GlobalsModRef.cpp revision 193323
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/InstIterator.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/SCCIterator.h"
31#include <set>
32using namespace llvm;
33
34STATISTIC(NumNonAddrTakenGlobalVars,
35          "Number of global vars without address taken");
36STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41namespace {
42  /// FunctionRecord - One instance of this structure is stored for every
43  /// function in the program.  Later, the entries for these functions are
44  /// removed if the function is found to call an external function (in which
45  /// case we know nothing about it.
46  struct VISIBILITY_HIDDEN FunctionRecord {
47    /// GlobalInfo - Maintain mod/ref info for all of the globals without
48    /// addresses taken that are read or written (transitively) by this
49    /// function.
50    std::map<GlobalValue*, unsigned> GlobalInfo;
51
52    /// MayReadAnyGlobal - May read global variables, but it is not known which.
53    bool MayReadAnyGlobal;
54
55    unsigned getInfoForGlobal(GlobalValue *GV) const {
56      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
57      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
58      if (I != GlobalInfo.end())
59        Effect |= I->second;
60      return Effect;
61    }
62
63    /// FunctionEffect - Capture whether or not this function reads or writes to
64    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
65    unsigned FunctionEffect;
66
67    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
68  };
69
70  /// GlobalsModRef - The actual analysis pass.
71  class VISIBILITY_HIDDEN GlobalsModRef
72      : public ModulePass, public AliasAnalysis {
73    /// NonAddressTakenGlobals - The globals that do not have their addresses
74    /// taken.
75    std::set<GlobalValue*> NonAddressTakenGlobals;
76
77    /// IndirectGlobals - The memory pointed to by this global is known to be
78    /// 'owned' by the global.
79    std::set<GlobalValue*> IndirectGlobals;
80
81    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
82    /// indirect global, this map indicates which one.
83    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
84
85    /// FunctionInfo - For each function, keep track of what globals are
86    /// modified or read.
87    std::map<Function*, FunctionRecord> FunctionInfo;
88
89  public:
90    static char ID;
91    GlobalsModRef() : ModulePass(&ID) {}
92
93    bool runOnModule(Module &M) {
94      InitializeAliasAnalysis(this);                 // set up super class
95      AnalyzeGlobals(M);                          // find non-addr taken globals
96      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
97      return false;
98    }
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AliasAnalysis::getAnalysisUsage(AU);
102      AU.addRequired<CallGraph>();
103      AU.setPreservesAll();                         // Does not transform code
104    }
105
106    //------------------------------------------------
107    // Implement the AliasAnalysis API
108    //
109    AliasResult alias(const Value *V1, unsigned V1Size,
110                      const Value *V2, unsigned V2Size);
111    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
112    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
113      return AliasAnalysis::getModRefInfo(CS1,CS2);
114    }
115    bool hasNoModRefInfoForCalls() const { return false; }
116
117    /// getModRefBehavior - Return the behavior of the specified function if
118    /// called from the specified call site.  The call site may be null in which
119    /// case the most generic behavior of this function should be returned.
120    ModRefBehavior getModRefBehavior(Function *F,
121                                         std::vector<PointerAccessInfo> *Info) {
122      if (FunctionRecord *FR = getFunctionInfo(F)) {
123        if (FR->FunctionEffect == 0)
124          return DoesNotAccessMemory;
125        else if ((FR->FunctionEffect & Mod) == 0)
126          return OnlyReadsMemory;
127      }
128      return AliasAnalysis::getModRefBehavior(F, Info);
129    }
130
131    /// getModRefBehavior - Return the behavior of the specified function if
132    /// called from the specified call site.  The call site may be null in which
133    /// case the most generic behavior of this function should be returned.
134    ModRefBehavior getModRefBehavior(CallSite CS,
135                                         std::vector<PointerAccessInfo> *Info) {
136      Function* F = CS.getCalledFunction();
137      if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
138      if (FunctionRecord *FR = getFunctionInfo(F)) {
139        if (FR->FunctionEffect == 0)
140          return DoesNotAccessMemory;
141        else if ((FR->FunctionEffect & Mod) == 0)
142          return OnlyReadsMemory;
143      }
144      return AliasAnalysis::getModRefBehavior(CS, Info);
145    }
146
147    virtual void deleteValue(Value *V);
148    virtual void copyValue(Value *From, Value *To);
149
150  private:
151    /// getFunctionInfo - Return the function info for the function, or null if
152    /// we don't have anything useful to say about it.
