEP expression (missing the pointer index) indexing into it, return
2611/// the addressed element of the initializer or null if the index expression is
2612/// invalid.
2613static Constant *
2614GetAddressedElementFromGlobal(GlobalVariable *GV,
2615                              const std::vector<ConstantInt*> &Indices) {
2616  Constant *Init = GV->getInitializer();
2617  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2618    uint64_t Idx = Indices[i]->getZExtValue();
2619    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2620      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2621      Init = cast<Constant>(CS->getOperand(Idx));
2622    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2623      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2624      Init = cast<Constant>(CA->getOperand(Idx));
2625    } else if (isa<ConstantAggregateZero>(Init)) {
2626      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2627        assert(Idx < STy->getNumElements() && "Bad struct index!");
2628        Init = Constant::getNullValue(STy->getElementType(Idx));
2629      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2630        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2631        Init = Constant::getNullValue(ATy->getElementType());
2632      } else {
2633        assert(0 && "Unknown constant aggregate type!");
2634      }
2635      return 0;
2636    } else {
2637      return 0; // Unknown initializer type
2638    }
2639  }
2640  return Init;
2641}
2642
2643/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2644/// 'icmp op load X, cst', try to see if we can compute the backedge
2645/// execution count.
2646SCEVHandle ScalarEvolution::
2647ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2648                                             const Loop *L,
2649                                             ICmpInst::Predicate predicate) {
2650  if (LI->isVolatile()) return UnknownValue;
2651
2652  // Check to see if the loaded pointer is a getelementptr of a global.
2653  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2654  if (!GEP) return UnknownValue;
2655
2656  // Make sure that it is really a constant global we are gepping, with an
2657  // initializer, and make sure the first IDX is really 0.
2658  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2659  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2660      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2661      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2662    return UnknownValue;
2663
2664  // Okay, we allow one non-constant index into the GEP instruction.
2665  Value *VarIdx = 0;
2666  std::vector<ConstantInt*> Indexes;
2667  unsigned VarIdxNum = 0;
2668  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2669    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2670      Indexes.push_back(CI);
2671    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2672      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2673      VarIdx = GEP->getOperand(i);
2674      VarIdxNum = i-2;
2675      Indexes.push_back(0);
2676    }
2677
2678  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2679  // Check to see if X is a loop variant variable value now.
2680  SCEVHandle Idx = getSCEV(VarIdx);
2681  Idx = getSCEVAtScope(Idx, L);
2682
2683  // We can only recognize very limited forms of loop index expressions, in
2684  // particular, only affine AddRec's like {C1,+,C2}.
2685  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2686  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2687      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2688      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2689    return UnknownValue;
2690
2691  unsigned MaxSteps = MaxBruteForceIterations;
2692  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2693    ConstantInt *ItCst =
2694      ConstantInt::get(IdxExpr->getType(), IterationNum);
2695    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2696
2697    // Form the GEP offset.
2698    Indexes[VarIdxNum] = Val;
2699
2700    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2701    if (Result == 0) break;  // Cannot compute!
2702
2703    // Evaluate the condition for this iteration.
2704    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2705    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2706    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2707#if 0
2708      errs() << "\n***\n*** Computed loop count " << *ItCst
2709             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2710             << "***\n";
2711#endif
2712      ++NumArrayLenItCounts;
2713      return getConstant(ItCst);   // Found terminating iteration!
2714    }
2715  }
2716  return UnknownValue;
2717}
2718
2719
2720/// CanConstantFold - Return true if we can constant fold an instruction of the
2721/// specified type, assuming that all operands were constants.
2722static bool CanConstantFold(const Instruction *I) {
2723  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2724      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2725    return true;
2726
2727  if (const CallInst *CI = dyn_cast<CallInst>(I))
2728    if (const Function *F = CI->getCalledFunction())
2729      return canConstantFoldCallTo(F);
2730  return false;
2731}
2732
2733/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2734/// in the loop that V is derived from.  We allow arbitrary operations along the
2735/// way, but the operands of an operation must either be constants or a value
2736/// derived from a constant PHI.  If this expression does not fit with these
2737/// constraints, return null.
2738static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2739  // If this is not an instruction, or if this is an instruction outside of the
2740  // loop, it can't be derived from a loop PHI.
2741  Instruction *I = dyn_cast<Instruction>(V);
2742  if (I == 0 || !L->contains(I->getParent())) return 0;
2743
2744  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2745    if (L->getHeader() == I->getParent())
2746      return PN;
2747    else
2748      // We don't currently keep track of the control flow needed to evaluate
2749      // PHIs, so we cannot handle PHIs inside of loops.
2750      return 0;
2751  }
2752
2753  // If we won't be able to constant fold this expression even if the operands
2754  // are constants, return early.
2755  if (!CanConstantFold(I)) return 0;
2756
2757  // Otherwise, we can evaluate this instruction if all of its operands are
2758  // constant or derived from a PHI node themselves.
