util.c revision 238104
1/*
2 * util.c
3 *
4 * some general memory functions
5 *
6 * a Net::DNS like library for C
7 *
8 * (c) NLnet Labs, 2004-2006
9 *
10 * See the file LICENSE for the license
11 */
12
13#include <ldns/config.h>
14
15#include <ldns/rdata.h>
16#include <ldns/rr.h>
17#include <ldns/util.h>
18#include <strings.h>
19#include <stdlib.h>
20#include <stdio.h>
21#include <sys/time.h>
22#include <time.h>
23
24#ifdef HAVE_SSL
25#include <openssl/rand.h>
26#endif
27
28/* put this here tmp. for debugging */
29void
30xprintf_rdf(ldns_rdf *rd)
31{
32	/* assume printable string */
33	fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
34	fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
35	fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
36			(char*)ldns_rdf_data(rd));
37}
38
39void
40xprintf_rr(ldns_rr *rr)
41{
42	/* assume printable string */
43	uint16_t count, i;
44
45	count = ldns_rr_rd_count(rr);
46
47	for(i = 0; i < count; i++) {
48		fprintf(stderr, "print rd %u\n", (unsigned int) i);
49		xprintf_rdf(rr->_rdata_fields[i]);
50	}
51}
52
53void xprintf_hex(uint8_t *data, size_t len)
54{
55	size_t i;
56	for (i = 0; i < len; i++) {
57		if (i > 0 && i % 20 == 0) {
58			printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
59		}
60		printf("%02x ", (unsigned int) data[i]);
61	}
62	printf("\n");
63}
64
65ldns_lookup_table *
66ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
67{
68	while (table->name != NULL) {
69		if (strcasecmp(name, table->name) == 0)
70			return table;
71		table++;
72	}
73	return NULL;
74}
75
76ldns_lookup_table *
77ldns_lookup_by_id(ldns_lookup_table *table, int id)
78{
79	while (table->name != NULL) {
80		if (table->id == id)
81			return table;
82		table++;
83	}
84	return NULL;
85}
86
87int
88ldns_get_bit(uint8_t bits[], size_t index)
89{
90	/*
91	 * The bits are counted from left to right, so bit #0 is the
92	 * left most bit.
93	 */
94	return (int) (bits[index / 8] & (1 << (7 - index % 8)));
95}
96
97int
98ldns_get_bit_r(uint8_t bits[], size_t index)
99{
100	/*
101	 * The bits are counted from right to left, so bit #0 is the
102	 * right most bit.
103	 */
104	return (int) bits[index / 8] & (1 << (index % 8));
105}
106
107void
108ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
109{
110	/*
111	 * The bits are counted from right to left, so bit #0 is the
112	 * right most bit.
113	 */
114	if (bit_nr >= 0 && bit_nr < 8) {
115		if (value) {
116			*byte = *byte | (0x01 << bit_nr);
117		} else {
118			*byte = *byte & ~(0x01 << bit_nr);
119		}
120	}
121}
122
123int
124ldns_hexdigit_to_int(char ch)
125{
126	switch (ch) {
127	case '0': return 0;
128	case '1': return 1;
129	case '2': return 2;
130	case '3': return 3;
131	case '4': return 4;
132	case '5': return 5;
133	case '6': return 6;
134	case '7': return 7;
135	case '8': return 8;
136	case '9': return 9;
137	case 'a': case 'A': return 10;
138	case 'b': case 'B': return 11;
139	case 'c': case 'C': return 12;
140	case 'd': case 'D': return 13;
141	case 'e': case 'E': return 14;
142	case 'f': case 'F': return 15;
143	default:
144		return -1;
145	}
146}
147
148char
149ldns_int_to_hexdigit(int i)
150{
151	switch (i) {
152	case 0: return '0';
153	case 1: return '1';
154	case 2: return '2';
155	case 3: return '3';
156	case 4: return '4';
157	case 5: return '5';
158	case 6: return '6';
159	case 7: return '7';
160	case 8: return '8';
161	case 9: return '9';
162	case 10: return 'a';
163	case 11: return 'b';
164	case 12: return 'c';
165	case 13: return 'd';
166	case 14: return 'e';
167	case 15: return 'f';
168	default:
169		abort();
170	}
171}
172
173int
174ldns_hexstring_to_data(uint8_t *data, const char *str)
175{
176	size_t i;
177
178	if (!str || !data) {
179		return -1;
180	}
181
182	if (strlen(str) % 2 != 0) {
183		return -2;
184	}
185
186	for (i = 0; i < strlen(str) / 2; i++) {
187		data[i] =
188			16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
189			(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
190	}
191
192	return (int) i;
193}
194
195const char *
196ldns_version(void)
197{
