et-forest.c revision 132718
1/* ET-trees data structure implementation.
2   Contributed by Pavel Nejedly
3   Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB.  If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.
20
21  The ET-forest structure is described in:
22    D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23    J.  G'omput. System Sci., 26(3):362 381, 1983.
24*/
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "tm.h"
30#include "et-forest.h"
31#include "alloc-pool.h"
32
33/* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
34#undef DEBUG_ET
35
36#ifdef DEBUG_ET
37#include "basic-block.h"
38#endif
39
40/* The occurence of a node in the et tree.  */
41struct et_occ
42{
43  struct et_node *of;		/* The node.  */
44
45  struct et_occ *parent;	/* Parent in the splay-tree.  */
46  struct et_occ *prev;		/* Left son in the splay-tree.  */
47  struct et_occ *next;		/* Right son in the splay-tree.  */
48
49  int depth;			/* The depth of the node is the sum of depth
50				   fields on the path to the root.  */
51  int min;			/* The minimum value of the depth in the subtree
52				   is obtained by adding sum of depth fields
53				   on the path to the root.  */
54  struct et_occ *min_occ;	/* The occurence in the subtree with the minimal
55				   depth.  */
56};
57
58static alloc_pool et_nodes;
59static alloc_pool et_occurences;
60
61/* Changes depth of OCC to D.  */
62
63static inline void
64set_depth (struct et_occ *occ, int d)
65{
66  if (!occ)
67    return;
68
69  occ->min += d - occ->depth;
70  occ->depth = d;
71}
72
73/* Adds D to the depth of OCC.  */
74
75static inline void
76set_depth_add (struct et_occ *occ, int d)
77{
78  if (!occ)
79    return;
80
81  occ->min += d;
82  occ->depth += d;
83}
84
85/* Sets prev field of OCC to P.  */
86
87static inline void
88set_prev (struct et_occ *occ, struct et_occ *t)
89{
90#ifdef DEBUG_ET
91  if (occ == t)
92    abort ();
93#endif
94
95  occ->prev = t;
96  if (t)
97    t->parent = occ;
98}
99
100/* Sets next field of OCC to P.  */
101
102static inline void
103set_next (struct et_occ *occ, struct et_occ *t)
104{
105#ifdef DEBUG_ET
106  if (occ == t)
107    abort ();
108#endif
109
110  occ->next = t;
111  if (t)
112    t->parent = occ;
113}
114
115/* Recompute minimum for occurence OCC.  */
116
117static inline void
118et_recomp_min (struct et_occ *occ)
119{
120  struct et_occ *mson = occ->prev;
121
122  if (!mson
123      || (occ->next
124	  && mson->min > occ->next->min))
125      mson = occ->next;
126
127  if (mson && mson->min < 0)
128    {
129      occ->min = mson->min + occ->depth;
130      occ->min_occ = mson->min_occ;
131    }
132  else
133    {
134      occ->min = occ->depth;
135      occ->min_occ = occ;
136    }
137}
138
139#ifdef DEBUG_ET
140/* Checks whether neighbourhood of OCC seems sane.  */
141
142static void
143et_check_occ_sanity (struct et_occ *occ)
144{
145  if (!occ)
146    return;
147
148  if (occ->parent == occ)
149    abort ();
150
151  if (occ->prev == occ)
152    abort ();
153
154  if (occ->next == occ)
155    abort ();
156
157  if (occ->next && occ->next == occ->prev)
158    abort ();
159
160  if (occ->next)
161    {
162      if (occ->next == occ->parent)
163	abort ();
164
165      if (occ->next->parent != occ)
166	abort ();
167    }
168
169  if (occ->prev)
170    {
171      if (occ->prev == occ->parent)
172	abort ();
173
174      if (occ->prev->parent != occ)
175	abort ();
176    }
177
178  if (occ->parent
179      && occ->parent->prev != occ
180      && occ->parent->next != occ)
181    abort ();
182}
183
184/* Checks whether tree rooted at OCC is sane.  */
185
186static void
187et_check_sanity (struct et_occ *occ)
188{
189  et_check_occ_sanity (occ);
190  if (occ->prev)
191    et_check_sanity (occ->prev);
192  if (occ->next)
193    et_check_sanity (occ->next);
194}
