118334Speter/* Allocate registers within a basic block, for GNU compiler.
290075Sobrien   Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3169689Skan   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4169689Skan   Inc.
518334Speter
690075SobrienThis file is part of GCC.
718334Speter
890075SobrienGCC is free software; you can redistribute it and/or modify it under
990075Sobrienthe terms of the GNU General Public License as published by the Free
1090075SobrienSoftware Foundation; either version 2, or (at your option) any later
1190075Sobrienversion.
1218334Speter
1390075SobrienGCC is distributed in the hope that it will be useful, but WITHOUT ANY
1490075SobrienWARRANTY; without even the implied warranty of MERCHANTABILITY or
1590075SobrienFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1690075Sobrienfor more details.
1718334Speter
1818334SpeterYou should have received a copy of the GNU General Public License
1990075Sobrienalong with GCC; see the file COPYING.  If not, write to the Free
20169689SkanSoftware Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21169689Skan02110-1301, USA.  */
2218334Speter
2318334Speter/* Allocation of hard register numbers to pseudo registers is done in
2418334Speter   two passes.  In this pass we consider only regs that are born and
2518334Speter   die once within one basic block.  We do this one basic block at a
2618334Speter   time.  Then the next pass allocates the registers that remain.
2718334Speter   Two passes are used because this pass uses methods that work only
2818334Speter   on linear code, but that do a better job than the general methods
2918334Speter   used in global_alloc, and more quickly too.
3018334Speter
3118334Speter   The assignments made are recorded in the vector reg_renumber
3218334Speter   whose space is allocated here.  The rtl code itself is not altered.
3318334Speter
3418334Speter   We assign each instruction in the basic block a number
3518334Speter   which is its order from the beginning of the block.
3618334Speter   Then we can represent the lifetime of a pseudo register with
3718334Speter   a pair of numbers, and check for conflicts easily.
3818334Speter   We can record the availability of hard registers with a
3918334Speter   HARD_REG_SET for each instruction.  The HARD_REG_SET
4018334Speter   contains 0 or 1 for each hard reg.
4118334Speter
4218334Speter   To avoid register shuffling, we tie registers together when one
4318334Speter   dies by being copied into another, or dies in an instruction that
4418334Speter   does arithmetic to produce another.  The tied registers are
4518334Speter   allocated as one.  Registers with different reg class preferences
4618334Speter   can never be tied unless the class preferred by one is a subclass
4718334Speter   of the one preferred by the other.
4818334Speter
4918334Speter   Tying is represented with "quantity numbers".
5018334Speter   A non-tied register is given a new quantity number.
5118334Speter   Tied registers have the same quantity number.
5290075Sobrien
5318334Speter   We have provision to exempt registers, even when they are contained
5418334Speter   within the block, that can be tied to others that are not contained in it.
5518334Speter   This is so that global_alloc could process them both and tie them then.
5618334Speter   But this is currently disabled since tying in global_alloc is not
5718334Speter   yet implemented.  */
5818334Speter
5952284Sobrien/* Pseudos allocated here can be reallocated by global.c if the hard register
6052284Sobrien   is used as a spill register.  Currently we don't allocate such pseudos
6150397Sobrien   here if their preferred class is likely to be used by spills.  */
6250397Sobrien
6318334Speter#include "config.h"
6450397Sobrien#include "system.h"
65132718Skan#include "coretypes.h"
66132718Skan#include "tm.h"
67117395Skan#include "hard-reg-set.h"
6818334Speter#include "rtl.h"
6990075Sobrien#include "tm_p.h"
7018334Speter#include "flags.h"
7118334Speter#include "regs.h"
7290075Sobrien#include "function.h"
7318334Speter#include "insn-config.h"
7450397Sobrien#include "insn-attr.h"
7518334Speter#include "recog.h"
7618334Speter#include "output.h"
7750397Sobrien#include "toplev.h"
7890075Sobrien#include "except.h"
7990075Sobrien#include "integrate.h"
80169689Skan#include "reload.h"
81169689Skan#include "ggc.h"
82169689Skan#include "timevar.h"
83169689Skan#include "tree-pass.h"
8418334Speter
8518334Speter/* Next quantity number available for allocation.  */
8618334Speter
8718334Speterstatic int next_qty;
8818334Speter
8990075Sobrien/* Information we maintain about each quantity.  */
9090075Sobrienstruct qty
9190075Sobrien{
9290075Sobrien  /* The number of refs to quantity Q.  */
9318334Speter
9490075Sobrien  int n_refs;
9518334Speter
9690075Sobrien  /* The frequency of uses of quantity Q.  */
9718334Speter
9890075Sobrien  int freq;
9918334Speter
10090075Sobrien  /* Insn number (counting from head of basic block)
10190075Sobrien     where quantity Q was born.  -1 if birth has not been recorded.  */
10218334Speter
10390075Sobrien  int birth;
10418334Speter
10590075Sobrien  /* Insn number (counting from head of basic block)
10690075Sobrien     where given quantity died.  Due to the way tying is done,
10790075Sobrien     and the fact that we consider in this pass only regs that die but once,
10890075Sobrien     a quantity can die only once.  Each quantity's life span
10990075Sobrien     is a set of consecutive insns.  -1 if death has not been recorded.  */
11018334Speter
11190075Sobrien  int death;
11218334Speter
11390075Sobrien  /* Number of words needed to hold the data in given quantity.
11490075Sobrien     This depends on its machine mode.  It is used for these purposes:
115132718Skan     1. It is used in computing the relative importance of qtys,
11690075Sobrien	which determines the order in which we look for regs for them.
11790075Sobrien     2. It is used in rules that prevent tying several registers of
11890075Sobrien	different sizes in a way that is geometrically impossible
11990075Sobrien	(see combine_regs).  */
12018334Speter
12190075Sobrien  int size;
12218334Speter
12390075Sobrien  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */
12418334Speter
12590075Sobrien  int n_calls_crossed;
12618334Speter
127161651Skan  /* Number of times a reg tied to given qty lives across a CALL_INSN
128161651Skan     that might throw.  */
129161651Skan
130161651Skan  int n_throwing_calls_crossed;
131161651Skan
13290075Sobrien  /* The register number of one pseudo register whose reg_qty value is Q.
13390075Sobrien     This register should be the head of the chain
13490075Sobrien     maintained in reg_next_in_qty.  */
13518334Speter
13690075Sobrien  int first_reg;
13718334Speter
13890075Sobrien  /* Reg class contained in (smaller than) the preferred classes of all
13990075Sobrien     the pseudo regs that are tied in given quantity.
14090075Sobrien     This is the preferred class for allocating that quantity.  */
14118334Speter
14290075Sobrien  enum reg_class min_class;
14318334Speter
14490075Sobrien  /* Register class within which we allocate given qty if we can't get
14590075Sobrien     its preferred class.  */
14618334Speter
14790075Sobrien  enum reg_class alternate_class;
14818334Speter
14990075Sobrien  /* This holds the mode of the registers that are tied to given qty,
15090075Sobrien     or VOIDmode if registers with differing modes are tied together.  */
15118334Speter
15290075Sobrien  enum machine_mode mode;
15318334Speter
15490075Sobrien  /* the hard reg number chosen for given quantity,
15590075Sobrien     or -1 if none was found.  */
15618334Speter
15790075Sobrien  short phys_reg;
15890075Sobrien};
15918334Speter
16090075Sobrienstatic struct qty *qty;
16118334Speter
16290075Sobrien/* These fields are kept separately to speedup their clearing.  */
16318334Speter
16490075Sobrien/* We maintain two hard register sets that indicate suggested hard registers
16590075Sobrien   for each quantity.  The first, phys_copy_sugg, contains hard registers
16690075Sobrien   that are tied to the quantity by a simple copy.  The second contains all
16790075Sobrien   hard registers that are tied to the quantity via an arithmetic operation.
16818334Speter
16990075Sobrien   The former register set is given priority for allocation.  This tends to
17090075Sobrien   eliminate copy insns.  */
17118334Speter
17290075Sobrien/* Element Q is a set of hard registers that are suggested for quantity Q by
17390075Sobrien   copy insns.  */
17418334Speter
17590075Sobrienstatic HARD_REG_SET *qty_phys_copy_sugg;
17618334Speter
17790075Sobrien/* Element Q is a set of hard registers that are suggested for quantity Q by
17890075Sobrien   arithmetic insns.  */
17918334Speter
18090075Sobrienstatic HARD_REG_SET *qty_phys_sugg;
18118334Speter
18290075Sobrien/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
18390075Sobrien
18490075Sobrienstatic short *qty_phys_num_copy_sugg;
18590075Sobrien
18690075Sobrien/* Element Q is the number of suggested registers in qty_phys_sugg.  */
18790075Sobrien
18890075Sobrienstatic short *qty_phys_num_sugg;
18990075Sobrien
19018334Speter/* If (REG N) has been assigned a quantity number, is a register number
19118334Speter   of another register assigned the same quantity number, or -1 for the
19290075Sobrien   end of the chain.  qty->first_reg point to the head of this chain.  */
19318334Speter
19418334Speterstatic int *reg_next_in_qty;
19518334Speter
19618334Speter/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
19718334Speter   if it is >= 0,
19818334Speter   of -1 if this register cannot be allocated by local-alloc,
19918334Speter   or -2 if not known yet.
20018334Speter
20118334Speter   Note that if we see a use or death of pseudo register N with
20218334Speter   reg_qty[N] == -2, register N must be local to the current block.  If
20318334Speter   it were used in more than one block, we would have reg_qty[N] == -1.
20418334Speter   This relies on the fact that if reg_basic_block[N] is >= 0, register N
20518334Speter   will not appear in any other block.  We save a considerable number of
20618334Speter   tests by exploiting this.
20718334Speter
20818334Speter   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
20918334Speter   be referenced.  */
21018334Speter
21118334Speterstatic int *reg_qty;
21218334Speter
21318334Speter/* The offset (in words) of register N within its quantity.
21418334Speter   This can be nonzero if register N is SImode, and has been tied
21518334Speter   to a subreg of a DImode register.  */
21618334Speter
21718334Speterstatic char *reg_offset;
21818334Speter
21918334Speter/* Vector of substitutions of register numbers,
22018334Speter   used to map pseudo regs into hardware regs.
22118334Speter   This is set up as a result of register allocation.
22218334Speter   Element N is the hard reg assigned to pseudo reg N,
22318334Speter   or is -1 if no hard reg was assigned.
22418334Speter   If N is a hard reg number, element N is N.  */
22518334Speter
22618334Spetershort *reg_renumber;
22718334Speter
22818334Speter/* Set of hard registers live at the current point in the scan
22918334Speter   of the instructions in a basic block.  */
23018334Speter
23118334Speterstatic HARD_REG_SET regs_live;
23218334Speter
23318334Speter/* Each set of hard registers indicates registers live at a particular
23418334Speter   point in the basic block.  For N even, regs_live_at[N] says which
23518334Speter   hard registers are needed *after* insn N/2 (i.e., they may not
23618334Speter   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
23718334Speter
23818334Speter   If an object is to conflict with the inputs of insn J but not the
23918334Speter   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
24018334Speter   if it is to conflict with the outputs of insn J but not the inputs of
24118334Speter   insn J + 1, it is said to die at index J*2 + 1.  */
24218334Speter
24318334Speterstatic HARD_REG_SET *regs_live_at;
24418334Speter
24518334Speter/* Communicate local vars `insn_number' and `insn'
24618334Speter   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
24718334Speterstatic int this_insn_number;
24818334Speterstatic rtx this_insn;
24918334Speter
25090075Sobrienstruct equivalence
25190075Sobrien{
25290075Sobrien  /* Set when an attempt should be made to replace a register
253102780Skan     with the associated src_p entry.  */
25450397Sobrien
25590075Sobrien  char replace;
25650397Sobrien
25790075Sobrien  /* Set when a REG_EQUIV note is found or created.  Use to
25890075Sobrien     keep track of what memory accesses might be created later,
25990075Sobrien     e.g. by reload.  */
26052284Sobrien
26190075Sobrien  rtx replacement;
26290075Sobrien
263102780Skan  rtx *src_p;
26490075Sobrien
26590075Sobrien  /* Loop depth is used to recognize equivalences which appear
26690075Sobrien     to be present within the same loop (or in an inner loop).  */
26790075Sobrien
26890075Sobrien  int loop_depth;
26990075Sobrien
27090075Sobrien  /* The list of each instruction which initializes this register.  */
27190075Sobrien
27290075Sobrien  rtx init_insns;
273169689Skan
274169689Skan  /* Nonzero if this had a preexisting REG_EQUIV note.  */
275169689Skan
276169689Skan  int is_arg_equivalence;
27790075Sobrien};
27890075Sobrien
27990075Sobrien/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
28090075Sobrien   structure for that register.  */
28190075Sobrien
28290075Sobrienstatic struct equivalence *reg_equiv;
28390075Sobrien
28452284Sobrien/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
28552284Sobrienstatic int recorded_label_ref;
28652284Sobrien
287132718Skanstatic void alloc_qty (int, enum machine_mode, int, int);
288132718Skanstatic void validate_equiv_mem_from_store (rtx, rtx, void *);
289132718Skanstatic int validate_equiv_mem (rtx, rtx, rtx);
290132718Skanstatic int equiv_init_varies_p (rtx);
291132718Skanstatic int equiv_init_movable_p (rtx, int);
292132718Skanstatic int contains_replace_regs (rtx);
293132718Skanstatic int memref_referenced_p (rtx, rtx);
294132718Skanstatic int memref_used_between_p (rtx, rtx, rtx);
295132718Skanstatic void update_equiv_regs (void);
296132718Skanstatic void no_equiv (rtx, rtx, void *);
297132718Skanstatic void block_alloc (int);
298132718Skanstatic int qty_sugg_compare (int, int);
299132718Skanstatic int qty_sugg_compare_1 (const void *, const void *);
300132718Skanstatic int qty_compare (int, int);
301132718Skanstatic int qty_compare_1 (const void *, const void *);
302132718Skanstatic int combine_regs (rtx, rtx, int, int, rtx, int);
303132718Skanstatic int reg_meets_class_p (int, enum reg_class);
304132718Skanstatic void update_qty_class (int, int);
305132718Skanstatic void reg_is_set (rtx, rtx, void *);
306132718Skanstatic void reg_is_born (rtx, int);
307132718Skanstatic void wipe_dead_reg (rtx, int);
308132718Skanstatic int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
309132718Skan			  int, int);
310132718Skanstatic void mark_life (int, enum machine_mode, int);
311132718Skanstatic void post_mark_life (int, enum machine_mode, int, int, int);
312132718Skanstatic int no_conflict_p (rtx, rtx, rtx);
313132718Skanstatic int requires_inout (const char *);
31418334Speter
31518334Speter/* Allocate a new quantity (new within current basic block)
31618334Speter   for register number REGNO which is born at index BIRTH
31718334Speter   within the block.  MODE and SIZE are info on reg REGNO.  */
31818334Speter
31918334Speterstatic void
320132718Skanalloc_qty (int regno, enum machine_mode mode, int size, int birth)
32118334Speter{
32290075Sobrien  int qtyno = next_qty++;
32318334Speter
32490075Sobrien  reg_qty[regno] = qtyno;
32518334Speter  reg_offset[regno] = 0;
32618334Speter  reg_next_in_qty[regno] = -1;
32718334Speter
32890075Sobrien  qty[qtyno].first_reg = regno;
32990075Sobrien  qty[qtyno].size = size;
33090075Sobrien  qty[qtyno].mode = mode;
33190075Sobrien  qty[qtyno].birth = birth;
33290075Sobrien  qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
333161651Skan  qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
33490075Sobrien  qty[qtyno].min_class = reg_preferred_class (regno);
33590075Sobrien  qty[qtyno].alternate_class = reg_alternate_class (regno);
33690075Sobrien  qty[qtyno].n_refs = REG_N_REFS (regno);
33790075Sobrien  qty[qtyno].freq = REG_FREQ (regno);
33818334Speter}
33918334Speter
34018334Speter/* Main entry point of this file.  */
34118334Speter
342169689Skanstatic int
343132718Skanlocal_alloc (void)
34418334Speter{
345117395Skan  int i;
34618334Speter  int max_qty;
347117395Skan  basic_block b;
34818334Speter
34952284Sobrien  /* We need to keep track of whether or not we recorded a LABEL_REF so
35052284Sobrien     that we know if the jump optimizer needs to be rerun.  */
35152284Sobrien  recorded_label_ref = 0;
35252284Sobrien
35318334Speter  /* Leaf functions and non-leaf functions have different needs.
