reloc.c revision 91041
1/* BFD support for handling relocation entries.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
23/*
24SECTION
25	Relocations
26
27	BFD maintains relocations in much the same way it maintains
28	symbols: they are left alone until required, then read in
29	en-masse and translated into an internal form.  A common
30	routine <<bfd_perform_relocation>> acts upon the
31	canonical form to do the fixup.
32
33	Relocations are maintained on a per section basis,
34	while symbols are maintained on a per BFD basis.
35
36	All that a back end has to do to fit the BFD interface is to create
37	a <<struct reloc_cache_entry>> for each relocation
38	in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h.  */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57	typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60	typedef arelent
61
62	This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
68.  {* No errors detected.  *}
69.  bfd_reloc_ok,
70.
71.  {* The relocation was performed, but there was an overflow.  *}
72.  bfd_reloc_overflow,
73.
74.  {* The address to relocate was not within the section supplied.  *}
75.  bfd_reloc_outofrange,
76.
77.  {* Used by special functions.  *}
78.  bfd_reloc_continue,
79.
80.  {* Unsupported relocation size requested.  *}
81.  bfd_reloc_notsupported,
82.
83.  {* Unused.  *}
84.  bfd_reloc_other,
85.
86.  {* The symbol to relocate against was undefined.  *}
87.  bfd_reloc_undefined,
88.
89.  {* The relocation was performed, but may not be ok - presently
90.     generated only when linking i960 coff files with i960 b.out
91.     symbols.  If this type is returned, the error_message argument
92.     to bfd_perform_relocation will be set.  *}
93.  bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
100.  {* A pointer into the canonical table of pointers.  *}
101.  struct symbol_cache_entry **sym_ptr_ptr;
102.
103.  {* offset in section.  *}
104.  bfd_size_type address;
105.
106.  {* addend for relocation value.  *}
107.  bfd_vma addend;
108.
109.  {* Pointer to how to perform the required relocation.  *}
110.  reloc_howto_type *howto;
111.
112.}
113.arelent;
114.
115*/
116
117/*
118DESCRIPTION
119
120        Here is a description of each of the fields within an <<arelent>>:
121
122        o <<sym_ptr_ptr>>
123
124        The symbol table pointer points to a pointer to the symbol
125        associated with the relocation request.  It is
126        the pointer into the table returned by the back end's
127        <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128        through a pointer to a pointer so that tools like the linker
129        can fix up all the symbols of the same name by modifying only
130        one pointer. The relocation routine looks in the symbol and
131        uses the base of the section the symbol is attached to and the
132        value of the symbol as the initial relocation offset. If the
133        symbol pointer is zero, then the section provided is looked up.
134
135        o <<address>>
136
137        The <<address>> field gives the offset in bytes from the base of
138        the section data which owns the relocation record to the first
139        byte of relocatable information. The actual data relocated
140        will be relative to this point; for example, a relocation
141        type which modifies the bottom two bytes of a four byte word
142        would not touch the first byte pointed to in a big endian
143        world.
144
145	o <<addend>>
146
147	The <<addend>> is a value provided by the back end to be added (!)
148	to the relocation offset. Its interpretation is dependent upon
149	the howto. For example, on the 68k the code:
150
151|        char foo[];
152|        main()
153|                {
154|                return foo[0x12345678];
155|                }
156
157        Could be compiled into:
158
159|        linkw fp,#-4
160|        moveb @@#12345678,d0
161|        extbl d0
162|        unlk fp
163|        rts
164
165        This could create a reloc pointing to <<foo>>, but leave the
166        offset in the data, something like:
167
168|RELOCATION RECORDS FOR [.text]:
169|offset   type      value
170|00000006 32        _foo
171|
172|00000000 4e56 fffc          ; linkw fp,#-4
173|00000004 1039 1234 5678     ; moveb @@#12345678,d0
174|0000000a 49c0               ; extbl d0
175|0000000c 4e5e               ; unlk fp
176|0000000e 4e75               ; rts
177
178        Using coff and an 88k, some instructions don't have enough
179        space in them to represent the full address range, and
180        pointers have to be loaded in two parts. So you'd get something like:
181
182|        or.u     r13,r0,hi16(_foo+0x12345678)
183|        ld.b     r2,r13,lo16(_foo+0x12345678)
184|        jmp      r1
185
186        This should create two relocs, both pointing to <<_foo>>, and with
187        0x12340000 in their addend field. The data would consist of:
188
189|RELOCATION RECORDS FOR [.text]:
190|offset   type      value
191|00000002 HVRT16    _foo+0x12340000
192|00000006 LVRT16    _foo+0x12340000
193|
194|00000000 5da05678           ; or.u r13,r0,0x5678
195|00000004 1c4d5678           ; ld.b r2,r13,0x5678
196|00000008 f400c001           ; jmp r1
197
198        The relocation routine digs out the value from the data, adds
199        it to the addend to get the original offset, and then adds the
200        value of <<_foo>>. Note that all 32 bits have to be kept around
201        somewhere, to cope with carry from bit 15 to bit 16.
202
203        One further example is the sparc and the a.out format. The
204        sparc has a similar problem to the 88k, in that some
205        instructions don't have room for an entire offset, but on the
206        sparc the parts are created in odd sized lumps. The designers of
207        the a.out format chose to not use the data within the section
208        for storing part of the offset; all the offset is kept within
209        the reloc. Anything in the data should be ignored.
210
211|        save %sp,-112,%sp
212|        sethi %hi(_foo+0x12345678),%g2
213|        ldsb [%g2+%lo(_foo+0x12345678)],%i0
214|        ret
215|        restore
216
217        Both relocs contain a pointer to <<foo>>, and the offsets
218        contain junk.
219
220|RELOCATION RECORDS FOR [.text]:
221|offset   type      value
222|00000004 HI22      _foo+0x12345678
223|00000008 LO10      _foo+0x12345678
224|
225|00000000 9de3bf90     ; save %sp,-112,%sp
226|00000004 05000000     ; sethi %hi(_foo+0),%g2
227|00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008     ; ret
229|00000010 81e80000     ; restore
230
231        o <<howto>>
232
233        The <<howto>> field can be imagined as a
234        relocation instruction. It is a pointer to a structure which
235        contains information on what to do with all of the other
236        information in the reloc record and data section. A back end
237        would normally have a relocation instruction set and turn
238        relocations into pointers to the correct structure on input -
239        but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245	<<enum complain_overflow>>
246
247	Indicates what sort of overflow checking should be done when
248	performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
254.  {* Do not complain on overflow.  *}
255.  complain_overflow_dont,
256.
257.  {* Complain if the bitfield overflows, whether it is considered
258.     as signed or unsigned.  *}
259.  complain_overflow_bitfield,
260.
261.  {* Complain if the value overflows when considered as signed
262.     number.  *}
263.  complain_overflow_signed,
264.
265.  {* Complain if the value overflows when considered as an
266.     unsigned number.  *}
267.  complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274        <<reloc_howto_type>>
275
276        The <<reloc_howto_type>> is a structure which contains all the
277        information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
280.struct symbol_cache_entry;		{* Forward declaration.  *}
281.
282.struct reloc_howto_struct
283.{
284.  {*  The type field has mainly a documentary use - the back end can
285.      do what it wants with it, though normally the back end's
286.      external idea of what a reloc number is stored
287.      in this field.  For example, a PC relative word relocation
288.      in a coff environment has the type 023 - because that's
289.      what the outside world calls a R_PCRWORD reloc.  *}
290.  unsigned int type;
291.
292.  {*  The value the final relocation is shifted right by.  This drops
293.      unwanted data from the relocation.  *}
294.  unsigned int rightshift;
295.
296.  {*  The size of the item to be relocated.  This is *not* a
297.      power-of-two measure.  To get the number of bytes operated
298.      on by a type of relocation, use bfd_get_reloc_size.  *}
299.  int size;
300.
301.  {*  The number of bits in the item to be relocated.  This is used
302.      when doing overflow checking.  *}
303.  unsigned int bitsize;
304.
305.  {*  Notes that the relocation is relative to the location in the
306.      data section of the addend.  The relocation function will
307.      subtract from the relocation value the address of the location
308.      being relocated.  *}
309.  boolean pc_relative;
310.
311.  {*  The bit position of the reloc value in the destination.
312.      The relocated value is left shifted by this amount.  *}
313.  unsigned int bitpos;
314.
315.  {* What type of overflow error should be checked for when
316.     relocating.  *}
317.  enum complain_overflow complain_on_overflow;
318.
319.  {* If this field is non null, then the supplied function is
320.     called rather than the normal function.  This allows really
321.     strange relocation methods to be accomodated (e.g., i960 callj
322.     instructions).  *}
323.  bfd_reloc_status_type (*special_function)
324.    PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325.             bfd *, char **));
326.
327.  {* The textual name of the relocation type.  *}
328.  char *name;
329.
330.  {* Some formats record a relocation addend in the section contents
331.     rather than with the relocation.  For ELF formats this is the
332.     distinction between USE_REL and USE_RELA (though the code checks
333.     for USE_REL == 1/0).  The value of this field is TRUE if the
334.     addend is recorded with the section contents; when performing a
335.     partial link (ld -r) the section contents (the data) will be
336.     modified.  The value of this field is FALSE if addends are
337.     recorded with the relocation (in arelent.addend); when performing
338.     a partial link the relocation will be modified.
339.     All relocations for all ELF USE_RELA targets should set this field
340.     to FALSE (values of TRUE should be looked on with suspicion).
341.     However, the converse is not true: not all relocations of all ELF
342.     USE_REL targets set this field to TRUE.  Why this is so is peculiar
343.     to each particular target.  For relocs that aren't used in partial
344.     links (e.g. GOT stuff) it doesn't matter what this is set to.  *}
345.  boolean partial_inplace;
346.
347.  {* The src_mask selects which parts of the read in data
348.     are to be used in the relocation sum.  E.g., if this was an 8 bit
349.     byte of data which we read and relocated, this would be
350.     0x000000ff.  When we have relocs which have an addend, such as
351.     sun4 extended relocs, the value in the offset part of a
352.     relocating field is garbage so we never use it.  In this case
353.     the mask would be 0x00000000.  *}
354.  bfd_vma src_mask;
355.
356.  {* The dst_mask selects which parts of the instruction are replaced
357.     into the instruction.  In most cases src_mask == dst_mask,
358.     except in the above special case, where dst_mask would be
359.     0x000000ff, and src_mask would be 0x00000000.  *}
360.  bfd_vma dst_mask;
361.
362.  {* When some formats create PC relative instructions, they leave
363.     the value of the pc of the place being relocated in the offset
364.     slot of the instruction, so that a PC relative relocation can
365.     be made just by adding in an ordinary offset (e.g., sun3 a.out).
366.     Some formats leave the displacement part of an instruction
367.     empty (e.g., m88k bcs); this flag signals the fact.  *}
368.  boolean pcrel_offset;
369.};
370.
371*/
372
373/*
374FUNCTION
375	The HOWTO Macro
376
377DESCRIPTION
378	The HOWTO define is horrible and will go away.
379
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381.  { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
382
383DESCRIPTION
384	And will be replaced with the totally magic way. But for the
385	moment, we are compatible, so do it this way.
386
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388.  HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389.         NAME, false, 0, 0, IN)
390.
391
392DESCRIPTION
393	This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
396.  HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
397.         NULL, false, 0, 0, false)
398.
399
400DESCRIPTION
401	Helper routine to turn a symbol into a relocation value.
402
403.#define HOWTO_PREPARE(relocation, symbol)               \
404.  {                                                     \
405.    if (symbol != (asymbol *) NULL)                     \
406.      {                                                 \
407.        if (bfd_is_com_section (symbol->section))       \
408.          {                                             \
409.            relocation = 0;                             \
410.          }                                             \
411.        else                                            \
412.          {                                             \
413.            relocation = symbol->value;                 \
414.          }                                             \
415.      }                                                 \
416.  }
417.
418*/
419
420/*
421FUNCTION
422	bfd_get_reloc_size
423
424SYNOPSIS
425	unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428	For a reloc_howto_type that operates on a fixed number of bytes,
429	this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (howto)
434     reloc_howto_type *howto;
435{
436  switch (howto->size)
437    {
438    case 0: return 1;
439    case 1: return 2;
440    case 2: return 4;
441    case 3: return 0;
442    case 4: return 8;
443    case 8: return 16;
444    case -2: return 4;
445    default: abort ();
446    }
447}
448
449/*
450TYPEDEF
451	arelent_chain
452
453DESCRIPTION
454
455	How relocs are tied together in an <<asection>>:
456
457.typedef struct relent_chain
458.{
459.  arelent relent;
460.  struct relent_chain *next;
461.}
462.arelent_chain;
463.
464*/
465
466/* N_ONES produces N one bits, without overflowing machine arithmetic.  */
467#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469/*
470FUNCTION
471	bfd_check_overflow
472
473SYNOPSIS
474	bfd_reloc_status_type
475		bfd_check_overflow
476			(enum complain_overflow how,
477			 unsigned int bitsize,
478			 unsigned int rightshift,
479			 unsigned int addrsize,
480			 bfd_vma relocation);
481
482DESCRIPTION
483	Perform overflow checking on @var{relocation} which has
484	@var{bitsize} significant bits and will be shifted right by
485	@var{rightshift} bits, on a machine with addresses containing
486	@var{addrsize} significant bits.  The result is either of
487	@code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489*/
490
491bfd_reloc_status_type
492bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493     enum complain_overflow how;
494     unsigned int bitsize;
495     unsigned int rightshift;
496     unsigned int addrsize;
497     bfd_vma relocation;
498{
499  bfd_vma fieldmask, addrmask, signmask, ss, a;
500  bfd_reloc_status_type flag = bfd_reloc_ok;
501
502  a = relocation;
503
504  /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505     we'll be permissive: extra bits in the field mask will
506     automatically extend the address mask for purposes of the
507     overflow check.  */
508  fieldmask = N_ONES (bitsize);
509  addrmask = N_ONES (addrsize) | fieldmask;
510
511  switch (how)
512    {
513    case complain_overflow_dont:
514      break;
515
516    case complain_overflow_signed:
517      /* If any sign bits are set, all sign bits must be set.  That
518         is, A must be a valid negative address after shifting.  */
519      a = (a & addrmask) >> rightshift;
520      signmask = ~ (fieldmask >> 1);
521      ss = a & signmask;
522      if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523	flag = bfd_reloc_overflow;
524      break;
525
526    case complain_overflow_unsigned:
527      /* We have an overflow if the address does not fit in the field.  */
528      a = (a & addrmask) >> rightshift;
529      if ((a & ~ fieldmask) != 0)
530	flag = bfd_reloc_overflow;
531      break;
532
533    case complain_overflow_bitfield:
534      /* Bitfields are sometimes signed, sometimes unsigned.  We
535	 explicitly allow an address wrap too, which means a bitfield
536	 of n bits is allowed to store -2**n to 2**n-1.  Thus overflow
537	 if the value has some, but not all, bits set outside the
538	 field.  */
539      a >>= rightshift;
540      ss = a & ~ fieldmask;
541      if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542	flag = bfd_reloc_overflow;
543      break;
544
545    default:
546      abort ();
547    }
548
549  return flag;
550}
551
552/*
553FUNCTION
554	bfd_perform_relocation
555
556SYNOPSIS
557	bfd_reloc_status_type
558                bfd_perform_relocation
559                        (bfd *abfd,
560                         arelent *reloc_entry,
561                         PTR data,
562                         asection *input_section,
563                         bfd *output_bfd,
564			 char **error_message);
565
566DESCRIPTION
567	If @var{output_bfd} is supplied to this function, the
568	generated image will be relocatable; the relocations are
569	copied to the output file after they have been changed to
570	reflect the new state of the world. There are two ways of
571	reflecting the results of partial linkage in an output file:
572	by modifying the output data in place, and by modifying the
573	relocation record.  Some native formats (e.g., basic a.out and
574	basic coff) have no way of specifying an addend in the
575	relocation type, so the addend has to go in the output data.