2759  PHINode *PHI = 0;
2760  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2761    if (!(isa<Constant>(I->getOperand(Op)) ||
2762          isa<GlobalValue>(I->getOperand(Op)))) {
2763      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2764      if (P == 0) return 0;  // Not evolving from PHI
2765      if (PHI == 0)
2766        PHI = P;
2767      else if (PHI != P)
2768        return 0;  // Evolving from multiple different PHIs.
2769    }
2770
2771  // This is a expression evolving from a constant PHI!
2772  return PHI;
2773}
2774
2775/// EvaluateExpression - Given an expression that passes the
2776/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2777/// in the loop has the value PHIVal.  If we can't fold this expression for some
2778/// reason, return null.
2779static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2780  if (isa<PHINode>(V)) return PHIVal;
2781  if (Constant *C = dyn_cast<Constant>(V)) return C;
2782  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2783  Instruction *I = cast<Instruction>(V);
2784
2785  std::vector<Constant*> Operands;
2786  Operands.resize(I->getNumOperands());
2787
2788  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2789    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2790    if (Operands[i] == 0) return 0;
2791  }
2792
2793  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2794    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2795                                           &Operands[0], Operands.size());
2796  else
2797    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2798                                    &Operands[0], Operands.size());
2799}
2800
2801/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2802/// in the header of its containing loop, we know the loop executes a
2803/// constant number of times, and the PHI node is just a recurrence
2804/// involving constants, fold it.
2805Constant *ScalarEvolution::
2806getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2807  std::map<PHINode*, Constant*>::iterator I =
2808    ConstantEvolutionLoopExitValue.find(PN);
2809  if (I != ConstantEvolutionLoopExitValue.end())
2810    return I->second;
2811
2812  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2813    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2814
2815  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2816
2817  // Since the loop is canonicalized, the PHI node must have two entries.  One
2818  // entry must be a constant (coming in from outside of the loop), and the
2819  // second must be derived from the same PHI.
2820  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2821  Constant *StartCST =
2822    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2823  if (StartCST == 0)
2824    return RetVal = 0;  // Must be a constant.
2825
2826  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2827  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2828  if (PN2 != PN)
2829    return RetVal = 0;  // Not derived from same PHI.
2830
2831  // Execute the loop symbolically to determine the exit value.
2832  if (BEs.getActiveBits() >= 32)
2833    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2834
2835  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2836  unsigned IterationNum = 0;
2837  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2838    if (IterationNum == NumIterations)
2839      return RetVal = PHIVal;  // Got exit value!
2840
2841    // Compute the value of the PHI node for the next iteration.
2842    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2843    if (NextPHI == PHIVal)
2844      return RetVal = NextPHI;  // Stopped evolving!
2845    if (NextPHI == 0)
2846      return 0;        // Couldn't evaluate!
2847    PHIVal = NextPHI;
2848  }
2849}
2850
2851/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2852/// constant number of times (the condition evolves only from constants),
2853/// try to evaluate a few iterations of the loop until we get the exit
2854/// condition gets a value of ExitWhen (true or false).  If we cannot
2855/// evaluate the trip count of the loop, return UnknownValue.
2856SCEVHandle ScalarEvolution::
2857ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2858  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2859  if (PN == 0) return UnknownValue;
2860
2861  // Since the loop is canonicalized, the PHI node must have two entries.  One
2862  // entry must be a constant (coming in from outside of the loop), and the
2863  // second must be derived from the same PHI.
2864  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2865  Constant *StartCST =
2866    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2867  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2868
2869  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2870  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2871  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2872
2873  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2874  // the loop symbolically to determine when the condition gets a value of
2875  // "ExitWhen".
2876  unsigned IterationNum = 0;
2877  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2878  for (Constant *PHIVal = StartCST;
2879       IterationNum != MaxIterations; ++IterationNum) {
2880    ConstantInt *CondVal =
2881      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2882
2883    // Couldn't symbolically evaluate.
2884    if (!CondVal) return UnknownValue;
2885
2886    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2887      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2888      ++NumBruteForceTripCountsComputed;
2889      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2890    }
2891
2892    // Compute the value of the PHI node for the next iteration.
2893    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2894    if (NextPHI == 0 || NextPHI == PHIVal)
2895      return UnknownValue;  // Couldn't evaluate or not making progress...
2896    PHIVal = NextPHI;
2897  }
2898
2899  // Too many iterations were needed to evaluate.
2900  return UnknownValue;
2901}
2902
2903/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2904/// at the specified scope in the program.  The L value specifies a loop
2905/// nest to evaluate the expression at, where null is the top-level or a
2906/// specified loop is immediately inside of the loop.
2907///
2908/// This method can be used to compute the exit value for a variable defined
2909/// in a loop by querying what the value will hold in the parent loop.
2910///
2911/// In the case that a relevant loop exit value cannot be computed, the
2912/// original value V is returned.