195
196/* Checks whether tree containing OCC is sane.  */
197
198static void
199et_check_tree_sanity (struct et_occ *occ)
200{
201  while (occ->parent)
202    occ = occ->parent;
203
204  et_check_sanity (occ);
205}
206
207/* For recording the paths.  */
208
209static int len;
210static void *datas[100000];
211static int depths[100000];
212
213/* Records the path represented by OCC, with depth incremented by DEPTH.  */
214
215static int
216record_path_before_1 (struct et_occ *occ, int depth)
217{
218  int mn, m;
219
220  depth += occ->depth;
221  mn = depth;
222
223  if (occ->prev)
224    {
225      m = record_path_before_1 (occ->prev, depth);
226      if (m < mn)
227	mn = m;
228    }
229
230  fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
231  depths[len] = depth;
232  datas[len] = occ->of;
233  len++;
234
235  if (occ->next)
236    {
237      m = record_path_before_1 (occ->next, depth);
238      if (m < mn)
239	mn = m;
240    }
241
242  if (mn != occ->min + depth - occ->depth)
243    abort ();
244
245  return mn;
246}
247
248/* Records the path represented by a tree containing OCC.  */
249
250static void
251record_path_before (struct et_occ *occ)
252{
253  while (occ->parent)
254    occ = occ->parent;
255
256  len = 0;
257  record_path_before_1 (occ, 0);
258  fprintf (stderr, "\n");
259}
260
261/* Checks whether the path represented by OCC, with depth incremented by DEPTH,
262   was not changed since the last recording.  */
263
264static int
265check_path_after_1 (struct et_occ *occ, int depth)
266{
267  int mn, m;
268
269  depth += occ->depth;
270  mn = depth;
271
272  if (occ->next)
273    {
274      m = check_path_after_1 (occ->next, depth);
275      if (m < mn)
276	mn =  m;
277    }
278
279  len--;
280  if (depths[len] != depth
281      || datas[len] != occ->of)
282    abort ();
283
284  if (occ->prev)
285    {
286      m = check_path_after_1 (occ->prev, depth);
287      if (m < mn)
288	mn =  m;
289    }
290
291  if (mn != occ->min + depth - occ->depth)
292    abort ();
293
294  return mn;
295}
296
297/* Checks whether the path represented by a tree containing OCC was
298   not changed since the last recording.  */
299
300static void
301check_path_after (struct et_occ *occ)
302{
303  while (occ->parent)
304    occ = occ->parent;
305
306  check_path_after_1 (occ, 0);
307  if (len != 0)
308    abort ();
309}
310
311#endif
312
313/* Splay the occurence OCC to the root of the tree.  */
314
315static void
316et_splay (struct et_occ *occ)
317{
318  struct et_occ *f, *gf, *ggf;
319  int occ_depth, f_depth, gf_depth;
320
321#ifdef DEBUG_ET
322  record_path_before (occ);
323  et_check_tree_sanity (occ);
324#endif
325
326  while (occ->parent)
327    {
328      occ_depth = occ->depth;
329
330      f = occ->parent;
331      f_depth = f->depth;
332
333      gf = f->parent;
334
335      if (!gf)
336	{
337	  set_depth_add (occ, f_depth);
338	  occ->min_occ = f->min_occ;
339	  occ->min = f->min;
340
341	  if (f->prev == occ)
342	    {
343	      /* zig */
344	      set_prev (f, occ->next);
345	      set_next (occ, f);
346	      set_depth_add (f->prev, occ_depth);
347	    }
348	  else
349	    {
350	      /* zag */
351	      set_next (f, occ->prev);
352	      set_prev (occ, f);
353	      set_depth_add (f->next, occ_depth);
354	    }
355	  set_depth (f, -occ_depth);
356	  occ->parent = NULL;
357
358	  et_recomp_min (f);
359#ifdef DEBUG_ET
360	  et_check_tree_sanity (occ);
361	  check_path_after (occ);
362#endif
363	  return;
364	}
365
366      gf_depth = gf->depth;
367
368      set_depth_add (occ, f_depth + gf_depth);
369      occ->min_occ = gf->min_occ;
370      occ->min = gf->min;
371
372      ggf = gf->parent;
373
374      if (gf->prev == f)
375	{
376	  if (f->prev == occ)
377	    {
378	      /* zig zig */
379	      set_prev (gf, f->next);
380	      set_prev (f, occ->next);