576	This is no big deal since in these formats the output data
577	slot will always be big enough for the addend. Complex reloc
578	types with addends were invented to solve just this problem.
579	The @var{error_message} argument is set to an error message if
580	this return @code{bfd_reloc_dangerous}.
581
582*/
583
584bfd_reloc_status_type
585bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586			error_message)
587     bfd *abfd;
588     arelent *reloc_entry;
589     PTR data;
590     asection *input_section;
591     bfd *output_bfd;
592     char **error_message;
593{
594  bfd_vma relocation;
595  bfd_reloc_status_type flag = bfd_reloc_ok;
596  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
597  bfd_vma output_base = 0;
598  reloc_howto_type *howto = reloc_entry->howto;
599  asection *reloc_target_output_section;
600  asymbol *symbol;
601
602  symbol = *(reloc_entry->sym_ptr_ptr);
603  if (bfd_is_abs_section (symbol->section)
604      && output_bfd != (bfd *) NULL)
605    {
606      reloc_entry->address += input_section->output_offset;
607      return bfd_reloc_ok;
608    }
609
610  /* If we are not producing relocateable output, return an error if
611     the symbol is not defined.  An undefined weak symbol is
612     considered to have a value of zero (SVR4 ABI, p. 4-27).  */
613  if (bfd_is_und_section (symbol->section)
614      && (symbol->flags & BSF_WEAK) == 0
615      && output_bfd == (bfd *) NULL)
616    flag = bfd_reloc_undefined;
617
618  /* If there is a function supplied to handle this relocation type,
619     call it.  It'll return `bfd_reloc_continue' if further processing
620     can be done.  */
621  if (howto->special_function)
622    {
623      bfd_reloc_status_type cont;
624      cont = howto->special_function (abfd, reloc_entry, symbol, data,
625				      input_section, output_bfd,
626				      error_message);
627      if (cont != bfd_reloc_continue)
628	return cont;
629    }
630
631  /* Is the address of the relocation really within the section?  */
632  if (reloc_entry->address > (input_section->_cooked_size
633			      / bfd_octets_per_byte (abfd)))
634    return bfd_reloc_outofrange;
635
636  /* Work out which section the relocation is targetted at and the
637     initial relocation command value.  */
638
639  /* Get symbol value.  (Common symbols are special.)  */
640  if (bfd_is_com_section (symbol->section))
641    relocation = 0;
642  else
643    relocation = symbol->value;
644
645  reloc_target_output_section = symbol->section->output_section;
646
647  /* Convert input-section-relative symbol value to absolute.  */
648  if (output_bfd && howto->partial_inplace == false)
649    output_base = 0;
650  else
651    output_base = reloc_target_output_section->vma;
652
653  relocation += output_base + symbol->section->output_offset;
654
655  /* Add in supplied addend.  */
656  relocation += reloc_entry->addend;
657
658  /* Here the variable relocation holds the final address of the
659     symbol we are relocating against, plus any addend.  */
660
661  if (howto->pc_relative == true)
662    {
663      /* This is a PC relative relocation.  We want to set RELOCATION
664	 to the distance between the address of the symbol and the
665	 location.  RELOCATION is already the address of the symbol.
666
667	 We start by subtracting the address of the section containing
668	 the location.
669
670	 If pcrel_offset is set, we must further subtract the position
671	 of the location within the section.  Some targets arrange for
672	 the addend to be the negative of the position of the location
673	 within the section; for example, i386-aout does this.  For
674	 i386-aout, pcrel_offset is false.  Some other targets do not
675	 include the position of the location; for example, m88kbcs,
676	 or ELF.  For those targets, pcrel_offset is true.
677
678	 If we are producing relocateable output, then we must ensure
679	 that this reloc will be correctly computed when the final
680	 relocation is done.  If pcrel_offset is false we want to wind
681	 up with the negative of the location within the section,
682	 which means we must adjust the existing addend by the change
683	 in the location within the section.  If pcrel_offset is true
684	 we do not want to adjust the existing addend at all.
685
686	 FIXME: This seems logical to me, but for the case of
687	 producing relocateable output it is not what the code
688	 actually does.  I don't want to change it, because it seems
689	 far too likely that something will break.  */
690
691      relocation -=
692	input_section->output_section->vma + input_section->output_offset;
693
694      if (howto->pcrel_offset == true)
695	relocation -= reloc_entry->address;
696    }
697
698  if (output_bfd != (bfd *) NULL)
699    {
700      if (howto->partial_inplace == false)
701	{
702	  /* This is a partial relocation, and we want to apply the relocation
703	     to the reloc entry rather than the raw data. Modify the reloc
704	     inplace to reflect what we now know.  */
705	  reloc_entry->addend = relocation;
706	  reloc_entry->address += input_section->output_offset;
707	  return flag;
708	}
709      else
710	{
711	  /* This is a partial relocation, but inplace, so modify the
712	     reloc record a bit.
713
714	     If we've relocated with a symbol with a section, change
715	     into a ref to the section belonging to the symbol.  */
716
717	  reloc_entry->address += input_section->output_offset;
718
719	  /* WTF?? */
720	  if (abfd->xvec->flavour == bfd_target_coff_flavour
721	      && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722	      && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723	    {
724#if 1
725	      /* For m68k-coff, the addend was being subtracted twice during
726		 relocation with -r.  Removing the line below this comment
727		 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled:  --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way.  There may very well be a reason that the
736code works as it does.
737
738Hmmm.  The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour.  It's seem like
740entirely the wrong place for such a thing.  The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF.  That's peculiar.  In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location).  When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol.  Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output.  When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output.  Therefore, your
760patch is correct.  In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file.  This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line.  Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c.  The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to.  If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice.  It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code.  With BFD it's hard to be sure of anything.  The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets.  It should be straightforward if time and disk
780space consuming.  For each target:
781    1) build the linker
782    2) generate some executable, and link it using -r (I would
783       probably use paranoia.o and link against newlib/libc.a, which
784       for all the supported targets would be available in
785       /usr/cygnus/progressive/H-host/target/lib/libc.a).
786    3) make the change to reloc.c
787    4) rebuild the linker
788    5) repeat step 2
789    6) if the resulting object files are the same, you have at least
790       made it no worse
791    7) if they are different you have to figure out which version is
792       right
793*/
794	      relocation -= reloc_entry->addend;
795#endif
796	      reloc_entry->addend = 0;
797	    }
798	  else
799	    {
800	      reloc_entry->addend = relocation;
801	    }
802	}
803    }
804  else
805    {
806      reloc_entry->addend = 0;
807    }
808
809  /* FIXME: This overflow checking is incomplete, because the value
810     might have overflowed before we get here.  For a correct check we
811     need to compute the value in a size larger than bitsize, but we
812     can't reasonably do that for a reloc the same size as a host
813     machine word.
814     FIXME: We should also do overflow checking on the result after
815     adding in the value contained in the object file.  */
816  if (howto->complain_on_overflow != complain_overflow_dont
817      && flag == bfd_reloc_ok)
818    flag = bfd_check_overflow (howto->complain_on_overflow,
819			       howto->bitsize,
820			       howto->rightshift,
821			       bfd_arch_bits_per_address (abfd),
822			       relocation);
823
824  /* Either we are relocating all the way, or we don't want to apply
825     the relocation to the reloc entry (probably because there isn't
826     any room in the output format to describe addends to relocs).  */
827
828  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829     (OSF version 1.3, compiler version 3.11).  It miscompiles the
830     following program:
831
832     struct str
833     {
834       unsigned int i0;
835     } s = { 0 };
836
837     int
838     main ()
839     {
840       unsigned long x;
841
842       x = 0x100000000;
843       x <<= (unsigned long) s.i0;
844       if (x == 0)
845	 printf ("failed\n");
846       else
847	 printf ("succeeded (%lx)\n", x);
848     }
849     */
850
851  relocation >>= (bfd_vma) howto->rightshift;
852
853  /* Shift everything up to where it's going to be used.  */
854  relocation <<= (bfd_vma) howto->bitpos;
855
856  /* Wait for the day when all have the mask in them.  */
857
858  /* What we do:
859     i instruction to be left alone
860     o offset within instruction
861     r relocation offset to apply
862     S src mask
863     D dst mask
864     N ~dst mask
865     A part 1
866     B part 2
867     R result
868
869     Do this:
870     ((  i i i i i o o o o o  from bfd_get<size>
871     and           S S S S S) to get the size offset we want
872     +   r r r r r r r r r r) to get the final value to place
873     and           D D D D D  to chop to right size
874     -----------------------
875     =             A A A A A
876     And this:
877     (   i i i i i o o o o o  from bfd_get<size>
878     and N N N N N          ) get instruction
879     -----------------------
880     =   B B B B B
881
882     And then:
883     (   B B B B B
884     or            A A A A A)
885     -----------------------
886     =   R R R R R R R R R R  put into bfd_put<size>
887     */
888
889#define DOIT(x) \
890  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
891
892  switch (howto->size)
893    {
894    case 0:
895      {
896	char x = bfd_get_8 (abfd, (char *) data + octets);
897	DOIT (x);
898	bfd_put_8 (abfd, x, (unsigned char *) data + octets);
899      }
900      break;
901
902    case 1:
903      {
904	short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
905	DOIT (x);
906	bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
907      }
908      break;
909    case 2:
910      {
911	long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
912	DOIT (x);
913	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
914      }
915      break;
916    case -2:
917      {
918	long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
919	relocation = -relocation;
920	DOIT (x);
921	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
922      }
923      break;
924
925    case -1:
926      {
927	long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
928	relocation = -relocation;
929	DOIT (x);
930	bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
931      }
932      break;
933
934    case 3:
935      /* Do nothing */
936      break;
937
938    case 4:
939#ifdef BFD64
940      {
941	bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
942	DOIT (x);
943	bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
944      }
945#else
946      abort ();
947#endif
948      break;
949    default:
950      return bfd_reloc_other;
951    }
952
953  return flag;
954}
955
956/*
957FUNCTION
958	bfd_install_relocation
959
960SYNOPSIS
961	bfd_reloc_status_type
962                bfd_install_relocation
963                        (bfd *abfd,
964                         arelent *reloc_entry,
965                         PTR data, bfd_vma data_start,
966                         asection *input_section,
967			 char **error_message);
968
969DESCRIPTION
970	This looks remarkably like <<bfd_perform_relocation>>, except it
971	does not expect that the section contents have been filled in.
972	I.e., it's suitable for use when creating, rather than applying
973	a relocation.
974
975	For now, this function should be considered reserved for the
976	assembler.
977*/
978
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981			input_section, error_message)
982     bfd *abfd;
983     arelent *reloc_entry;
984     PTR data_start;
985     bfd_vma data_start_offset;
986     asection *input_section;
987     char **error_message;
988{
989  bfd_vma relocation;
990  bfd_reloc_status_type flag = bfd_reloc_ok;
991  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
992  bfd_vma output_base = 0;
993  reloc_howto_type *howto = reloc_entry->howto;
994  asection *reloc_target_output_section;
995  asymbol *symbol;
996  bfd_byte *data;
997
998  symbol = *(reloc_entry->sym_ptr_ptr);
999  if (bfd_is_abs_section (symbol->section))
1000    {
1001      reloc_entry->address += input_section->output_offset;
1002      return bfd_reloc_ok;
1003    }
1004
1005  /* If there is a function supplied to handle this relocation type,
1006     call it.  It'll return `bfd_reloc_continue' if further processing
1007     can be done.  */
1008  if (howto->special_function)
1009    {
1010      bfd_reloc_status_type cont;
1011
1012      /* XXX - The special_function calls haven't been fixed up to deal
1013	 with creating new relocations and section contents.  */
1014      cont = howto->special_function (abfd, reloc_entry, symbol,
1015				      /* XXX - Non-portable! */
1016				      ((bfd_byte *) data_start
1017				       - data_start_offset),
1018				      input_section, abfd, error_message);
1019      if (cont != bfd_reloc_continue)
1020	return cont;
1021    }
1022
1023  /* Is the address of the relocation really within the section?  */
1024  if (reloc_entry->address > (input_section->_cooked_size
1025			      / bfd_octets_per_byte (abfd)))
1026    return bfd_reloc_outofrange;
1027
1028  /* Work out which section the relocation is targetted at and the
1029     initial relocation command value.  */
1030
1031  /* Get symbol value.  (Common symbols are special.)  */
1032  if (bfd_is_com_section (symbol->section))
1033    relocation = 0;
1034  else
1035    relocation = symbol->value;
1036
1037  reloc_target_output_section = symbol->section->output_section;
1038
1039  /* Convert input-section-relative symbol value to absolute.  */
1040  if (howto->partial_inplace == false)
1041    output_base = 0;
1042  else
1043    output_base = reloc_target_output_section->vma;
1044
1045  relocation += output_base + symbol->section->output_offset;
1046
1047  /* Add in supplied addend.  */
1048  relocation += reloc_entry->addend;
1049
1050  /* Here the variable relocation holds the final address of the
1051     symbol we are relocating against, plus any addend.  */
1052
1053  if (howto->pc_relative == true)
1054    {
1055      /* This is a PC relative relocation.  We want to set RELOCATION
1056	 to the distance between the address of the symbol and the
1057	 location.  RELOCATION is already the address of the symbol.