2913SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2914  // FIXME: this should be turned into a virtual method on SCEV!
2915
2916  if (isa<SCEVConstant>(V)) return V;
2917
2918  // If this instruction is evolved from a constant-evolving PHI, compute the
2919  // exit value from the loop without using SCEVs.
2920  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2921    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2922      const Loop *LI = (*this->LI)[I->getParent()];
2923      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2924        if (PHINode *PN = dyn_cast<PHINode>(I))
2925          if (PN->getParent() == LI->getHeader()) {
2926            // Okay, there is no closed form solution for the PHI node.  Check
2927            // to see if the loop that contains it has a known backedge-taken
2928            // count.  If so, we may be able to force computation of the exit
2929            // value.
2930            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2931            if (const SCEVConstant *BTCC =
2932                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2933              // Okay, we know how many times the containing loop executes.  If
2934              // this is a constant evolving PHI node, get the final value at
2935              // the specified iteration number.
2936              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2937                                                   BTCC->getValue()->getValue(),
2938                                                               LI);
2939              if (RV) return getUnknown(RV);
2940            }
2941          }
2942
2943      // Okay, this is an expression that we cannot symbolically evaluate
2944      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2945      // the arguments into constants, and if so, try to constant propagate the
2946      // result.  This is particularly useful for computing loop exit values.
2947      if (CanConstantFold(I)) {
2948        // Check to see if we've folded this instruction at this loop before.
2949        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2950        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2951          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2952        if (!Pair.second)
2953          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2954
2955        std::vector<Constant*> Operands;
2956        Operands.reserve(I->getNumOperands());
2957        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2958          Value *Op = I->getOperand(i);
2959          if (Constant *C = dyn_cast<Constant>(Op)) {
2960            Operands.push_back(C);
2961          } else {
2962            // If any of the operands is non-constant and if they are
2963            // non-integer and non-pointer, don't even try to analyze them
2964            // with scev techniques.
2965            if (!isSCEVable(Op->getType()))
2966              return V;
2967
2968            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2969            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2970              Constant *C = SC->getValue();
2971              if (C->getType() != Op->getType())
2972                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2973                                                                  Op->getType(),
2974                                                                  false),
2975                                          C, Op->getType());
2976              Operands.push_back(C);
2977            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2978              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2979                if (C->getType() != Op->getType())
2980                  C =
2981                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2982                                                                  Op->getType(),
2983                                                                  false),
2984                                          C, Op->getType());
2985                Operands.push_back(C);
2986              } else
2987                return V;
2988            } else {
2989              return V;
2990            }
2991          }
2992        }
2993
2994        Constant *C;
2995        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2996          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2997                                              &Operands[0], Operands.size());
2998        else
2999          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3000                                       &Operands[0], Operands.size());
3001        Pair.first->second = C;
3002        return getUnknown(C);
3003      }
3004    }
3005
3006    // This is some other type of SCEVUnknown, just return it.
3007    return V;
3008  }
3009
3010  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3011    // Avoid performing the look-up in the common case where the specified
3012    // expression has no loop-variant portions.
3013    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3014      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3015      if (OpAtScope != Comm->getOperand(i)) {
3016        // Okay, at least one of these operands is loop variant but might be
3017        // foldable.  Build a new instance of the folded commutative expression.
3018        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3019        NewOps.push_back(OpAtScope);
3020
3021        for (++i; i != e; ++i) {
3022          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3023          NewOps.push_back(OpAtScope);
3024        }
3025        if (isa<SCEVAddExpr>(Comm))
3026          return getAddExpr(NewOps);
3027        if (isa<SCEVMulExpr>(Comm))
3028          return getMulExpr(NewOps);
3029        if (isa<SCEVSMaxExpr>(Comm))
3030          return getSMaxExpr(NewOps);
3031        if (isa<SCEVUMaxExpr>(Comm))
3032          return getUMaxExpr(NewOps);
3033        assert(0 && "Unknown commutative SCEV type!");
3034      }
3035    }
3036    // If we got here, all operands are loop invariant.
3037    return Comm;
3038  }
3039
3040  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3041    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
3042    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
3043    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3044      return Div;   // must be loop invariant
3045    return getUDivExpr(LHS, RHS);
3046  }
3047
3048  // If this is a loop recurrence for a loop that does not contain L, then we
3049  // are dealing with the final value computed by the loop.
3050  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3051    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3052      // To evaluate this recurrence, we need to know how many times the AddRec
3053      // loop iterates.  Compute this now.
3054      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3055      if (BackedgeTakenCount == UnknownValue) return AddRec;
3056
3057      // Then, evaluate the AddRec.