35418334Speter     If defined, let the machine say what kind of ordering we
35518334Speter     should use.  */
35618334Speter#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
35718334Speter  ORDER_REGS_FOR_LOCAL_ALLOC;
35818334Speter#endif
35918334Speter
36018334Speter  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
36118334Speter     registers.  */
362169689Skan  update_equiv_regs ();
36318334Speter
36418334Speter  /* This sets the maximum number of quantities we can have.  Quantity
36552284Sobrien     numbers start at zero and we can have one for each pseudo.  */
36652284Sobrien  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
36718334Speter
36818334Speter  /* Allocate vectors of temporary data.
36918334Speter     See the declarations of these variables, above,
37018334Speter     for what they mean.  */
37118334Speter
372169689Skan  qty = XNEWVEC (struct qty, max_qty);
373169689Skan  qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
374169689Skan  qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
375169689Skan  qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
376169689Skan  qty_phys_num_sugg = XNEWVEC (short, max_qty);
37718334Speter
378169689Skan  reg_qty = XNEWVEC (int, max_regno);
379169689Skan  reg_offset = XNEWVEC (char, max_regno);
380169689Skan  reg_next_in_qty = XNEWVEC (int, max_regno);
38118334Speter
38218334Speter  /* Determine which pseudo-registers can be allocated by local-alloc.
38318334Speter     In general, these are the registers used only in a single block and
38490075Sobrien     which only die once.
38518334Speter
38618334Speter     We need not be concerned with which block actually uses the register
38718334Speter     since we will never see it outside that block.  */
38818334Speter
38918334Speter  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
39018334Speter    {
39190075Sobrien      if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
39218334Speter	reg_qty[i] = -2;
39318334Speter      else
39418334Speter	reg_qty[i] = -1;
39518334Speter    }
39618334Speter
39718334Speter  /* Force loop below to initialize entire quantity array.  */
39818334Speter  next_qty = max_qty;
39918334Speter
40018334Speter  /* Allocate each block's local registers, block by block.  */
40118334Speter
402117395Skan  FOR_EACH_BB (b)
40318334Speter    {
40418334Speter      /* NEXT_QTY indicates which elements of the `qty_...'
40518334Speter	 vectors might need to be initialized because they were used
40618334Speter	 for the previous block; it is set to the entire array before
40718334Speter	 block 0.  Initialize those, with explicit loop if there are few,
40818334Speter	 else with bzero and bcopy.  Do not initialize vectors that are
40918334Speter	 explicit set by `alloc_qty'.  */
41018334Speter
41118334Speter      if (next_qty < 6)
41218334Speter	{
41318334Speter	  for (i = 0; i < next_qty; i++)
41418334Speter	    {
41518334Speter	      CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
41618334Speter	      qty_phys_num_copy_sugg[i] = 0;
41718334Speter	      CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
41818334Speter	      qty_phys_num_sugg[i] = 0;
41918334Speter	    }
42018334Speter	}
42118334Speter      else
42218334Speter	{
42318334Speter#define CLEAR(vector)  \
424132718Skan	  memset ((vector), 0, (sizeof (*(vector))) * next_qty);
42518334Speter
42618334Speter	  CLEAR (qty_phys_copy_sugg);
42718334Speter	  CLEAR (qty_phys_num_copy_sugg);
42818334Speter	  CLEAR (qty_phys_sugg);
42918334Speter	  CLEAR (qty_phys_num_sugg);
43018334Speter	}
43118334Speter
43218334Speter      next_qty = 0;
43318334Speter
434117395Skan      block_alloc (b->index);
43518334Speter    }
43650397Sobrien
43790075Sobrien  free (qty);
43890075Sobrien  free (qty_phys_copy_sugg);
43990075Sobrien  free (qty_phys_num_copy_sugg);
44090075Sobrien  free (qty_phys_sugg);
44190075Sobrien  free (qty_phys_num_sugg);
44290075Sobrien
44350397Sobrien  free (reg_qty);
44450397Sobrien  free (reg_offset);
44550397Sobrien  free (reg_next_in_qty);
44690075Sobrien
44752284Sobrien  return recorded_label_ref;
44818334Speter}
44918334Speter
45018334Speter/* Used for communication between the following two functions: contains
45118334Speter   a MEM that we wish to ensure remains unchanged.  */
45218334Speterstatic rtx equiv_mem;
45318334Speter
45418334Speter/* Set nonzero if EQUIV_MEM is modified.  */
45518334Speterstatic int equiv_mem_modified;
45618334Speter
45718334Speter/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
45818334Speter   Called via note_stores.  */
45918334Speter
46018334Speterstatic void
461132718Skanvalidate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
462132718Skan			       void *data ATTRIBUTE_UNUSED)
46318334Speter{
464169689Skan  if ((REG_P (dest)
46518334Speter       && reg_overlap_mentioned_p (dest, equiv_mem))
466169689Skan      || (MEM_P (dest)
46750397Sobrien	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
46818334Speter    equiv_mem_modified = 1;
46918334Speter}
47018334Speter
47118334Speter/* Verify that no store between START and the death of REG invalidates
47218334Speter   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
47318334Speter   by storing into an overlapping memory location, or with a non-const
47418334Speter   CALL_INSN.
47518334Speter
47618334Speter   Return 1 if MEMREF remains valid.  */
47718334Speter
47818334Speterstatic int
479132718Skanvalidate_equiv_mem (rtx start, rtx reg, rtx memref)
48018334Speter{
48118334Speter  rtx insn;
48218334Speter  rtx note;
48318334Speter
48418334Speter  equiv_mem = memref;
48518334Speter  equiv_mem_modified = 0;
48618334Speter
48718334Speter  /* If the memory reference has side effects or is volatile, it isn't a
48818334Speter     valid equivalence.  */
48918334Speter  if (side_effects_p (memref))
49018334Speter    return 0;
49118334Speter
49218334Speter  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
49318334Speter    {
49490075Sobrien      if (! INSN_P (insn))
49518334Speter	continue;
49618334Speter
49718334Speter      if (find_reg_note (insn, REG_DEAD, reg))
49818334Speter	return 1;
49918334Speter
500169689Skan      if (CALL_P (insn) && ! MEM_READONLY_P (memref)
50190075Sobrien	  && ! CONST_OR_PURE_CALL_P (insn))
50218334Speter	return 0;
50318334Speter
50490075Sobrien      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
50518334Speter
50618334Speter      /* If a register mentioned in MEMREF is modified via an
50718334Speter	 auto-increment, we lose the equivalence.  Do the same if one
50818334Speter	 dies; although we could extend the life, it doesn't seem worth
50918334Speter	 the trouble.  */
51018334Speter
51118334Speter      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
51218334Speter	if ((REG_NOTE_KIND (note) == REG_INC
51318334Speter	     || REG_NOTE_KIND (note) == REG_DEAD)
514169689Skan	    && REG_P (XEXP (note, 0))
51518334Speter	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
51618334Speter	  return 0;
51718334Speter    }
51818334Speter
51918334Speter  return 0;
52018334Speter}
52150397Sobrien
52290075Sobrien/* Returns zero if X is known to be invariant.  */
52350397Sobrien
52450397Sobrienstatic int
525132718Skanequiv_init_varies_p (rtx x)
52650397Sobrien{
52790075Sobrien  RTX_CODE code = GET_CODE (x);
52890075Sobrien  int i;
52990075Sobrien  const char *fmt;
53090075Sobrien
53190075Sobrien  switch (code)
53290075Sobrien    {
53390075Sobrien    case MEM:
534169689Skan      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
53590075Sobrien
53690075Sobrien    case CONST:
53790075Sobrien    case CONST_INT:
53890075Sobrien    case CONST_DOUBLE:
53996263Sobrien    case CONST_VECTOR:
54090075Sobrien    case SYMBOL_REF:
54190075Sobrien    case LABEL_REF:
54290075Sobrien      return 0;
54390075Sobrien
54490075Sobrien    case REG:
54590075Sobrien      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
54690075Sobrien
54790075Sobrien    case ASM_OPERANDS:
54890075Sobrien      if (MEM_VOLATILE_P (x))
54990075Sobrien	return 1;
55090075Sobrien
551132718Skan      /* Fall through.  */
55290075Sobrien
55390075Sobrien    default:
55490075Sobrien      break;
55590075Sobrien    }
55690075Sobrien
55790075Sobrien  fmt = GET_RTX_FORMAT (code);
55890075Sobrien  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
55990075Sobrien    if (fmt[i] == 'e')
56090075Sobrien      {
56190075Sobrien	if (equiv_init_varies_p (XEXP (x, i)))
56290075Sobrien	  return 1;
56390075Sobrien      }
56490075Sobrien    else if (fmt[i] == 'E')
56590075Sobrien      {
56690075Sobrien	int j;
56790075Sobrien	for (j = 0; j < XVECLEN (x, i); j++)
56890075Sobrien	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
56990075Sobrien	    return 1;
57090075Sobrien      }
57190075Sobrien
57290075Sobrien  return 0;
57390075Sobrien}
57490075Sobrien
575117395Skan/* Returns nonzero if X (used to initialize register REGNO) is movable.
