GlobalsModRef.cpp revision 198396
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Analysis/MallocHelper.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/InstIterator.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/SCCIterator.h"
32#include <set>
33using namespace llvm;
34
35STATISTIC(NumNonAddrTakenGlobalVars,
36          "Number of global vars without address taken");
37STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41
42namespace {
43  /// FunctionRecord - One instance of this structure is stored for every
44  /// function in the program.  Later, the entries for these functions are
45  /// removed if the function is found to call an external function (in which
46  /// case we know nothing about it.
47  struct VISIBILITY_HIDDEN FunctionRecord {
48    /// GlobalInfo - Maintain mod/ref info for all of the globals without
49    /// addresses taken that are read or written (transitively) by this
50    /// function.
51    std::map<GlobalValue*, unsigned> GlobalInfo;
52
53    /// MayReadAnyGlobal - May read global variables, but it is not known which.
54    bool MayReadAnyGlobal;
55
56    unsigned getInfoForGlobal(GlobalValue *GV) const {
57      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
58      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
59      if (I != GlobalInfo.end())
60        Effect |= I->second;
61      return Effect;
62    }
63
64    /// FunctionEffect - Capture whether or not this function reads or writes to
65    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
66    unsigned FunctionEffect;
67
68    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
69  };
70
71  /// GlobalsModRef - The actual analysis pass.
72  class VISIBILITY_HIDDEN GlobalsModRef
73      : public ModulePass, public AliasAnalysis {
74    /// NonAddressTakenGlobals - The globals that do not have their addresses
75    /// taken.
76    std::set<GlobalValue*> NonAddressTakenGlobals;
77
78    /// IndirectGlobals - The memory pointed to by this global is known to be
79    /// 'owned' by the global.
80    std::set<GlobalValue*> IndirectGlobals;
81
82    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
83    /// indirect global, this map indicates which one.
84    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
85
86    /// FunctionInfo - For each function, keep track of what globals are
87    /// modified or read.
88    std::map<Function*, FunctionRecord> FunctionInfo;
89
90  public:
91    static char ID;
92    GlobalsModRef() : ModulePass(&ID) {}
93
94    bool runOnModule(Module &M) {
95      InitializeAliasAnalysis(this);                 // set up super class
96      AnalyzeGlobals(M);                          // find non-addr taken globals
97      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
98      return false;
99    }
100
101    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
102      AliasAnalysis::getAnalysisUsage(AU);
103      AU.addRequired<CallGraph>();
104      AU.setPreservesAll();                         // Does not transform code
105    }
106
107    //------------------------------------------------
108    // Implement the AliasAnalysis API
109    //
110    AliasResult alias(const Value *V1, unsigned V1Size,
111                      const Value *V2, unsigned V2Size);
112    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
113    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
114      return AliasAnalysis::getModRefInfo(CS1,CS2);
115    }
116    bool hasNoModRefInfoForCalls() const { return false; }
117
118    /// getModRefBehavior - Return the behavior of the specified function if
119    /// called from the specified call site.  The call site may be null in which
120    /// case the most generic behavior of this function should be returned.
121    ModRefBehavior getModRefBehavior(Function *F,
122                                         std::vector<PointerAccessInfo> *Info) {
123      if (FunctionRecord *FR = getFunctionInfo(F)) {
124        if (FR->FunctionEffect == 0)
125          return DoesNotAccessMemory;
126        else if ((FR->FunctionEffect & Mod) == 0)
127          return OnlyReadsMemory;
128      }
129      return AliasAnalysis::getModRefBehavior(F, Info);
130    }
131
132    /// getModRefBehavior - Return the behavior of the specified function if
133    /// called from the specified call site.  The call site may be null in which
134    /// case the most generic behavior of this function should be returned.
135    ModRefBehavior getModRefBehavior(CallSite CS,
136                                         std::vector<PointerAccessInfo> *Info) {
137      Function* F = CS.getCalledFunction();
138      if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
139      if (FunctionRecord *FR = getFunctionInfo(F)) {
140        if (FR->FunctionEffect == 0)
141          return DoesNotAccessMemory;
142        else if ((FR->FunctionEffect & Mod) == 0)
143          return OnlyReadsMemory;
144      }
145      return AliasAnalysis::getModRefBehavior(CS, Info);
146    }
147
148    virtual void deleteValue(Value *V);
149    virtual void copyValue(Value *From, Value *To);
150
151  private:
152    /// getFunctionInfo - Return the function info for the function, or null if
153    /// we don't have anything useful to say about it.
