reloc.c revision 130562
1/* BFD support for handling relocation entries.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
23/*
24SECTION
25	Relocations
26
27	BFD maintains relocations in much the same way it maintains
28	symbols: they are left alone until required, then read in
29	en-masse and translated into an internal form.  A common
30	routine <<bfd_perform_relocation>> acts upon the
31	canonical form to do the fixup.
32
33	Relocations are maintained on a per section basis,
34	while symbols are maintained on a per BFD basis.
35
36	All that a back end has to do to fit the BFD interface is to create
37	a <<struct reloc_cache_entry>> for each relocation
38	in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h.  */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57	typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60	typedef arelent
61
62	This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
68.  {* No errors detected.  *}
69.  bfd_reloc_ok,
70.
71.  {* The relocation was performed, but there was an overflow.  *}
72.  bfd_reloc_overflow,
73.
74.  {* The address to relocate was not within the section supplied.  *}
75.  bfd_reloc_outofrange,
76.
77.  {* Used by special functions.  *}
78.  bfd_reloc_continue,
79.
80.  {* Unsupported relocation size requested.  *}
81.  bfd_reloc_notsupported,
82.
83.  {* Unused.  *}
84.  bfd_reloc_other,
85.
86.  {* The symbol to relocate against was undefined.  *}
87.  bfd_reloc_undefined,
88.
89.  {* The relocation was performed, but may not be ok - presently
90.     generated only when linking i960 coff files with i960 b.out
91.     symbols.  If this type is returned, the error_message argument
92.     to bfd_perform_relocation will be set.  *}
93.  bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
100.  {* A pointer into the canonical table of pointers.  *}
101.  struct bfd_symbol **sym_ptr_ptr;
102.
103.  {* offset in section.  *}
104.  bfd_size_type address;
105.
106.  {* addend for relocation value.  *}
107.  bfd_vma addend;
108.
109.  {* Pointer to how to perform the required relocation.  *}
110.  reloc_howto_type *howto;
111.
112.}
113.arelent;
114.
115*/
116
117/*
118DESCRIPTION
119
120        Here is a description of each of the fields within an <<arelent>>:
121
122        o <<sym_ptr_ptr>>
123
124        The symbol table pointer points to a pointer to the symbol
125        associated with the relocation request.  It is the pointer
126        into the table returned by the back end's
127        <<canonicalize_symtab>> action. @xref{Symbols}. The symbol is
128        referenced through a pointer to a pointer so that tools like
129        the linker can fix up all the symbols of the same name by
130        modifying only one pointer. The relocation routine looks in
131        the symbol and uses the base of the section the symbol is
132        attached to and the value of the symbol as the initial
133        relocation offset. If the symbol pointer is zero, then the
134        section provided is looked up.
135
136        o <<address>>
137
138        The <<address>> field gives the offset in bytes from the base of
139        the section data which owns the relocation record to the first
140        byte of relocatable information. The actual data relocated
141        will be relative to this point; for example, a relocation
142        type which modifies the bottom two bytes of a four byte word
143        would not touch the first byte pointed to in a big endian
144        world.
145
146	o <<addend>>
147
148	The <<addend>> is a value provided by the back end to be added (!)
149	to the relocation offset. Its interpretation is dependent upon
150	the howto. For example, on the 68k the code:
151
152|        char foo[];
153|        main()
154|                {
155|                return foo[0x12345678];
156|                }
157
158        Could be compiled into:
159
160|        linkw fp,#-4
161|        moveb @@#12345678,d0
162|        extbl d0
163|        unlk fp
164|        rts
165
166        This could create a reloc pointing to <<foo>>, but leave the
167        offset in the data, something like:
168
169|RELOCATION RECORDS FOR [.text]:
170|offset   type      value
171|00000006 32        _foo
172|
173|00000000 4e56 fffc          ; linkw fp,#-4
174|00000004 1039 1234 5678     ; moveb @@#12345678,d0
175|0000000a 49c0               ; extbl d0
176|0000000c 4e5e               ; unlk fp
177|0000000e 4e75               ; rts
178
179        Using coff and an 88k, some instructions don't have enough
180        space in them to represent the full address range, and
181        pointers have to be loaded in two parts. So you'd get something like:
182
183|        or.u     r13,r0,hi16(_foo+0x12345678)
184|        ld.b     r2,r13,lo16(_foo+0x12345678)
185|        jmp      r1
186
187        This should create two relocs, both pointing to <<_foo>>, and with
188        0x12340000 in their addend field. The data would consist of:
189
190|RELOCATION RECORDS FOR [.text]:
191|offset   type      value
192|00000002 HVRT16    _foo+0x12340000
193|00000006 LVRT16    _foo+0x12340000
194|
195|00000000 5da05678           ; or.u r13,r0,0x5678
196|00000004 1c4d5678           ; ld.b r2,r13,0x5678
197|00000008 f400c001           ; jmp r1
198
199        The relocation routine digs out the value from the data, adds
200        it to the addend to get the original offset, and then adds the
201        value of <<_foo>>. Note that all 32 bits have to be kept around
202        somewhere, to cope with carry from bit 15 to bit 16.