57690075Sobrien   X is only movable if the registers it uses have equivalent initializations
57790075Sobrien   which appear to be within the same loop (or in an inner loop) and movable
57890075Sobrien   or if they are not candidates for local_alloc and don't vary.  */
57990075Sobrien
58090075Sobrienstatic int
581132718Skanequiv_init_movable_p (rtx x, int regno)
58290075Sobrien{
58350397Sobrien  int i, j;
58490075Sobrien  const char *fmt;
58550397Sobrien  enum rtx_code code = GET_CODE (x);
58650397Sobrien
58750397Sobrien  switch (code)
58850397Sobrien    {
58990075Sobrien    case SET:
59090075Sobrien      return equiv_init_movable_p (SET_SRC (x), regno);
59190075Sobrien
59290075Sobrien    case CC0:
59390075Sobrien    case CLOBBER:
59490075Sobrien      return 0;
59590075Sobrien
59690075Sobrien    case PRE_INC:
59790075Sobrien    case PRE_DEC:
59890075Sobrien    case POST_INC:
59990075Sobrien    case POST_DEC:
60090075Sobrien    case PRE_MODIFY:
60190075Sobrien    case POST_MODIFY:
60290075Sobrien      return 0;
60390075Sobrien
60490075Sobrien    case REG:
60590075Sobrien      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
60690075Sobrien	      && reg_equiv[REGNO (x)].replace)
60790075Sobrien	     || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
60890075Sobrien
60990075Sobrien    case UNSPEC_VOLATILE:
61090075Sobrien      return 0;
61190075Sobrien
61290075Sobrien    case ASM_OPERANDS:
61390075Sobrien      if (MEM_VOLATILE_P (x))
61490075Sobrien	return 0;
61590075Sobrien
616132718Skan      /* Fall through.  */
61790075Sobrien
61890075Sobrien    default:
61990075Sobrien      break;
62090075Sobrien    }
62190075Sobrien
62290075Sobrien  fmt = GET_RTX_FORMAT (code);
62390075Sobrien  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
62490075Sobrien    switch (fmt[i])
62590075Sobrien      {
62690075Sobrien      case 'e':
62790075Sobrien	if (! equiv_init_movable_p (XEXP (x, i), regno))
62890075Sobrien	  return 0;
62990075Sobrien	break;
63090075Sobrien      case 'E':
63190075Sobrien	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
63290075Sobrien	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
63390075Sobrien	    return 0;
63490075Sobrien	break;
63590075Sobrien      }
63690075Sobrien
63790075Sobrien  return 1;
63890075Sobrien}
63990075Sobrien
64090075Sobrien/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
64190075Sobrien
64290075Sobrienstatic int
643132718Skancontains_replace_regs (rtx x)
64490075Sobrien{
64590075Sobrien  int i, j;
64690075Sobrien  const char *fmt;
64790075Sobrien  enum rtx_code code = GET_CODE (x);
64890075Sobrien
64990075Sobrien  switch (code)
65090075Sobrien    {
65150397Sobrien    case CONST_INT:
65250397Sobrien    case CONST:
65350397Sobrien    case LABEL_REF:
65450397Sobrien    case SYMBOL_REF:
65550397Sobrien    case CONST_DOUBLE:
65696263Sobrien    case CONST_VECTOR:
65750397Sobrien    case PC:
65850397Sobrien    case CC0:
65950397Sobrien    case HIGH:
66050397Sobrien      return 0;
66150397Sobrien
66250397Sobrien    case REG:
66390075Sobrien      return reg_equiv[REGNO (x)].replace;
66450397Sobrien
66550397Sobrien    default:
66650397Sobrien      break;
66750397Sobrien    }
66850397Sobrien
66950397Sobrien  fmt = GET_RTX_FORMAT (code);
67050397Sobrien  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
67150397Sobrien    switch (fmt[i])
67250397Sobrien      {
67350397Sobrien      case 'e':
67490075Sobrien	if (contains_replace_regs (XEXP (x, i)))
67550397Sobrien	  return 1;
67650397Sobrien	break;
67750397Sobrien      case 'E':
67850397Sobrien	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
67990075Sobrien	  if (contains_replace_regs (XVECEXP (x, i, j)))
68050397Sobrien	    return 1;
68150397Sobrien	break;
68250397Sobrien      }
68350397Sobrien
68450397Sobrien  return 0;
68550397Sobrien}
68618334Speter
68718334Speter/* TRUE if X references a memory location that would be affected by a store
68818334Speter   to MEMREF.  */
68918334Speter
69018334Speterstatic int
691132718Skanmemref_referenced_p (rtx memref, rtx x)
69218334Speter{
69318334Speter  int i, j;
69490075Sobrien  const char *fmt;
69518334Speter  enum rtx_code code = GET_CODE (x);
69618334Speter
69718334Speter  switch (code)
69818334Speter    {
69918334Speter    case CONST_INT:
70018334Speter    case CONST:
70118334Speter    case LABEL_REF:
70218334Speter    case SYMBOL_REF:
70318334Speter    case CONST_DOUBLE:
70496263Sobrien    case CONST_VECTOR:
70518334Speter    case PC:
70618334Speter    case CC0:
70718334Speter    case HIGH:
70818334Speter    case LO_SUM:
70918334Speter      return 0;
71018334Speter
71150397Sobrien    case REG:
71290075Sobrien      return (reg_equiv[REGNO (x)].replacement
71350397Sobrien	      && memref_referenced_p (memref,
71490075Sobrien				      reg_equiv[REGNO (x)].replacement));
71550397Sobrien
71618334Speter    case MEM:
71750397Sobrien      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
71818334Speter	return 1;
71918334Speter      break;
72018334Speter
72118334Speter    case SET:
72218334Speter      /* If we are setting a MEM, it doesn't count (its address does), but any
72318334Speter	 other SET_DEST that has a MEM in it is referencing the MEM.  */
724169689Skan      if (MEM_P (SET_DEST (x)))
72518334Speter	{
72618334Speter	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
72718334Speter	    return 1;
72818334Speter	}
72918334Speter      else if (memref_referenced_p (memref, SET_DEST (x)))
73018334Speter	return 1;
73118334Speter
73218334Speter      return memref_referenced_p (memref, SET_SRC (x));
73390075Sobrien
73450397Sobrien    default:
73550397Sobrien      break;
73618334Speter    }
73718334Speter
73818334Speter  fmt = GET_RTX_FORMAT (code);
73918334Speter  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
74018334Speter    switch (fmt[i])
74118334Speter      {
74218334Speter      case 'e':
74318334Speter	if (memref_referenced_p (memref, XEXP (x, i)))
74418334Speter	  return 1;
74518334Speter	break;
74618334Speter      case 'E':
74718334Speter	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
74818334Speter	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
74918334Speter	    return 1;
75018334Speter	break;
75118334Speter      }
75218334Speter
75318334Speter  return 0;
75418334Speter}
75518334Speter
75618334Speter/* TRUE if some insn in the range (START, END] references a memory location
75718334Speter   that would be affected by a store to MEMREF.  */
75818334Speter
75918334Speterstatic int
760132718Skanmemref_used_between_p (rtx memref, rtx start, rtx end)
76118334Speter{
76218334Speter  rtx insn;
76318334Speter
76418334Speter  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
76518334Speter       insn = NEXT_INSN (insn))
766169689Skan    {
767169689Skan      if (!INSN_P (insn))
768169689Skan	continue;
769169689Skan
770169689Skan      if (memref_referenced_p (memref, PATTERN (insn)))
771169689Skan	return 1;
77218334Speter
773169689Skan      /* Nonconst functions may access memory.  */
774169689Skan      if (CALL_P (insn)
775169689Skan	  && (! CONST_OR_PURE_CALL_P (insn)
776169689Skan	      || pure_call_p (insn)))
777169689Skan	return 1;
778169689Skan    }
779169689Skan
78018334Speter  return 0;
78118334Speter}
78218334Speter
78318334Speter/* Find registers that are equivalent to a single value throughout the
78418334Speter   compilation (either because they can be referenced in memory or are set once
78518334Speter   from a single constant).  Lower their priority for a register.
78618334Speter
78718334Speter   If such a register is only referenced once, try substituting its value
78818334Speter   into the using insn.  If it succeeds, we can eliminate the register
789169689Skan   completely.
79018334Speter
791169689Skan   Initialize the REG_EQUIV_INIT array of initializing insns.  */
792169689Skan
79318334Speterstatic void
794132718Skanupdate_equiv_regs (void)
79518334Speter{
79618334Speter  rtx insn;
797117395Skan  basic_block bb;
79890075Sobrien  int loop_depth;
79990075Sobrien  regset_head cleared_regs;
80090075Sobrien  int clear_regnos = 0;
80118334Speter
802169689Skan  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
80390075Sobrien  INIT_REG_SET (&cleared_regs);
804169689Skan  reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
805169689Skan  reg_equiv_init_size = max_regno;
80650397Sobrien
80718334Speter  init_alias_analysis ();
80818334Speter
80918334Speter  /* Scan the insns and find which registers have equivalences.  Do this
81018334Speter     in a separate scan of the insns because (due to -fcse-follow-jumps)
81118334Speter     a register can be set below its use.  */
812117395Skan  FOR_EACH_BB (bb)
81318334Speter    {
81490075Sobrien      loop_depth = bb->loop_depth;
81518334Speter
816132718Skan      for (insn = BB_HEAD (bb);
817132718Skan	   insn != NEXT_INSN (BB_END (bb));
818132718Skan	   insn = NEXT_INSN (insn))
81918334Speter	{
82090075Sobrien	  rtx note;
82190075Sobrien	  rtx set;
82290075Sobrien	  rtx dest, src;
82390075Sobrien	  int regno;
82418334Speter
82590075Sobrien	  if (! INSN_P (insn))
82690075Sobrien	    continue;
82718334Speter
82890075Sobrien	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
82990075Sobrien	    if (REG_NOTE_KIND (note) == REG_INC)
83090075Sobrien	      no_equiv (XEXP (note, 0), note, NULL);
83152284Sobrien
83290075Sobrien	  set = single_set (insn);
83352284Sobrien
83490075Sobrien	  /* If this insn contains more (or less) than a single SET,
83590075Sobrien	     only mark all destinations as having no known equivalence.  */
83690075Sobrien	  if (set == 0)
83752284Sobrien	    {
83890075Sobrien	      note_stores (PATTERN (insn), no_equiv, NULL);
83990075Sobrien	      continue;
84052284Sobrien	    }
84190075Sobrien	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
84290075Sobrien	    {
84390075Sobrien	      int i;
84452284Sobrien
84590075Sobrien	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
84690075Sobrien		{
84790075Sobrien		  rtx part = XVECEXP (PATTERN (insn), 0, i);
84890075Sobrien		  if (part != set)
84990075Sobrien		    note_stores (part, no_equiv, NULL);
85090075Sobrien		}
85190075Sobrien	    }
85218334Speter
85390075Sobrien	  dest = SET_DEST (set);
85490075Sobrien	  src = SET_SRC (set);
85518334Speter
856169689Skan	  /* See if this is setting up the equivalence between an argument
857169689Skan	     register and its stack slot.  */
858169689Skan	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
859169689Skan	  if (note)
860169689Skan	    {
861169689Skan	      gcc_assert (REG_P (dest));
862169689Skan	      regno = REGNO (dest);
86350397Sobrien
864169689Skan	      /* Note that we don't want to clear reg_equiv_init even if there
865169689Skan		 are multiple sets of this register.  */
866169689Skan	      reg_equiv[regno].is_arg_equivalence = 1;
86750397Sobrien
868169689Skan	      /* Record for reload that this is an equivalencing insn.  */
869169689Skan	      if (rtx_equal_p (src, XEXP (note, 0)))
870169689Skan		reg_equiv_init[regno]
871169689Skan		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
87218334Speter
873169689Skan	      /* Continue normally in case this is a candidate for
874169689Skan		 replacements.  */
87590075Sobrien	    }
87652284Sobrien
877169689Skan	  if (!optimize)
878169689Skan	    continue;
879169689Skan
88090075Sobrien	  /* We only handle the case of a pseudo register being set
88190075Sobrien	     once, or always to the same value.  */
88290075Sobrien	  /* ??? The mn10200 port breaks if we add equivalences for
88390075Sobrien	     values that need an ADDRESS_REGS register and set them equivalent
88490075Sobrien	     to a MEM of a pseudo.  The actual problem is in the over-conservative
88590075Sobrien	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
88690075Sobrien	     calculate_needs, but we traditionally work around this problem
88790075Sobrien	     here by rejecting equivalences when the destination is in a register
88890075Sobrien	     that's likely spilled.  This is fragile, of course, since the
88990075Sobrien	     preferred class of a pseudo depends on all instructions that set
89090075Sobrien	     or use it.  */
89118334Speter
892169689Skan	  if (!REG_P (dest)
89390075Sobrien	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
89490075Sobrien	      || reg_equiv[regno].init_insns == const0_rtx
89590075Sobrien	      || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
896169689Skan		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
89790075Sobrien	    {
898132718Skan	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
89990075Sobrien		 also set somewhere else to a constant.  */
90090075Sobrien	      note_stores (set, no_equiv, NULL);
90190075Sobrien	      continue;
90290075Sobrien	    }
90318334Speter
90490075Sobrien	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
90518334Speter
90690075Sobrien	  /* cse sometimes generates function invariants, but doesn't put a
90790075Sobrien	     REG_EQUAL note on the insn.  Since this note would be redundant,
90890075Sobrien	     there's no point creating it earlier than here.  */
90990075Sobrien	  if (! note && ! rtx_varies_p (src, 0))
91090075Sobrien	    note = set_unique_reg_note (insn, REG_EQUAL, src);
91118334Speter
91290075Sobrien	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
91390075Sobrien	     since it represents a function call */
91490075Sobrien	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
91590075Sobrien	    note = NULL_RTX;
91618334Speter
91790075Sobrien	  if (REG_N_SETS (regno) != 1
91890075Sobrien	      && (! note
91990075Sobrien		  || rtx_varies_p (XEXP (note, 0), 0)
92090075Sobrien		  || (reg_equiv[regno].replacement
92190075Sobrien		      && ! rtx_equal_p (XEXP (note, 0),
92290075Sobrien					reg_equiv[regno].replacement))))
92390075Sobrien	    {
92490075Sobrien	      no_equiv (dest, set, NULL);
92590075Sobrien	      continue;
92690075Sobrien	    }
92790075Sobrien	  /* Record this insn as initializing this register.  */
92890075Sobrien	  reg_equiv[regno].init_insns
92990075Sobrien	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
93018334Speter
93190075Sobrien	  /* If this register is known to be equal to a constant, record that
93290075Sobrien	     it is always equivalent to the constant.  */
93390075Sobrien	  if (note && ! rtx_varies_p (XEXP (note, 0), 0))
93490075Sobrien	    PUT_MODE (note, (enum machine_mode) REG_EQUIV);
93518334Speter
93690075Sobrien	  /* If this insn introduces a "constant" register, decrease the priority
93790075Sobrien	     of that register.  Record this insn if the register is only used once
93890075Sobrien	     more and the equivalence value is the same as our source.
93918334Speter
94090075Sobrien	     The latter condition is checked for two reasons:  First, it is an
94190075Sobrien	     indication that it may be more efficient to actually emit the insn
94290075Sobrien	     as written (if no registers are available, reload will substitute
94390075Sobrien	     the equivalence).  Secondly, it avoids problems with any registers
94490075Sobrien	     dying in this insn whose death notes would be missed.