153    FunctionRecord *getFunctionInfo(Function *F) {
154      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
155      if (I != FunctionInfo.end())
156        return &I->second;
157      return 0;
158    }
159
160    void AnalyzeGlobals(Module &M);
161    void AnalyzeCallGraph(CallGraph &CG, Module &M);
162    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
163                              std::vector<Function*> &Writers,
164                              GlobalValue *OkayStoreDest = 0);
165    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
166  };
167}
168
169char GlobalsModRef::ID = 0;
170static RegisterPass<GlobalsModRef>
171X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
172static RegisterAnalysisGroup<AliasAnalysis> Y(X);
173
174Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
175
176/// AnalyzeGlobals - Scan through the users of all of the internal
177/// GlobalValue's in the program.  If none of them have their "address taken"
178/// (really, their address passed to something nontrivial), record this fact,
179/// and record the functions that they are used directly in.
180void GlobalsModRef::AnalyzeGlobals(Module &M) {
181  std::vector<Function*> Readers, Writers;
182  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
183    if (I->hasLocalLinkage()) {
184      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
185        // Remember that we are tracking this global.
186        NonAddressTakenGlobals.insert(I);
187        ++NumNonAddrTakenFunctions;
188      }
189      Readers.clear(); Writers.clear();
190    }
191
192  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
193       I != E; ++I)
194    if (I->hasLocalLinkage()) {
195      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
196        // Remember that we are tracking this global, and the mod/ref fns
197        NonAddressTakenGlobals.insert(I);
198
199        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
200          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
201
202        if (!I->isConstant())  // No need to keep track of writers to constants
203          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
204            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
205        ++NumNonAddrTakenGlobalVars;
206
207        // If this global holds a pointer type, see if it is an indirect global.
208        if (isa<PointerType>(I->getType()->getElementType()) &&
209            AnalyzeIndirectGlobalMemory(I))
210          ++NumIndirectGlobalVars;
211      }
212      Readers.clear(); Writers.clear();
213    }
214}
215
216/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
217/// If this is used by anything complex (i.e., the address escapes), return
218/// true.  Also, while we are at it, keep track of those functions that read and
219/// write to the value.
220///
221/// If OkayStoreDest is non-null, stores into this global are allowed.
222bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
223                                         std::vector<Function*> &Readers,
224                                         std::vector<Function*> &Writers,
225                                         GlobalValue *OkayStoreDest) {
226  if (!isa<PointerType>(V->getType())) return true;
227
228  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
229    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
230      Readers.push_back(LI->getParent()->getParent());
231    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
232      if (V == SI->getOperand(1)) {
233        Writers.push_back(SI->getParent()->getParent());
234      } else if (SI->getOperand(1) != OkayStoreDest) {
235        return true;  // Storing the pointer
236      }
237    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
238      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
239    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
240      // Make sure that this is just the function being called, not that it is
241      // passing into the function.
242      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
243        if (CI->getOperand(i) == V) return true;
244    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
245      // Make sure that this is just the function being called, not that it is
246      // passing into the function.
247      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
248        if (II->getOperand(i) == V) return true;
249    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
250      if (CE->getOpcode() == Instruction::GetElementPtr ||
251          CE->getOpcode() == Instruction::BitCast) {
252        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
253          return true;
254      } else {
255        return true;
256      }
257    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
258      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
259        return true;  // Allow comparison against null.
260    } else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
261      Writers.push_back(F->getParent()->getParent());
262    } else {
263      return true;
264    }
265  return false;
266}
267
268/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
269/// which holds a pointer type.  See if the global always points to non-aliased
270/// heap memory: that is, all initializers of the globals are allocations, and
271/// those allocations have no use other than initialization of the global.
272/// Further, all loads out of GV must directly use the memory, not store the
273/// pointer somewhere.  If this is true, we consider the memory pointed to by
274/// GV to be owned by GV and can disambiguate other pointers from it.
275bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
276  // Keep track of values related to the allocation of the memory, f.e. the
277  // value produced by the malloc call and any casts.
278  std::vector<Value*> AllocRelatedValues;
279
280  // Walk the user list of the global.  If we find anything other than a direct
281  // load or store, bail out.
282  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
283    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
284      // The pointer loaded from the global can only be used in simple ways:
285      // we allow addressing of it and loading storing to it.  We do *not* allow
286      // storing the loaded pointer somewhere else or passing to a function.
287      std::vector<Function*> ReadersWriters;
288      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
289        return false;  // Loaded pointer escapes.
290      // TODO: Could try some IP mod/ref of the loaded pointer.
291    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
292      // Storing the global itself.
293      if (SI->getOperand(0) == GV) return false;
294
295      // If storing the null pointer, ignore it.
296      if (isa<ConstantPointerNull>(SI->getOperand(0)))
297        continue;
298
299      // Check the value being stored.