1058
1059	 We start by subtracting the address of the section containing
1060	 the location.
1061
1062	 If pcrel_offset is set, we must further subtract the position
1063	 of the location within the section.  Some targets arrange for
1064	 the addend to be the negative of the position of the location
1065	 within the section; for example, i386-aout does this.  For
1066	 i386-aout, pcrel_offset is false.  Some other targets do not
1067	 include the position of the location; for example, m88kbcs,
1068	 or ELF.  For those targets, pcrel_offset is true.
1069
1070	 If we are producing relocateable output, then we must ensure
1071	 that this reloc will be correctly computed when the final
1072	 relocation is done.  If pcrel_offset is false we want to wind
1073	 up with the negative of the location within the section,
1074	 which means we must adjust the existing addend by the change
1075	 in the location within the section.  If pcrel_offset is true
1076	 we do not want to adjust the existing addend at all.
1077
1078	 FIXME: This seems logical to me, but for the case of
1079	 producing relocateable output it is not what the code
1080	 actually does.  I don't want to change it, because it seems
1081	 far too likely that something will break.  */
1082
1083      relocation -=
1084	input_section->output_section->vma + input_section->output_offset;
1085
1086      if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087	relocation -= reloc_entry->address;
1088    }
1089
1090  if (howto->partial_inplace == false)
1091    {
1092      /* This is a partial relocation, and we want to apply the relocation
1093	 to the reloc entry rather than the raw data. Modify the reloc
1094	 inplace to reflect what we now know.  */
1095      reloc_entry->addend = relocation;
1096      reloc_entry->address += input_section->output_offset;
1097      return flag;
1098    }
1099  else
1100    {
1101      /* This is a partial relocation, but inplace, so modify the
1102	 reloc record a bit.
1103
1104	 If we've relocated with a symbol with a section, change
1105	 into a ref to the section belonging to the symbol.  */
1106      reloc_entry->address += input_section->output_offset;
1107
1108      /* WTF?? */
1109      if (abfd->xvec->flavour == bfd_target_coff_flavour
1110	  && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111	  && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112	{
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115   relocation with -r.  Removing the line below this comment
1116   fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled:  --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way.  There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm.  The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour.  It's seem like
1129entirely the wrong place for such a thing.  The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF.  That's peculiar.  In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location).  When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol.  Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output.  When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output.  Therefore, your
1149patch is correct.  In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file.  This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line.  Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c.  The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to.  If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice.  It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code.  With BFD it's hard to be sure of anything.  The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets.  It should be straightforward if time and disk
1169space consuming.  For each target:
1170    1) build the linker
1171    2) generate some executable, and link it using -r (I would
1172       probably use paranoia.o and link against newlib/libc.a, which
1173       for all the supported targets would be available in
1174       /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175    3) make the change to reloc.c
1176    4) rebuild the linker
1177    5) repeat step 2
1178    6) if the resulting object files are the same, you have at least
1179       made it no worse
1180    7) if they are different you have to figure out which version is
1181       right.  */
1182	  relocation -= reloc_entry->addend;
1183#endif
1184	  reloc_entry->addend = 0;
1185	}
1186      else
1187	{
1188	  reloc_entry->addend = relocation;
1189	}
1190    }
1191
1192  /* FIXME: This overflow checking is incomplete, because the value
1193     might have overflowed before we get here.  For a correct check we
1194     need to compute the value in a size larger than bitsize, but we
1195     can't reasonably do that for a reloc the same size as a host
1196     machine word.
1197     FIXME: We should also do overflow checking on the result after
1198     adding in the value contained in the object file.  */
1199  if (howto->complain_on_overflow != complain_overflow_dont)
1200    flag = bfd_check_overflow (howto->complain_on_overflow,
1201			       howto->bitsize,
1202			       howto->rightshift,
1203			       bfd_arch_bits_per_address (abfd),
1204			       relocation);
1205
1206  /* Either we are relocating all the way, or we don't want to apply
1207     the relocation to the reloc entry (probably because there isn't
1208     any room in the output format to describe addends to relocs).  */
1209
1210  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211     (OSF version 1.3, compiler version 3.11).  It miscompiles the
1212     following program:
1213
1214     struct str
1215     {
1216       unsigned int i0;
1217     } s = { 0 };
1218
1219     int
1220     main ()
1221     {
1222       unsigned long x;
1223
1224       x = 0x100000000;
1225       x <<= (unsigned long) s.i0;
1226       if (x == 0)
1227	 printf ("failed\n");
1228       else
1229	 printf ("succeeded (%lx)\n", x);
1230     }
1231     */
1232
1233  relocation >>= (bfd_vma) howto->rightshift;
1234
1235  /* Shift everything up to where it's going to be used.  */
1236  relocation <<= (bfd_vma) howto->bitpos;
1237
1238  /* Wait for the day when all have the mask in them.  */
1239
1240  /* What we do:
1241     i instruction to be left alone
1242     o offset within instruction
1243     r relocation offset to apply
1244     S src mask
1245     D dst mask
1246     N ~dst mask
1247     A part 1
1248     B part 2
1249     R result
1250
1251     Do this:
1252     ((  i i i i i o o o o o  from bfd_get<size>
1253     and           S S S S S) to get the size offset we want
1254     +   r r r r r r r r r r) to get the final value to place
1255     and           D D D D D  to chop to right size
1256     -----------------------
1257     =             A A A A A
1258     And this:
1259     (   i i i i i o o o o o  from bfd_get<size>
1260     and N N N N N          ) get instruction
1261     -----------------------
1262     =   B B B B B
1263
1264     And then:
1265     (   B B B B B
1266     or            A A A A A)
1267     -----------------------
1268     =   R R R R R R R R R R  put into bfd_put<size>
1269     */
1270
1271#define DOIT(x) \
1272  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
1273
1274  data = (bfd_byte *) data_start + (octets - data_start_offset);
1275
1276  switch (howto->size)
1277    {
1278    case 0:
1279      {
1280	char x = bfd_get_8 (abfd, (char *) data);
1281	DOIT (x);
1282	bfd_put_8 (abfd, x, (unsigned char *) data);
1283      }
1284      break;
1285
1286    case 1:
1287      {
1288	short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289	DOIT (x);
1290	bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
1291      }
1292      break;
1293    case 2:
1294      {
1295	long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296	DOIT (x);
1297	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1298      }
1299      break;
1300    case -2:
1301      {
1302	long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303	relocation = -relocation;
1304	DOIT (x);
1305	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1306      }
1307      break;
1308
1309    case 3:
1310      /* Do nothing */
1311      break;
1312
1313    case 4:
1314      {
1315	bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316	DOIT (x);
1317	bfd_put_64 (abfd, x, (bfd_byte *) data);
1318      }
1319      break;
1320    default:
1321      return bfd_reloc_other;
1322    }
1323
1324  return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328   They do not construct asymbol or arelent structures, so there is no
1329   reason for them to use bfd_perform_relocation.  Also,
1330   bfd_perform_relocation is so hacked up it is easier to write a new
1331   function than to try to deal with it.
1332
1333   This routine does a final relocation.  Whether it is useful for a
1334   relocateable link depends upon how the object format defines
1335   relocations.
1336
1337   FIXME: This routine ignores any special_function in the HOWTO,
1338   since the existing special_function values have been written for
1339   bfd_perform_relocation.
1340
1341   HOWTO is the reloc howto information.
1342   INPUT_BFD is the BFD which the reloc applies to.
1343   INPUT_SECTION is the section which the reloc applies to.
1344   CONTENTS is the contents of the section.
1345   ADDRESS is the address of the reloc within INPUT_SECTION.
1346   VALUE is the value of the symbol the reloc refers to.
1347   ADDEND is the addend of the reloc.  */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351			  value, addend)
1352     reloc_howto_type *howto;
1353     bfd *input_bfd;
1354     asection *input_section;
1355     bfd_byte *contents;
1356     bfd_vma address;
1357     bfd_vma value;
1358     bfd_vma addend;
1359{
1360  bfd_vma relocation;
1361
1362  /* Sanity check the address.  */
1363  if (address > input_section->_raw_size)
1364    return bfd_reloc_outofrange;
1365
1366  /* This function assumes that we are dealing with a basic relocation
1367     against a symbol.  We want to compute the value of the symbol to
1368     relocate to.  This is just VALUE, the value of the symbol, plus
1369     ADDEND, any addend associated with the reloc.  */
1370  relocation = value + addend;
1371
1372  /* If the relocation is PC relative, we want to set RELOCATION to
1373     the distance between the symbol (currently in RELOCATION) and the
1374     location we are relocating.  Some targets (e.g., i386-aout)
1375     arrange for the contents of the section to be the negative of the
1376     offset of the location within the section; for such targets
1377     pcrel_offset is false.  Other targets (e.g., m88kbcs or ELF)
1378     simply leave the contents of the section as zero; for such
1379     targets pcrel_offset is true.  If pcrel_offset is false we do not
1380     need to subtract out the offset of the location within the
1381     section (which is just ADDRESS).  */
1382  if (howto->pc_relative)
1383    {
1384      relocation -= (input_section->output_section->vma
1385		     + input_section->output_offset);
1386      if (howto->pcrel_offset)
1387	relocation -= address;
1388    }
1389
1390  return _bfd_relocate_contents (howto, input_bfd, relocation,
1391				 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto.  */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398     reloc_howto_type *howto;
1399     bfd *input_bfd;
1400     bfd_vma relocation;
1401     bfd_byte *location;
1402{
1403  int size;
1404  bfd_vma x = 0;
1405  bfd_reloc_status_type flag;
1406  unsigned int rightshift = howto->rightshift;
1407  unsigned int bitpos = howto->bitpos;
1408
1409  /* If the size is negative, negate RELOCATION.  This isn't very
1410     general.  */
1411  if (howto->size < 0)
1412    relocation = -relocation;
1413
1414  /* Get the value we are going to relocate.  */
1415  size = bfd_get_reloc_size (howto);
1416  switch (size)
1417    {
1418    default:
1419    case 0:
1420      abort ();
1421    case 1:
1422      x = bfd_get_8 (input_bfd, location);
1423      break;
1424    case 2:
1425      x = bfd_get_16 (input_bfd, location);
1426      break;
1427    case 4:
1428      x = bfd_get_32 (input_bfd, location);
1429      break;
1430    case 8:
1431#ifdef BFD64
1432      x = bfd_get_64 (input_bfd, location);
1433#else
1434      abort ();
1435#endif
1436      break;
1437    }
1438
1439  /* Check for overflow.  FIXME: We may drop bits during the addition
1440     which we don't check for.  We must either check at every single
1441     operation, which would be tedious, or we must do the computations
1442     in a type larger than bfd_vma, which would be inefficient.  */
1443  flag = bfd_reloc_ok;
1444  if (howto->complain_on_overflow != complain_overflow_dont)
1445    {
1446      bfd_vma addrmask, fieldmask, signmask, ss;
1447      bfd_vma a, b, sum;
1448
1449      /* Get the values to be added together.  For signed and unsigned
1450         relocations, we assume that all values should be truncated to
1451         the size of an address.  For bitfields, all the bits matter.
1452         See also bfd_check_overflow.  */
1453      fieldmask = N_ONES (howto->bitsize);
1454      addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455      a = relocation;
1456      b = x & howto->src_mask;
1457
1458      switch (howto->complain_on_overflow)
1459	{
1460	case complain_overflow_signed:
1461	  a = (a & addrmask) >> rightshift;
1462
1463	  /* If any sign bits are set, all sign bits must be set.
1464	     That is, A must be a valid negative address after
1465	     shifting.  */
1466	  signmask = ~ (fieldmask >> 1);
1467	  ss = a & signmask;
1468	  if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1469	    flag = bfd_reloc_overflow;
1470
1471	  /* We only need this next bit of code if the sign bit of B
1472             is below the sign bit of A.  This would only happen if
1473             SRC_MASK had fewer bits than BITSIZE.  Note that if
1474             SRC_MASK has more bits than BITSIZE, we can get into
1475             trouble; we would need to verify that B is in range, as
1476             we do for A above.  */
1477	  signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1478
1479	  /* Set all the bits above the sign bit.  */
1480	  b = (b ^ signmask) - signmask;
1481
1482	  b = (b & addrmask) >> bitpos;
1483
1484	  /* Now we can do the addition.  */
1485	  sum = a + b;
1486
1487	  /* See if the result has the correct sign.  Bits above the
1488             sign bit are junk now; ignore them.  If the sum is
1489             positive, make sure we did not have all negative inputs;
1490             if the sum is negative, make sure we did not have all
1491             positive inputs.  The test below looks only at the sign
1492             bits, and it really just
1493	         SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494	     */
1495	  signmask = (fieldmask >> 1) + 1;
1496	  if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1497	    flag = bfd_reloc_overflow;
1498
1499	  break;
1500
1501	case complain_overflow_unsigned:
1502	  /* Checking for an unsigned overflow is relatively easy:
1503             trim the addresses and add, and trim the result as well.
1504             Overflow is normally indicated when the result does not
1505             fit in the field.  However, we also need to consider the
1506             case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507             input is 0x80000000, and bfd_vma is only 32 bits; then we
1508             will get sum == 0, but there is an overflow, since the
1509             inputs did not fit in the field.  Instead of doing a
1510             separate test, we can check for this by or-ing in the
1511             operands when testing for the sum overflowing its final
1512             field.  */
1513	  a = (a & addrmask) >> rightshift;
1514	  b = (b & addrmask) >> bitpos;
1515	  sum = (a + b) & addrmask;
1516	  if ((a | b | sum) & ~ fieldmask)
1517	    flag = bfd_reloc_overflow;
1518
1519	  break;
1520
1521	case complain_overflow_bitfield:
1522	  /* Much like the signed check, but for a field one bit
1523	     wider, and no trimming inputs with addrmask.  We allow a
1524	     bitfield to represent numbers in the range -2**n to
1525	     2**n-1, where n is the number of bits in the field.