94518334Speter
94690075Sobrien	     If we don't have a REG_EQUIV note, see if this insn is loading
94790075Sobrien	     a register used only in one basic block from a MEM.  If so, and the
94890075Sobrien	     MEM remains unchanged for the life of the register, add a REG_EQUIV
94990075Sobrien	     note.  */
95018334Speter
95190075Sobrien	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
95290075Sobrien
95390075Sobrien	  if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
954169689Skan	      && MEM_P (SET_SRC (set))
95590075Sobrien	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
95690075Sobrien	    REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
95790075Sobrien							 REG_NOTES (insn));
95890075Sobrien
95990075Sobrien	  if (note)
96050397Sobrien	    {
96190075Sobrien	      int regno = REGNO (dest);
962169689Skan	      rtx x = XEXP (note, 0);
96318334Speter
964169689Skan	      /* If we haven't done so, record for reload that this is an
965169689Skan		 equivalencing insn.  */
966169689Skan	      if (!reg_equiv[regno].is_arg_equivalence)
967169689Skan		reg_equiv_init[regno]
968169689Skan		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
969169689Skan
97090075Sobrien	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
97190075Sobrien		 We might end up substituting the LABEL_REF for uses of the
97290075Sobrien		 pseudo here or later.  That kind of transformation may turn an
97390075Sobrien		 indirect jump into a direct jump, in which case we must rerun the
97490075Sobrien		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
975169689Skan	      if (GET_CODE (x) == LABEL_REF
976169689Skan		  || (GET_CODE (x) == CONST
977169689Skan		      && GET_CODE (XEXP (x, 0)) == PLUS
978169689Skan		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
97990075Sobrien		recorded_label_ref = 1;
98018334Speter
981169689Skan	      reg_equiv[regno].replacement = x;
982102780Skan	      reg_equiv[regno].src_p = &SET_SRC (set);
98390075Sobrien	      reg_equiv[regno].loop_depth = loop_depth;
98418334Speter
98590075Sobrien	      /* Don't mess with things live during setjmp.  */
98690075Sobrien	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
98790075Sobrien		{
98890075Sobrien		  /* Note that the statement below does not affect the priority
98990075Sobrien		     in local-alloc!  */
99090075Sobrien		  REG_LIVE_LENGTH (regno) *= 2;
99150397Sobrien
99290075Sobrien		  /* If the register is referenced exactly twice, meaning it is
99390075Sobrien		     set once and used once, indicate that the reference may be
99490075Sobrien		     replaced by the equivalence we computed above.  Do this
99590075Sobrien		     even if the register is only used in one block so that
99690075Sobrien		     dependencies can be handled where the last register is
99790075Sobrien		     used in a different block (i.e. HIGH / LO_SUM sequences)
99890075Sobrien		     and to reduce the number of registers alive across
99990075Sobrien		     calls.  */
100090075Sobrien
1001169689Skan		  if (REG_N_REFS (regno) == 2
1002169689Skan		      && (rtx_equal_p (x, src)
1003169689Skan			  || ! equiv_init_varies_p (src))
1004169689Skan		      && NONJUMP_INSN_P (insn)
1005169689Skan		      && equiv_init_movable_p (PATTERN (insn), regno))
1006169689Skan		    reg_equiv[regno].replace = 1;
100790075Sobrien		}
100850397Sobrien	    }
100918334Speter	}
101018334Speter    }
101118334Speter
1012169689Skan  if (!optimize)
1013169689Skan    goto out;
1014169689Skan
1015169689Skan  /* A second pass, to gather additional equivalences with memory.  This needs
1016169689Skan     to be done after we know which registers we are going to replace.  */
1017169689Skan
1018169689Skan  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1019169689Skan    {
1020169689Skan      rtx set, src, dest;
1021169689Skan      unsigned regno;
1022169689Skan
1023169689Skan      if (! INSN_P (insn))
1024169689Skan	continue;
1025169689Skan
1026169689Skan      set = single_set (insn);
1027169689Skan      if (! set)
1028169689Skan	continue;
1029169689Skan
1030169689Skan      dest = SET_DEST (set);
1031169689Skan      src = SET_SRC (set);
1032169689Skan
1033169689Skan      /* If this sets a MEM to the contents of a REG that is only used
1034169689Skan	 in a single basic block, see if the register is always equivalent
1035169689Skan	 to that memory location and if moving the store from INSN to the
1036169689Skan	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
1037169689Skan	 initializing insn.
1038169689Skan
1039169689Skan	 Don't add a REG_EQUIV note if the insn already has one.  The existing
1040169689Skan	 REG_EQUIV is likely more useful than the one we are adding.
1041169689Skan
1042169689Skan	 If one of the regs in the address has reg_equiv[REGNO].replace set,
1043169689Skan	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
1044169689Skan	 optimization may move the set of this register immediately before
1045169689Skan	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1046169689Skan	 the mention in the REG_EQUIV note would be to an uninitialized
1047169689Skan	 pseudo.  */
1048169689Skan
1049169689Skan      if (MEM_P (dest) && REG_P (src)
1050169689Skan	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1051169689Skan	  && REG_BASIC_BLOCK (regno) >= 0
1052169689Skan	  && REG_N_SETS (regno) == 1
1053169689Skan	  && reg_equiv[regno].init_insns != 0
1054169689Skan	  && reg_equiv[regno].init_insns != const0_rtx
1055169689Skan	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1056169689Skan			      REG_EQUIV, NULL_RTX)
1057169689Skan	  && ! contains_replace_regs (XEXP (dest, 0)))
1058169689Skan	{
1059169689Skan	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1060169689Skan	  if (validate_equiv_mem (init_insn, src, dest)
1061169689Skan	      && ! memref_used_between_p (dest, init_insn, insn))
1062169689Skan	    {
1063169689Skan	      REG_NOTES (init_insn)
1064169689Skan		= gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1065169689Skan				     REG_NOTES (init_insn));
1066169689Skan	      /* This insn makes the equivalence, not the one initializing
1067169689Skan		 the register.  */
1068169689Skan	      reg_equiv_init[regno]
1069169689Skan		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1070169689Skan	    }
1071169689Skan	}
1072169689Skan    }
1073169689Skan
107450397Sobrien  /* Now scan all regs killed in an insn to see if any of them are
107550397Sobrien     registers only used that once.  If so, see if we can replace the
1076169689Skan     reference with the equivalent form.  If we can, delete the
107750397Sobrien     initializing reference and this register will go away.  If we
1078132718Skan     can't replace the reference, and the initializing reference is
107990075Sobrien     within the same loop (or in an inner loop), then move the register
108090075Sobrien     initialization just before the use, so that they are in the same
108190075Sobrien     basic block.  */
1082117395Skan  FOR_EACH_BB_REVERSE (bb)
108318334Speter    {
108490075Sobrien      loop_depth = bb->loop_depth;
1085132718Skan      for (insn = BB_END (bb);
1086132718Skan	   insn != PREV_INSN (BB_HEAD (bb));
1087132718Skan	   insn = PREV_INSN (insn))
108890075Sobrien	{
108990075Sobrien	  rtx link;
109050397Sobrien
109190075Sobrien	  if (! INSN_P (insn))
109290075Sobrien	    continue;
109390075Sobrien
1094169689Skan	  /* Don't substitute into a non-local goto, this confuses CFG.  */
1095169689Skan	  if (JUMP_P (insn)
1096169689Skan	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1097169689Skan	    continue;
1098169689Skan
109990075Sobrien	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
110050397Sobrien	    {
110190075Sobrien	      if (REG_NOTE_KIND (link) == REG_DEAD
110290075Sobrien		  /* Make sure this insn still refers to the register.  */
110390075Sobrien		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
110450397Sobrien		{
110590075Sobrien		  int regno = REGNO (XEXP (link, 0));
110690075Sobrien		  rtx equiv_insn;
110790075Sobrien
110890075Sobrien		  if (! reg_equiv[regno].replace
110990075Sobrien		      || reg_equiv[regno].loop_depth < loop_depth)
111090075Sobrien		    continue;
111190075Sobrien
111290075Sobrien		  /* reg_equiv[REGNO].replace gets set only when
111390075Sobrien		     REG_N_REFS[REGNO] is 2, i.e. the register is set
111490075Sobrien		     once and used once.  (If it were only set, but not used,
111590075Sobrien		     flow would have deleted the setting insns.)  Hence
111690075Sobrien		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
1117169689Skan		  gcc_assert (reg_equiv[regno].init_insns
1118169689Skan			      && !XEXP (reg_equiv[regno].init_insns, 1));
111990075Sobrien		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
112050397Sobrien
112190075Sobrien		  /* We may not move instructions that can throw, since
112290075Sobrien		     that changes basic block boundaries and we are not
112390075Sobrien		     prepared to adjust the CFG to match.  */
112490075Sobrien		  if (can_throw_internal (equiv_insn))
112590075Sobrien		    continue;
112650397Sobrien
112790075Sobrien		  if (asm_noperands (PATTERN (equiv_insn)) < 0
112890075Sobrien		      && validate_replace_rtx (regno_reg_rtx[regno],
1129102780Skan					       *(reg_equiv[regno].src_p), insn))
113090075Sobrien		    {
113190075Sobrien		      rtx equiv_link;
113290075Sobrien		      rtx last_link;
113390075Sobrien		      rtx note;
113418334Speter
113590075Sobrien		      /* Find the last note.  */
113690075Sobrien		      for (last_link = link; XEXP (last_link, 1);
113790075Sobrien			   last_link = XEXP (last_link, 1))
113890075Sobrien			;
113918334Speter
114090075Sobrien		      /* Append the REG_DEAD notes from equiv_insn.  */
114190075Sobrien		      equiv_link = REG_NOTES (equiv_insn);
114290075Sobrien		      while (equiv_link)
114390075Sobrien			{
114490075Sobrien			  note = equiv_link;
114590075Sobrien			  equiv_link = XEXP (equiv_link, 1);
114690075Sobrien			  if (REG_NOTE_KIND (note) == REG_DEAD)
114790075Sobrien			    {
114890075Sobrien			      remove_note (equiv_insn, note);
114990075Sobrien			      XEXP (last_link, 1) = note;
115090075Sobrien			      XEXP (note, 1) = NULL_RTX;
115190075Sobrien			      last_link = note;
115290075Sobrien			    }
115390075Sobrien			}
115450397Sobrien
115590075Sobrien		      remove_death (regno, insn);
115690075Sobrien		      REG_N_REFS (regno) = 0;
115790075Sobrien		      REG_FREQ (regno) = 0;
115890075Sobrien		      delete_insn (equiv_insn);
1159117395Skan
116090075Sobrien		      reg_equiv[regno].init_insns
116190075Sobrien			= XEXP (reg_equiv[regno].init_insns, 1);
1162169689Skan
1163169689Skan		      /* Remember to clear REGNO from all basic block's live
1164169689Skan			 info.  */
1165169689Skan		      SET_REGNO_REG_SET (&cleared_regs, regno);
1166169689Skan		      clear_regnos++;
1167169689Skan		      reg_equiv_init[regno] = NULL_RTX;
116890075Sobrien		    }
116990075Sobrien		  /* Move the initialization of the register to just before
117090075Sobrien		     INSN.  Update the flow information.  */
117190075Sobrien		  else if (PREV_INSN (insn) != equiv_insn)
117290075Sobrien		    {
117390075Sobrien		      rtx new_insn;
117450397Sobrien
117590075Sobrien		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
117690075Sobrien		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
117790075Sobrien		      REG_NOTES (equiv_insn) = 0;
117850397Sobrien
1179169689Skan		      /* Make sure this insn is recognized before
1180169689Skan			 reload begins, otherwise
1181169689Skan			 eliminate_regs_in_insn will die.  */
118290075Sobrien		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
118350397Sobrien
118490075Sobrien		      delete_insn (equiv_insn);
118550397Sobrien
118690075Sobrien		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
118750397Sobrien
1188117395Skan		      REG_BASIC_BLOCK (regno) = bb->index;
118990075Sobrien		      REG_N_CALLS_CROSSED (regno) = 0;
1190161651Skan		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
119190075Sobrien		      REG_LIVE_LENGTH (regno) = 2;
119290075Sobrien
1193132718Skan		      if (insn == BB_HEAD (bb))
1194132718Skan			BB_HEAD (bb) = PREV_INSN (insn);
119590075Sobrien
119690075Sobrien		      /* Remember to clear REGNO from all basic block's live
119790075Sobrien			 info.  */
119890075Sobrien		      SET_REGNO_REG_SET (&cleared_regs, regno);
119990075Sobrien		      clear_regnos++;
1200169689Skan		      reg_equiv_init[regno]
1201169689Skan			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
120290075Sobrien		    }
120350397Sobrien		}
120450397Sobrien	    }
120550397Sobrien	}
120618334Speter    }
120790075Sobrien
120890075Sobrien  /* Clear all dead REGNOs from all basic block's live info.  */
120990075Sobrien  if (clear_regnos)
121090075Sobrien    {
1211169689Skan      unsigned j;
1212169689Skan
121390075Sobrien      if (clear_regnos > 8)
1214117395Skan	{
1215117395Skan	  FOR_EACH_BB (bb)
121690075Sobrien	    {
1217169689Skan	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1218169689Skan			         &cleared_regs);
1219169689Skan	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1220169689Skan			         &cleared_regs);
122190075Sobrien	    }
122290075Sobrien	}
122390075Sobrien      else
1224169689Skan	{
1225169689Skan	  reg_set_iterator rsi;
1226169689Skan	  EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1227169689Skan	    {
1228169689Skan	      FOR_EACH_BB (bb)
1229169689Skan		{
1230169689Skan		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1231169689Skan		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1232169689Skan		}
1233169689Skan	    }
1234169689Skan	}
123590075Sobrien    }
123690075Sobrien
1237169689Skan  out:
123890075Sobrien  /* Clean up.  */
123990075Sobrien  end_alias_analysis ();
124090075Sobrien  CLEAR_REG_SET (&cleared_regs);
124190075Sobrien  free (reg_equiv);
124218334Speter}
124352284Sobrien
124452284Sobrien/* Mark REG as having no known equivalence.
1245132718Skan   Some instructions might have been processed before and furnished
124652284Sobrien   with REG_EQUIV notes for this register; these notes will have to be
124752284Sobrien   removed.
124852284Sobrien   STORE is the piece of RTL that does the non-constant / conflicting
124952284Sobrien   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
125052284Sobrien   but needs to be there because this function is called from note_stores.  */
125152284Sobrienstatic void
1252132718Skanno_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
125352284Sobrien{
125452284Sobrien  int regno;
125552284Sobrien  rtx list;
125652284Sobrien
1257169689Skan  if (!REG_P (reg))
125852284Sobrien    return;
125952284Sobrien  regno = REGNO (reg);
126090075Sobrien  list = reg_equiv[regno].init_insns;
126152284Sobrien  if (list == const0_rtx)
126252284Sobrien    return;
1263169689Skan  reg_equiv[regno].init_insns = const0_rtx;
1264169689Skan  reg_equiv[regno].replacement = NULL_RTX;
1265169689Skan  /* This doesn't matter for equivalences made for argument registers, we
1266169689Skan     should keep their initialization insns.  */
1267169689Skan  if (reg_equiv[regno].is_arg_equivalence)
1268169689Skan    return;
1269169689Skan  reg_equiv_init[regno] = NULL_RTX;
127052284Sobrien  for (; list; list =  XEXP (list, 1))
127152284Sobrien    {
127252284Sobrien      rtx insn = XEXP (list, 0);
127352284Sobrien      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
127452284Sobrien    }
127552284Sobrien}
127618334Speter
127718334Speter/* Allocate hard regs to the pseudo regs used only within block number B.