154    FunctionRecord *getFunctionInfo(Function *F) {
155      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
156      if (I != FunctionInfo.end())
157        return &I->second;
158      return 0;
159    }
160
161    void AnalyzeGlobals(Module &M);
162    void AnalyzeCallGraph(CallGraph &CG, Module &M);
163    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
164                              std::vector<Function*> &Writers,
165                              GlobalValue *OkayStoreDest = 0);
166    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
167  };
168}
169
170char GlobalsModRef::ID = 0;
171static RegisterPass<GlobalsModRef>
172X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
173static RegisterAnalysisGroup<AliasAnalysis> Y(X);
174
175Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
176
177/// AnalyzeGlobals - Scan through the users of all of the internal
178/// GlobalValue's in the program.  If none of them have their "address taken"
179/// (really, their address passed to something nontrivial), record this fact,
180/// and record the functions that they are used directly in.
181void GlobalsModRef::AnalyzeGlobals(Module &M) {
182  std::vector<Function*> Readers, Writers;
183  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
184    if (I->hasLocalLinkage()) {
185      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
186        // Remember that we are tracking this global.
187        NonAddressTakenGlobals.insert(I);
188        ++NumNonAddrTakenFunctions;
189      }
190      Readers.clear(); Writers.clear();
191    }
192
193  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
194       I != E; ++I)
195    if (I->hasLocalLinkage()) {
196      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
197        // Remember that we are tracking this global, and the mod/ref fns
198        NonAddressTakenGlobals.insert(I);
199
200        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
201          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
202
203        if (!I->isConstant())  // No need to keep track of writers to constants
204          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
205            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
206        ++NumNonAddrTakenGlobalVars;
207
208        // If this global holds a pointer type, see if it is an indirect global.
209        if (isa<PointerType>(I->getType()->getElementType()) &&
210            AnalyzeIndirectGlobalMemory(I))
211          ++NumIndirectGlobalVars;
212      }
213      Readers.clear(); Writers.clear();
214    }
215}
216
217/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
218/// If this is used by anything complex (i.e., the address escapes), return
219/// true.  Also, while we are at it, keep track of those functions that read and
220/// write to the value.
221///
222/// If OkayStoreDest is non-null, stores into this global are allowed.
223bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
224                                         std::vector<Function*> &Readers,
225                                         std::vector<Function*> &Writers,
226                                         GlobalValue *OkayStoreDest) {
227  if (!isa<PointerType>(V->getType())) return true;
228
229  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
230    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
231      Readers.push_back(LI->getParent()->getParent());
232    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
233      if (V == SI->getOperand(1)) {
234        Writers.push_back(SI->getParent()->getParent());
235      } else if (SI->getOperand(1) != OkayStoreDest) {
236        return true;  // Storing the pointer
237      }
238    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
239      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
240    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
241      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
242        return true;
243    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
244      // Make sure that this is just the function being called, not that it is
245      // passing into the function.
246      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
247        if (CI->getOperand(i) == V) return true;
248    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
249      // Make sure that this is just the function being called, not that it is
250      // passing into the function.
251      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
252        if (II->getOperand(i) == V) return true;
253    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
254      if (CE->getOpcode() == Instruction::GetElementPtr ||
255          CE->getOpcode() == Instruction::BitCast) {
256        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
257          return true;
258      } else {
259        return true;
260      }
261    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
262      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
263        return true;  // Allow comparison against null.
264    } else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
265      Writers.push_back(F->getParent()->getParent());
266    } else {
267      return true;
268    }
269  return false;
270}
271
272/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
273/// which holds a pointer type.  See if the global always points to non-aliased
274/// heap memory: that is, all initializers of the globals are allocations, and
275/// those allocations have no use other than initialization of the global.
276/// Further, all loads out of GV must directly use the memory, not store the
277/// pointer somewhere.  If this is true, we consider the memory pointed to by
278/// GV to be owned by GV and can disambiguate other pointers from it.
279bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
280  // Keep track of values related to the allocation of the memory, f.e. the
281  // value produced by the malloc call and any casts.
282  std::vector<Value*> AllocRelatedValues;
283
284  // Walk the user list of the global.  If we find anything other than a direct
285  // load or store, bail out.
286  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
287    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
288      // The pointer loaded from the global can only be used in simple ways:
289      // we allow addressing of it and loading storing to it.  We do *not* allow
290      // storing the loaded pointer somewhere else or passing to a function.
291      std::vector<Function*> ReadersWriters;
292      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
293        return false;  // Loaded pointer escapes.
294      // TODO: Could try some IP mod/ref of the loaded pointer.
295    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
296      // Storing the global itself.
297      if (SI->getOperand(0) == GV) return false;
298
299      // If storing the null pointer, ignore it.