1526	     Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527	     overflow, which is exactly what we want.  */
1528	  a >>= rightshift;
1529
1530	  signmask = ~ fieldmask;
1531	  ss = a & signmask;
1532	  if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533	    flag = bfd_reloc_overflow;
1534
1535	  signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1536	  b = (b ^ signmask) - signmask;
1537
1538	  b >>= bitpos;
1539
1540	  sum = a + b;
1541
1542	  /* We mask with addrmask here to explicitly allow an address
1543	     wrap-around.  The Linux kernel relies on it, and it is
1544	     the only way to write assembler code which can run when
1545	     loaded at a location 0x80000000 away from the location at
1546	     which it is linked.  */
1547	  signmask = fieldmask + 1;
1548	  if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1549	    flag = bfd_reloc_overflow;
1550
1551	  break;
1552
1553	default:
1554	  abort ();
1555	}
1556    }
1557
1558  /* Put RELOCATION in the right bits.  */
1559  relocation >>= (bfd_vma) rightshift;
1560  relocation <<= (bfd_vma) bitpos;
1561
1562  /* Add RELOCATION to the right bits of X.  */
1563  x = ((x & ~howto->dst_mask)
1564       | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566  /* Put the relocated value back in the object file.  */
1567  switch (size)
1568    {
1569    default:
1570    case 0:
1571      abort ();
1572    case 1:
1573      bfd_put_8 (input_bfd, x, location);
1574      break;
1575    case 2:
1576      bfd_put_16 (input_bfd, x, location);
1577      break;
1578    case 4:
1579      bfd_put_32 (input_bfd, x, location);
1580      break;
1581    case 8:
1582#ifdef BFD64
1583      bfd_put_64 (input_bfd, x, location);
1584#else
1585      abort ();
1586#endif
1587      break;
1588    }
1589
1590  return flag;
1591}
1592
1593/*
1594DOCDD
1595INODE
1596	howto manager,  , typedef arelent, Relocations
1597
1598SECTION
1599	The howto manager
1600
1601	When an application wants to create a relocation, but doesn't
1602	know what the target machine might call it, it can find out by
1603	using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609	bfd_reloc_code_type
1610
1611DESCRIPTION
1612	The insides of a reloc code.  The idea is that, eventually, there
1613	will be one enumerator for every type of relocation we ever do.
1614	Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615	return a howto pointer.
1616
1617	This does mean that the application must determine the correct
1618	enumerator value; you can't get a howto pointer from a random set
1619	of attributes.
1620
1621SENUM
1622   bfd_reloc_code_real
1623
1624ENUM
1625  BFD_RELOC_64
1626ENUMX
1627  BFD_RELOC_32
1628ENUMX
1629  BFD_RELOC_26
1630ENUMX
1631  BFD_RELOC_24
1632ENUMX
1633  BFD_RELOC_16
1634ENUMX
1635  BFD_RELOC_14
1636ENUMX
1637  BFD_RELOC_8
1638ENUMDOC
1639  Basic absolute relocations of N bits.
1640
1641ENUM
1642  BFD_RELOC_64_PCREL
1643ENUMX
1644  BFD_RELOC_32_PCREL
1645ENUMX
1646  BFD_RELOC_24_PCREL
1647ENUMX
1648  BFD_RELOC_16_PCREL
1649ENUMX
1650  BFD_RELOC_12_PCREL
1651ENUMX
1652  BFD_RELOC_8_PCREL
1653ENUMDOC
1654  PC-relative relocations.  Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation.  It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661  BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663  BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665  BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667  BFD_RELOC_32_GOTOFF
1668ENUMX
1669  BFD_RELOC_16_GOTOFF
1670ENUMX
1671  BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673  BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675  BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677  BFD_RELOC_8_GOTOFF
1678ENUMX
1679  BFD_RELOC_64_PLT_PCREL
1680ENUMX
1681  BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683  BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685  BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687  BFD_RELOC_8_PLT_PCREL
1688ENUMX
1689  BFD_RELOC_64_PLTOFF
1690ENUMX
1691  BFD_RELOC_32_PLTOFF
1692ENUMX
1693  BFD_RELOC_16_PLTOFF
1694ENUMX
1695  BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697  BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699  BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701  BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703  For ELF.
1704
1705ENUM
1706  BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708  BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710  BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712  Relocations used by 68K ELF.
1713
1714ENUM
1715  BFD_RELOC_32_BASEREL
1716ENUMX
1717  BFD_RELOC_16_BASEREL
1718ENUMX
1719  BFD_RELOC_LO16_BASEREL
1720ENUMX
1721  BFD_RELOC_HI16_BASEREL
1722ENUMX
1723  BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725  BFD_RELOC_8_BASEREL
1726ENUMX
1727  BFD_RELOC_RVA
1728ENUMDOC
1729  Linkage-table relative.
1730
1731ENUM
1732  BFD_RELOC_8_FFnn
1733ENUMDOC
1734  Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737  BFD_RELOC_32_PCREL_S2
1738ENUMX
1739  BFD_RELOC_16_PCREL_S2
1740ENUMX
1741  BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743  These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits.  The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC.  (SPARC tools generally refer to this as <<WDISP30>>.)  The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751  BFD_RELOC_HI22
1752ENUMX
1753  BFD_RELOC_LO10
1754ENUMDOC
1755  High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word.  These are used on the SPARC.
1757
1758ENUM
1759  BFD_RELOC_GPREL16
1760ENUMX
1761  BFD_RELOC_GPREL32
1762ENUMDOC
1763  For systems that allocate a Global Pointer register, these are
1764displacements off that register.  These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
1768ENUM
1769  BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771  Reloc types used for i960/b.out.
1772
1773ENUM
1774  BFD_RELOC_NONE
1775ENUMX
1776  BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778  BFD_RELOC_SPARC22
1779ENUMX
1780  BFD_RELOC_SPARC13
1781ENUMX
1782  BFD_RELOC_SPARC_GOT10
1783ENUMX
1784  BFD_RELOC_SPARC_GOT13
1785ENUMX
1786  BFD_RELOC_SPARC_GOT22
1787ENUMX
1788  BFD_RELOC_SPARC_PC10
1789ENUMX
1790  BFD_RELOC_SPARC_PC22
1791ENUMX
1792  BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794  BFD_RELOC_SPARC_COPY
1795ENUMX
1796  BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798  BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800  BFD_RELOC_SPARC_RELATIVE
1801ENUMX
1802  BFD_RELOC_SPARC_UA16
1803ENUMX
1804  BFD_RELOC_SPARC_UA32
1805ENUMX
1806  BFD_RELOC_SPARC_UA64
1807ENUMDOC
1808  SPARC ELF relocations.  There is probably some overlap with other
1809  relocation types already defined.
1810
1811ENUM
1812  BFD_RELOC_SPARC_BASE13
1813ENUMX
1814  BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816  I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819  BFD_RELOC_SPARC_64
1820  BFD_RELOC_64
1821ENUMX
1822  BFD_RELOC_SPARC_10
1823ENUMX
1824  BFD_RELOC_SPARC_11
1825ENUMX
1826  BFD_RELOC_SPARC_OLO10
1827ENUMX
1828  BFD_RELOC_SPARC_HH22
1829ENUMX
1830  BFD_RELOC_SPARC_HM10
1831ENUMX
1832  BFD_RELOC_SPARC_LM22
1833ENUMX
1834  BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836  BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838  BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840  BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842  BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844  BFD_RELOC_SPARC_7
1845ENUMX
1846  BFD_RELOC_SPARC_6
1847ENUMX
1848  BFD_RELOC_SPARC_5
1849ENUMEQX
1850  BFD_RELOC_SPARC_DISP64
1851  BFD_RELOC_64_PCREL
1852ENUMX
1853  BFD_RELOC_SPARC_PLT32
1854ENUMX
1855  BFD_RELOC_SPARC_PLT64
1856ENUMX
1857  BFD_RELOC_SPARC_HIX22
1858ENUMX
1859  BFD_RELOC_SPARC_LOX10
1860ENUMX
1861  BFD_RELOC_SPARC_H44
1862ENUMX
1863  BFD_RELOC_SPARC_M44
1864ENUMX
1865  BFD_RELOC_SPARC_L44
1866ENUMX
1867  BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869  SPARC64 relocations
1870
1871ENUM
1872  BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874  SPARC little endian relocation
1875
1876ENUM
1877  BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
1879  Alpha ECOFF and ELF relocations.  Some of these treat the symbol or
1880     "addend" in some special way.
1881  For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882     writing; when reading, it will be the absolute section symbol.  The
1883     addend is the displacement in bytes of the "lda" instruction from
1884     the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886  BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888  For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889     with GPDISP_HI16 relocs.  The addend is ignored when writing the
1890     relocations out, and is filled in with the file's GP value on
1891     reading, for convenience.
1892
1893ENUM
1894  BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896  The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897     relocation except that there is no accompanying GPDISP_LO16
1898     relocation.
1899
1900ENUM
1901  BFD_RELOC_ALPHA_LITERAL
1902ENUMX
1903  BFD_RELOC_ALPHA_ELF_LITERAL
1904ENUMX
1905  BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907  The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908     the assembler turns it into a LDQ instruction to load the address of
1909     the symbol, and then fills in a register in the real instruction.
1910
1911     The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912     section symbol.  The addend is ignored when writing, but is filled
1913     in with the file's GP value on reading, for convenience, as with the
1914     GPDISP_LO16 reloc.
1915
1916     The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917     It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918     but it generates output not based on the position within the .got
1919     section, but relative to the GP value chosen for the file during the
1920     final link stage.
1921
1922     The LITUSE reloc, on the instruction using the loaded address, gives
1923     information to the linker that it might be able to use to optimize
1924     away some literal section references.  The symbol is ignored (read
1925     as the absolute section symbol), and the "addend" indicates the type
1926     of instruction using the register:
1927              1 - "memory" fmt insn
1928              2 - byte-manipulation (byte offset reg)
1929              3 - jsr (target of branch)
1930
1931ENUM
1932  BFD_RELOC_ALPHA_HINT
1933ENUMDOC
1934  The HINT relocation indicates a value that should be filled into the
1935     "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936     prediction logic which may be provided on some processors.
1937
1938ENUM
1939  BFD_RELOC_ALPHA_LINKAGE
1940ENUMDOC
1941  The LINKAGE relocation outputs a linkage pair in the object file,
1942     which is filled by the linker.
1943
1944ENUM
1945  BFD_RELOC_ALPHA_CODEADDR
1946ENUMDOC
1947  The CODEADDR relocation outputs a STO_CA in the object file,
1948     which is filled by the linker.
1949
1950ENUM
1951  BFD_RELOC_ALPHA_GPREL_HI16
1952ENUMX
1953  BFD_RELOC_ALPHA_GPREL_LO16
1954ENUMDOC
1955  The GPREL_HI/LO relocations together form a 32-bit offset from the
1956     GP register.
1957
1958ENUM
1959  BFD_RELOC_ALPHA_BRSGP
1960ENUMDOC
1961  Like BFD_RELOC_23_PCREL_S2, except that the source and target must
1962  share a common GP, and the target address is adjusted for
1963  STO_ALPHA_STD_GPLOAD.
1964
1965ENUM
1966  BFD_RELOC_MIPS_JMP
1967ENUMDOC
1968  Bits 27..2 of the relocation address shifted right 2 bits;
1969     simple reloc otherwise.
1970
1971ENUM
1972  BFD_RELOC_MIPS16_JMP
1973ENUMDOC
1974  The MIPS16 jump instruction.
1975
1976ENUM
1977  BFD_RELOC_MIPS16_GPREL
1978ENUMDOC
1979  MIPS16 GP relative reloc.
1980
1981ENUM
1982  BFD_RELOC_HI16
1983ENUMDOC
1984  High 16 bits of 32-bit value; simple reloc.
1985ENUM
1986  BFD_RELOC_HI16_S
1987ENUMDOC
1988  High 16 bits of 32-bit value but the low 16 bits will be sign
1989     extended and added to form the final result.  If the low 16
1990     bits form a negative number, we need to add one to the high value
1991     to compensate for the borrow when the low bits are added.