381	      set_next (occ, f);
382	      set_next (f, gf);
383
384	      set_depth (f, -occ_depth);
385	      set_depth_add (f->prev, occ_depth);
386	      set_depth (gf, -f_depth);
387	      set_depth_add (gf->prev, f_depth);
388	    }
389	  else
390	    {
391	      /* zag zig */
392	      set_prev (gf, occ->next);
393	      set_next (f, occ->prev);
394	      set_prev (occ, f);
395	      set_next (occ, gf);
396
397	      set_depth (f, -occ_depth);
398	      set_depth_add (f->next, occ_depth);
399	      set_depth (gf, -occ_depth - f_depth);
400	      set_depth_add (gf->prev, occ_depth + f_depth);
401	    }
402	}
403      else
404	{
405	  if (f->prev == occ)
406	    {
407	      /* zig zag */
408	      set_next (gf, occ->prev);
409	      set_prev (f, occ->next);
410	      set_prev (occ, gf);
411	      set_next (occ, f);
412
413	      set_depth (f, -occ_depth);
414	      set_depth_add (f->prev, occ_depth);
415	      set_depth (gf, -occ_depth - f_depth);
416	      set_depth_add (gf->next, occ_depth + f_depth);
417	    }
418	  else
419	    {
420	      /* zag zag */
421	      set_next (gf, f->prev);
422	      set_next (f, occ->prev);
423	      set_prev (occ, f);
424	      set_prev (f, gf);
425
426	      set_depth (f, -occ_depth);
427	      set_depth_add (f->next, occ_depth);
428	      set_depth (gf, -f_depth);
429	      set_depth_add (gf->next, f_depth);
430	    }
431	}
432
433      occ->parent = ggf;
434      if (ggf)
435	{
436	  if (ggf->prev == gf)
437	    ggf->prev = occ;
438	  else
439	    ggf->next = occ;
440	}
441
442      et_recomp_min (gf);
443      et_recomp_min (f);
444#ifdef DEBUG_ET
445      et_check_tree_sanity (occ);
446#endif
447    }
448
449#ifdef DEBUG_ET
450  et_check_sanity (occ);
451  check_path_after (occ);
452#endif
453}
454
455/* Create a new et tree occurence of NODE.  */
456
457static struct et_occ *
458et_new_occ (struct et_node *node)
459{
460  struct et_occ *nw;
461
462  if (!et_occurences)
463    et_occurences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
464  nw = pool_alloc (et_occurences);
465
466  nw->of = node;
467  nw->parent = NULL;
468  nw->prev = NULL;
469  nw->next = NULL;
470
471  nw->depth = 0;
472  nw->min_occ = nw;
473  nw->min = 0;
474
475  return nw;
476}
477
478/* Create a new et tree containing DATA.  */
479
480struct et_node *
481et_new_tree (void *data)
482{
483  struct et_node *nw;
484
485  if (!et_nodes)
486    et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
487  nw = pool_alloc (et_nodes);
488
489  nw->data = data;
490  nw->father = NULL;
491  nw->left = NULL;
492  nw->right = NULL;
493  nw->son = NULL;
494
495  nw->rightmost_occ = et_new_occ (nw);
496  nw->parent_occ = NULL;
497
498  return nw;
499}
500
501/* Releases et tree T.  */
502
503void
504et_free_tree (struct et_node *t)
505{
506  while (t->son)
507    et_split (t->son);
508
509  if (t->father)
510    et_split (t);
511
512  pool_free (et_occurences, t->rightmost_occ);
513  pool_free (et_nodes, t);
514}
515
516/* Sets father of et tree T to FATHER.  */
517
518void
519et_set_father (struct et_node *t, struct et_node *father)
520{
521  struct et_node *left, *right;
522  struct et_occ *rmost, *left_part, *new_f_occ, *p;
523
524  /* Update the path represented in the splay tree.  */
525  new_f_occ = et_new_occ (father);
526
527  rmost = father->rightmost_occ;
528  et_splay (rmost);
529
530  left_part = rmost->prev;
531
532  p = t->rightmost_occ;
533  et_splay (p);
534
535  set_prev (new_f_occ, left_part);
536  set_next (new_f_occ, p);
537
538  p->depth++;
539  p->min++;
540  et_recomp_min (new_f_occ);
541
542  set_prev (rmost, new_f_occ);
543
544  if (new_f_occ->min + rmost->depth < rmost->min)
545    {
546      rmost->min = new_f_occ->min + rmost->depth;
547      rmost->min_occ = new_f_occ->min_occ;
548    }
549