127818334Speter   Only the pseudos that die but once can be handled.  */
127918334Speter
128018334Speterstatic void
1281132718Skanblock_alloc (int b)
128218334Speter{
128390075Sobrien  int i, q;
128490075Sobrien  rtx insn;
128590075Sobrien  rtx note, hard_reg;
128618334Speter  int insn_number = 0;
128718334Speter  int insn_count = 0;
128818334Speter  int max_uid = get_max_uid ();
128918334Speter  int *qty_order;
129018334Speter  int no_conflict_combined_regno = -1;
129118334Speter
129218334Speter  /* Count the instructions in the basic block.  */
129318334Speter
1294132718Skan  insn = BB_END (BASIC_BLOCK (b));
129518334Speter  while (1)
129618334Speter    {
1297169689Skan      if (!NOTE_P (insn))
1298169689Skan	{
1299169689Skan	  ++insn_count;
1300169689Skan	  gcc_assert (insn_count <= max_uid);
1301169689Skan	}
1302132718Skan      if (insn == BB_HEAD (BASIC_BLOCK (b)))
130318334Speter	break;
130418334Speter      insn = PREV_INSN (insn);
130518334Speter    }
130618334Speter
130718334Speter  /* +2 to leave room for a post_mark_life at the last insn and for
130818334Speter     the birth of a CLOBBER in the first insn.  */
1309169689Skan  regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
131018334Speter
131118334Speter  /* Initialize table of hardware registers currently live.  */
131218334Speter
1313169689Skan  REG_SET_TO_HARD_REG_SET (regs_live,
1314169689Skan		  	   BASIC_BLOCK (b)->il.rtl->global_live_at_start);
131518334Speter
131618334Speter  /* This loop scans the instructions of the basic block
131718334Speter     and assigns quantities to registers.
131818334Speter     It computes which registers to tie.  */
131918334Speter
1320132718Skan  insn = BB_HEAD (BASIC_BLOCK (b));
132118334Speter  while (1)
132218334Speter    {
1323169689Skan      if (!NOTE_P (insn))
132418334Speter	insn_number++;
132518334Speter
132690075Sobrien      if (INSN_P (insn))
132718334Speter	{
132890075Sobrien	  rtx link, set;
132990075Sobrien	  int win = 0;
133090075Sobrien	  rtx r0, r1 = NULL_RTX;
133118334Speter	  int combined_regno = -1;
133218334Speter	  int i;
133318334Speter
133418334Speter	  this_insn_number = insn_number;
133518334Speter	  this_insn = insn;
133618334Speter
133752284Sobrien	  extract_insn (insn);
133818334Speter	  which_alternative = -1;
133918334Speter
134018334Speter	  /* Is this insn suitable for tying two registers?
134118334Speter	     If so, try doing that.
134218334Speter	     Suitable insns are those with at least two operands and where
134318334Speter	     operand 0 is an output that is a register that is not
134418334Speter	     earlyclobber.
134518334Speter
134618334Speter	     We can tie operand 0 with some operand that dies in this insn.
134718334Speter	     First look for operands that are required to be in the same
134818334Speter	     register as operand 0.  If we find such, only try tying that
134918334Speter	     operand or one that can be put into that operand if the
135018334Speter	     operation is commutative.  If we don't find an operand
135118334Speter	     that is required to be in the same register as operand 0,
135218334Speter	     we can tie with any operand.
135318334Speter
135418334Speter	     Subregs in place of regs are also ok.
135518334Speter
135618334Speter	     If tying is done, WIN is set nonzero.  */
135718334Speter
135890075Sobrien	  if (optimize
135990075Sobrien	      && recog_data.n_operands > 1
136090075Sobrien	      && recog_data.constraints[0][0] == '='
136190075Sobrien	      && recog_data.constraints[0][1] != '&')
136218334Speter	    {
136318334Speter	      /* If non-negative, is an operand that must match operand 0.  */
136418334Speter	      int must_match_0 = -1;
136518334Speter	      /* Counts number of alternatives that require a match with
136618334Speter		 operand 0.  */
136718334Speter	      int n_matching_alts = 0;
136818334Speter
136990075Sobrien	      for (i = 1; i < recog_data.n_operands; i++)
137018334Speter		{
137190075Sobrien		  const char *p = recog_data.constraints[i];
137290075Sobrien		  int this_match = requires_inout (p);
137318334Speter
137418334Speter		  n_matching_alts += this_match;
137590075Sobrien		  if (this_match == recog_data.n_alternatives)
137618334Speter		    must_match_0 = i;
137718334Speter		}
137818334Speter
137990075Sobrien	      r0 = recog_data.operand[0];
138090075Sobrien	      for (i = 1; i < recog_data.n_operands; i++)
138118334Speter		{
138218334Speter		  /* Skip this operand if we found an operand that
138318334Speter		     must match operand 0 and this operand isn't it
138418334Speter		     and can't be made to be it by commutativity.  */
138518334Speter
138618334Speter		  if (must_match_0 >= 0 && i != must_match_0
138718334Speter		      && ! (i == must_match_0 + 1
138890075Sobrien			    && recog_data.constraints[i-1][0] == '%')
138918334Speter		      && ! (i == must_match_0 - 1
139090075Sobrien			    && recog_data.constraints[i][0] == '%'))
139118334Speter		    continue;
139218334Speter
139318334Speter		  /* Likewise if each alternative has some operand that
139490075Sobrien		     must match operand zero.  In that case, skip any
139518334Speter		     operand that doesn't list operand 0 since we know that
139618334Speter		     the operand always conflicts with operand 0.  We
1397132718Skan		     ignore commutativity in this case to keep things simple.  */
139890075Sobrien		  if (n_matching_alts == recog_data.n_alternatives
139990075Sobrien		      && 0 == requires_inout (recog_data.constraints[i]))
140018334Speter		    continue;
140118334Speter
140290075Sobrien		  r1 = recog_data.operand[i];
140318334Speter
140418334Speter		  /* If the operand is an address, find a register in it.
140518334Speter		     There may be more than one register, but we only try one
140618334Speter		     of them.  */
1407117395Skan		  if (recog_data.constraints[i][0] == 'p'
1408132718Skan		      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1409132718Skan						   recog_data.constraints[i]))
141018334Speter		    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
141118334Speter		      r1 = XEXP (r1, 0);
141218334Speter
141390075Sobrien		  /* Avoid making a call-saved register unnecessarily
141490075Sobrien                     clobbered.  */
141590075Sobrien		  hard_reg = get_hard_reg_initial_reg (cfun, r1);
141690075Sobrien		  if (hard_reg != NULL_RTX)
141790075Sobrien		    {
1418169689Skan		      if (REG_P (hard_reg)
1419169689Skan			  && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1420169689Skan			  && !call_used_regs[REGNO (hard_reg)])
142190075Sobrien			continue;
142290075Sobrien		    }
142390075Sobrien
1424169689Skan		  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
142518334Speter		    {
142618334Speter		      /* We have two priorities for hard register preferences.
142718334Speter			 If we have a move insn or an insn whose first input
142818334Speter			 can only be in the same register as the output, give
142918334Speter			 priority to an equivalence found from that insn.  */
143018334Speter		      int may_save_copy
143190075Sobrien			= (r1 == recog_data.operand[i] && must_match_0 >= 0);
143290075Sobrien
1433169689Skan		      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
143418334Speter			win = combine_regs (r1, r0, may_save_copy,
143518334Speter					    insn_number, insn, 0);
143618334Speter		    }
143718334Speter		  if (win)
143818334Speter		    break;
143918334Speter		}
144018334Speter	    }
144118334Speter
144218334Speter	  /* Recognize an insn sequence with an ultimate result
144318334Speter	     which can safely overlap one of the inputs.
144418334Speter	     The sequence begins with a CLOBBER of its result,
144518334Speter	     and ends with an insn that copies the result to itself
144618334Speter	     and has a REG_EQUAL note for an equivalent formula.
144718334Speter	     That note indicates what the inputs are.
144818334Speter	     The result and the input can overlap if each insn in
144918334Speter	     the sequence either doesn't mention the input
145018334Speter	     or has a REG_NO_CONFLICT note to inhibit the conflict.
145118334Speter
145218334Speter	     We do the combining test at the CLOBBER so that the
145318334Speter	     destination register won't have had a quantity number
145418334Speter	     assigned, since that would prevent combining.  */
145518334Speter
145690075Sobrien	  if (optimize
145790075Sobrien	      && GET_CODE (PATTERN (insn)) == CLOBBER
145818334Speter	      && (r0 = XEXP (PATTERN (insn), 0),
1459169689Skan		  REG_P (r0))
146018334Speter	      && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
146118334Speter	      && XEXP (link, 0) != 0
1462169689Skan	      && NONJUMP_INSN_P (XEXP (link, 0))
146318334Speter	      && (set = single_set (XEXP (link, 0))) != 0
146418334Speter	      && SET_DEST (set) == r0 && SET_SRC (set) == r0
146518334Speter	      && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
146618334Speter					NULL_RTX)) != 0)
146718334Speter	    {
1468169689Skan	      if (r1 = XEXP (note, 0), REG_P (r1)
146918334Speter		  /* Check that we have such a sequence.  */
147018334Speter		  && no_conflict_p (insn, r0, r1))
147118334Speter		win = combine_regs (r1, r0, 1, insn_number, insn, 1);
147218334Speter	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
147318334Speter		       && (r1 = XEXP (XEXP (note, 0), 0),
1474169689Skan			   REG_P (r1) || GET_CODE (r1) == SUBREG)
147518334Speter		       && no_conflict_p (insn, r0, r1))
147618334Speter		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
147718334Speter
147818334Speter	      /* Here we care if the operation to be computed is
147918334Speter		 commutative.  */
1480169689Skan	      else if (COMMUTATIVE_P (XEXP (note, 0))
148118334Speter		       && (r1 = XEXP (XEXP (note, 0), 1),
1482169689Skan			   (REG_P (r1) || GET_CODE (r1) == SUBREG))
148318334Speter		       && no_conflict_p (insn, r0, r1))
148418334Speter		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
148518334Speter
148618334Speter	      /* If we did combine something, show the register number
148718334Speter		 in question so that we know to ignore its death.  */
148818334Speter	      if (win)
148918334Speter		no_conflict_combined_regno = REGNO (r1);
149018334Speter	    }
149118334Speter
149218334Speter	  /* If registers were just tied, set COMBINED_REGNO
149318334Speter	     to the number of the register used in this insn
149418334Speter	     that was tied to the register set in this insn.
149518334Speter	     This register's qty should not be "killed".  */
149618334Speter
149718334Speter	  if (win)
149818334Speter	    {
149918334Speter	      while (GET_CODE (r1) == SUBREG)
150018334Speter		r1 = SUBREG_REG (r1);
150118334Speter	      combined_regno = REGNO (r1);
150218334Speter	    }
150318334Speter
150418334Speter	  /* Mark the death of everything that dies in this instruction,
150518334Speter	     except for anything that was just combined.  */
150618334Speter
150718334Speter	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
150818334Speter	    if (REG_NOTE_KIND (link) == REG_DEAD
1509169689Skan		&& REG_P (XEXP (link, 0))
151090075Sobrien		&& combined_regno != (int) REGNO (XEXP (link, 0))
151190075Sobrien		&& (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
151290075Sobrien		    || ! find_reg_note (insn, REG_NO_CONFLICT,
151390075Sobrien					XEXP (link, 0))))
151418334Speter	      wipe_dead_reg (XEXP (link, 0), 0);
151518334Speter
151618334Speter	  /* Allocate qty numbers for all registers local to this block
151718334Speter	     that are born (set) in this instruction.
151818334Speter	     A pseudo that already has a qty is not changed.  */
151918334Speter
152090075Sobrien	  note_stores (PATTERN (insn), reg_is_set, NULL);
152118334Speter
152218334Speter	  /* If anything is set in this insn and then unused, mark it as dying
152318334Speter	     after this insn, so it will conflict with our outputs.  This
152418334Speter	     can't match with something that combined, and it doesn't matter
152518334Speter	     if it did.  Do this after the calls to reg_is_set since these
152618334Speter	     die after, not during, the current insn.  */
152718334Speter
152818334Speter	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
152918334Speter	    if (REG_NOTE_KIND (link) == REG_UNUSED
1530169689Skan		&& REG_P (XEXP (link, 0)))
153118334Speter	      wipe_dead_reg (XEXP (link, 0), 1);
153218334Speter
153390075Sobrien	  /* If this is an insn that has a REG_RETVAL note pointing at a
153418334Speter	     CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
153518334Speter	     block, so clear any register number that combined within it.  */
153618334Speter	  if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1537169689Skan	      && NONJUMP_INSN_P (XEXP (note, 0))
153818334Speter	      && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
153918334Speter	    no_conflict_combined_regno = -1;
154018334Speter	}
154118334Speter
154218334Speter      /* Set the registers live after INSN_NUMBER.  Note that we never
154318334Speter	 record the registers live before the block's first insn, since no
154418334Speter	 pseudos we care about are live before that insn.  */
154518334Speter
154618334Speter      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
154718334Speter      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
154818334Speter
1549132718Skan      if (insn == BB_END (BASIC_BLOCK (b)))
155018334Speter	break;
155118334Speter
155218334Speter      insn = NEXT_INSN (insn);
155318334Speter    }
155418334Speter
155518334Speter  /* Now every register that is local to this basic block
155618334Speter     should have been given a quantity, or else -1 meaning ignore it.
155790075Sobrien     Every quantity should have a known birth and death.
155818334Speter
155918334Speter     Order the qtys so we assign them registers in order of the
156018334Speter     number of suggested registers they need so we allocate those with
156118334Speter     the most restrictive needs first.  */
156218334Speter
1563169689Skan  qty_order = XNEWVEC (int, next_qty);
156418334Speter  for (i = 0; i < next_qty; i++)
156518334Speter    qty_order[i] = i;
156618334Speter
156718334Speter#define EXCHANGE(I1, I2)  \
156818334Speter  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
156918334Speter
157018334Speter  switch (next_qty)
157118334Speter    {
157218334Speter    case 3:
157318334Speter      /* Make qty_order[2] be the one to allocate last.  */
157418334Speter      if (qty_sugg_compare (0, 1) > 0)
157518334Speter	EXCHANGE (0, 1);
157618334Speter      if (qty_sugg_compare (1, 2) > 0)
157718334Speter	EXCHANGE (2, 1);
157818334Speter
157950397Sobrien      /* ... Fall through ...  */
158018334Speter    case 2:
158118334Speter      /* Put the best one to allocate in qty_order[0].  */
158218334Speter      if (qty_sugg_compare (0, 1) > 0)
158318334Speter	EXCHANGE (0, 1);
158418334Speter
158550397Sobrien      /* ... Fall through ...  */
158618334Speter
158718334Speter    case 1:
158818334Speter    case 0:
158918334Speter      /* Nothing to do here.  */
159018334Speter      break;
159118334Speter
159218334Speter    default:
159318334Speter      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
159418334Speter    }
159518334Speter
159618334Speter  /* Try to put each quantity in a suggested physical register, if it has one.