300      if (isa<ConstantPointerNull>(SI->getOperand(0)))
301        continue;
302
303      // Check the value being stored.
304      Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
305
306      if (isMalloc(Ptr)) {
307        // Okay, easy case.
308      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
309        Function *F = CI->getCalledFunction();
310        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
311        if (F->getName() != "calloc") return false;   // Not calloc.
312      } else {
313        return false;  // Too hard to analyze.
314      }
315
316      // Analyze all uses of the allocation.  If any of them are used in a
317      // non-simple way (e.g. stored to another global) bail out.
318      std::vector<Function*> ReadersWriters;
319      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
320        return false;  // Loaded pointer escapes.
321
322      // Remember that this allocation is related to the indirect global.
323      AllocRelatedValues.push_back(Ptr);
324    } else {
325      // Something complex, bail out.
326      return false;
327    }
328  }
329
330  // Okay, this is an indirect global.  Remember all of the allocations for
331  // this global in AllocsForIndirectGlobals.
332  while (!AllocRelatedValues.empty()) {
333    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
334    AllocRelatedValues.pop_back();
335  }
336  IndirectGlobals.insert(GV);
337  return true;
338}
339
340/// AnalyzeCallGraph - At this point, we know the functions where globals are
341/// immediately stored to and read from.  Propagate this information up the call
342/// graph to all callers and compute the mod/ref info for all memory for each
343/// function.
344void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
345  // We do a bottom-up SCC traversal of the call graph.  In other words, we
346  // visit all callees before callers (leaf-first).
347  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
348       ++I) {
349    std::vector<CallGraphNode *> &SCC = *I;
350    assert(!SCC.empty() && "SCC with no functions?");
351
352    if (!SCC[0]->getFunction()) {
353      // Calls externally - can't say anything useful.  Remove any existing
354      // function records (may have been created when scanning globals).
355      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
356        FunctionInfo.erase(SCC[i]->getFunction());
357      continue;
358    }
359
360    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
361
362    bool KnowNothing = false;
363    unsigned FunctionEffect = 0;
364
365    // Collect the mod/ref properties due to called functions.  We only compute
366    // one mod-ref set.
367    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
368      Function *F = SCC[i]->getFunction();
369      if (!F) {
370        KnowNothing = true;
371        break;
372      }
373
374      if (F->isDeclaration()) {
375        // Try to get mod/ref behaviour from function attributes.
376        if (F->doesNotAccessMemory()) {
377          // Can't do better than that!
378        } else if (F->onlyReadsMemory()) {
379          FunctionEffect |= Ref;
380          if (!F->isIntrinsic())
381            // This function might call back into the module and read a global -
382            // consider every global as possibly being read by this function.
383            FR.MayReadAnyGlobal = true;
384        } else {
385          FunctionEffect |= ModRef;
386          // Can't say anything useful unless it's an intrinsic - they don't
387          // read or write global variables of the kind considered here.
388          KnowNothing = !F->isIntrinsic();
389        }
390        continue;
391      }
392
393      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
394           CI != E && !KnowNothing; ++CI)
395        if (Function *Callee = CI->second->getFunction()) {
396          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
397            // Propagate function effect up.
398            FunctionEffect |= CalleeFR->FunctionEffect;
399
400            // Incorporate callee's effects on globals into our info.
401            for (std::map<GlobalValue*, unsigned>::iterator GI =
402                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
403                 GI != E; ++GI)
404              FR.GlobalInfo[GI->first] |= GI->second;
405            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
406          } else {
407            // Can't say anything about it.  However, if it is inside our SCC,
408            // then nothing needs to be done.
409            CallGraphNode *CalleeNode = CG[Callee];
410            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
411              KnowNothing = true;
412          }
413        } else {
414          KnowNothing = true;
415        }
416    }
417
418    // If we can't say anything useful about this SCC, remove all SCC functions
419    // from the FunctionInfo map.
420    if (KnowNothing) {
421      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
422        FunctionInfo.erase(SCC[i]->getFunction());
423      continue;
424    }
425
426    // Scan the function bodies for explicit loads or stores.
427    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
428      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
429             E = inst_end(SCC[i]->getFunction());
430           II != E && FunctionEffect != ModRef; ++II)
431        if (isa<LoadInst>(*II)) {
432          FunctionEffect |= Ref;
433          if (cast<LoadInst>(*II).isVolatile())
434            // Volatile loads may have side-effects, so mark them as writing
435            // memory (for example, a flag inside the processor).
436            FunctionEffect |= Mod;
437        } else if (isa<StoreInst>(*II)) {
438          FunctionEffect |= Mod;
439          if (cast<StoreInst>(*II).isVolatile())
440            // Treat volatile stores as reading memory somewhere.