3058      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3059    }
3060    return AddRec;
3061  }
3062
3063  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3064    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3065    if (Op == Cast->getOperand())
3066      return Cast;  // must be loop invariant
3067    return getZeroExtendExpr(Op, Cast->getType());
3068  }
3069
3070  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3071    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3072    if (Op == Cast->getOperand())
3073      return Cast;  // must be loop invariant
3074    return getSignExtendExpr(Op, Cast->getType());
3075  }
3076
3077  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3078    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3079    if (Op == Cast->getOperand())
3080      return Cast;  // must be loop invariant
3081    return getTruncateExpr(Op, Cast->getType());
3082  }
3083
3084  assert(0 && "Unknown SCEV type!");
3085  return 0;
3086}
3087
3088/// getSCEVAtScope - This is a convenience function which does
3089/// getSCEVAtScope(getSCEV(V), L).
3090SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3091  return getSCEVAtScope(getSCEV(V), L);
3092}
3093
3094/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3095/// following equation:
3096///
3097///     A * X = B (mod N)
3098///
3099/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3100/// A and B isn't important.
3101///
3102/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3103static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3104                                               ScalarEvolution &SE) {
3105  uint32_t BW = A.getBitWidth();
3106  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3107  assert(A != 0 && "A must be non-zero.");
3108
3109  // 1. D = gcd(A, N)
3110  //
3111  // The gcd of A and N may have only one prime factor: 2. The number of
3112  // trailing zeros in A is its multiplicity
3113  uint32_t Mult2 = A.countTrailingZeros();
3114  // D = 2^Mult2
3115
3116  // 2. Check if B is divisible by D.
3117  //
3118  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3119  // is not less than multiplicity of this prime factor for D.
3120  if (B.countTrailingZeros() < Mult2)
3121    return SE.getCouldNotCompute();
3122
3123  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3124  // modulo (N / D).
3125  //
3126  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3127  // bit width during computations.
3128  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3129  APInt Mod(BW + 1, 0);
3130  Mod.set(BW - Mult2);  // Mod = N / D
3131  APInt I = AD.multiplicativeInverse(Mod);
3132
3133  // 4. Compute the minimum unsigned root of the equation:
3134  // I * (B / D) mod (N / D)
3135  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3136
3137  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3138  // bits.
3139  return SE.getConstant(Result.trunc(BW));
3140}
3141
3142/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3143/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3144/// might be the same) or two SCEVCouldNotCompute objects.
3145///
3146static std::pair<SCEVHandle,SCEVHandle>
3147SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3148  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3149  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3150  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3151  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3152
3153  // We currently can only solve this if the coefficients are constants.
3154  if (!LC || !MC || !NC) {
3155    const SCEV *CNC = SE.getCouldNotCompute();
3156    return std::make_pair(CNC, CNC);
3157  }
3158
3159  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3160  const APInt &L = LC->getValue()->getValue();
3161  const APInt &M = MC->getValue()->getValue();
3162  const APInt &N = NC->getValue()->getValue();
3163  APInt Two(BitWidth, 2);
3164  APInt Four(BitWidth, 4);
3165
3166  {
3167    using namespace APIntOps;
3168    const APInt& C = L;
3169    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3170    // The B coefficient is M-N/2
3171    APInt B(M);
3172    B -= sdiv(N,Two);
3173
3174    // The A coefficient is N/2
3175    APInt A(N.sdiv(Two));
3176
3177    // Compute the B^2-4ac term.
3178    APInt SqrtTerm(B);
3179    SqrtTerm *= B;
3180    SqrtTerm -= Four * (A * C);
3181
3182    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3183    // integer value or else APInt::sqrt() will assert.
3184    APInt SqrtVal(SqrtTerm.sqrt());
3185
3186    // Compute the two solutions for the quadratic formula.
3187    // The divisions must be performed as signed divisions.
3188    APInt NegB(-B);
3189    APInt TwoA( A << 1 );
3190    if (TwoA.isMinValue()) {
3191      const SCEV *CNC = SE.getCouldNotCompute();
3192      return std::make_pair(CNC, CNC);
3193    }
3194
3195    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3196    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3197
3198    return std::make_pair(SE.getConstant(Solution1),
3199                          SE.getConstant(Solution2));
3200    } // end APIntOps namespace
3201}
3202
3203/// HowFarToZero - Return the number of times a backedge comparing the specified
3204/// value to zero will execute.  If not computable, return UnknownValue.
3205SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3206  // If the value is a constant
3207  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3208    // If the value is already zero, the branch will execute zero times.
3209    if (C->getValue()->isZero()) return C;
3210    return UnknownValue;  // Otherwise it will loop infinitely.
3211  }
3212
3213  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3214  if (!AddRec || AddRec->getLoop() != L)
3215    return UnknownValue;
3216
3217  if (AddRec->isAffine()) {
3218    // If this is an affine expression, the execution count of this branch is
3219    // the minimum unsigned root of the following equation:
3220    //
3221    //     Start + Step*N = 0 (mod 2^BW)
3222    //
3223    // equivalent to:
3224    //
3225    //             Step*N = -Start (mod 2^BW)
3226    //
3227    // where BW is the common bit width of Start and Step.