1992ENUM
1993  BFD_RELOC_LO16
1994ENUMDOC
1995  Low 16 bits.
1996ENUM
1997  BFD_RELOC_PCREL_HI16_S
1998ENUMDOC
1999  Like BFD_RELOC_HI16_S, but PC relative.
2000ENUM
2001  BFD_RELOC_PCREL_LO16
2002ENUMDOC
2003  Like BFD_RELOC_LO16, but PC relative.
2004
2005ENUM
2006  BFD_RELOC_MIPS_LITERAL
2007ENUMDOC
2008  Relocation against a MIPS literal section.
2009
2010ENUM
2011  BFD_RELOC_MIPS_GOT16
2012ENUMX
2013  BFD_RELOC_MIPS_CALL16
2014ENUMX
2015  BFD_RELOC_MIPS_GOT_HI16
2016ENUMX
2017  BFD_RELOC_MIPS_GOT_LO16
2018ENUMX
2019  BFD_RELOC_MIPS_CALL_HI16
2020ENUMX
2021  BFD_RELOC_MIPS_CALL_LO16
2022ENUMX
2023  BFD_RELOC_MIPS_SUB
2024ENUMX
2025  BFD_RELOC_MIPS_GOT_PAGE
2026ENUMX
2027  BFD_RELOC_MIPS_GOT_OFST
2028ENUMX
2029  BFD_RELOC_MIPS_GOT_DISP
2030ENUMX
2031  BFD_RELOC_MIPS_SHIFT5
2032ENUMX
2033  BFD_RELOC_MIPS_SHIFT6
2034ENUMX
2035  BFD_RELOC_MIPS_INSERT_A
2036ENUMX
2037  BFD_RELOC_MIPS_INSERT_B
2038ENUMX
2039  BFD_RELOC_MIPS_DELETE
2040ENUMX
2041  BFD_RELOC_MIPS_HIGHEST
2042ENUMX
2043  BFD_RELOC_MIPS_HIGHER
2044ENUMX
2045  BFD_RELOC_MIPS_SCN_DISP
2046ENUMX
2047  BFD_RELOC_MIPS_REL16
2048ENUMX
2049  BFD_RELOC_MIPS_RELGOT
2050ENUMX
2051  BFD_RELOC_MIPS_JALR
2052COMMENT
2053COMMENT
2054ENUMX
2055  BFD_RELOC_SH_GOT_LOW16
2056ENUMX
2057  BFD_RELOC_SH_GOT_MEDLOW16
2058ENUMX
2059  BFD_RELOC_SH_GOT_MEDHI16
2060ENUMX
2061  BFD_RELOC_SH_GOT_HI16
2062ENUMX
2063  BFD_RELOC_SH_GOTPLT_LOW16
2064ENUMX
2065  BFD_RELOC_SH_GOTPLT_MEDLOW16
2066ENUMX
2067  BFD_RELOC_SH_GOTPLT_MEDHI16
2068ENUMX
2069  BFD_RELOC_SH_GOTPLT_HI16
2070ENUMX
2071  BFD_RELOC_SH_PLT_LOW16
2072ENUMX
2073  BFD_RELOC_SH_PLT_MEDLOW16
2074ENUMX
2075  BFD_RELOC_SH_PLT_MEDHI16
2076ENUMX
2077  BFD_RELOC_SH_PLT_HI16
2078ENUMX
2079  BFD_RELOC_SH_GOTOFF_LOW16
2080ENUMX
2081  BFD_RELOC_SH_GOTOFF_MEDLOW16
2082ENUMX
2083  BFD_RELOC_SH_GOTOFF_MEDHI16
2084ENUMX
2085  BFD_RELOC_SH_GOTOFF_HI16
2086ENUMX
2087  BFD_RELOC_SH_GOTPC_LOW16
2088ENUMX
2089  BFD_RELOC_SH_GOTPC_MEDLOW16
2090ENUMX
2091  BFD_RELOC_SH_GOTPC_MEDHI16
2092ENUMX
2093  BFD_RELOC_SH_GOTPC_HI16
2094ENUMX
2095  BFD_RELOC_SH_COPY64
2096ENUMX
2097  BFD_RELOC_SH_GLOB_DAT64
2098ENUMX
2099  BFD_RELOC_SH_JMP_SLOT64
2100ENUMX
2101  BFD_RELOC_SH_RELATIVE64
2102ENUMX
2103  BFD_RELOC_SH_GOT10BY4
2104ENUMX
2105  BFD_RELOC_SH_GOT10BY8
2106ENUMX
2107  BFD_RELOC_SH_GOTPLT10BY4
2108ENUMX
2109  BFD_RELOC_SH_GOTPLT10BY8
2110ENUMX
2111  BFD_RELOC_SH_GOTPLT32
2112COMMENT
2113ENUMX
2114  BFD_RELOC_SH_SHMEDIA_CODE
2115ENUMX
2116  BFD_RELOC_SH_IMMU5
2117ENUMX
2118  BFD_RELOC_SH_IMMS6
2119ENUMX
2120  BFD_RELOC_SH_IMMS6BY32
2121ENUMX
2122  BFD_RELOC_SH_IMMU6
2123ENUMX
2124  BFD_RELOC_SH_IMMS10
2125ENUMX
2126  BFD_RELOC_SH_IMMS10BY2
2127ENUMX
2128  BFD_RELOC_SH_IMMS10BY4
2129ENUMX
2130  BFD_RELOC_SH_IMMS10BY8
2131ENUMX
2132  BFD_RELOC_SH_IMMS16
2133ENUMX
2134  BFD_RELOC_SH_IMMU16
2135ENUMX
2136  BFD_RELOC_SH_IMM_LOW16
2137ENUMX
2138  BFD_RELOC_SH_IMM_LOW16_PCREL
2139ENUMX
2140  BFD_RELOC_SH_IMM_MEDLOW16
2141ENUMX
2142  BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2143ENUMX
2144  BFD_RELOC_SH_IMM_MEDHI16
2145ENUMX
2146  BFD_RELOC_SH_IMM_MEDHI16_PCREL
2147ENUMX
2148  BFD_RELOC_SH_IMM_HI16
2149ENUMX
2150  BFD_RELOC_SH_IMM_HI16_PCREL
2151ENUMX
2152  BFD_RELOC_SH_PT_16
2153COMMENT
2154ENUMDOC
2155  MIPS ELF relocations.
2156
2157COMMENT
2158
2159ENUM
2160  BFD_RELOC_386_GOT32
2161ENUMX
2162  BFD_RELOC_386_PLT32
2163ENUMX
2164  BFD_RELOC_386_COPY
2165ENUMX
2166  BFD_RELOC_386_GLOB_DAT
2167ENUMX
2168  BFD_RELOC_386_JUMP_SLOT
2169ENUMX
2170  BFD_RELOC_386_RELATIVE
2171ENUMX
2172  BFD_RELOC_386_GOTOFF
2173ENUMX
2174  BFD_RELOC_386_GOTPC
2175ENUMDOC
2176  i386/elf relocations
2177
2178ENUM
2179  BFD_RELOC_X86_64_GOT32
2180ENUMX
2181  BFD_RELOC_X86_64_PLT32
2182ENUMX
2183  BFD_RELOC_X86_64_COPY
2184ENUMX
2185  BFD_RELOC_X86_64_GLOB_DAT
2186ENUMX
2187  BFD_RELOC_X86_64_JUMP_SLOT
2188ENUMX
2189  BFD_RELOC_X86_64_RELATIVE
2190ENUMX
2191  BFD_RELOC_X86_64_GOTPCREL
2192ENUMX
2193  BFD_RELOC_X86_64_32S
2194ENUMDOC
2195  x86-64/elf relocations
2196
2197ENUM
2198  BFD_RELOC_NS32K_IMM_8
2199ENUMX
2200  BFD_RELOC_NS32K_IMM_16
2201ENUMX
2202  BFD_RELOC_NS32K_IMM_32
2203ENUMX
2204  BFD_RELOC_NS32K_IMM_8_PCREL
2205ENUMX
2206  BFD_RELOC_NS32K_IMM_16_PCREL
2207ENUMX
2208  BFD_RELOC_NS32K_IMM_32_PCREL
2209ENUMX
2210  BFD_RELOC_NS32K_DISP_8
2211ENUMX
2212  BFD_RELOC_NS32K_DISP_16
2213ENUMX
2214  BFD_RELOC_NS32K_DISP_32
2215ENUMX
2216  BFD_RELOC_NS32K_DISP_8_PCREL
2217ENUMX
2218  BFD_RELOC_NS32K_DISP_16_PCREL
2219ENUMX
2220  BFD_RELOC_NS32K_DISP_32_PCREL
2221ENUMDOC
2222  ns32k relocations
2223
2224ENUM
2225  BFD_RELOC_PDP11_DISP_8_PCREL
2226ENUMX
2227  BFD_RELOC_PDP11_DISP_6_PCREL
2228ENUMDOC
2229  PDP11 relocations
2230
2231ENUM
2232  BFD_RELOC_PJ_CODE_HI16
2233ENUMX
2234  BFD_RELOC_PJ_CODE_LO16
2235ENUMX
2236  BFD_RELOC_PJ_CODE_DIR16
2237ENUMX
2238  BFD_RELOC_PJ_CODE_DIR32
2239ENUMX
2240  BFD_RELOC_PJ_CODE_REL16
2241ENUMX
2242  BFD_RELOC_PJ_CODE_REL32
2243ENUMDOC
2244  Picojava relocs.  Not all of these appear in object files.
2245
2246ENUM
2247  BFD_RELOC_PPC_B26
2248ENUMX
2249  BFD_RELOC_PPC_BA26
2250ENUMX
2251  BFD_RELOC_PPC_TOC16
2252ENUMX
2253  BFD_RELOC_PPC_B16
2254ENUMX
2255  BFD_RELOC_PPC_B16_BRTAKEN
2256ENUMX
2257  BFD_RELOC_PPC_B16_BRNTAKEN
2258ENUMX
2259  BFD_RELOC_PPC_BA16
2260ENUMX
2261  BFD_RELOC_PPC_BA16_BRTAKEN
2262ENUMX
2263  BFD_RELOC_PPC_BA16_BRNTAKEN
2264ENUMX
2265  BFD_RELOC_PPC_COPY
2266ENUMX
2267  BFD_RELOC_PPC_GLOB_DAT
2268ENUMX
2269  BFD_RELOC_PPC_JMP_SLOT
2270ENUMX
2271  BFD_RELOC_PPC_RELATIVE
2272ENUMX
2273  BFD_RELOC_PPC_LOCAL24PC
2274ENUMX
2275  BFD_RELOC_PPC_EMB_NADDR32
2276ENUMX
2277  BFD_RELOC_PPC_EMB_NADDR16
2278ENUMX
2279  BFD_RELOC_PPC_EMB_NADDR16_LO
2280ENUMX
2281  BFD_RELOC_PPC_EMB_NADDR16_HI
2282ENUMX
2283  BFD_RELOC_PPC_EMB_NADDR16_HA
2284ENUMX
2285  BFD_RELOC_PPC_EMB_SDAI16
2286ENUMX
2287  BFD_RELOC_PPC_EMB_SDA2I16
2288ENUMX
2289  BFD_RELOC_PPC_EMB_SDA2REL
2290ENUMX
2291  BFD_RELOC_PPC_EMB_SDA21
2292ENUMX
2293  BFD_RELOC_PPC_EMB_MRKREF
2294ENUMX
2295  BFD_RELOC_PPC_EMB_RELSEC16
2296ENUMX
2297  BFD_RELOC_PPC_EMB_RELST_LO
2298ENUMX
2299  BFD_RELOC_PPC_EMB_RELST_HI
2300ENUMX
2301  BFD_RELOC_PPC_EMB_RELST_HA
2302ENUMX
2303  BFD_RELOC_PPC_EMB_BIT_FLD
2304ENUMX
2305  BFD_RELOC_PPC_EMB_RELSDA
2306ENUMX
2307  BFD_RELOC_PPC64_HIGHER
2308ENUMX
2309  BFD_RELOC_PPC64_HIGHER_S
2310ENUMX
2311  BFD_RELOC_PPC64_HIGHEST
2312ENUMX
2313  BFD_RELOC_PPC64_HIGHEST_S
2314ENUMX
2315  BFD_RELOC_PPC64_TOC16_LO
2316ENUMX
2317  BFD_RELOC_PPC64_TOC16_HI
2318ENUMX
2319  BFD_RELOC_PPC64_TOC16_HA
2320ENUMX
2321  BFD_RELOC_PPC64_TOC
2322ENUMX
2323  BFD_RELOC_PPC64_PLTGOT16
2324ENUMX
2325  BFD_RELOC_PPC64_PLTGOT16_LO
2326ENUMX
2327  BFD_RELOC_PPC64_PLTGOT16_HI
2328ENUMX
2329  BFD_RELOC_PPC64_PLTGOT16_HA
2330ENUMX
2331  BFD_RELOC_PPC64_ADDR16_DS
2332ENUMX
2333  BFD_RELOC_PPC64_ADDR16_LO_DS
2334ENUMX
2335  BFD_RELOC_PPC64_GOT16_DS
2336ENUMX
2337  BFD_RELOC_PPC64_GOT16_LO_DS
2338ENUMX
2339  BFD_RELOC_PPC64_PLT16_LO_DS
2340ENUMX
2341  BFD_RELOC_PPC64_SECTOFF_DS
2342ENUMX
2343  BFD_RELOC_PPC64_SECTOFF_LO_DS
2344ENUMX
2345  BFD_RELOC_PPC64_TOC16_DS
2346ENUMX
2347  BFD_RELOC_PPC64_TOC16_LO_DS
2348ENUMX
2349  BFD_RELOC_PPC64_PLTGOT16_DS
2350ENUMX
2351  BFD_RELOC_PPC64_PLTGOT16_LO_DS
2352ENUMDOC
2353  Power(rs6000) and PowerPC relocations.
2354
2355ENUM
2356  BFD_RELOC_I370_D12
2357ENUMDOC
2358  IBM 370/390 relocations
2359
2360ENUM
2361  BFD_RELOC_CTOR
2362ENUMDOC
2363  The type of reloc used to build a contructor table - at the moment
2364  probably a 32 bit wide absolute relocation, but the target can choose.
2365  It generally does map to one of the other relocation types.
2366
2367ENUM
2368  BFD_RELOC_ARM_PCREL_BRANCH
2369ENUMDOC
2370  ARM 26 bit pc-relative branch.  The lowest two bits must be zero and are
2371  not stored in the instruction.
2372ENUM
2373  BFD_RELOC_ARM_PCREL_BLX
2374ENUMDOC
2375  ARM 26 bit pc-relative branch.  The lowest bit must be zero and is
2376  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2377  field in the instruction.
2378ENUM
2379  BFD_RELOC_THUMB_PCREL_BLX
2380ENUMDOC
2381  Thumb 22 bit pc-relative branch.  The lowest bit must be zero and is
2382  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2383  field in the instruction.
2384ENUM
2385  BFD_RELOC_ARM_IMMEDIATE
2386ENUMX
2387  BFD_RELOC_ARM_ADRL_IMMEDIATE
2388ENUMX
2389  BFD_RELOC_ARM_OFFSET_IMM
2390ENUMX
2391  BFD_RELOC_ARM_SHIFT_IMM
2392ENUMX
2393  BFD_RELOC_ARM_SWI
2394ENUMX
2395  BFD_RELOC_ARM_MULTI
2396ENUMX
2397  BFD_RELOC_ARM_CP_OFF_IMM
2398ENUMX
2399  BFD_RELOC_ARM_ADR_IMM
2400ENUMX
2401  BFD_RELOC_ARM_LDR_IMM
2402ENUMX
2403  BFD_RELOC_ARM_LITERAL
2404ENUMX
2405  BFD_RELOC_ARM_IN_POOL
2406ENUMX
2407  BFD_RELOC_ARM_OFFSET_IMM8
2408ENUMX
2409  BFD_RELOC_ARM_HWLITERAL
2410ENUMX
2411  BFD_RELOC_ARM_THUMB_ADD
2412ENUMX
2413  BFD_RELOC_ARM_THUMB_IMM
2414ENUMX
2415  BFD_RELOC_ARM_THUMB_SHIFT
2416ENUMX
2417  BFD_RELOC_ARM_THUMB_OFFSET
2418ENUMX
2419  BFD_RELOC_ARM_GOT12
2420ENUMX
2421  BFD_RELOC_ARM_GOT32
2422ENUMX
2423  BFD_RELOC_ARM_JUMP_SLOT
2424ENUMX
2425  BFD_RELOC_ARM_COPY
2426ENUMX
2427  BFD_RELOC_ARM_GLOB_DAT
2428ENUMX
2429  BFD_RELOC_ARM_PLT32
2430ENUMX
2431  BFD_RELOC_ARM_RELATIVE
2432ENUMX
2433  BFD_RELOC_ARM_GOTOFF
2434ENUMX
2435  BFD_RELOC_ARM_GOTPC
2436ENUMDOC
2437  These relocs are only used within the ARM assembler.  They are not
2438  (at present) written to any object files.