300      Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
301
302      if (isa<MallocInst>(Ptr)) {
303        // Okay, easy case.
304      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
305        Function *F = CI->getCalledFunction();
306        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
307        if (F->getName() != "calloc") return false;   // Not calloc.
308      } else {
309        return false;  // Too hard to analyze.
310      }
311
312      // Analyze all uses of the allocation.  If any of them are used in a
313      // non-simple way (e.g. stored to another global) bail out.
314      std::vector<Function*> ReadersWriters;
315      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
316        return false;  // Loaded pointer escapes.
317
318      // Remember that this allocation is related to the indirect global.
319      AllocRelatedValues.push_back(Ptr);
320    } else {
321      // Something complex, bail out.
322      return false;
323    }
324  }
325
326  // Okay, this is an indirect global.  Remember all of the allocations for
327  // this global in AllocsForIndirectGlobals.
328  while (!AllocRelatedValues.empty()) {
329    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
330    AllocRelatedValues.pop_back();
331  }
332  IndirectGlobals.insert(GV);
333  return true;
334}
335
336/// AnalyzeCallGraph - At this point, we know the functions where globals are
337/// immediately stored to and read from.  Propagate this information up the call
338/// graph to all callers and compute the mod/ref info for all memory for each
339/// function.
340void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
341  // We do a bottom-up SCC traversal of the call graph.  In other words, we
342  // visit all callees before callers (leaf-first).
343  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
344       ++I) {
345    std::vector<CallGraphNode *> &SCC = *I;
346    assert(!SCC.empty() && "SCC with no functions?");
347
348    if (!SCC[0]->getFunction()) {
349      // Calls externally - can't say anything useful.  Remove any existing
350      // function records (may have been created when scanning globals).
351      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
352        FunctionInfo.erase(SCC[i]->getFunction());
353      continue;
354    }
355
356    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
357
358    bool KnowNothing = false;
359    unsigned FunctionEffect = 0;
360
361    // Collect the mod/ref properties due to called functions.  We only compute
362    // one mod-ref set.
363    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
364      Function *F = SCC[i]->getFunction();
365      if (!F) {
366        KnowNothing = true;
367        break;
368      }
369
370      if (F->isDeclaration()) {
371        // Try to get mod/ref behaviour from function attributes.
372        if (F->doesNotAccessMemory()) {
373          // Can't do better than that!
374        } else if (F->onlyReadsMemory()) {
375          FunctionEffect |= Ref;
376          if (!F->isIntrinsic())
377            // This function might call back into the module and read a global -
378            // consider every global as possibly being read by this function.
379            FR.MayReadAnyGlobal = true;
380        } else {
381          FunctionEffect |= ModRef;
382          // Can't say anything useful unless it's an intrinsic - they don't
383          // read or write global variables of the kind considered here.
384          KnowNothing = !F->isIntrinsic();
385        }
386        continue;
387      }
388
389      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
390           CI != E && !KnowNothing; ++CI)
391        if (Function *Callee = CI->second->getFunction()) {
392          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
393            // Propagate function effect up.
394            FunctionEffect |= CalleeFR->FunctionEffect;
395
396            // Incorporate callee's effects on globals into our info.
397            for (std::map<GlobalValue*, unsigned>::iterator GI =
398                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
399                 GI != E; ++GI)
400              FR.GlobalInfo[GI->first] |= GI->second;
401            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
402          } else {
403            // Can't say anything about it.  However, if it is inside our SCC,
404            // then nothing needs to be done.
405            CallGraphNode *CalleeNode = CG[Callee];
406            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
407              KnowNothing = true;
408          }
409        } else {
410          KnowNothing = true;
411        }
412    }
413
414    // If we can't say anything useful about this SCC, remove all SCC functions
415    // from the FunctionInfo map.
416    if (KnowNothing) {
417      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
418        FunctionInfo.erase(SCC[i]->getFunction());
419      continue;
420    }
421
422    // Scan the function bodies for explicit loads or stores.
423    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
424      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
425             E = inst_end(SCC[i]->getFunction());
426           II != E && FunctionEffect != ModRef; ++II)
427        if (isa<LoadInst>(*II)) {
428          FunctionEffect |= Ref;
429          if (cast<LoadInst>(*II).isVolatile())
430            // Volatile loads may have side-effects, so mark them as writing
431            // memory (for example, a flag inside the processor).
432            FunctionEffect |= Mod;
433        } else if (isa<StoreInst>(*II)) {
434          FunctionEffect |= Mod;
435          if (cast<StoreInst>(*II).isVolatile())
436            // Treat volatile stores as reading memory somewhere.