3228
3229    // Get the initial value for the loop.
3230    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3231    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3232
3233    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3234      // For now we handle only constant steps.
3235
3236      // First, handle unitary steps.
3237      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3238        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3239      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3240        return Start;                           //    N = Start (as unsigned)
3241
3242      // Then, try to solve the above equation provided that Start is constant.
3243      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3244        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3245                                            -StartC->getValue()->getValue(),
3246                                            *this);
3247    }
3248  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3249    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3250    // the quadratic equation to solve it.
3251    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3252                                                                    *this);
3253    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3254    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3255    if (R1) {
3256#if 0
3257      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3258             << "  sol#2: " << *R2 << "\n";
3259#endif
3260      // Pick the smallest positive root value.
3261      if (ConstantInt *CB =
3262          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3263                                   R1->getValue(), R2->getValue()))) {
3264        if (CB->getZExtValue() == false)
3265          std::swap(R1, R2);   // R1 is the minimum root now.
3266
3267        // We can only use this value if the chrec ends up with an exact zero
3268        // value at this index.  When solving for "X*X != 5", for example, we
3269        // should not accept a root of 2.
3270        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3271        if (Val->isZero())
3272          return R1;  // We found a quadratic root!
3273      }
3274    }
3275  }
3276
3277  return UnknownValue;
3278}
3279
3280/// HowFarToNonZero - Return the number of times a backedge checking the
3281/// specified value for nonzero will execute.  If not computable, return
3282/// UnknownValue
3283SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3284  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3285  // handle them yet except for the trivial case.  This could be expanded in the
3286  // future as needed.
3287
3288  // If the value is a constant, check to see if it is known to be non-zero
3289  // already.  If so, the backedge will execute zero times.
3290  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3291    if (!C->getValue()->isNullValue())
3292      return getIntegerSCEV(0, C->getType());
3293    return UnknownValue;  // Otherwise it will loop infinitely.
3294  }
3295
3296  // We could implement others, but I really doubt anyone writes loops like
3297  // this, and if they did, they would already be constant folded.
3298  return UnknownValue;
3299}
3300
3301/// getLoopPredecessor - If the given loop's header has exactly one unique
3302/// predecessor outside the loop, return it. Otherwise return null.
3303///
3304BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3305  BasicBlock *Header = L->getHeader();
3306  BasicBlock *Pred = 0;
3307  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3308       PI != E; ++PI)
3309    if (!L->contains(*PI)) {
3310      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3311      Pred = *PI;
3312    }
3313  return Pred;
3314}
3315
3316/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3317/// (which may not be an immediate predecessor) which has exactly one
3318/// successor from which BB is reachable, or null if no such block is
3319/// found.
3320///
3321BasicBlock *
3322ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3323  // If the block has a unique predecessor, then there is no path from the
3324  // predecessor to the block that does not go through the direct edge
3325  // from the predecessor to the block.
3326  if (BasicBlock *Pred = BB->getSinglePredecessor())
3327    return Pred;
3328
3329  // A loop's header is defined to be a block that dominates the loop.
3330  // If the header has a unique predecessor outside the loop, it must be
3331  // a block that has exactly one successor that can reach the loop.
3332  if (Loop *L = LI->getLoopFor(BB))
3333    return getLoopPredecessor(L);
3334
3335  return 0;
3336}
3337
3338/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3339/// a conditional between LHS and RHS.  This is used to help avoid max
3340/// expressions in loop trip counts.
3341bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3342                                          ICmpInst::Predicate Pred,
3343                                          const SCEV *LHS, const SCEV *RHS) {
3344  // Interpret a null as meaning no loop, where there is obviously no guard
3345  // (interprocedural conditions notwithstanding).
3346  if (!L) return false;
3347
3348  BasicBlock *Predecessor = getLoopPredecessor(L);
3349  BasicBlock *PredecessorDest = L->getHeader();
3350
3351  // Starting at the loop predecessor, climb up the predecessor chain, as long
3352  // as there are predecessors that can be found that have unique successors
3353  // leading to the original header.
3354  for (; Predecessor;
3355       PredecessorDest = Predecessor,
3356       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3357
3358    BranchInst *LoopEntryPredicate =
3359      dyn_cast<BranchInst>(Predecessor->getTerminator());
3360    if (!LoopEntryPredicate ||
3361        LoopEntryPredicate->isUnconditional())
3362      continue;
3363
3364    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3365    if (!ICI) continue;
3366
3367    // Now that we found a conditional branch that dominates the loop, check to
3368    // see if it is the comparison we are looking for.
3369    Value *PreCondLHS = ICI->getOperand(0);
3370    Value *PreCondRHS = ICI->getOperand(1);
3371    ICmpInst::Predicate Cond;
3372    if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
3373      Cond = ICI->getPredicate();
3374    else
3375      Cond = ICI->getInversePredicate();
3376
3377    if (Cond == Pred)
3378      ; // An exact match.