2439
2440ENUM
2441  BFD_RELOC_SH_PCDISP8BY2
2442ENUMX
2443  BFD_RELOC_SH_PCDISP12BY2
2444ENUMX
2445  BFD_RELOC_SH_IMM4
2446ENUMX
2447  BFD_RELOC_SH_IMM4BY2
2448ENUMX
2449  BFD_RELOC_SH_IMM4BY4
2450ENUMX
2451  BFD_RELOC_SH_IMM8
2452ENUMX
2453  BFD_RELOC_SH_IMM8BY2
2454ENUMX
2455  BFD_RELOC_SH_IMM8BY4
2456ENUMX
2457  BFD_RELOC_SH_PCRELIMM8BY2
2458ENUMX
2459  BFD_RELOC_SH_PCRELIMM8BY4
2460ENUMX
2461  BFD_RELOC_SH_SWITCH16
2462ENUMX
2463  BFD_RELOC_SH_SWITCH32
2464ENUMX
2465  BFD_RELOC_SH_USES
2466ENUMX
2467  BFD_RELOC_SH_COUNT
2468ENUMX
2469  BFD_RELOC_SH_ALIGN
2470ENUMX
2471  BFD_RELOC_SH_CODE
2472ENUMX
2473  BFD_RELOC_SH_DATA
2474ENUMX
2475  BFD_RELOC_SH_LABEL
2476ENUMX
2477  BFD_RELOC_SH_LOOP_START
2478ENUMX
2479  BFD_RELOC_SH_LOOP_END
2480ENUMX
2481  BFD_RELOC_SH_COPY
2482ENUMX
2483  BFD_RELOC_SH_GLOB_DAT
2484ENUMX
2485  BFD_RELOC_SH_JMP_SLOT
2486ENUMX
2487  BFD_RELOC_SH_RELATIVE
2488ENUMX
2489  BFD_RELOC_SH_GOTPC
2490ENUMDOC
2491  Hitachi SH relocs.  Not all of these appear in object files.
2492
2493ENUM
2494  BFD_RELOC_THUMB_PCREL_BRANCH9
2495ENUMX
2496  BFD_RELOC_THUMB_PCREL_BRANCH12
2497ENUMX
2498  BFD_RELOC_THUMB_PCREL_BRANCH23
2499ENUMDOC
2500  Thumb 23-, 12- and 9-bit pc-relative branches.  The lowest bit must
2501  be zero and is not stored in the instruction.
2502
2503ENUM
2504  BFD_RELOC_ARC_B22_PCREL
2505ENUMDOC
2506  ARC Cores relocs.
2507  ARC 22 bit pc-relative branch.  The lowest two bits must be zero and are
2508  not stored in the instruction.  The high 20 bits are installed in bits 26
2509  through 7 of the instruction.
2510ENUM
2511  BFD_RELOC_ARC_B26
2512ENUMDOC
2513  ARC 26 bit absolute branch.  The lowest two bits must be zero and are not
2514  stored in the instruction.  The high 24 bits are installed in bits 23
2515  through 0.
2516
2517ENUM
2518  BFD_RELOC_D10V_10_PCREL_R
2519ENUMDOC
2520  Mitsubishi D10V relocs.
2521  This is a 10-bit reloc with the right 2 bits
2522  assumed to be 0.
2523ENUM
2524  BFD_RELOC_D10V_10_PCREL_L
2525ENUMDOC
2526  Mitsubishi D10V relocs.
2527  This is a 10-bit reloc with the right 2 bits
2528  assumed to be 0.  This is the same as the previous reloc
2529  except it is in the left container, i.e.,
2530  shifted left 15 bits.
2531ENUM
2532  BFD_RELOC_D10V_18
2533ENUMDOC
2534  This is an 18-bit reloc with the right 2 bits
2535  assumed to be 0.
2536ENUM
2537  BFD_RELOC_D10V_18_PCREL
2538ENUMDOC
2539  This is an 18-bit reloc with the right 2 bits
2540  assumed to be 0.
2541
2542ENUM
2543  BFD_RELOC_D30V_6
2544ENUMDOC
2545  Mitsubishi D30V relocs.
2546  This is a 6-bit absolute reloc.
2547ENUM
2548  BFD_RELOC_D30V_9_PCREL
2549ENUMDOC
2550  This is a 6-bit pc-relative reloc with
2551  the right 3 bits assumed to be 0.
2552ENUM
2553  BFD_RELOC_D30V_9_PCREL_R
2554ENUMDOC
2555  This is a 6-bit pc-relative reloc with
2556  the right 3 bits assumed to be 0. Same
2557  as the previous reloc but on the right side
2558  of the container.
2559ENUM
2560  BFD_RELOC_D30V_15
2561ENUMDOC
2562  This is a 12-bit absolute reloc with the
2563  right 3 bitsassumed to be 0.
2564ENUM
2565  BFD_RELOC_D30V_15_PCREL
2566ENUMDOC
2567  This is a 12-bit pc-relative reloc with
2568  the right 3 bits assumed to be 0.
2569ENUM
2570  BFD_RELOC_D30V_15_PCREL_R
2571ENUMDOC
2572  This is a 12-bit pc-relative reloc with
2573  the right 3 bits assumed to be 0. Same
2574  as the previous reloc but on the right side
2575  of the container.
2576ENUM
2577  BFD_RELOC_D30V_21
2578ENUMDOC
2579  This is an 18-bit absolute reloc with
2580  the right 3 bits assumed to be 0.
2581ENUM
2582  BFD_RELOC_D30V_21_PCREL
2583ENUMDOC
2584  This is an 18-bit pc-relative reloc with
2585  the right 3 bits assumed to be 0.
2586ENUM
2587  BFD_RELOC_D30V_21_PCREL_R
2588ENUMDOC
2589  This is an 18-bit pc-relative reloc with
2590  the right 3 bits assumed to be 0. Same
2591  as the previous reloc but on the right side
2592  of the container.
2593ENUM
2594  BFD_RELOC_D30V_32
2595ENUMDOC
2596  This is a 32-bit absolute reloc.
2597ENUM
2598  BFD_RELOC_D30V_32_PCREL
2599ENUMDOC
2600  This is a 32-bit pc-relative reloc.
2601
2602ENUM
2603  BFD_RELOC_M32R_24
2604ENUMDOC
2605  Mitsubishi M32R relocs.
2606  This is a 24 bit absolute address.
2607ENUM
2608  BFD_RELOC_M32R_10_PCREL
2609ENUMDOC
2610  This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2611ENUM
2612  BFD_RELOC_M32R_18_PCREL
2613ENUMDOC
2614  This is an 18-bit reloc with the right 2 bits assumed to be 0.
2615ENUM
2616  BFD_RELOC_M32R_26_PCREL
2617ENUMDOC
2618  This is a 26-bit reloc with the right 2 bits assumed to be 0.
2619ENUM
2620  BFD_RELOC_M32R_HI16_ULO
2621ENUMDOC
2622  This is a 16-bit reloc containing the high 16 bits of an address
2623  used when the lower 16 bits are treated as unsigned.
2624ENUM
2625  BFD_RELOC_M32R_HI16_SLO
2626ENUMDOC
2627  This is a 16-bit reloc containing the high 16 bits of an address
2628  used when the lower 16 bits are treated as signed.
2629ENUM
2630  BFD_RELOC_M32R_LO16
2631ENUMDOC
2632  This is a 16-bit reloc containing the lower 16 bits of an address.
2633ENUM
2634  BFD_RELOC_M32R_SDA16
2635ENUMDOC
2636  This is a 16-bit reloc containing the small data area offset for use in
2637  add3, load, and store instructions.
2638
2639ENUM
2640  BFD_RELOC_V850_9_PCREL
2641ENUMDOC
2642  This is a 9-bit reloc
2643ENUM
2644  BFD_RELOC_V850_22_PCREL
2645ENUMDOC
2646  This is a 22-bit reloc
2647
2648ENUM
2649  BFD_RELOC_V850_SDA_16_16_OFFSET
2650ENUMDOC
2651  This is a 16 bit offset from the short data area pointer.
2652ENUM
2653  BFD_RELOC_V850_SDA_15_16_OFFSET
2654ENUMDOC
2655  This is a 16 bit offset (of which only 15 bits are used) from the
2656  short data area pointer.
2657ENUM
2658  BFD_RELOC_V850_ZDA_16_16_OFFSET
2659ENUMDOC
2660  This is a 16 bit offset from the zero data area pointer.
2661ENUM
2662  BFD_RELOC_V850_ZDA_15_16_OFFSET
2663ENUMDOC
2664  This is a 16 bit offset (of which only 15 bits are used) from the
2665  zero data area pointer.
2666ENUM
2667  BFD_RELOC_V850_TDA_6_8_OFFSET
2668ENUMDOC
2669  This is an 8 bit offset (of which only 6 bits are used) from the
2670  tiny data area pointer.
2671ENUM
2672  BFD_RELOC_V850_TDA_7_8_OFFSET
2673ENUMDOC
2674  This is an 8bit offset (of which only 7 bits are used) from the tiny
2675  data area pointer.
2676ENUM
2677  BFD_RELOC_V850_TDA_7_7_OFFSET
2678ENUMDOC
2679  This is a 7 bit offset from the tiny data area pointer.
2680ENUM
2681  BFD_RELOC_V850_TDA_16_16_OFFSET
2682ENUMDOC
2683  This is a 16 bit offset from the tiny data area pointer.
2684COMMENT
2685ENUM
2686  BFD_RELOC_V850_TDA_4_5_OFFSET
2687ENUMDOC
2688  This is a 5 bit offset (of which only 4 bits are used) from the tiny
2689  data area pointer.
2690ENUM
2691  BFD_RELOC_V850_TDA_4_4_OFFSET
2692ENUMDOC
2693  This is a 4 bit offset from the tiny data area pointer.
2694ENUM
2695  BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2696ENUMDOC
2697  This is a 16 bit offset from the short data area pointer, with the
2698  bits placed non-contigously in the instruction.
2699ENUM
2700  BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2701ENUMDOC
2702  This is a 16 bit offset from the zero data area pointer, with the
2703  bits placed non-contigously in the instruction.
2704ENUM
2705  BFD_RELOC_V850_CALLT_6_7_OFFSET
2706ENUMDOC
2707  This is a 6 bit offset from the call table base pointer.
2708ENUM
2709  BFD_RELOC_V850_CALLT_16_16_OFFSET
2710ENUMDOC
2711  This is a 16 bit offset from the call table base pointer.
2712COMMENT
2713
2714ENUM
2715  BFD_RELOC_MN10300_32_PCREL
2716ENUMDOC
2717  This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2718  instruction.
2719ENUM
2720  BFD_RELOC_MN10300_16_PCREL
2721ENUMDOC
2722  This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2723  instruction.
2724
2725ENUM
2726  BFD_RELOC_TIC30_LDP
2727ENUMDOC
2728  This is a 8bit DP reloc for the tms320c30, where the most
2729  significant 8 bits of a 24 bit word are placed into the least
2730  significant 8 bits of the opcode.
2731
2732ENUM
2733  BFD_RELOC_TIC54X_PARTLS7
2734ENUMDOC
2735  This is a 7bit reloc for the tms320c54x, where the least
2736  significant 7 bits of a 16 bit word are placed into the least
2737  significant 7 bits of the opcode.
2738
2739ENUM
2740  BFD_RELOC_TIC54X_PARTMS9
2741ENUMDOC
2742  This is a 9bit DP reloc for the tms320c54x, where the most
2743  significant 9 bits of a 16 bit word are placed into the least
2744  significant 9 bits of the opcode.
2745
2746ENUM
2747  BFD_RELOC_TIC54X_23
2748ENUMDOC
2749  This is an extended address 23-bit reloc for the tms320c54x.
2750
2751ENUM
2752  BFD_RELOC_TIC54X_16_OF_23
2753ENUMDOC
2754  This is a 16-bit reloc for the tms320c54x, where the least
2755  significant 16 bits of a 23-bit extended address are placed into
2756  the opcode.
2757
2758ENUM
2759  BFD_RELOC_TIC54X_MS7_OF_23
2760ENUMDOC
2761  This is a reloc for the tms320c54x, where the most
2762  significant 7 bits of a 23-bit extended address are placed into
2763  the opcode.