159718334Speter     This may cause registers to be allocated that otherwise wouldn't be, but
159818334Speter     this seems acceptable in local allocation (unlike global allocation).  */
159918334Speter  for (i = 0; i < next_qty; i++)
160018334Speter    {
160118334Speter      q = qty_order[i];
160218334Speter      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
160390075Sobrien	qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
160490075Sobrien					 0, 1, qty[q].birth, qty[q].death);
160518334Speter      else
160690075Sobrien	qty[q].phys_reg = -1;
160718334Speter    }
160818334Speter
160990075Sobrien  /* Order the qtys so we assign them registers in order of
161090075Sobrien     decreasing length of life.  Normally call qsort, but if we
161118334Speter     have only a very small number of quantities, sort them ourselves.  */
161218334Speter
161318334Speter  for (i = 0; i < next_qty; i++)
161418334Speter    qty_order[i] = i;
161518334Speter
161618334Speter#define EXCHANGE(I1, I2)  \
161718334Speter  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
161818334Speter
161918334Speter  switch (next_qty)
162018334Speter    {
162118334Speter    case 3:
162218334Speter      /* Make qty_order[2] be the one to allocate last.  */
162318334Speter      if (qty_compare (0, 1) > 0)
162418334Speter	EXCHANGE (0, 1);
162518334Speter      if (qty_compare (1, 2) > 0)
162618334Speter	EXCHANGE (2, 1);
162718334Speter
162850397Sobrien      /* ... Fall through ...  */
162918334Speter    case 2:
163018334Speter      /* Put the best one to allocate in qty_order[0].  */
163118334Speter      if (qty_compare (0, 1) > 0)
163218334Speter	EXCHANGE (0, 1);
163318334Speter
163450397Sobrien      /* ... Fall through ...  */
163518334Speter
163618334Speter    case 1:
163718334Speter    case 0:
163818334Speter      /* Nothing to do here.  */
163918334Speter      break;
164018334Speter
164118334Speter    default:
164218334Speter      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
164318334Speter    }
164418334Speter
164518334Speter  /* Now for each qty that is not a hardware register,
164618334Speter     look for a hardware register to put it in.
164718334Speter     First try the register class that is cheapest for this qty,
164818334Speter     if there is more than one class.  */
164918334Speter
165018334Speter  for (i = 0; i < next_qty; i++)
165118334Speter    {
165218334Speter      q = qty_order[i];
165390075Sobrien      if (qty[q].phys_reg < 0)
165418334Speter	{
165550397Sobrien#ifdef INSN_SCHEDULING
165650397Sobrien	  /* These values represent the adjusted lifetime of a qty so
165750397Sobrien	     that it conflicts with qtys which appear near the start/end
165850397Sobrien	     of this qty's lifetime.
165950397Sobrien
166050397Sobrien	     The purpose behind extending the lifetime of this qty is to
166150397Sobrien	     discourage the register allocator from creating false
166250397Sobrien	     dependencies.
166390075Sobrien
166490075Sobrien	     The adjustment value is chosen to indicate that this qty
166552284Sobrien	     conflicts with all the qtys in the instructions immediately
166650397Sobrien	     before and after the lifetime of this qty.
166750397Sobrien
166850397Sobrien	     Experiments have shown that higher values tend to hurt
166950397Sobrien	     overall code performance.
167050397Sobrien
167150397Sobrien	     If allocation using the extended lifetime fails we will try
167250397Sobrien	     again with the qty's unadjusted lifetime.  */
167390075Sobrien	  int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
167452284Sobrien	  int fake_death = MIN (insn_number * 2 + 1,
167590075Sobrien				qty[q].death + 2 - qty[q].death % 2);
167650397Sobrien#endif
167750397Sobrien
167818334Speter	  if (N_REG_CLASSES > 1)
167918334Speter	    {
168050397Sobrien#ifdef INSN_SCHEDULING
168150397Sobrien	      /* We try to avoid using hard registers allocated to qtys which
168250397Sobrien		 are born immediately after this qty or die immediately before
168350397Sobrien		 this qty.
168450397Sobrien
168550397Sobrien		 This optimization is only appropriate when we will run
168650397Sobrien		 a scheduling pass after reload and we are not optimizing
168750397Sobrien		 for code size.  */
168850397Sobrien	      if (flag_schedule_insns_after_reload
168950397Sobrien		  && !optimize_size
169050397Sobrien		  && !SMALL_REGISTER_CLASSES)
169150397Sobrien		{
169290075Sobrien		  qty[q].phys_reg = find_free_reg (qty[q].min_class,
169390075Sobrien						   qty[q].mode, q, 0, 0,
169450397Sobrien						   fake_birth, fake_death);
169590075Sobrien		  if (qty[q].phys_reg >= 0)
169650397Sobrien		    continue;
169750397Sobrien		}
169850397Sobrien#endif
169990075Sobrien	      qty[q].phys_reg = find_free_reg (qty[q].min_class,
170090075Sobrien					       qty[q].mode, q, 0, 0,
170190075Sobrien					       qty[q].birth, qty[q].death);
170290075Sobrien	      if (qty[q].phys_reg >= 0)
170318334Speter		continue;
170418334Speter	    }
170518334Speter
170650397Sobrien#ifdef INSN_SCHEDULING
170750397Sobrien	  /* Similarly, avoid false dependencies.  */
170850397Sobrien	  if (flag_schedule_insns_after_reload
170950397Sobrien	      && !optimize_size
171050397Sobrien	      && !SMALL_REGISTER_CLASSES
171190075Sobrien	      && qty[q].alternate_class != NO_REGS)
171290075Sobrien	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
171390075Sobrien					     qty[q].mode, q, 0, 0,
171450397Sobrien					     fake_birth, fake_death);
171550397Sobrien#endif
171690075Sobrien	  if (qty[q].alternate_class != NO_REGS)
171790075Sobrien	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
171890075Sobrien					     qty[q].mode, q, 0, 0,
171990075Sobrien					     qty[q].birth, qty[q].death);
172018334Speter	}
172118334Speter    }
172218334Speter
172318334Speter  /* Now propagate the register assignments
172418334Speter     to the pseudo regs belonging to the qtys.  */
172518334Speter
172618334Speter  for (q = 0; q < next_qty; q++)
172790075Sobrien    if (qty[q].phys_reg >= 0)
172818334Speter      {
172990075Sobrien	for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
173090075Sobrien	  reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
173118334Speter      }
173290075Sobrien
173390075Sobrien  /* Clean up.  */
173490075Sobrien  free (regs_live_at);
173590075Sobrien  free (qty_order);
173618334Speter}
173718334Speter
173818334Speter/* Compare two quantities' priority for getting real registers.
173918334Speter   We give shorter-lived quantities higher priority.
174018334Speter   Quantities with more references are also preferred, as are quantities that
174118334Speter   require multiple registers.  This is the identical prioritization as
174218334Speter   done by global-alloc.
174318334Speter
174418334Speter   We used to give preference to registers with *longer* lives, but using
174518334Speter   the same algorithm in both local- and global-alloc can speed up execution
174618334Speter   of some programs by as much as a factor of three!  */
174718334Speter
174850397Sobrien/* Note that the quotient will never be bigger than
174950397Sobrien   the value of floor_log2 times the maximum number of
175090075Sobrien   times a register can occur in one insn (surely less than 100)
175190075Sobrien   weighted by frequency (max REG_FREQ_MAX).
175290075Sobrien   Multiplying this by 10000/REG_FREQ_MAX can't overflow.
175350397Sobrien   QTY_CMP_PRI is also used by qty_sugg_compare.  */
175450397Sobrien
175550397Sobrien#define QTY_CMP_PRI(q)		\
175690075Sobrien  ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
175790075Sobrien	  / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
175850397Sobrien
175918334Speterstatic int
1760132718Skanqty_compare (int q1, int q2)
176118334Speter{
176250397Sobrien  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
176318334Speter}
176418334Speter
176518334Speterstatic int
1766132718Skanqty_compare_1 (const void *q1p, const void *q2p)
176718334Speter{
176890075Sobrien  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
176990075Sobrien  int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
177018334Speter
177150397Sobrien  if (tem != 0)
177250397Sobrien    return tem;
177318334Speter
177418334Speter  /* If qtys are equally good, sort by qty number,
177518334Speter     so that the results of qsort leave nothing to chance.  */
177650397Sobrien  return q1 - q2;
177718334Speter}
177818334Speter
177918334Speter/* Compare two quantities' priority for getting real registers.  This version
178018334Speter   is called for quantities that have suggested hard registers.  First priority
178118334Speter   goes to quantities that have copy preferences, then to those that have
178218334Speter   normal preferences.  Within those groups, quantities with the lower
178318334Speter   number of preferences have the highest priority.  Of those, we use the same
178418334Speter   algorithm as above.  */
178518334Speter
178650397Sobrien#define QTY_CMP_SUGG(q)		\
178750397Sobrien  (qty_phys_num_copy_sugg[q]		\
178850397Sobrien    ? qty_phys_num_copy_sugg[q]	\
178950397Sobrien    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
179050397Sobrien
179118334Speterstatic int
1792132718Skanqty_sugg_compare (int q1, int q2)
179318334Speter{
179490075Sobrien  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
179518334Speter
179650397Sobrien  if (tem != 0)
179750397Sobrien    return tem;
179890075Sobrien
179950397Sobrien  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
180018334Speter}
180118334Speter
180218334Speterstatic int
1803132718Skanqty_sugg_compare_1 (const void *q1p, const void *q2p)
180418334Speter{
180590075Sobrien  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
180690075Sobrien  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
180718334Speter
180850397Sobrien  if (tem != 0)
180950397Sobrien    return tem;
181018334Speter
181150397Sobrien  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
181250397Sobrien  if (tem != 0)
181350397Sobrien    return tem;
181418334Speter
181518334Speter  /* If qtys are equally good, sort by qty number,
181618334Speter     so that the results of qsort leave nothing to chance.  */
181750397Sobrien  return q1 - q2;
181818334Speter}
181950397Sobrien
182050397Sobrien#undef QTY_CMP_SUGG
182150397Sobrien#undef QTY_CMP_PRI
182218334Speter
182318334Speter/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
182418334Speter   Returns 1 if have done so, or 0 if cannot.
182518334Speter
182618334Speter   Combining registers means marking them as having the same quantity
182718334Speter   and adjusting the offsets within the quantity if either of
1828132718Skan   them is a SUBREG.
182918334Speter
183018334Speter   We don't actually combine a hard reg with a pseudo; instead
183118334Speter   we just record the hard reg as the suggestion for the pseudo's quantity.
183218334Speter   If we really combined them, we could lose if the pseudo lives
1833169689Skan   across an insn that clobbers the hard reg (eg, movmem).
183418334Speter
1835117395Skan   ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
183618334Speter   there is no REG_DEAD note on INSN.  This occurs during the processing
183718334Speter   of REG_NO_CONFLICT blocks.
183818334Speter
1839132718Skan   MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
184018334Speter   SETREG or if the input and output must share a register.
184118334Speter   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
184290075Sobrien
184318334Speter   There are elaborate checks for the validity of combining.  */
184418334Speter
184518334Speterstatic int
1846132718Skancombine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1847132718Skan	      rtx insn, int already_dead)
184818334Speter{
184990075Sobrien  int ureg, sreg;
185090075Sobrien  int offset = 0;
185118334Speter  int usize, ssize;
185290075Sobrien  int sqty;
185318334Speter
185418334Speter  /* Determine the numbers and sizes of registers being used.  If a subreg
185518334Speter     is present that does not change the entire register, don't consider
185618334Speter     this a copy insn.  */
185718334Speter
185818334Speter  while (GET_CODE (usedreg) == SUBREG)
185918334Speter    {
186090075Sobrien      rtx subreg = SUBREG_REG (usedreg);
186190075Sobrien
1862169689Skan      if (REG_P (subreg))
186390075Sobrien	{
186490075Sobrien	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
186590075Sobrien	    may_save_copy = 0;
186690075Sobrien
186790075Sobrien	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
186890075Sobrien	    offset += subreg_regno_offset (REGNO (subreg),
186990075Sobrien					   GET_MODE (subreg),
187090075Sobrien					   SUBREG_BYTE (usedreg),
187190075Sobrien					   GET_MODE (usedreg));
187290075Sobrien	  else
187390075Sobrien	    offset += (SUBREG_BYTE (usedreg)
187490075Sobrien		      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
187590075Sobrien	}
187690075Sobrien
187790075Sobrien      usedreg = subreg;
187818334Speter    }
187990075Sobrien
1880169689Skan  if (!REG_P (usedreg))
188118334Speter    return 0;
188290075Sobrien
188318334Speter  ureg = REGNO (usedreg);
188490075Sobrien  if (ureg < FIRST_PSEUDO_REGISTER)
1885169689Skan    usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
188690075Sobrien  else
188790075Sobrien    usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
188890075Sobrien	      + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
188990075Sobrien	     / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
189018334Speter
189118334Speter  while (GET_CODE (setreg) == SUBREG)
189218334Speter    {
189390075Sobrien      rtx subreg = SUBREG_REG (setreg);
189490075Sobrien
1895169689Skan      if (REG_P (subreg))
189690075Sobrien	{
189790075Sobrien	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
189890075Sobrien	    may_save_copy = 0;
189990075Sobrien
190090075Sobrien	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
190190075Sobrien	    offset -= subreg_regno_offset (REGNO (subreg),
190290075Sobrien					   GET_MODE (subreg),
190390075Sobrien					   SUBREG_BYTE (setreg),
190490075Sobrien					   GET_MODE (setreg));
190590075Sobrien	  else
190690075Sobrien	    offset -= (SUBREG_BYTE (setreg)
190790075Sobrien		      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
190890075Sobrien	}
190990075Sobrien
191090075Sobrien      setreg = subreg;
191118334Speter    }
191290075Sobrien
1913169689Skan  if (!REG_P (setreg))
191418334Speter    return 0;
191590075Sobrien
191618334Speter  sreg = REGNO (setreg);
191790075Sobrien  if (sreg < FIRST_PSEUDO_REGISTER)
1918169689Skan    ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
191990075Sobrien  else
192090075Sobrien    ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
192190075Sobrien	      + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
192290075Sobrien	     / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
192318334Speter
192418334Speter  /* If UREG is a pseudo-register that hasn't already been assigned a
192518334Speter     quantity number, it means that it is not local to this block or dies
192618334Speter     more than once.  In either event, we can't do anything with it.  */
192718334Speter  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
192818334Speter      /* Do not combine registers unless one fits within the other.  */
192918334Speter      || (offset > 0 && usize + offset > ssize)
193018334Speter      || (offset < 0 && usize + offset < ssize)
193118334Speter      /* Do not combine with a smaller already-assigned object
193250397Sobrien	 if that smaller object is already combined with something bigger.  */
193318334Speter      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
193490075Sobrien	  && usize < qty[reg_qty[ureg]].size)
193518334Speter      /* Can't combine if SREG is not a register we can allocate.  */
193618334Speter      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
193718334Speter      /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
193818334Speter	 These have already been taken care of.  This probably wouldn't
193918334Speter	 combine anyway, but don't take any chances.  */
194018334Speter      || (ureg >= FIRST_PSEUDO_REGISTER
194118334Speter	  && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
194218334Speter      /* Don't tie something to itself.  In most cases it would make no
194318334Speter	 difference, but it would screw up if the reg being tied to itself
194418334Speter	 also dies in this insn.  */
194518334Speter      || ureg == sreg
194618334Speter      /* Don't try to connect two different hardware registers.  */
194718334Speter      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
194818334Speter      /* Don't connect two different machine modes if they have different
194918334Speter	 implications as to which registers may be used.  */
195018334Speter      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
195118334Speter    return 0;
195218334Speter
195318334Speter  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
195418334Speter     qty_phys_sugg for the pseudo instead of tying them.