550  t->parent_occ = new_f_occ;
551
552  /* Update the tree.  */
553  t->father = father;
554  right = father->son;
555  if (right)
556    left = right->left;
557  else
558    left = right = t;
559
560  left->right = t;
561  right->left = t;
562  t->left = left;
563  t->right = right;
564
565  father->son = t;
566
567#ifdef DEBUG_ET
568  et_check_tree_sanity (rmost);
569  record_path_before (rmost);
570#endif
571}
572
573/* Splits the edge from T to its father.  */
574
575void
576et_split (struct et_node *t)
577{
578  struct et_node *father = t->father;
579  struct et_occ *r, *l, *rmost, *p_occ;
580
581  /* Update the path represented by the splay tree.  */
582  rmost = t->rightmost_occ;
583  et_splay (rmost);
584
585  for (r = rmost->next; r->prev; r = r->prev)
586    continue;
587  et_splay (r);
588
589  r->prev->parent = NULL;
590  p_occ = t->parent_occ;
591  et_splay (p_occ);
592  t->parent_occ = NULL;
593
594  l = p_occ->prev;
595  p_occ->next->parent = NULL;
596
597  set_prev (r, l);
598
599  et_recomp_min (r);
600
601  et_splay (rmost);
602  rmost->depth = 0;
603  rmost->min = 0;
604
605  pool_free (et_occurences, p_occ);
606
607  /* Update the tree.  */
608  if (father->son == t)
609    father->son = t->right;
610  if (father->son == t)
611    father->son = NULL;
612  else
613    {
614      t->left->right = t->right;
615      t->right->left = t->left;
616    }
617  t->left = t->right = NULL;
618  t->father = NULL;
619
620#ifdef DEBUG_ET
621  et_check_tree_sanity (rmost);
622  record_path_before (rmost);
623
624  et_check_tree_sanity (r);
625  record_path_before (r);
626#endif
627}
628
629/* Finds the nearest common ancestor of the nodes N1 and N2.  */
630
631struct et_node *
632et_nca (struct et_node *n1, struct et_node *n2)
633{
634  struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
635  struct et_occ *l, *r, *ret;
636  int mn;
637
638  if (n1 == n2)
639    return n1;
640
641  et_splay (o1);
642  l = o1->prev;
643  r = o1->next;
644  if (l)
645    l->parent = NULL;
646  if (r)
647    r->parent = NULL;
648  et_splay (o2);
649
650  if (l == o2 || (l && l->parent != NULL))
651    {
652      ret = o2->next;
653
654      set_prev (o1, o2);
655      if (r)
656	r->parent = o1;
657    }
658  else
659    {
660      ret = o2->prev;
661
662      set_next (o1, o2);
663      if (l)
664	l->parent = o1;
665    }
666
667  if (0 < o2->depth)
668    {
669      om = o1;
670      mn = o1->depth;
671    }
672  else
673    {
674      om = o2;
675      mn = o2->depth + o1->depth;
676    }
677
678#ifdef DEBUG_ET
679  et_check_tree_sanity (o2);
680#endif
681
682  if (ret && ret->min + o1->depth + o2->depth < mn)
683    return ret->min_occ->of;
684  else
685    return om->of;
686}
687
688/* Checks whether the node UP is an ancestor of the node DOWN.  */
689
690bool
691et_below (struct et_node *down, struct et_node *up)
692{
693  struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
694  struct et_occ *l, *r;
695
696  if (up == down)
697    return true;
698
699  et_splay (u);
700  l = u->prev;
701  r = u->next;
702
703  if (!l)
704    return false;
705
706  l->parent = NULL;
707
708  if (r)
709    r->parent = NULL;
710
711  et_splay (d);
712
713  if (l == d || l->parent != NULL)
714    {
715      if (r)
716	r->parent = u;
717      set_prev (u, d);
718#ifdef DEBUG_ET
719      et_check_tree_sanity (u);
720#endif
721    }
722  else
723    {
724      l->parent = u;
725
726      /* In case O1 and O2 are in two different trees, we must just restore the
727	 original state.  */
728      if (r && r->parent != NULL)
729	set_next (u, d);
730      else
731	set_next (u, r);
732
733#ifdef DEBUG_ET
734      et_check_tree_sanity (u);
735#endif
736      return false;
737    }
738
739  if (0 >= d->depth)
740    return false;
741
742  return !d->next || d->next->min + d->depth >= 0;
743}
744