2764
2765ENUM
2766  BFD_RELOC_FR30_48
2767ENUMDOC
2768  This is a 48 bit reloc for the FR30 that stores 32 bits.
2769ENUM
2770  BFD_RELOC_FR30_20
2771ENUMDOC
2772  This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2773  two sections.
2774ENUM
2775  BFD_RELOC_FR30_6_IN_4
2776ENUMDOC
2777  This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2778  4 bits.
2779ENUM
2780  BFD_RELOC_FR30_8_IN_8
2781ENUMDOC
2782  This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2783  into 8 bits.
2784ENUM
2785  BFD_RELOC_FR30_9_IN_8
2786ENUMDOC
2787  This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2788  into 8 bits.
2789ENUM
2790  BFD_RELOC_FR30_10_IN_8
2791ENUMDOC
2792  This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2793  into 8 bits.
2794ENUM
2795  BFD_RELOC_FR30_9_PCREL
2796ENUMDOC
2797  This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2798  short offset into 8 bits.
2799ENUM
2800  BFD_RELOC_FR30_12_PCREL
2801ENUMDOC
2802  This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2803  short offset into 11 bits.
2804
2805ENUM
2806  BFD_RELOC_MCORE_PCREL_IMM8BY4
2807ENUMX
2808  BFD_RELOC_MCORE_PCREL_IMM11BY2
2809ENUMX
2810  BFD_RELOC_MCORE_PCREL_IMM4BY2
2811ENUMX
2812  BFD_RELOC_MCORE_PCREL_32
2813ENUMX
2814  BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2815ENUMX
2816  BFD_RELOC_MCORE_RVA
2817ENUMDOC
2818  Motorola Mcore relocations.
2819
2820ENUM
2821  BFD_RELOC_MMIX_GETA
2822ENUMX
2823  BFD_RELOC_MMIX_GETA_1
2824ENUMX
2825  BFD_RELOC_MMIX_GETA_2
2826ENUMX
2827  BFD_RELOC_MMIX_GETA_3
2828ENUMDOC
2829  These are relocations for the GETA instruction.
2830ENUM
2831  BFD_RELOC_MMIX_CBRANCH
2832ENUMX
2833  BFD_RELOC_MMIX_CBRANCH_J
2834ENUMX
2835  BFD_RELOC_MMIX_CBRANCH_1
2836ENUMX
2837  BFD_RELOC_MMIX_CBRANCH_2
2838ENUMX
2839  BFD_RELOC_MMIX_CBRANCH_3
2840ENUMDOC
2841  These are relocations for a conditional branch instruction.
2842ENUM
2843  BFD_RELOC_MMIX_PUSHJ
2844ENUMX
2845  BFD_RELOC_MMIX_PUSHJ_1
2846ENUMX
2847  BFD_RELOC_MMIX_PUSHJ_2
2848ENUMX
2849  BFD_RELOC_MMIX_PUSHJ_3
2850ENUMDOC
2851  These are relocations for the PUSHJ instruction.
2852ENUM
2853  BFD_RELOC_MMIX_JMP
2854ENUMX
2855  BFD_RELOC_MMIX_JMP_1
2856ENUMX
2857  BFD_RELOC_MMIX_JMP_2
2858ENUMX
2859  BFD_RELOC_MMIX_JMP_3
2860ENUMDOC
2861  These are relocations for the JMP instruction.
2862ENUM
2863  BFD_RELOC_MMIX_ADDR19
2864ENUMDOC
2865  This is a relocation for a relative address as in a GETA instruction or
2866  a branch.
2867ENUM
2868  BFD_RELOC_MMIX_ADDR27
2869ENUMDOC
2870  This is a relocation for a relative address as in a JMP instruction.
2871ENUM
2872  BFD_RELOC_MMIX_REG_OR_BYTE
2873ENUMDOC
2874  This is a relocation for an instruction field that may be a general
2875  register or a value 0..255.
2876ENUM
2877  BFD_RELOC_MMIX_REG
2878ENUMDOC
2879  This is a relocation for an instruction field that may be a general
2880  register.
2881ENUM
2882  BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2883ENUMDOC
2884  This is a relocation for two instruction fields holding a register and
2885  an offset, the equivalent of the relocation.
2886ENUM
2887  BFD_RELOC_MMIX_LOCAL
2888ENUMDOC
2889  This relocation is an assertion that the expression is not allocated as
2890  a global register.  It does not modify contents.
2891
2892ENUM
2893  BFD_RELOC_AVR_7_PCREL
2894ENUMDOC
2895  This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2896  short offset into 7 bits.
2897ENUM
2898  BFD_RELOC_AVR_13_PCREL
2899ENUMDOC
2900  This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2901  short offset into 12 bits.
2902ENUM
2903  BFD_RELOC_AVR_16_PM
2904ENUMDOC
2905  This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2906  program memory address) into 16 bits.
2907ENUM
2908  BFD_RELOC_AVR_LO8_LDI
2909ENUMDOC
2910  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2911  data memory address) into 8 bit immediate value of LDI insn.
2912ENUM
2913  BFD_RELOC_AVR_HI8_LDI
2914ENUMDOC
2915  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2916  of data memory address) into 8 bit immediate value of LDI insn.
2917ENUM
2918  BFD_RELOC_AVR_HH8_LDI
2919ENUMDOC
2920  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2921  of program memory address) into 8 bit immediate value of LDI insn.
2922ENUM
2923  BFD_RELOC_AVR_LO8_LDI_NEG
2924ENUMDOC
2925  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2926  (usually data memory address) into 8 bit immediate value of SUBI insn.
2927ENUM
2928  BFD_RELOC_AVR_HI8_LDI_NEG
2929ENUMDOC
2930  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2931  (high 8 bit of data memory address) into 8 bit immediate value of
2932  SUBI insn.
2933ENUM
2934  BFD_RELOC_AVR_HH8_LDI_NEG
2935ENUMDOC
2936  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2937  (most high 8 bit of program memory address) into 8 bit immediate value
2938  of LDI or SUBI insn.
2939ENUM
2940  BFD_RELOC_AVR_LO8_LDI_PM
2941ENUMDOC
2942  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2943  command address) into 8 bit immediate value of LDI insn.
2944ENUM
2945  BFD_RELOC_AVR_HI8_LDI_PM
2946ENUMDOC
2947  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2948  of command address) into 8 bit immediate value of LDI insn.
2949ENUM
2950  BFD_RELOC_AVR_HH8_LDI_PM
2951ENUMDOC
2952  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2953  of command address) into 8 bit immediate value of LDI insn.
2954ENUM
2955  BFD_RELOC_AVR_LO8_LDI_PM_NEG
2956ENUMDOC
2957  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2958  (usually command address) into 8 bit immediate value of SUBI insn.
2959ENUM
2960  BFD_RELOC_AVR_HI8_LDI_PM_NEG
2961ENUMDOC
2962  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2963  (high 8 bit of 16 bit command address) into 8 bit immediate value
2964  of SUBI insn.
2965ENUM
2966  BFD_RELOC_AVR_HH8_LDI_PM_NEG
2967ENUMDOC
2968  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2969  (high 6 bit of 22 bit command address) into 8 bit immediate
2970  value of SUBI insn.
2971ENUM
2972  BFD_RELOC_AVR_CALL
2973ENUMDOC
2974  This is a 32 bit reloc for the AVR that stores 23 bit value
2975  into 22 bits.
2976
2977ENUM
2978  BFD_RELOC_390_12
2979ENUMDOC
2980   Direct 12 bit.
2981ENUM
2982  BFD_RELOC_390_GOT12
2983ENUMDOC
2984  12 bit GOT offset.
2985ENUM
2986  BFD_RELOC_390_PLT32
2987ENUMDOC
2988  32 bit PC relative PLT address.
2989ENUM
2990  BFD_RELOC_390_COPY
2991ENUMDOC
2992  Copy symbol at runtime.
2993ENUM
2994  BFD_RELOC_390_GLOB_DAT
2995ENUMDOC
2996  Create GOT entry.
2997ENUM
2998  BFD_RELOC_390_JMP_SLOT
2999ENUMDOC
3000  Create PLT entry.
3001ENUM
3002  BFD_RELOC_390_RELATIVE
3003ENUMDOC
3004  Adjust by program base.
3005ENUM
3006  BFD_RELOC_390_GOTPC
3007ENUMDOC
3008  32 bit PC relative offset to GOT.
3009ENUM
3010  BFD_RELOC_390_GOT16
3011ENUMDOC
3012  16 bit GOT offset.
3013ENUM
3014  BFD_RELOC_390_PC16DBL
3015ENUMDOC
3016  PC relative 16 bit shifted by 1.
3017ENUM
3018  BFD_RELOC_390_PLT16DBL
3019ENUMDOC
3020  16 bit PC rel. PLT shifted by 1.
3021ENUM
3022  BFD_RELOC_390_PC32DBL
3023ENUMDOC
3024  PC relative 32 bit shifted by 1.
3025ENUM
3026  BFD_RELOC_390_PLT32DBL
3027ENUMDOC
3028  32 bit PC rel. PLT shifted by 1.
3029ENUM
3030  BFD_RELOC_390_GOTPCDBL
3031ENUMDOC
3032  32 bit PC rel. GOT shifted by 1.
3033ENUM
3034  BFD_RELOC_390_GOT64
3035ENUMDOC
3036  64 bit GOT offset.
3037ENUM
3038  BFD_RELOC_390_PLT64
3039ENUMDOC
3040  64 bit PC relative PLT address.
3041ENUM
3042  BFD_RELOC_390_GOTENT
3043ENUMDOC
3044  32 bit rel. offset to GOT entry.
3045
3046ENUM
3047  BFD_RELOC_VTABLE_INHERIT
3048ENUMX
3049  BFD_RELOC_VTABLE_ENTRY
3050ENUMDOC
3051  These two relocations are used by the linker to determine which of
3052  the entries in a C++ virtual function table are actually used.  When
3053  the --gc-sections option is given, the linker will zero out the entries
3054  that are not used, so that the code for those functions need not be
3055  included in the output.
3056
3057  VTABLE_INHERIT is a zero-space relocation used to describe to the
3058  linker the inheritence tree of a C++ virtual function table.  The
3059  relocation's symbol should be the parent class' vtable, and the
3060  relocation should be located at the child vtable.
3061
3062  VTABLE_ENTRY is a zero-space relocation that describes the use of a
3063  virtual function table entry.  The reloc's symbol should refer to the
3064  table of the class mentioned in the code.  Off of that base, an offset
3065  describes the entry that is being used.  For Rela hosts, this offset
3066  is stored in the reloc's addend.  For Rel hosts, we are forced to put
3067  this offset in the reloc's section offset.
3068
3069ENUM
3070  BFD_RELOC_IA64_IMM14
3071ENUMX
3072  BFD_RELOC_IA64_IMM22
3073ENUMX
3074  BFD_RELOC_IA64_IMM64
3075ENUMX
3076  BFD_RELOC_IA64_DIR32MSB
3077ENUMX
3078  BFD_RELOC_IA64_DIR32LSB
3079ENUMX
3080  BFD_RELOC_IA64_DIR64MSB
3081ENUMX
3082  BFD_RELOC_IA64_DIR64LSB
3083ENUMX
3084  BFD_RELOC_IA64_GPREL22
3085ENUMX
3086  BFD_RELOC_IA64_GPREL64I
3087ENUMX
3088  BFD_RELOC_IA64_GPREL32MSB
3089ENUMX
3090  BFD_RELOC_IA64_GPREL32LSB
3091ENUMX
3092  BFD_RELOC_IA64_GPREL64MSB
3093ENUMX
3094  BFD_RELOC_IA64_GPREL64LSB
3095ENUMX
3096  BFD_RELOC_IA64_LTOFF22
3097ENUMX
3098  BFD_RELOC_IA64_LTOFF64I
3099ENUMX
3100  BFD_RELOC_IA64_PLTOFF22
3101ENUMX
3102  BFD_RELOC_IA64_PLTOFF64I
3103ENUMX
3104  BFD_RELOC_IA64_PLTOFF64MSB
3105ENUMX
3106  BFD_RELOC_IA64_PLTOFF64LSB
3107ENUMX
3108  BFD_RELOC_IA64_FPTR64I
3109ENUMX
3110  BFD_RELOC_IA64_FPTR32MSB
3111ENUMX
3112  BFD_RELOC_IA64_FPTR32LSB
3113ENUMX
3114  BFD_RELOC_IA64_FPTR64MSB
3115ENUMX
3116  BFD_RELOC_IA64_FPTR64LSB
3117ENUMX
3118  BFD_RELOC_IA64_PCREL21B
3119ENUMX
3120  BFD_RELOC_IA64_PCREL21BI
3121ENUMX
3122  BFD_RELOC_IA64_PCREL21M
3123ENUMX
3124  BFD_RELOC_IA64_PCREL21F
3125ENUMX
3126  BFD_RELOC_IA64_PCREL22
3127ENUMX
3128  BFD_RELOC_IA64_PCREL60B
3129ENUMX
3130  BFD_RELOC_IA64_PCREL64I
3131ENUMX
3132  BFD_RELOC_IA64_PCREL32MSB
3133ENUMX
3134  BFD_RELOC_IA64_PCREL32LSB
3135ENUMX
3136  BFD_RELOC_IA64_PCREL64MSB
3137ENUMX
3138  BFD_RELOC_IA64_PCREL64LSB
3139ENUMX
3140  BFD_RELOC_IA64_LTOFF_FPTR22
3141ENUMX
3142  BFD_RELOC_IA64_LTOFF_FPTR64I
3143ENUMX
3144  BFD_RELOC_IA64_LTOFF_FPTR32MSB
3145ENUMX
3146  BFD_RELOC_IA64_LTOFF_FPTR32LSB
3147ENUMX
3148  BFD_RELOC_IA64_LTOFF_FPTR64MSB
3149ENUMX
3150  BFD_RELOC_IA64_LTOFF_FPTR64LSB
3151ENUMX
3152  BFD_RELOC_IA64_SEGREL32MSB
3153ENUMX
3154  BFD_RELOC_IA64_SEGREL32LSB
3155ENUMX
3156  BFD_RELOC_IA64_SEGREL64MSB
3157ENUMX
3158  BFD_RELOC_IA64_SEGREL64LSB
3159ENUMX
3160  BFD_RELOC_IA64_SECREL32MSB
3161ENUMX
3162  BFD_RELOC_IA64_SECREL32LSB
3163ENUMX
3164  BFD_RELOC_IA64_SECREL64MSB
3165ENUMX
3166  BFD_RELOC_IA64_SECREL64LSB
3167ENUMX
3168  BFD_RELOC_IA64_REL32MSB
3169ENUMX
3170  BFD_RELOC_IA64_REL32LSB
3171ENUMX
3172  BFD_RELOC_IA64_REL64MSB
3173ENUMX
3174  BFD_RELOC_IA64_REL64LSB
3175ENUMX
3176  BFD_RELOC_IA64_LTV32MSB
3177ENUMX
3178  BFD_RELOC_IA64_LTV32LSB
3179ENUMX
3180  BFD_RELOC_IA64_LTV64MSB
3181ENUMX
3182  BFD_RELOC_IA64_LTV64LSB
3183ENUMX
3184  BFD_RELOC_IA64_IPLTMSB
3185ENUMX
3186  BFD_RELOC_IA64_IPLTLSB
3187ENUMX
3188  BFD_RELOC_IA64_COPY
3189ENUMX
3190  BFD_RELOC_IA64_TPREL22
3191ENUMX
3192  BFD_RELOC_IA64_TPREL64MSB
3193ENUMX
3194  BFD_RELOC_IA64_TPREL64LSB
3195ENUMX
3196  BFD_RELOC_IA64_LTOFF_TP22
3197ENUMX
3198  BFD_RELOC_IA64_LTOFF22X
3199ENUMX
3200  BFD_RELOC_IA64_LDXMOV
3201ENUMDOC
3202  Intel IA64 Relocations.
3203
3204ENUM
3205  BFD_RELOC_M68HC11_HI8
3206ENUMDOC
3207  Motorola 68HC11 reloc.
3208  This is the 8 bits high part of an absolute address.
3209ENUM
3210  BFD_RELOC_M68HC11_LO8
3211ENUMDOC
3212  Motorola 68HC11 reloc.
3213  This is the 8 bits low part of an absolute address.
3214ENUM
3215  BFD_RELOC_M68HC11_3B
3216ENUMDOC
3217  Motorola 68HC11 reloc.
3218  This is the 3 bits of a value.
3219
3220ENUM
3221  BFD_RELOC_CRIS_BDISP8
3222ENUMX
3223  BFD_RELOC_CRIS_UNSIGNED_5
3224ENUMX
3225  BFD_RELOC_CRIS_SIGNED_6
3226ENUMX
3227  BFD_RELOC_CRIS_UNSIGNED_6
3228ENUMX
3229  BFD_RELOC_CRIS_UNSIGNED_4
3230ENUMDOC
3231  These relocs are only used within the CRIS assembler.  They are not
3232  (at present) written to any object files.