3379    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3380      ; // The actual condition is beyond sufficient.
3381    else
3382      // Check a few special cases.
3383      switch (Cond) {
3384      case ICmpInst::ICMP_UGT:
3385        if (Pred == ICmpInst::ICMP_ULT) {
3386          std::swap(PreCondLHS, PreCondRHS);
3387          Cond = ICmpInst::ICMP_ULT;
3388          break;
3389        }
3390        continue;
3391      case ICmpInst::ICMP_SGT:
3392        if (Pred == ICmpInst::ICMP_SLT) {
3393          std::swap(PreCondLHS, PreCondRHS);
3394          Cond = ICmpInst::ICMP_SLT;
3395          break;
3396        }
3397        continue;
3398      case ICmpInst::ICMP_NE:
3399        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3400        // so check for this case by checking if the NE is comparing against
3401        // a minimum or maximum constant.
3402        if (!ICmpInst::isTrueWhenEqual(Pred))
3403          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3404            const APInt &A = CI->getValue();
3405            switch (Pred) {
3406            case ICmpInst::ICMP_SLT:
3407              if (A.isMaxSignedValue()) break;
3408              continue;
3409            case ICmpInst::ICMP_SGT:
3410              if (A.isMinSignedValue()) break;
3411              continue;
3412            case ICmpInst::ICMP_ULT:
3413              if (A.isMaxValue()) break;
3414              continue;
3415            case ICmpInst::ICMP_UGT:
3416              if (A.isMinValue()) break;
3417              continue;
3418            default:
3419              continue;
3420            }
3421            Cond = ICmpInst::ICMP_NE;
3422            // NE is symmetric but the original comparison may not be. Swap
3423            // the operands if necessary so that they match below.
3424            if (isa<SCEVConstant>(LHS))
3425              std::swap(PreCondLHS, PreCondRHS);
3426            break;
3427          }
3428        continue;
3429      default:
3430        // We weren't able to reconcile the condition.
3431        continue;
3432      }
3433
3434    if (!PreCondLHS->getType()->isInteger()) continue;
3435
3436    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3437    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3438    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3439        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3440         RHS == getNotSCEV(PreCondLHSSCEV)))
3441      return true;
3442  }
3443
3444  return false;
3445}
3446
3447/// HowManyLessThans - Return the number of times a backedge containing the
3448/// specified less-than comparison will execute.  If not computable, return
3449/// UnknownValue.
3450ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3451HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3452                 const Loop *L, bool isSigned) {
3453  // Only handle:  "ADDREC < LoopInvariant".
3454  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3455
3456  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3457  if (!AddRec || AddRec->getLoop() != L)
3458    return UnknownValue;
3459
3460  if (AddRec->isAffine()) {
3461    // FORNOW: We only support unit strides.
3462    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3463    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3464    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3465
3466    // TODO: handle non-constant strides.
3467    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3468    if (!CStep || CStep->isZero())
3469      return UnknownValue;
3470    if (CStep->isOne()) {
3471      // With unit stride, the iteration never steps past the limit value.
3472    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3473      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3474        // Test whether a positive iteration iteration can step past the limit
3475        // value and past the maximum value for its type in a single step.
3476        if (isSigned) {
3477          APInt Max = APInt::getSignedMaxValue(BitWidth);
3478          if ((Max - CStep->getValue()->getValue())
3479                .slt(CLimit->getValue()->getValue()))
3480            return UnknownValue;
3481        } else {
3482          APInt Max = APInt::getMaxValue(BitWidth);
3483          if ((Max - CStep->getValue()->getValue())
3484                .ult(CLimit->getValue()->getValue()))
3485            return UnknownValue;
3486        }
3487      } else
3488        // TODO: handle non-constant limit values below.
3489        return UnknownValue;
3490    } else
3491      // TODO: handle negative strides below.
3492      return UnknownValue;
3493
3494    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3495    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3496    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3497    // treat m-n as signed nor unsigned due to overflow possibility.
3498
3499    // First, we get the value of the LHS in the first iteration: n
3500    SCEVHandle Start = AddRec->getOperand(0);
3501
3502    // Determine the minimum constant start value.
3503    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3504      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3505                             APInt::getMinValue(BitWidth));
3506
3507    // If we know that the condition is true in order to enter the loop,
3508    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3509    // only know that it will execute (max(m,n)-n)/s times. In both cases,
3510    // the division must round up.
3511    SCEVHandle End = RHS;
3512    if (!isLoopGuardedByCond(L,
3513                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3514                             getMinusSCEV(Start, Step), RHS))
3515      End = isSigned ? getSMaxExpr(RHS, Start)
3516                     : getUMaxExpr(RHS, Start);
3517
3518    // Determine the maximum constant end value.
3519    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3520      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3521                             APInt::getMaxValue(BitWidth));
3522
3523    // Finally, we subtract these two values and divide, rounding up, to get
3524    // the number of times the backedge is executed.