195518334Speter
195618334Speter     Return "failure" so that the lifespan of UREG is terminated here;
195718334Speter     that way the two lifespans will be disjoint and nothing will prevent
195818334Speter     the pseudo reg from being given this hard reg.  */
195918334Speter
196018334Speter  if (ureg < FIRST_PSEUDO_REGISTER)
196118334Speter    {
196218334Speter      /* Allocate a quantity number so we have a place to put our
196318334Speter	 suggestions.  */
196418334Speter      if (reg_qty[sreg] == -2)
196518334Speter	reg_is_born (setreg, 2 * insn_number);
196618334Speter
196718334Speter      if (reg_qty[sreg] >= 0)
196818334Speter	{
196918334Speter	  if (may_save_copy
197018334Speter	      && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
197118334Speter	    {
197218334Speter	      SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
197318334Speter	      qty_phys_num_copy_sugg[reg_qty[sreg]]++;
197418334Speter	    }
197518334Speter	  else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
197618334Speter	    {
197718334Speter	      SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
197818334Speter	      qty_phys_num_sugg[reg_qty[sreg]]++;
197918334Speter	    }
198018334Speter	}
198118334Speter      return 0;
198218334Speter    }
198318334Speter
198418334Speter  /* Similarly for SREG a hard register and UREG a pseudo register.  */
198518334Speter
198618334Speter  if (sreg < FIRST_PSEUDO_REGISTER)
198718334Speter    {
198818334Speter      if (may_save_copy
198918334Speter	  && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
199018334Speter	{
199118334Speter	  SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
199218334Speter	  qty_phys_num_copy_sugg[reg_qty[ureg]]++;
199318334Speter	}
199418334Speter      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
199518334Speter	{
199618334Speter	  SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
199718334Speter	  qty_phys_num_sugg[reg_qty[ureg]]++;
199818334Speter	}
199918334Speter      return 0;
200018334Speter    }
200118334Speter
200218334Speter  /* At this point we know that SREG and UREG are both pseudos.
200318334Speter     Do nothing if SREG already has a quantity or is a register that we
200418334Speter     don't allocate.  */
200518334Speter  if (reg_qty[sreg] >= -1
200618334Speter      /* If we are not going to let any regs live across calls,
200718334Speter	 don't tie a call-crossing reg to a non-call-crossing reg.  */
200818334Speter      || (current_function_has_nonlocal_label
200950397Sobrien	  && ((REG_N_CALLS_CROSSED (ureg) > 0)
201050397Sobrien	      != (REG_N_CALLS_CROSSED (sreg) > 0))))
201118334Speter    return 0;
201218334Speter
201318334Speter  /* We don't already know about SREG, so tie it to UREG
201418334Speter     if this is the last use of UREG, provided the classes they want
201518334Speter     are compatible.  */
201618334Speter
201718334Speter  if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
201890075Sobrien      && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
201918334Speter    {
202018334Speter      /* Add SREG to UREG's quantity.  */
202118334Speter      sqty = reg_qty[ureg];
202218334Speter      reg_qty[sreg] = sqty;
202318334Speter      reg_offset[sreg] = reg_offset[ureg] + offset;
202490075Sobrien      reg_next_in_qty[sreg] = qty[sqty].first_reg;
202590075Sobrien      qty[sqty].first_reg = sreg;
202618334Speter
202790075Sobrien      /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
202818334Speter      update_qty_class (sqty, sreg);
202918334Speter
203018334Speter      /* Update info about quantity SQTY.  */
203190075Sobrien      qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2032161651Skan      qty[sqty].n_throwing_calls_crossed
2033161651Skan	+= REG_N_THROWING_CALLS_CROSSED (sreg);
203490075Sobrien      qty[sqty].n_refs += REG_N_REFS (sreg);
203590075Sobrien      qty[sqty].freq += REG_FREQ (sreg);
203618334Speter      if (usize < ssize)
203718334Speter	{
203890075Sobrien	  int i;
203918334Speter
204090075Sobrien	  for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
204118334Speter	    reg_offset[i] -= offset;
204218334Speter
204390075Sobrien	  qty[sqty].size = ssize;
204490075Sobrien	  qty[sqty].mode = GET_MODE (setreg);
204518334Speter	}
204618334Speter    }
204718334Speter  else
204818334Speter    return 0;
204918334Speter
205018334Speter  return 1;
205118334Speter}
205218334Speter
205318334Speter/* Return 1 if the preferred class of REG allows it to be tied
205418334Speter   to a quantity or register whose class is CLASS.
205518334Speter   True if REG's reg class either contains or is contained in CLASS.  */
205618334Speter
205718334Speterstatic int
2058132718Skanreg_meets_class_p (int reg, enum reg_class class)
205918334Speter{
206090075Sobrien  enum reg_class rclass = reg_preferred_class (reg);
206118334Speter  return (reg_class_subset_p (rclass, class)
206218334Speter	  || reg_class_subset_p (class, rclass));
206318334Speter}
206418334Speter
206590075Sobrien/* Update the class of QTYNO assuming that REG is being tied to it.  */
206618334Speter
206718334Speterstatic void
2068132718Skanupdate_qty_class (int qtyno, int reg)
206918334Speter{
207018334Speter  enum reg_class rclass = reg_preferred_class (reg);
207190075Sobrien  if (reg_class_subset_p (rclass, qty[qtyno].min_class))
207290075Sobrien    qty[qtyno].min_class = rclass;
207318334Speter
207418334Speter  rclass = reg_alternate_class (reg);
207590075Sobrien  if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
207690075Sobrien    qty[qtyno].alternate_class = rclass;
207718334Speter}
207818334Speter
207918334Speter/* Handle something which alters the value of an rtx REG.
208018334Speter
208118334Speter   REG is whatever is set or clobbered.  SETTER is the rtx that
208218334Speter   is modifying the register.
208318334Speter
208418334Speter   If it is not really a register, we do nothing.
208518334Speter   The file-global variables `this_insn' and `this_insn_number'
208618334Speter   carry info from `block_alloc'.  */
208718334Speter
208818334Speterstatic void
2089132718Skanreg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
209018334Speter{
209118334Speter  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
209218334Speter     a hard register.  These may actually not exist any more.  */
209318334Speter
209418334Speter  if (GET_CODE (reg) != SUBREG
2095169689Skan      && !REG_P (reg))
209618334Speter    return;
209718334Speter
209818334Speter  /* Mark this register as being born.  If it is used in a CLOBBER, mark
209918334Speter     it as being born halfway between the previous insn and this insn so that
210018334Speter     it conflicts with our inputs but not the outputs of the previous insn.  */
210118334Speter
210218334Speter  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
210318334Speter}
210418334Speter
210518334Speter/* Handle beginning of the life of register REG.
210618334Speter   BIRTH is the index at which this is happening.  */
210718334Speter
210818334Speterstatic void
2109132718Skanreg_is_born (rtx reg, int birth)
211018334Speter{
211190075Sobrien  int regno;
211290075Sobrien
211318334Speter  if (GET_CODE (reg) == SUBREG)
211490075Sobrien    {
211590075Sobrien      regno = REGNO (SUBREG_REG (reg));
211690075Sobrien      if (regno < FIRST_PSEUDO_REGISTER)
2117169689Skan	regno = subreg_regno (reg);
211890075Sobrien    }
211918334Speter  else
212018334Speter    regno = REGNO (reg);
212118334Speter
212218334Speter  if (regno < FIRST_PSEUDO_REGISTER)
212318334Speter    {
212418334Speter      mark_life (regno, GET_MODE (reg), 1);
212518334Speter
212618334Speter      /* If the register was to have been born earlier that the present
212718334Speter	 insn, mark it as live where it is actually born.  */
212818334Speter      if (birth < 2 * this_insn_number)
212918334Speter	post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
213018334Speter    }
213118334Speter  else
213218334Speter    {
213318334Speter      if (reg_qty[regno] == -2)
213418334Speter	alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
213518334Speter
213618334Speter      /* If this register has a quantity number, show that it isn't dead.  */
213718334Speter      if (reg_qty[regno] >= 0)
213890075Sobrien	qty[reg_qty[regno]].death = -1;
213918334Speter    }
214018334Speter}
214118334Speter
2142117395Skan/* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
214318334Speter   REG is an output that is dying (i.e., it is never used), otherwise it
214418334Speter   is an input (the normal case).
214518334Speter   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
214618334Speter
214718334Speterstatic void
2148132718Skanwipe_dead_reg (rtx reg, int output_p)
214918334Speter{
215090075Sobrien  int regno = REGNO (reg);
215118334Speter
215218334Speter  /* If this insn has multiple results,
215318334Speter     and the dead reg is used in one of the results,
215418334Speter     extend its life to after this insn,
215590075Sobrien     so it won't get allocated together with any other result of this insn.
215652284Sobrien
215752284Sobrien     It is unsafe to use !single_set here since it will ignore an unused
215852284Sobrien     output.  Just because an output is unused does not mean the compiler
215952284Sobrien     can assume the side effect will not occur.   Consider if REG appears
216052284Sobrien     in the address of an output and we reload the output.  If we allocate
216152284Sobrien     REG to the same hard register as an unused output we could set the hard
216252284Sobrien     register before the output reload insn.  */
216318334Speter  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
216452284Sobrien      && multiple_sets (this_insn))
216518334Speter    {
216618334Speter      int i;
216718334Speter      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
216818334Speter	{
216918334Speter	  rtx set = XVECEXP (PATTERN (this_insn), 0, i);
217018334Speter	  if (GET_CODE (set) == SET
2171169689Skan	      && !REG_P (SET_DEST (set))
217218334Speter	      && !rtx_equal_p (reg, SET_DEST (set))
217318334Speter	      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
217418334Speter	    output_p = 1;
217518334Speter	}
217618334Speter    }
217718334Speter
217818334Speter  /* If this register is used in an auto-increment address, then extend its
217918334Speter     life to after this insn, so that it won't get allocated together with
218018334Speter     the result of this insn.  */
218118334Speter  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
218218334Speter    output_p = 1;
218318334Speter
218418334Speter  if (regno < FIRST_PSEUDO_REGISTER)
218518334Speter    {
218618334Speter      mark_life (regno, GET_MODE (reg), 0);
218718334Speter
218818334Speter      /* If a hard register is dying as an output, mark it as in use at
218918334Speter	 the beginning of this insn (the above statement would cause this
219018334Speter	 not to happen).  */
219118334Speter      if (output_p)
219218334Speter	post_mark_life (regno, GET_MODE (reg), 1,
219390075Sobrien			2 * this_insn_number, 2 * this_insn_number + 1);
219418334Speter    }
219518334Speter
219618334Speter  else if (reg_qty[regno] >= 0)
219790075Sobrien    qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
219818334Speter}
219918334Speter
220018334Speter/* Find a block of SIZE words of hard regs in reg_class CLASS
220118334Speter   that can hold something of machine-mode MODE
220218334Speter     (but actually we test only the first of the block for holding MODE)
220318334Speter   and still free between insn BORN_INDEX and insn DEAD_INDEX,
220418334Speter   and return the number of the first of them.
220590075Sobrien   Return -1 if such a block cannot be found.
220690075Sobrien   If QTYNO crosses calls, insist on a register preserved by calls,
220718334Speter   unless ACCEPT_CALL_CLOBBERED is nonzero.
220818334Speter
2209117395Skan   If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
221018334Speter   register is available.  If not, return -1.  */
221118334Speter
221218334Speterstatic int
2213132718Skanfind_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2214132718Skan	       int accept_call_clobbered, int just_try_suggested,
2215132718Skan	       int born_index, int dead_index)
221618334Speter{
221790075Sobrien  int i, ins;
2218117395Skan  HARD_REG_SET first_used, used;
221918334Speter#ifdef ELIMINABLE_REGS
222090075Sobrien  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
222118334Speter#endif
222218334Speter
222318334Speter  /* Validate our parameters.  */
2224169689Skan  gcc_assert (born_index >= 0 && born_index <= dead_index);
222518334Speter
222618334Speter  /* Don't let a pseudo live in a reg across a function call
222718334Speter     if we might get a nonlocal goto.  */
222818334Speter  if (current_function_has_nonlocal_label
222990075Sobrien      && qty[qtyno].n_calls_crossed > 0)
223018334Speter    return -1;
223118334Speter
223218334Speter  if (accept_call_clobbered)
223318334Speter    COPY_HARD_REG_SET (used, call_fixed_reg_set);
223490075Sobrien  else if (qty[qtyno].n_calls_crossed == 0)
223518334Speter    COPY_HARD_REG_SET (used, fixed_reg_set);
223618334Speter  else
223718334Speter    COPY_HARD_REG_SET (used, call_used_reg_set);
223818334Speter
223950397Sobrien  if (accept_call_clobbered)
224050397Sobrien    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
224150397Sobrien
224218334Speter  for (ins = born_index; ins < dead_index; ins++)
224318334Speter    IOR_HARD_REG_SET (used, regs_live_at[ins]);
224418334Speter
224518334Speter  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
224618334Speter
224718334Speter  /* Don't use the frame pointer reg in local-alloc even if
224818334Speter     we may omit the frame pointer, because if we do that and then we
224918334Speter     need a frame pointer, reload won't know how to move the pseudo
225018334Speter     to another hard reg.  It can move only regs made by global-alloc.