3233ENUM
3234  BFD_RELOC_CRIS_COPY
3235ENUMX
3236  BFD_RELOC_CRIS_GLOB_DAT
3237ENUMX
3238  BFD_RELOC_CRIS_JUMP_SLOT
3239ENUMX
3240  BFD_RELOC_CRIS_RELATIVE
3241ENUMDOC
3242  Relocs used in ELF shared libraries for CRIS.
3243ENUM
3244  BFD_RELOC_CRIS_32_GOT
3245ENUMDOC
3246  32-bit offset to symbol-entry within GOT.
3247ENUM
3248  BFD_RELOC_CRIS_16_GOT
3249ENUMDOC
3250  16-bit offset to symbol-entry within GOT.
3251ENUM
3252  BFD_RELOC_CRIS_32_GOTPLT
3253ENUMDOC
3254  32-bit offset to symbol-entry within GOT, with PLT handling.
3255ENUM
3256  BFD_RELOC_CRIS_16_GOTPLT
3257ENUMDOC
3258  16-bit offset to symbol-entry within GOT, with PLT handling.
3259ENUM
3260  BFD_RELOC_CRIS_32_GOTREL
3261ENUMDOC
3262  32-bit offset to symbol, relative to GOT.
3263ENUM
3264  BFD_RELOC_CRIS_32_PLT_GOTREL
3265ENUMDOC
3266  32-bit offset to symbol with PLT entry, relative to GOT.
3267ENUM
3268  BFD_RELOC_CRIS_32_PLT_PCREL
3269ENUMDOC
3270  32-bit offset to symbol with PLT entry, relative to this relocation.
3271
3272ENUM
3273  BFD_RELOC_860_COPY
3274ENUMX
3275  BFD_RELOC_860_GLOB_DAT
3276ENUMX
3277  BFD_RELOC_860_JUMP_SLOT
3278ENUMX
3279  BFD_RELOC_860_RELATIVE
3280ENUMX
3281  BFD_RELOC_860_PC26
3282ENUMX
3283  BFD_RELOC_860_PLT26
3284ENUMX
3285  BFD_RELOC_860_PC16
3286ENUMX
3287  BFD_RELOC_860_LOW0
3288ENUMX
3289  BFD_RELOC_860_SPLIT0
3290ENUMX
3291  BFD_RELOC_860_LOW1
3292ENUMX
3293  BFD_RELOC_860_SPLIT1
3294ENUMX
3295  BFD_RELOC_860_LOW2
3296ENUMX
3297  BFD_RELOC_860_SPLIT2
3298ENUMX
3299  BFD_RELOC_860_LOW3
3300ENUMX
3301  BFD_RELOC_860_LOGOT0
3302ENUMX
3303  BFD_RELOC_860_SPGOT0
3304ENUMX
3305  BFD_RELOC_860_LOGOT1
3306ENUMX
3307  BFD_RELOC_860_SPGOT1
3308ENUMX
3309  BFD_RELOC_860_LOGOTOFF0
3310ENUMX
3311  BFD_RELOC_860_SPGOTOFF0
3312ENUMX
3313  BFD_RELOC_860_LOGOTOFF1
3314ENUMX
3315  BFD_RELOC_860_SPGOTOFF1
3316ENUMX
3317  BFD_RELOC_860_LOGOTOFF2
3318ENUMX
3319  BFD_RELOC_860_LOGOTOFF3
3320ENUMX
3321  BFD_RELOC_860_LOPC
3322ENUMX
3323  BFD_RELOC_860_HIGHADJ
3324ENUMX
3325  BFD_RELOC_860_HAGOT
3326ENUMX
3327  BFD_RELOC_860_HAGOTOFF
3328ENUMX
3329  BFD_RELOC_860_HAPC
3330ENUMX
3331  BFD_RELOC_860_HIGH
3332ENUMX
3333  BFD_RELOC_860_HIGOT
3334ENUMX
3335  BFD_RELOC_860_HIGOTOFF
3336ENUMDOC
3337  Intel i860 Relocations.
3338
3339ENUM
3340  BFD_RELOC_OPENRISC_ABS_26
3341ENUMX
3342  BFD_RELOC_OPENRISC_REL_26
3343ENUMDOC
3344  OpenRISC Relocations.
3345
3346ENUM
3347  BFD_RELOC_H8_DIR16A8
3348ENUMX
3349  BFD_RELOC_H8_DIR16R8
3350ENUMX
3351  BFD_RELOC_H8_DIR24A8
3352ENUMX
3353  BFD_RELOC_H8_DIR24R8
3354ENUMX
3355  BFD_RELOC_H8_DIR32A16
3356ENUMDOC
3357  H8 elf Relocations.
3358
3359ENUM
3360  BFD_RELOC_XSTORMY16_REL_12
3361ENUMX
3362  BFD_RELOC_XSTORMY16_24
3363ENUMX
3364  BFD_RELOC_XSTORMY16_FPTR16
3365ENUMDOC
3366  Sony Xstormy16 Relocations.
3367
3368ENDSENUM
3369  BFD_RELOC_UNUSED
3370CODE_FRAGMENT
3371.
3372.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3373*/
3374
3375/*
3376FUNCTION
3377	bfd_reloc_type_lookup
3378
3379SYNOPSIS
3380	reloc_howto_type *
3381	bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3382
3383DESCRIPTION
3384	Return a pointer to a howto structure which, when
3385	invoked, will perform the relocation @var{code} on data from the
3386	architecture noted.
3387
3388*/
3389
3390reloc_howto_type *
3391bfd_reloc_type_lookup (abfd, code)
3392     bfd *abfd;
3393     bfd_reloc_code_real_type code;
3394{
3395  return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3396}
3397
3398static reloc_howto_type bfd_howto_32 =
3399HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3400
3401/*
3402INTERNAL_FUNCTION
3403	bfd_default_reloc_type_lookup
3404
3405SYNOPSIS
3406	reloc_howto_type *bfd_default_reloc_type_lookup
3407	(bfd *abfd, bfd_reloc_code_real_type  code);
3408
3409DESCRIPTION
3410	Provides a default relocation lookup routine for any architecture.
3411
3412*/
3413
3414reloc_howto_type *
3415bfd_default_reloc_type_lookup (abfd, code)
3416     bfd *abfd;
3417     bfd_reloc_code_real_type code;
3418{
3419  switch (code)
3420    {
3421    case BFD_RELOC_CTOR:
3422      /* The type of reloc used in a ctor, which will be as wide as the
3423	 address - so either a 64, 32, or 16 bitter.  */
3424      switch (bfd_get_arch_info (abfd)->bits_per_address)
3425	{
3426	case 64:
3427	  BFD_FAIL ();
3428	case 32:
3429	  return &bfd_howto_32;
3430	case 16:
3431	  BFD_FAIL ();
3432	default:
3433	  BFD_FAIL ();
3434	}
3435    default:
3436      BFD_FAIL ();
3437    }
3438  return (reloc_howto_type *) NULL;
3439}
3440
3441/*
3442FUNCTION
3443	bfd_get_reloc_code_name
3444
3445SYNOPSIS
3446	const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3447
3448DESCRIPTION
3449	Provides a printable name for the supplied relocation code.
3450	Useful mainly for printing error messages.
3451*/
3452
3453const char *
3454bfd_get_reloc_code_name (code)
3455     bfd_reloc_code_real_type code;
3456{
3457  if (code > BFD_RELOC_UNUSED)
3458    return 0;
3459  return bfd_reloc_code_real_names[(int)code];
3460}
3461
3462/*
3463INTERNAL_FUNCTION
3464	bfd_generic_relax_section
3465
3466SYNOPSIS
3467	boolean bfd_generic_relax_section
3468	 (bfd *abfd,
3469	  asection *section,
3470	  struct bfd_link_info *,
3471	  boolean *);
3472
3473DESCRIPTION
3474	Provides default handling for relaxing for back ends which
3475	don't do relaxing -- i.e., does nothing.
3476*/
3477
3478boolean
3479bfd_generic_relax_section (abfd, section, link_info, again)
3480     bfd *abfd ATTRIBUTE_UNUSED;
3481     asection *section ATTRIBUTE_UNUSED;
3482     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3483     boolean *again;
3484{
3485  *again = false;
3486  return true;
3487}
3488
3489/*
3490INTERNAL_FUNCTION
3491	bfd_generic_gc_sections
3492
3493SYNOPSIS
3494	boolean bfd_generic_gc_sections
3495	 (bfd *, struct bfd_link_info *);
3496
3497DESCRIPTION
3498	Provides default handling for relaxing for back ends which
3499	don't do section gc -- i.e., does nothing.
3500*/
3501
3502boolean
3503bfd_generic_gc_sections (abfd, link_info)
3504     bfd *abfd ATTRIBUTE_UNUSED;
3505     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3506{
3507  return true;
3508}
3509
3510/*
3511INTERNAL_FUNCTION
3512	bfd_generic_merge_sections
3513
3514SYNOPSIS
3515	boolean bfd_generic_merge_sections
3516	 (bfd *, struct bfd_link_info *);
3517
3518DESCRIPTION
3519	Provides default handling for SEC_MERGE section merging for back ends
3520	which don't have SEC_MERGE support -- i.e., does nothing.
3521*/
3522
3523boolean
3524bfd_generic_merge_sections (abfd, link_info)
3525     bfd *abfd ATTRIBUTE_UNUSED;
3526     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3527{
3528  return true;
3529}
3530
3531/*
3532INTERNAL_FUNCTION
3533	bfd_generic_get_relocated_section_contents
3534
3535SYNOPSIS
3536	bfd_byte *
3537	   bfd_generic_get_relocated_section_contents (bfd *abfd,
3538	     struct bfd_link_info *link_info,
3539	     struct bfd_link_order *link_order,
3540	     bfd_byte *data,
3541	     boolean relocateable,
3542	     asymbol **symbols);
3543
3544DESCRIPTION
3545	Provides default handling of relocation effort for back ends
3546	which can't be bothered to do it efficiently.
3547
3548*/
3549
3550bfd_byte *
3551bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3552					    relocateable, symbols)
3553     bfd *abfd;
3554     struct bfd_link_info *link_info;
3555     struct bfd_link_order *link_order;
3556     bfd_byte *data;
3557     boolean relocateable;
3558     asymbol **symbols;
3559{
3560  /* Get enough memory to hold the stuff.  */
3561  bfd *input_bfd = link_order->u.indirect.section->owner;
3562  asection *input_section = link_order->u.indirect.section;
3563
3564  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3565  arelent **reloc_vector = NULL;
3566  long reloc_count;
3567
3568  if (reloc_size < 0)
3569    goto error_return;
3570
3571  reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
3572  if (reloc_vector == NULL && reloc_size != 0)
3573    goto error_return;
3574
3575  /* Read in the section.  */
3576  if (!bfd_get_section_contents (input_bfd,
3577				 input_section,
3578				 (PTR) data,
3579				 (bfd_vma) 0,
3580				 input_section->_raw_size))
3581    goto error_return;
3582
3583  /* We're not relaxing the section, so just copy the size info.  */
3584  input_section->_cooked_size = input_section->_raw_size;
3585  input_section->reloc_done = true;
3586
3587  reloc_count = bfd_canonicalize_reloc (input_bfd,
3588					input_section,
3589					reloc_vector,
3590					symbols);
3591  if (reloc_count < 0)
3592    goto error_return;
3593
3594  if (reloc_count > 0)
3595    {
3596      arelent **parent;
3597      for (parent = reloc_vector; *parent != (arelent *) NULL;
3598	   parent++)
3599	{
3600	  char *error_message = (char *) NULL;
3601	  bfd_reloc_status_type r =
3602	    bfd_perform_relocation (input_bfd,
3603				    *parent,
3604				    (PTR) data,
3605				    input_section,
3606				    relocateable ? abfd : (bfd *) NULL,
3607				    &error_message);
3608
3609	  if (relocateable)
3610	    {
3611	      asection *os = input_section->output_section;
3612
3613	      /* A partial link, so keep the relocs.  */
3614	      os->orelocation[os->reloc_count] = *parent;
3615	      os->reloc_count++;
3616	    }
3617
3618	  if (r != bfd_reloc_ok)
3619	    {
3620	      switch (r)
3621		{
3622		case bfd_reloc_undefined:
3623		  if (!((*link_info->callbacks->undefined_symbol)
3624			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3625			 input_bfd, input_section, (*parent)->address,
3626			 true)))
3627		    goto error_return;
3628		  break;
3629		case bfd_reloc_dangerous:
3630		  BFD_ASSERT (error_message != (char *) NULL);
3631		  if (!((*link_info->callbacks->reloc_dangerous)
3632			(link_info, error_message, input_bfd, input_section,
3633			 (*parent)->address)))
3634		    goto error_return;
3635		  break;
3636		case bfd_reloc_overflow:
3637		  if (!((*link_info->callbacks->reloc_overflow)
3638			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3639			 (*parent)->howto->name, (*parent)->addend,
3640			 input_bfd, input_section, (*parent)->address)))
3641		    goto error_return;
3642		  break;
3643		case bfd_reloc_outofrange:
3644		default:
3645		  abort ();
3646		  break;
3647		}
3648
3649	    }
3650	}
3651    }
3652  if (reloc_vector != NULL)
3653    free (reloc_vector);
3654  return data;
3655
3656error_return:
3657  if (reloc_vector != NULL)
3658    free (reloc_vector);
3659  return NULL;
3660}
3661