437            FunctionEffect |= Ref;
438        } else if (isa<MallocInst>(*II) || isa<FreeInst>(*II)) {
439          FunctionEffect |= ModRef;
440        }
441
442    if ((FunctionEffect & Mod) == 0)
443      ++NumReadMemFunctions;
444    if (FunctionEffect == 0)
445      ++NumNoMemFunctions;
446    FR.FunctionEffect = FunctionEffect;
447
448    // Finally, now that we know the full effect on this SCC, clone the
449    // information to each function in the SCC.
450    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
451      FunctionInfo[SCC[i]->getFunction()] = FR;
452  }
453}
454
455
456
457/// alias - If one of the pointers is to a global that we are tracking, and the
458/// other is some random pointer, we know there cannot be an alias, because the
459/// address of the global isn't taken.
460AliasAnalysis::AliasResult
461GlobalsModRef::alias(const Value *V1, unsigned V1Size,
462                     const Value *V2, unsigned V2Size) {
463  // Get the base object these pointers point to.
464  Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
465  Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
466
467  // If either of the underlying values is a global, they may be non-addr-taken
468  // globals, which we can answer queries about.
469  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
470  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
471  if (GV1 || GV2) {
472    // If the global's address is taken, pretend we don't know it's a pointer to
473    // the global.
474    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
475    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
476
477    // If the the two pointers are derived from two different non-addr-taken
478    // globals, or if one is and the other isn't, we know these can't alias.
479    if ((GV1 || GV2) && GV1 != GV2)
480      return NoAlias;
481
482    // Otherwise if they are both derived from the same addr-taken global, we
483    // can't know the two accesses don't overlap.
484  }
485
486  // These pointers may be based on the memory owned by an indirect global.  If
487  // so, we may be able to handle this.  First check to see if the base pointer
488  // is a direct load from an indirect global.
489  GV1 = GV2 = 0;
490  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
491    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
492      if (IndirectGlobals.count(GV))
493        GV1 = GV;
494  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
495    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
496      if (IndirectGlobals.count(GV))
497        GV2 = GV;
498
499  // These pointers may also be from an allocation for the indirect global.  If
500  // so, also handle them.
501  if (AllocsForIndirectGlobals.count(UV1))
502    GV1 = AllocsForIndirectGlobals[UV1];
503  if (AllocsForIndirectGlobals.count(UV2))
504    GV2 = AllocsForIndirectGlobals[UV2];
505
506  // Now that we know whether the two pointers are related to indirect globals,
507  // use this to disambiguate the pointers.  If either pointer is based on an
508  // indirect global and if they are not both based on the same indirect global,
509  // they cannot alias.
510  if ((GV1 || GV2) && GV1 != GV2)
511    return NoAlias;
512
513  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
514}
515
516AliasAnalysis::ModRefResult
517GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
518  unsigned Known = ModRef;
519
520  // If we are asking for mod/ref info of a direct call with a pointer to a
521  // global we are tracking, return information if we have it.
522  if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
523    if (GV->hasLocalLinkage())
524      if (Function *F = CS.getCalledFunction())
525        if (NonAddressTakenGlobals.count(GV))
526          if (FunctionRecord *FR = getFunctionInfo(F))
527            Known = FR->getInfoForGlobal(GV);
528
529  if (Known == NoModRef)
530    return NoModRef; // No need to query other mod/ref analyses
531  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
532}
533
534
535//===----------------------------------------------------------------------===//
536// Methods to update the analysis as a result of the client transformation.
537//
538void GlobalsModRef::deleteValue(Value *V) {
539  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
540    if (NonAddressTakenGlobals.erase(GV)) {
541      // This global might be an indirect global.  If so, remove it and remove
542      // any AllocRelatedValues for it.
543      if (IndirectGlobals.erase(GV)) {
544        // Remove any entries in AllocsForIndirectGlobals for this global.
545        for (std::map<Value*, GlobalValue*>::iterator
546             I = AllocsForIndirectGlobals.begin(),
547             E = AllocsForIndirectGlobals.end(); I != E; ) {
548          if (I->second == GV) {
549            AllocsForIndirectGlobals.erase(I++);
550          } else {
551            ++I;
552          }
553        }
554      }
555    }
556  }
557
558  // Otherwise, if this is an allocation related to an indirect global, remove
559  // it.
560  AllocsForIndirectGlobals.erase(V);
561
562  AliasAnalysis::deleteValue(V);
563}
564
565void GlobalsModRef::copyValue(Value *From, Value *To) {
566  AliasAnalysis::copyValue(From, To);
567}
568