225118334Speter
225218334Speter     This is true of any register that can be eliminated.  */
225318334Speter#ifdef ELIMINABLE_REGS
225490075Sobrien  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
225518334Speter    SET_HARD_REG_BIT (used, eliminables[i].from);
225618334Speter#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
225718334Speter  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
225850397Sobrien     that it might be eliminated into.  */
225918334Speter  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
226018334Speter#endif
226118334Speter#else
226218334Speter  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
226318334Speter#endif
226418334Speter
2265117395Skan#ifdef CANNOT_CHANGE_MODE_CLASS
2266117395Skan  cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
226718334Speter#endif
226818334Speter
226918334Speter  /* Normally, the registers that can be used for the first register in
227018334Speter     a multi-register quantity are the same as those that can be used for
227118334Speter     subsequent registers.  However, if just trying suggested registers,
227218334Speter     restrict our consideration to them.  If there are copy-suggested
227318334Speter     register, try them.  Otherwise, try the arithmetic-suggested
227418334Speter     registers.  */
227518334Speter  COPY_HARD_REG_SET (first_used, used);
227618334Speter
227718334Speter  if (just_try_suggested)
227818334Speter    {
227990075Sobrien      if (qty_phys_num_copy_sugg[qtyno] != 0)
228090075Sobrien	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
228118334Speter      else
228290075Sobrien	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
228318334Speter    }
228418334Speter
228518334Speter  /* If all registers are excluded, we can't do anything.  */
228618334Speter  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
228718334Speter
228818334Speter  /* If at least one would be suitable, test each hard reg.  */
228918334Speter
229018334Speter  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
229118334Speter    {
229218334Speter#ifdef REG_ALLOC_ORDER
229318334Speter      int regno = reg_alloc_order[i];
229418334Speter#else
229518334Speter      int regno = i;
229618334Speter#endif
229718334Speter      if (! TEST_HARD_REG_BIT (first_used, regno)
229852284Sobrien	  && HARD_REGNO_MODE_OK (regno, mode)
229990075Sobrien	  && (qty[qtyno].n_calls_crossed == 0
230052284Sobrien	      || accept_call_clobbered
230152284Sobrien	      || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
230218334Speter	{
230390075Sobrien	  int j;
2304169689Skan	  int size1 = hard_regno_nregs[regno][mode];
230518334Speter	  for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
230618334Speter	  if (j == size1)
230718334Speter	    {
230818334Speter	      /* Mark that this register is in use between its birth and death
230918334Speter		 insns.  */
231018334Speter	      post_mark_life (regno, mode, 1, born_index, dead_index);
231118334Speter	      return regno;
231218334Speter	    }
231318334Speter#ifndef REG_ALLOC_ORDER
231490075Sobrien	  /* Skip starting points we know will lose.  */
231590075Sobrien	  i += j;
231618334Speter#endif
231718334Speter	}
231818334Speter    }
231918334Speter
232018334Speter fail:
232118334Speter  /* If we are just trying suggested register, we have just tried copy-
232218334Speter     suggested registers, and there are arithmetic-suggested registers,
232318334Speter     try them.  */
232490075Sobrien
232518334Speter  /* If it would be profitable to allocate a call-clobbered register
232618334Speter     and save and restore it around calls, do that.  */
232790075Sobrien  if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
232890075Sobrien      && qty_phys_num_sugg[qtyno] != 0)
232918334Speter    {
233018334Speter      /* Don't try the copy-suggested regs again.  */
233190075Sobrien      qty_phys_num_copy_sugg[qtyno] = 0;
233290075Sobrien      return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
233318334Speter			    born_index, dead_index);
233418334Speter    }
233518334Speter
233618334Speter  /* We need not check to see if the current function has nonlocal
233718334Speter     labels because we don't put any pseudos that are live over calls in
2338161651Skan     registers in that case.  Avoid putting pseudos crossing calls that
2339161651Skan     might throw into call used registers.  */
234018334Speter
234118334Speter  if (! accept_call_clobbered
234218334Speter      && flag_caller_saves
234318334Speter      && ! just_try_suggested
234490075Sobrien      && qty[qtyno].n_calls_crossed != 0
2345161651Skan      && qty[qtyno].n_throwing_calls_crossed == 0
234690075Sobrien      && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
234790075Sobrien				 qty[qtyno].n_calls_crossed))
234818334Speter    {
234990075Sobrien      i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
235018334Speter      if (i >= 0)
235118334Speter	caller_save_needed = 1;
235218334Speter      return i;
235318334Speter    }
235418334Speter  return -1;
235518334Speter}
235618334Speter
235718334Speter/* Mark that REGNO with machine-mode MODE is live starting from the current
2358117395Skan   insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
235918334Speter   is zero).  */
236018334Speter
236118334Speterstatic void
2362132718Skanmark_life (int regno, enum machine_mode mode, int life)
236318334Speter{
2364169689Skan  int j = hard_regno_nregs[regno][mode];
236518334Speter  if (life)
236618334Speter    while (--j >= 0)
236718334Speter      SET_HARD_REG_BIT (regs_live, regno + j);
236818334Speter  else
236918334Speter    while (--j >= 0)
237018334Speter      CLEAR_HARD_REG_BIT (regs_live, regno + j);
237118334Speter}
237218334Speter
237318334Speter/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2374117395Skan   is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
237518334Speter   to insn number DEATH (exclusive).  */
237618334Speter
237718334Speterstatic void
2378132718Skanpost_mark_life (int regno, enum machine_mode mode, int life, int birth,
2379132718Skan		int death)
238018334Speter{
2381169689Skan  int j = hard_regno_nregs[regno][mode];
2382132718Skan  HARD_REG_SET this_reg;
238318334Speter
238418334Speter  CLEAR_HARD_REG_SET (this_reg);
238518334Speter  while (--j >= 0)
238618334Speter    SET_HARD_REG_BIT (this_reg, regno + j);
238718334Speter
238818334Speter  if (life)
238918334Speter    while (birth < death)
239018334Speter      {
239118334Speter	IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
239218334Speter	birth++;
239318334Speter      }
239418334Speter  else
239518334Speter    while (birth < death)
239618334Speter      {
239718334Speter	AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
239818334Speter	birth++;
239918334Speter      }
240018334Speter}
240118334Speter
240218334Speter/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
240318334Speter   is the register being clobbered, and R1 is a register being used in
240418334Speter   the equivalent expression.
240518334Speter
240618334Speter   If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
240718334Speter   in which it is used, return 1.
240818334Speter
240918334Speter   Otherwise, return 0.  */
241018334Speter
241118334Speterstatic int
2412132718Skanno_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
241318334Speter{
241418334Speter  int ok = 0;
241518334Speter  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
241618334Speter  rtx p, last;
241718334Speter
241818334Speter  /* If R1 is a hard register, return 0 since we handle this case
241918334Speter     when we scan the insns that actually use it.  */
242018334Speter
242118334Speter  if (note == 0
2422169689Skan      || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2423169689Skan      || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
242418334Speter	  && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
242518334Speter    return 0;
242618334Speter
242718334Speter  last = XEXP (note, 0);
242818334Speter
242918334Speter  for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
243090075Sobrien    if (INSN_P (p))
243118334Speter      {
243218334Speter	if (find_reg_note (p, REG_DEAD, r1))
243318334Speter	  ok = 1;
243418334Speter
243550397Sobrien	/* There must be a REG_NO_CONFLICT note on every insn, otherwise
243650397Sobrien	   some earlier optimization pass has inserted instructions into
243750397Sobrien	   the sequence, and it is not safe to perform this optimization.
243850397Sobrien	   Note that emit_no_conflict_block always ensures that this is
243950397Sobrien	   true when these sequences are created.  */
244050397Sobrien	if (! find_reg_note (p, REG_NO_CONFLICT, r1))
244118334Speter	  return 0;
244218334Speter      }
244390075Sobrien
244418334Speter  return ok;
244518334Speter}
244618334Speter
244718334Speter/* Return the number of alternatives for which the constraint string P
244818334Speter   indicates that the operand must be equal to operand 0 and that no register
244918334Speter   is acceptable.  */
245018334Speter
245118334Speterstatic int
2452132718Skanrequires_inout (const char *p)
245318334Speter{
245418334Speter  char c;
245518334Speter  int found_zero = 0;
245618334Speter  int reg_allowed = 0;
245718334Speter  int num_matching_alts = 0;
2458132718Skan  int len;
245918334Speter
2460132718Skan  for ( ; (c = *p); p += len)
2461132718Skan    {
2462132718Skan      len = CONSTRAINT_LEN (c, p);
2463132718Skan      switch (c)
2464132718Skan	{
2465132718Skan	case '=':  case '+':  case '?':
2466132718Skan	case '#':  case '&':  case '!':
2467132718Skan	case '*':  case '%':
2468132718Skan	case 'm':  case '<':  case '>':  case 'V':  case 'o':
2469132718Skan	case 'E':  case 'F':  case 'G':  case 'H':
2470132718Skan	case 's':  case 'i':  case 'n':
2471132718Skan	case 'I':  case 'J':  case 'K':  case 'L':
2472132718Skan	case 'M':  case 'N':  case 'O':  case 'P':
2473132718Skan	case 'X':
2474132718Skan	  /* These don't say anything we care about.  */
2475132718Skan	  break;
247618334Speter
2477132718Skan	case ',':
2478132718Skan	  if (found_zero && ! reg_allowed)
2479132718Skan	    num_matching_alts++;
248018334Speter
2481132718Skan	  found_zero = reg_allowed = 0;
2482132718Skan	  break;
248318334Speter
2484132718Skan	case '0':
2485132718Skan	  found_zero = 1;
2486132718Skan	  break;
248718334Speter
2488132718Skan	case '1':  case '2':  case '3':  case '4': case '5':
2489132718Skan	case '6':  case '7':  case '8':  case '9':
2490132718Skan	  /* Skip the balance of the matching constraint.  */
2491132718Skan	  do
2492132718Skan	    p++;
2493132718Skan	  while (ISDIGIT (*p));
2494132718Skan	  len = 0;
2495132718Skan	  break;
249690075Sobrien
2497132718Skan	default:
2498132718Skan	  if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2499132718Skan	      && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2500132718Skan	    break;
2501132718Skan	  /* Fall through.  */
2502132718Skan	case 'p':
2503132718Skan	case 'g': case 'r':
2504132718Skan	  reg_allowed = 1;
250590075Sobrien	  break;
2506132718Skan	}
2507132718Skan    }
250818334Speter
250918334Speter  if (found_zero && ! reg_allowed)
251018334Speter    num_matching_alts++;
251118334Speter
251218334Speter  return num_matching_alts;
251318334Speter}
251418334Speter
251518334Spetervoid
2516132718Skandump_local_alloc (FILE *file)
251718334Speter{
251890075Sobrien  int i;
251918334Speter  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
252018334Speter    if (reg_renumber[i] != -1)
252118334Speter      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
252218334Speter}
2523169689Skan
2524169689Skan/* Run old register allocator.  Return TRUE if we must exit
2525169689Skan   rest_of_compilation upon return.  */
2526169689Skanstatic unsigned int
2527169689Skanrest_of_handle_local_alloc (void)
2528169689Skan{
2529169689Skan  int rebuild_notes;
2530169689Skan
2531169689Skan  /* Determine if the current function is a leaf before running reload
2532169689Skan     since this can impact optimizations done by the prologue and
2533169689Skan     epilogue thus changing register elimination offsets.  */
2534169689Skan  current_function_is_leaf = leaf_function_p ();
2535169689Skan
2536169689Skan  /* Allocate the reg_renumber array.  */
2537169689Skan  allocate_reg_info (max_regno, FALSE, TRUE);
2538169689Skan
2539169689Skan  /* And the reg_equiv_memory_loc array.  */
2540169689Skan  VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2541169689Skan  memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2542169689Skan	  sizeof (rtx) * max_regno);
2543169689Skan  reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
2544169689Skan
2545169689Skan  allocate_initial_values (reg_equiv_memory_loc);
2546169689Skan
2547169689Skan  regclass (get_insns (), max_reg_num ());
2548169689Skan  rebuild_notes = local_alloc ();
2549169689Skan
2550169689Skan  /* Local allocation may have turned an indirect jump into a direct
2551169689Skan     jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
2552169689Skan     instructions.  */
2553169689Skan  if (rebuild_notes)
2554169689Skan    {
2555169689Skan      timevar_push (TV_JUMP);
2556169689Skan
2557169689Skan      rebuild_jump_labels (get_insns ());
2558169689Skan      purge_all_dead_edges ();
2559169689Skan      delete_unreachable_blocks ();
2560169689Skan
2561169689Skan      timevar_pop (TV_JUMP);
2562169689Skan    }
2563169689Skan
2564169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
2565169689Skan    {
2566169689Skan      timevar_push (TV_DUMP);
2567169689Skan      dump_flow_info (dump_file, dump_flags);
2568169689Skan      dump_local_alloc (dump_file);
2569169689Skan      timevar_pop (TV_DUMP);
2570169689Skan    }
2571169689Skan  return 0;
2572169689Skan}
2573169689Skan
2574169689Skanstruct tree_opt_pass pass_local_alloc =
2575169689Skan{
2576169689Skan  "lreg",                               /* name */
2577169689Skan  NULL,                                 /* gate */
2578169689Skan  rest_of_handle_local_alloc,           /* execute */
2579169689Skan  NULL,                                 /* sub */
2580169689Skan  NULL,                                 /* next */
2581169689Skan  0,                                    /* static_pass_number */
2582169689Skan  TV_LOCAL_ALLOC,                       /* tv_id */
2583169689Skan  0,                                    /* properties_required */
2584169689Skan  0,                                    /* properties_provided */
2585169689Skan  0,                                    /* properties_destroyed */
2586169689Skan  0,                                    /* todo_flags_start */
2587169689Skan  TODO_dump_func |
2588169689Skan  TODO_ggc_collect,                     /* todo_flags_finish */
2589169689Skan  'l'                                   /* letter */
2590169689Skan};
2591169689Skan
2592