3525    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3526                                                getAddExpr(Step, NegOne)),
3527                                     Step);
3528
3529    // The maximum backedge count is similar, except using the minimum start
3530    // value and the maximum end value.
3531    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3532                                                                MinStart),
3533                                                   getAddExpr(Step, NegOne)),
3534                                        Step);
3535
3536    return BackedgeTakenInfo(BECount, MaxBECount);
3537  }
3538
3539  return UnknownValue;
3540}
3541
3542/// getNumIterationsInRange - Return the number of iterations of this loop that
3543/// produce values in the specified constant range.  Another way of looking at
3544/// this is that it returns the first iteration number where the value is not in
3545/// the condition, thus computing the exit count. If the iteration count can't
3546/// be computed, an instance of SCEVCouldNotCompute is returned.
3547SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3548                                                   ScalarEvolution &SE) const {
3549  if (Range.isFullSet())  // Infinite loop.
3550    return SE.getCouldNotCompute();
3551
3552  // If the start is a non-zero constant, shift the range to simplify things.
3553  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3554    if (!SC->getValue()->isZero()) {
3555      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3556      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3557      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3558      if (const SCEVAddRecExpr *ShiftedAddRec =
3559            dyn_cast<SCEVAddRecExpr>(Shifted))
3560        return ShiftedAddRec->getNumIterationsInRange(
3561                           Range.subtract(SC->getValue()->getValue()), SE);
3562      // This is strange and shouldn't happen.
3563      return SE.getCouldNotCompute();
3564    }
3565
3566  // The only time we can solve this is when we have all constant indices.
3567  // Otherwise, we cannot determine the overflow conditions.
3568  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3569    if (!isa<SCEVConstant>(getOperand(i)))
3570      return SE.getCouldNotCompute();
3571
3572
3573  // Okay at this point we know that all elements of the chrec are constants and
3574  // that the start element is zero.
3575
3576  // First check to see if the range contains zero.  If not, the first
3577  // iteration exits.
3578  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3579  if (!Range.contains(APInt(BitWidth, 0)))
3580    return SE.getConstant(ConstantInt::get(getType(),0));
3581
3582  if (isAffine()) {
3583    // If this is an affine expression then we have this situation:
3584    //   Solve {0,+,A} in Range  ===  Ax in Range
3585
3586    // We know that zero is in the range.  If A is positive then we know that
3587    // the upper value of the range must be the first possible exit value.
3588    // If A is negative then the lower of the range is the last possible loop
3589    // value.  Also note that we already checked for a full range.
3590    APInt One(BitWidth,1);
3591    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3592    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3593
3594    // The exit value should be (End+A)/A.
3595    APInt ExitVal = (End + A).udiv(A);
3596    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3597
3598    // Evaluate at the exit value.  If we really did fall out of the valid
3599    // range, then we computed our trip count, otherwise wrap around or other
3600    // things must have happened.
3601    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3602    if (Range.contains(Val->getValue()))
3603      return SE.getCouldNotCompute();  // Something strange happened
3604
3605    // Ensure that the previous value is in the range.  This is a sanity check.
3606    assert(Range.contains(
3607           EvaluateConstantChrecAtConstant(this,
3608           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3609           "Linear scev computation is off in a bad way!");
3610    return SE.getConstant(ExitValue);
3611  } else if (isQuadratic()) {
3612    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3613    // quadratic equation to solve it.  To do this, we must frame our problem in
3614    // terms of figuring out when zero is crossed, instead of when
3615    // Range.getUpper() is crossed.
3616    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3617    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3618    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3619
3620    // Next, solve the constructed addrec
3621    std::pair<SCEVHandle,SCEVHandle> Roots =
3622      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3623    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3624    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3625    if (R1) {
3626      // Pick the smallest positive root value.
3627      if (ConstantInt *CB =
3628          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3629                                   R1->getValue(), R2->getValue()))) {
3630        if (CB->getZExtValue() == false)
3631          std::swap(R1, R2);   // R1 is the minimum root now.
3632
3633        // Make sure the root is not off by one.  The returned iteration should
3634        // not be in the range, but the previous one should be.  When solving
3635        // for "X*X < 5", for example, we should not return a root of 2.
3636        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3637                                                             R1->getValue(),
3638                                                             SE);
3639        if (Range.contains(R1Val->getValue())) {
3640          // The next iteration must be out of the range...
3641          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3642
3643          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3644          if (!Range.contains(R1Val->getValue()))
3645            return SE.getConstant(NextVal);
3646          return SE.getCouldNotCompute();  // Something strange happened
3647        }
3648
3649        // If R1 was not in the range, then it is a good return value.  Make
3650        // sure that R1-1 WAS in the range though, just in case.