198	return (char*)LDNS_VERSION;
199}
200
201/* Number of days per month (except for February in leap years). */
202static const int mdays[] = {
203	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
204};
205
206#define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
207#define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
208
209static int
210is_leap_year(int year)
211{
212	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
213	    || LDNS_MOD(year, 400) == 0);
214}
215
216static int
217leap_days(int y1, int y2)
218{
219	--y1;
220	--y2;
221	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
222	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
223	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
224}
225
226/*
227 * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
228 */
229time_t
230mktime_from_utc(const struct tm *tm)
231{
232	int year = 1900 + tm->tm_year;
233	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
234	time_t hours;
235	time_t minutes;
236	time_t seconds;
237	int i;
238
239	for (i = 0; i < tm->tm_mon; ++i) {
240		days += mdays[i];
241	}
242	if (tm->tm_mon > 1 && is_leap_year(year)) {
243		++days;
244	}
245	days += tm->tm_mday - 1;
246
247	hours = days * 24 + tm->tm_hour;
248	minutes = hours * 60 + tm->tm_min;
249	seconds = minutes * 60 + tm->tm_sec;
250
251	return seconds;
252}
253
254#if SIZEOF_TIME_T <= 4
255
256static void
257ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
258{
259	int year = 1970;
260	int new_year;
261
262	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
263		new_year = year + (int) LDNS_DIV(days, 365);
264		days -= (new_year - year) * 365;
265		days -= leap_days(year, new_year);
266		year  = new_year;
267	}
268	result->tm_year = year;
269	result->tm_yday = (int) days;
270}
271
272/* Number of days per month in a leap year. */
273static const int leap_year_mdays[] = {
274	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
275};
276
277static void
278ldns_mon_and_mday_from_year_and_yday(struct tm *result)
279{
280	int idays = result->tm_yday;
281	const int *mon_lengths = is_leap_year(result->tm_year) ?
282					leap_year_mdays : mdays;
283
284	result->tm_mon = 0;
285	while  (idays >= mon_lengths[result->tm_mon]) {
286		idays -= mon_lengths[result->tm_mon++];
287	}
288	result->tm_mday = idays + 1;
289}
290
291static void
292ldns_wday_from_year_and_yday(struct tm *result)
293{
294	result->tm_wday = 4 /* 1-1-1970 was a thursday */
295			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
296			+ leap_days(1970, result->tm_year)
297			+ result->tm_yday;
298	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
299	if (result->tm_wday < 0) {
300		result->tm_wday += 7;
301	}
302}
303
304static struct tm *
305ldns_gmtime64_r(int64_t clock, struct tm *result)
306{
307	result->tm_isdst = 0;
308	result->tm_sec   = (int) LDNS_MOD(clock, 60);
309	clock            =       LDNS_DIV(clock, 60);
310	result->tm_min   = (int) LDNS_MOD(clock, 60);
311	clock            =       LDNS_DIV(clock, 60);
312	result->tm_hour  = (int) LDNS_MOD(clock, 24);
313	clock            =       LDNS_DIV(clock, 24);
314
315	ldns_year_and_yday_from_days_since_epoch(clock, result);
316	ldns_mon_and_mday_from_year_and_yday(result);
317	ldns_wday_from_year_and_yday(result);
318	result->tm_year -= 1900;
319
320	return result;
321}
322
323#endif /* SIZEOF_TIME_T <= 4 */
324
325static int64_t
326ldns_serial_arithmitics_time(int32_t time, time_t now)
327{
328	int32_t offset = time - (int32_t) now;
329	return (int64_t) now + offset;
330}
331
332
333struct tm *
334ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
335{
336#if SIZEOF_TIME_T <= 4
337	int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
338	return  ldns_gmtime64_r(secs_since_epoch, result);
339#else
340	time_t  secs_since_epoch = ldns_serial_arithmitics_time(time, now);
341	return  gmtime_r(&secs_since_epoch, result);
342#endif
343}
344
345/**
346 * Init the random source
347 * applications should call this if they need entropy data within ldns
