AliasAnalysis.cpp revision 221345
1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Pass.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Function.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/Instructions.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Type.h"
35#include "llvm/Target/TargetData.h"
36using namespace llvm;
37
38// Register the AliasAnalysis interface, providing a nice name to refer to.
39INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
40char AliasAnalysis::ID = 0;
41
42//===----------------------------------------------------------------------===//
43// Default chaining methods
44//===----------------------------------------------------------------------===//
45
46AliasAnalysis::AliasResult
47AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
48  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
49  return AA->alias(LocA, LocB);
50}
51
52bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
53                                           bool OrLocal) {
54  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
55  return AA->pointsToConstantMemory(Loc, OrLocal);
56}
57
58void AliasAnalysis::deleteValue(Value *V) {
59  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60  AA->deleteValue(V);
61}
62
63void AliasAnalysis::copyValue(Value *From, Value *To) {
64  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
65  AA->copyValue(From, To);
66}
67
68void AliasAnalysis::addEscapingUse(Use &U) {
69  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
70  AA->addEscapingUse(U);
71}
72
73
74AliasAnalysis::ModRefResult
75AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
76                             const Location &Loc) {
77  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
78
79  ModRefBehavior MRB = getModRefBehavior(CS);
80  if (MRB == DoesNotAccessMemory)
81    return NoModRef;
82
83  ModRefResult Mask = ModRef;
84  if (onlyReadsMemory(MRB))
85    Mask = Ref;
86
87  if (onlyAccessesArgPointees(MRB)) {
88    bool doesAlias = false;
89    if (doesAccessArgPointees(MRB)) {
90      MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
91      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
92           AI != AE; ++AI) {
93        const Value *Arg = *AI;
94        if (!Arg->getType()->isPointerTy())
95          continue;
96        Location CSLoc(Arg, UnknownSize, CSTag);
97        if (!isNoAlias(CSLoc, Loc)) {
98          doesAlias = true;
99          break;
100        }
101      }
102    }
103    if (!doesAlias)
104      return NoModRef;
105  }
106
107  // If Loc is a constant memory location, the call definitely could not
108  // modify the memory location.
109  if ((Mask & Mod) && pointsToConstantMemory(Loc))
110    Mask = ModRefResult(Mask & ~Mod);
111
112  // If this is the end of the chain, don't forward.
113  if (!AA) return Mask;
114
115  // Otherwise, fall back to the next AA in the chain. But we can merge
116  // in any mask we've managed to compute.
117  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
118}
119
120AliasAnalysis::ModRefResult
121AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
122  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
123
124  // If CS1 or CS2 are readnone, they don't interact.
125  ModRefBehavior CS1B = getModRefBehavior(CS1);
126  if (CS1B == DoesNotAccessMemory) return NoModRef;
127
128  ModRefBehavior CS2B = getModRefBehavior(CS2);
129  if (CS2B == DoesNotAccessMemory) return NoModRef;
130
131  // If they both only read from memory, there is no dependence.
132  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
133    return NoModRef;
134
135  AliasAnalysis::ModRefResult Mask = ModRef;
136
137  // If CS1 only reads memory, the only dependence on CS2 can be
138  // from CS1 reading memory written by CS2.
139  if (onlyReadsMemory(CS1B))
140    Mask = ModRefResult(Mask & Ref);
141
142  // If CS2 only access memory through arguments, accumulate the mod/ref
143  // information from CS1's references to the memory referenced by
144  // CS2's arguments.