441            FunctionEffect |= Ref;
442        } else if (isMalloc(&cast<Instruction>(*II)) || isa<FreeInst>(*II)) {
443          FunctionEffect |= ModRef;
444        }
445
446    if ((FunctionEffect & Mod) == 0)
447      ++NumReadMemFunctions;
448    if (FunctionEffect == 0)
449      ++NumNoMemFunctions;
450    FR.FunctionEffect = FunctionEffect;
451
452    // Finally, now that we know the full effect on this SCC, clone the
453    // information to each function in the SCC.
454    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
455      FunctionInfo[SCC[i]->getFunction()] = FR;
456  }
457}
458
459
460
461/// alias - If one of the pointers is to a global that we are tracking, and the
462/// other is some random pointer, we know there cannot be an alias, because the
463/// address of the global isn't taken.
464AliasAnalysis::AliasResult
465GlobalsModRef::alias(const Value *V1, unsigned V1Size,
466                     const Value *V2, unsigned V2Size) {
467  // Get the base object these pointers point to.
468  Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
469  Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
470
471  // If either of the underlying values is a global, they may be non-addr-taken
472  // globals, which we can answer queries about.
473  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
474  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
475  if (GV1 || GV2) {
476    // If the global's address is taken, pretend we don't know it's a pointer to
477    // the global.
478    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
479    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
480
481    // If the the two pointers are derived from two different non-addr-taken
482    // globals, or if one is and the other isn't, we know these can't alias.
483    if ((GV1 || GV2) && GV1 != GV2)
484      return NoAlias;
485
486    // Otherwise if they are both derived from the same addr-taken global, we
487    // can't know the two accesses don't overlap.
488  }
489
490  // These pointers may be based on the memory owned by an indirect global.  If
491  // so, we may be able to handle this.  First check to see if the base pointer
492  // is a direct load from an indirect global.
493  GV1 = GV2 = 0;
494  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
495    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
496      if (IndirectGlobals.count(GV))
497        GV1 = GV;
498  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
499    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
500      if (IndirectGlobals.count(GV))
501        GV2 = GV;
502
503  // These pointers may also be from an allocation for the indirect global.  If
504  // so, also handle them.
505  if (AllocsForIndirectGlobals.count(UV1))
506    GV1 = AllocsForIndirectGlobals[UV1];
507  if (AllocsForIndirectGlobals.count(UV2))
508    GV2 = AllocsForIndirectGlobals[UV2];
509
510  // Now that we know whether the two pointers are related to indirect globals,
511  // use this to disambiguate the pointers.  If either pointer is based on an
512  // indirect global and if they are not both based on the same indirect global,
513  // they cannot alias.
514  if ((GV1 || GV2) && GV1 != GV2)
515    return NoAlias;
516
517  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
518}
519
520AliasAnalysis::ModRefResult
521GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
522  unsigned Known = ModRef;
523
524  // If we are asking for mod/ref info of a direct call with a pointer to a
525  // global we are tracking, return information if we have it.
526  if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
527    if (GV->hasLocalLinkage())
528      if (Function *F = CS.getCalledFunction())
529        if (NonAddressTakenGlobals.count(GV))
530          if (FunctionRecord *FR = getFunctionInfo(F))
531            Known = FR->getInfoForGlobal(GV);
532
533  if (Known == NoModRef)
534    return NoModRef; // No need to query other mod/ref analyses
535  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
536}
537
538
539//===----------------------------------------------------------------------===//
540// Methods to update the analysis as a result of the client transformation.
541//
542void GlobalsModRef::deleteValue(Value *V) {
543  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
544    if (NonAddressTakenGlobals.erase(GV)) {
545      // This global might be an indirect global.  If so, remove it and remove
546      // any AllocRelatedValues for it.
547      if (IndirectGlobals.erase(GV)) {
548        // Remove any entries in AllocsForIndirectGlobals for this global.
549        for (std::map<Value*, GlobalValue*>::iterator
550             I = AllocsForIndirectGlobals.begin(),
551             E = AllocsForIndirectGlobals.end(); I != E; ) {
552          if (I->second == GV) {
553            AllocsForIndirectGlobals.erase(I++);
554          } else {
555            ++I;
556          }
557        }
558      }
559    }
560  }
561
562  // Otherwise, if this is an allocation related to an indirect global, remove
563  // it.
564  AllocsForIndirectGlobals.erase(V);
565
566  AliasAnalysis::deleteValue(V);
567}
568
569void GlobalsModRef::copyValue(Value *From, Value *To) {
570  AliasAnalysis::copyValue(From, To);
571}
572