348 * If openSSL is available, it is automatically seeded from /dev/urandom
349 * or /dev/random
350 *
351 * If you need more entropy, or have no openssl available, this function
352 * MUST be called at the start of the program
353 *
354 * If openssl *is* available, this function just adds more entropy
355 **/
356int
357ldns_init_random(FILE *fd, unsigned int size)
358{
359	/* if fp is given, seed srandom with data from file
360	   otherwise use /dev/urandom */
361	FILE *rand_f;
362	uint8_t *seed;
363	size_t read = 0;
364	unsigned int seed_i;
365	struct timeval tv;
366
367	/* we'll need at least sizeof(unsigned int) bytes for the
368	   standard prng seed */
369	if (size < (unsigned int) sizeof(seed_i)){
370		size = (unsigned int) sizeof(seed_i);
371	}
372
373	seed = LDNS_XMALLOC(uint8_t, size);
374        if(!seed) {
375		return 1;
376        }
377
378	if (!fd) {
379		if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
380			/* no readable /dev/urandom, try /dev/random */
381			if ((rand_f = fopen("/dev/random", "r")) == NULL) {
382				/* no readable /dev/random either, and no entropy
383				   source given. we'll have to improvise */
384				for (read = 0; read < size; read++) {
385					gettimeofday(&tv, NULL);
386					seed[read] = (uint8_t) (tv.tv_usec % 256);
387				}
388			} else {
389				read = fread(seed, 1, size, rand_f);
390			}
391		} else {
392			read = fread(seed, 1, size, rand_f);
393		}
394	} else {
395		rand_f = fd;
396		read = fread(seed, 1, size, rand_f);
397	}
398
399	if (read < size) {
400		LDNS_FREE(seed);
401		return 1;
402	} else {
403#ifdef HAVE_SSL
404		/* Seed the OpenSSL prng (most systems have it seeded
405		   automatically, in that case this call just adds entropy */
406		RAND_seed(seed, (int) size);
407#else
408		/* Seed the standard prng, only uses the first
409		 * unsigned sizeof(unsiged int) bytes found in the entropy pool
410		 */
411		memcpy(&seed_i, seed, sizeof(seed_i));
412		srandom(seed_i);
413#endif
414		LDNS_FREE(seed);
415	}
416
417	if (!fd) {
418                if (rand_f) fclose(rand_f);
419	}
420
421	return 0;
422}
423
424/**
425 * Get random number.
426 *
427 */
428uint16_t
429ldns_get_random(void)
430{
431        uint16_t rid = 0;
432#ifdef HAVE_SSL
433        if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
434                rid = (uint16_t) random();
435        }
436#else
437        rid = (uint16_t) random();
438#endif
439	return rid;
440}
441
442/*
443 * BubbleBabble code taken from OpenSSH
444 * Copyright (c) 2001 Carsten Raskgaard.  All rights reserved.
445 */
446char *
447ldns_bubblebabble(uint8_t *data, size_t len)
448{
449	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
450	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
451	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
452	size_t i, j = 0, rounds, seed = 1;
453	char *retval;
454
455	rounds = (len / 2) + 1;
456	retval = LDNS_XMALLOC(char, rounds * 6);
457	if(!retval) return NULL;
458	retval[j++] = 'x';
459	for (i = 0; i < rounds; i++) {
460		size_t idx0, idx1, idx2, idx3, idx4;
461		if ((i + 1 < rounds) || (len % 2 != 0)) {
462			idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
463			    seed) % 6;
464			idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
465			idx2 = ((((size_t)(data[2 * i])) & 3) +
466			    (seed / 6)) % 6;
467			retval[j++] = vowels[idx0];
468			retval[j++] = consonants[idx1];
469			retval[j++] = vowels[idx2];
470			if ((i + 1) < rounds) {
471				idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
472				idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
473				retval[j++] = consonants[idx3];
474				retval[j++] = '-';
475				retval[j++] = consonants[idx4];
476				seed = ((seed * 5) +
477				    ((((size_t)(data[2 * i])) * 7) +
478				    ((size_t)(data[(2 * i) + 1])))) % 36;
479			}
480		} else {
481			idx0 = seed % 6;
482			idx1 = 16;
483			idx2 = seed / 6;
484			retval[j++] = vowels[idx0];
485			retval[j++] = consonants[idx1];
486			retval[j++] = vowels[idx2];
487		}
488	}
489	retval[j++] = 'x';
490	retval[j++] = '\0';
491	return retval;
492}
493