145  if (onlyAccessesArgPointees(CS2B)) {
146    AliasAnalysis::ModRefResult R = NoModRef;
147    if (doesAccessArgPointees(CS2B)) {
148      MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
149      for (ImmutableCallSite::arg_iterator
150           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
151        const Value *Arg = *I;
152        if (!Arg->getType()->isPointerTy())
153          continue;
154        Location CS2Loc(Arg, UnknownSize, CS2Tag);
155        R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
156        if (R == Mask)
157          break;
158      }
159    }
160    return R;
161  }
162
163  // If CS1 only accesses memory through arguments, check if CS2 references
164  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
165  if (onlyAccessesArgPointees(CS1B)) {
166    AliasAnalysis::ModRefResult R = NoModRef;
167    if (doesAccessArgPointees(CS1B)) {
168      MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
169      for (ImmutableCallSite::arg_iterator
170           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
171        const Value *Arg = *I;
172        if (!Arg->getType()->isPointerTy())
173          continue;
174        Location CS1Loc(Arg, UnknownSize, CS1Tag);
175        if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
176          R = Mask;
177          break;
178        }
179      }
180    }
181    if (R == NoModRef)
182      return R;
183  }
184
185  // If this is the end of the chain, don't forward.
186  if (!AA) return Mask;
187
188  // Otherwise, fall back to the next AA in the chain. But we can merge
189  // in any mask we've managed to compute.
190  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
191}
192
193AliasAnalysis::ModRefBehavior
194AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
195  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
196
197  ModRefBehavior Min = UnknownModRefBehavior;
198
199  // Call back into the alias analysis with the other form of getModRefBehavior
200  // to see if it can give a better response.
201  if (const Function *F = CS.getCalledFunction())
202    Min = getModRefBehavior(F);
203
204  // If this is the end of the chain, don't forward.
205  if (!AA) return Min;
206
207  // Otherwise, fall back to the next AA in the chain. But we can merge
208  // in any result we've managed to compute.
209  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
210}
211
212AliasAnalysis::ModRefBehavior
213AliasAnalysis::getModRefBehavior(const Function *F) {
214  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
215  return AA->getModRefBehavior(F);
216}
217
218//===----------------------------------------------------------------------===//
219// AliasAnalysis non-virtual helper method implementation
220//===----------------------------------------------------------------------===//
221
222AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
223  return Location(LI->getPointerOperand(),
224                  getTypeStoreSize(LI->getType()),
225                  LI->getMetadata(LLVMContext::MD_tbaa));
226}
227
228AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
229  return Location(SI->getPointerOperand(),
230                  getTypeStoreSize(SI->getValueOperand()->getType()),
231                  SI->getMetadata(LLVMContext::MD_tbaa));
232}
233
234AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
235  return Location(VI->getPointerOperand(),
236                  UnknownSize,
237                  VI->getMetadata(LLVMContext::MD_tbaa));
238}
239
240
241AliasAnalysis::Location
242AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
243  uint64_t Size = UnknownSize;
244  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
245    Size = C->getValue().getZExtValue();
246
247  // memcpy/memmove can have TBAA tags. For memcpy, they apply
248  // to both the source and the destination.
249  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
250
251  return Location(MTI->getRawSource(), Size, TBAATag);
252}
253
254AliasAnalysis::Location
255AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
256  uint64_t Size = UnknownSize;
257  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
258    Size = C->getValue().getZExtValue();
259
260  // memcpy/memmove can have TBAA tags. For memcpy, they apply
261  // to both the source and the destination.
262  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
263
264  return Location(MTI->getRawDest(), Size, TBAATag);
265}
266
267
268
269AliasAnalysis::ModRefResult
270AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
271  // Be conservative in the face of volatile.
272  if (L->isVolatile())
273    return ModRef;
274
275  // If the load address doesn't alias the given address, it doesn't read
276  // or write the specified memory.
277  if (!alias(getLocation(L), Loc))
278    return NoModRef;
279
280  // Otherwise, a load just reads.
281  return Ref;
282}
283
284AliasAnalysis::ModRefResult
285AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
286  // Be conservative in the face of volatile.
287  if (S->isVolatile())
288    return ModRef;
289
290  // If the store address cannot alias the pointer in question, then the
291  // specified memory cannot be modified by the store.