3651        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3652        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3653        if (Range.contains(R1Val->getValue()))
3654          return R1;
3655        return SE.getCouldNotCompute();  // Something strange happened
3656      }
3657    }
3658  }
3659
3660  return SE.getCouldNotCompute();
3661}
3662
3663
3664
3665//===----------------------------------------------------------------------===//
3666//                   SCEVCallbackVH Class Implementation
3667//===----------------------------------------------------------------------===//
3668
3669void ScalarEvolution::SCEVCallbackVH::deleted() {
3670  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3671  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3672    SE->ConstantEvolutionLoopExitValue.erase(PN);
3673  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3674    SE->ValuesAtScopes.erase(I);
3675  SE->Scalars.erase(getValPtr());
3676  // this now dangles!
3677}
3678
3679void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
3680  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3681
3682  // Forget all the expressions associated with users of the old value,
3683  // so that future queries will recompute the expressions using the new
3684  // value.
3685  SmallVector<User *, 16> Worklist;
3686  Value *Old = getValPtr();
3687  bool DeleteOld = false;
3688  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3689       UI != UE; ++UI)
3690    Worklist.push_back(*UI);
3691  while (!Worklist.empty()) {
3692    User *U = Worklist.pop_back_val();
3693    // Deleting the Old value will cause this to dangle. Postpone
3694    // that until everything else is done.
3695    if (U == Old) {
3696      DeleteOld = true;
3697      continue;
3698    }
3699    if (PHINode *PN = dyn_cast<PHINode>(U))
3700      SE->ConstantEvolutionLoopExitValue.erase(PN);
3701    if (Instruction *I = dyn_cast<Instruction>(U))
3702      SE->ValuesAtScopes.erase(I);
3703    if (SE->Scalars.erase(U))
3704      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3705           UI != UE; ++UI)
3706        Worklist.push_back(*UI);
3707  }
3708  if (DeleteOld) {
3709    if (PHINode *PN = dyn_cast<PHINode>(Old))
3710      SE->ConstantEvolutionLoopExitValue.erase(PN);
3711    if (Instruction *I = dyn_cast<Instruction>(Old))
3712      SE->ValuesAtScopes.erase(I);
3713    SE->Scalars.erase(Old);
3714    // this now dangles!
3715  }
3716  // this may dangle!
3717}
3718
3719ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3720  : CallbackVH(V), SE(se) {}
3721
3722//===----------------------------------------------------------------------===//
3723//                   ScalarEvolution Class Implementation
3724//===----------------------------------------------------------------------===//
3725
3726ScalarEvolution::ScalarEvolution()
3727  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3728}
3729
3730bool ScalarEvolution::runOnFunction(Function &F) {
3731  this->F = &F;
3732  LI = &getAnalysis<LoopInfo>();
3733  TD = getAnalysisIfAvailable<TargetData>();
3734  return false;
3735}
3736
3737void ScalarEvolution::releaseMemory() {
3738  Scalars.clear();
3739  BackedgeTakenCounts.clear();
3740  ConstantEvolutionLoopExitValue.clear();
3741  ValuesAtScopes.clear();
3742}
3743
3744void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3745  AU.setPreservesAll();
3746  AU.addRequiredTransitive<LoopInfo>();
3747}
3748
3749bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3750  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3751}
3752
3753static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3754                          const Loop *L) {
3755  // Print all inner loops first
3756  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3757    PrintLoopInfo(OS, SE, *I);
3758
3759  OS << "Loop " << L->getHeader()->getName() << ": ";
3760
3761  SmallVector<BasicBlock*, 8> ExitBlocks;
3762  L->getExitBlocks(ExitBlocks);
3763  if (ExitBlocks.size() != 1)
3764    OS << "<multiple exits> ";
3765
3766  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3767    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3768  } else {
3769    OS << "Unpredictable backedge-taken count. ";
3770  }
3771
3772  OS << "\n";
3773}
3774
3775void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3776  // ScalarEvolution's implementaiton of the print method is to print
3777  // out SCEV values of all instructions that are interesting. Doing
3778  // this potentially causes it to create new SCEV objects though,
3779  // which technically conflicts with the const qualifier. This isn't
3780  // observable from outside the class though (the hasSCEV function
3781  // notwithstanding), so casting away the const isn't dangerous.
3782  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3783
3784  OS << "Classifying expressions for: " << F->getName() << "\n";
3785  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3786    if (isSCEVable(I->getType())) {
3787      OS << *I;
3788      OS << "  -->  ";
3789      SCEVHandle SV = SE.getSCEV(&*I);
3790      SV->print(OS);
3791      OS << "\t\t";
3792
3793      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3794        OS << "Exits: ";
3795        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3796        if (!ExitValue->isLoopInvariant(L)) {
3797          OS << "<<Unknown>>";
3798        } else {
3799          OS << *ExitValue;
3800        }
3801      }
3802
3803      OS << "\n";
3804    }
3805
3806  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3807  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3808    PrintLoopInfo(OS, &SE, *I);
3809}
3810
3811void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3812  raw_os_ostream OS(o);
3813  print(OS, M);
3814}
3815