292  if (!alias(getLocation(S), Loc))
293    return NoModRef;
294
295  // If the pointer is a pointer to constant memory, then it could not have been
296  // modified by this store.
297  if (pointsToConstantMemory(Loc))
298    return NoModRef;
299
300  // Otherwise, a store just writes.
301  return Mod;
302}
303
304AliasAnalysis::ModRefResult
305AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
306  // If the va_arg address cannot alias the pointer in question, then the
307  // specified memory cannot be accessed by the va_arg.
308  if (!alias(getLocation(V), Loc))
309    return NoModRef;
310
311  // If the pointer is a pointer to constant memory, then it could not have been
312  // modified by this va_arg.
313  if (pointsToConstantMemory(Loc))
314    return NoModRef;
315
316  // Otherwise, a va_arg reads and writes.
317  return ModRef;
318}
319
320// AliasAnalysis destructor: DO NOT move this to the header file for
321// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
322// the AliasAnalysis.o file in the current .a file, causing alias analysis
323// support to not be included in the tool correctly!
324//
325AliasAnalysis::~AliasAnalysis() {}
326
327/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
328/// AliasAnalysis interface before any other methods are called.
329///
330void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
331  TD = P->getAnalysisIfAvailable<TargetData>();
332  AA = &P->getAnalysis<AliasAnalysis>();
333}
334
335// getAnalysisUsage - All alias analysis implementations should invoke this
336// directly (using AliasAnalysis::getAnalysisUsage(AU)).
337void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
338  AU.addRequired<AliasAnalysis>();         // All AA's chain
339}
340
341/// getTypeStoreSize - Return the TargetData store size for the given type,
342/// if known, or a conservative value otherwise.
343///
344uint64_t AliasAnalysis::getTypeStoreSize(const Type *Ty) {
345  return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
346}
347
348/// canBasicBlockModify - Return true if it is possible for execution of the
349/// specified basic block to modify the value pointed to by Ptr.
350///
351bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
352                                        const Location &Loc) {
353  return canInstructionRangeModify(BB.front(), BB.back(), Loc);
354}
355
356/// canInstructionRangeModify - Return true if it is possible for the execution
357/// of the specified instructions to modify the value pointed to by Ptr.  The
358/// instructions to consider are all of the instructions in the range of [I1,I2]
359/// INCLUSIVE.  I1 and I2 must be in the same basic block.
360///
361bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
362                                              const Instruction &I2,
363                                              const Location &Loc) {
364  assert(I1.getParent() == I2.getParent() &&
365         "Instructions not in same basic block!");
366  BasicBlock::const_iterator I = &I1;
367  BasicBlock::const_iterator E = &I2;
368  ++E;  // Convert from inclusive to exclusive range.
369
370  for (; I != E; ++I) // Check every instruction in range
371    if (getModRefInfo(I, Loc) & Mod)
372      return true;
373  return false;
374}
375
376/// isNoAliasCall - Return true if this pointer is returned by a noalias
377/// function.
378bool llvm::isNoAliasCall(const Value *V) {
379  if (isa<CallInst>(V) || isa<InvokeInst>(V))
380    return ImmutableCallSite(cast<Instruction>(V))
381      .paramHasAttr(0, Attribute::NoAlias);
382  return false;
383}
384
385/// isIdentifiedObject - Return true if this pointer refers to a distinct and
386/// identifiable object.  This returns true for:
387///    Global Variables and Functions (but not Global Aliases)
388///    Allocas and Mallocs
389///    ByVal and NoAlias Arguments
390///    NoAlias returns
391///
392bool llvm::isIdentifiedObject(const Value *V) {
393  if (isa<AllocaInst>(V))
394    return true;
395  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
396    return true;
397  if (isNoAliasCall(V))
398    return true;
399  if (const Argument *A = dyn_cast<Argument>(V))
400    return A->hasNoAliasAttr() || A->hasByValAttr();
401  return false;
402}
403