203
204        One further example is the sparc and the a.out format. The
205        sparc has a similar problem to the 88k, in that some
206        instructions don't have room for an entire offset, but on the
207        sparc the parts are created in odd sized lumps. The designers of
208        the a.out format chose to not use the data within the section
209        for storing part of the offset; all the offset is kept within
210        the reloc. Anything in the data should be ignored.
211
212|        save %sp,-112,%sp
213|        sethi %hi(_foo+0x12345678),%g2
214|        ldsb [%g2+%lo(_foo+0x12345678)],%i0
215|        ret
216|        restore
217
218        Both relocs contain a pointer to <<foo>>, and the offsets
219        contain junk.
220
221|RELOCATION RECORDS FOR [.text]:
222|offset   type      value
223|00000004 HI22      _foo+0x12345678
224|00000008 LO10      _foo+0x12345678
225|
226|00000000 9de3bf90     ; save %sp,-112,%sp
227|00000004 05000000     ; sethi %hi(_foo+0),%g2
228|00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
229|0000000c 81c7e008     ; ret
230|00000010 81e80000     ; restore
231
232        o <<howto>>
233
234        The <<howto>> field can be imagined as a
235        relocation instruction. It is a pointer to a structure which
236        contains information on what to do with all of the other
237        information in the reloc record and data section. A back end
238        would normally have a relocation instruction set and turn
239        relocations into pointers to the correct structure on input -
240        but it would be possible to create each howto field on demand.
241
242*/
243
244/*
245SUBSUBSECTION
246	<<enum complain_overflow>>
247
248	Indicates what sort of overflow checking should be done when
249	performing a relocation.
250
251CODE_FRAGMENT
252.
253.enum complain_overflow
254.{
255.  {* Do not complain on overflow.  *}
256.  complain_overflow_dont,
257.
258.  {* Complain if the bitfield overflows, whether it is considered
259.     as signed or unsigned.  *}
260.  complain_overflow_bitfield,
261.
262.  {* Complain if the value overflows when considered as signed
263.     number.  *}
264.  complain_overflow_signed,
265.
266.  {* Complain if the value overflows when considered as an
267.     unsigned number.  *}
268.  complain_overflow_unsigned
269.};
270
271*/
272
273/*
274SUBSUBSECTION
275        <<reloc_howto_type>>
276
277        The <<reloc_howto_type>> is a structure which contains all the
278        information that libbfd needs to know to tie up a back end's data.
279
280CODE_FRAGMENT
281.struct bfd_symbol;		{* Forward declaration.  *}
282.
283.struct reloc_howto_struct
284.{
285.  {*  The type field has mainly a documentary use - the back end can
286.      do what it wants with it, though normally the back end's
287.      external idea of what a reloc number is stored
288.      in this field.  For example, a PC relative word relocation
289.      in a coff environment has the type 023 - because that's
290.      what the outside world calls a R_PCRWORD reloc.  *}
291.  unsigned int type;
292.
293.  {*  The value the final relocation is shifted right by.  This drops
294.      unwanted data from the relocation.  *}
295.  unsigned int rightshift;
296.
297.  {*  The size of the item to be relocated.  This is *not* a
298.      power-of-two measure.  To get the number of bytes operated
299.      on by a type of relocation, use bfd_get_reloc_size.  *}
300.  int size;
301.
302.  {*  The number of bits in the item to be relocated.  This is used
303.      when doing overflow checking.  *}
304.  unsigned int bitsize;
305.
306.  {*  Notes that the relocation is relative to the location in the
307.      data section of the addend.  The relocation function will
308.      subtract from the relocation value the address of the location
309.      being relocated.  *}
310.  bfd_boolean pc_relative;
311.
312.  {*  The bit position of the reloc value in the destination.
313.      The relocated value is left shifted by this amount.  *}
314.  unsigned int bitpos;
315.
316.  {* What type of overflow error should be checked for when
317.     relocating.  *}
318.  enum complain_overflow complain_on_overflow;
319.
320.  {* If this field is non null, then the supplied function is
321.     called rather than the normal function.  This allows really
322.     strange relocation methods to be accommodated (e.g., i960 callj
323.     instructions).  *}
324.  bfd_reloc_status_type (*special_function)
325.    (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
326.     bfd *, char **);
327.
328.  {* The textual name of the relocation type.  *}
329.  char *name;
330.
331.  {* Some formats record a relocation addend in the section contents
332.     rather than with the relocation.  For ELF formats this is the
333.     distinction between USE_REL and USE_RELA (though the code checks
334.     for USE_REL == 1/0).  The value of this field is TRUE if the
335.     addend is recorded with the section contents; when performing a
336.     partial link (ld -r) the section contents (the data) will be
337.     modified.  The value of this field is FALSE if addends are
338.     recorded with the relocation (in arelent.addend); when performing
339.     a partial link the relocation will be modified.
340.     All relocations for all ELF USE_RELA targets should set this field
341.     to FALSE (values of TRUE should be looked on with suspicion).
342.     However, the converse is not true: not all relocations of all ELF
343.     USE_REL targets set this field to TRUE.  Why this is so is peculiar
344.     to each particular target.  For relocs that aren't used in partial
345.     links (e.g. GOT stuff) it doesn't matter what this is set to.  *}
346.  bfd_boolean partial_inplace;
347.
348.  {* src_mask selects the part of the instruction (or data) to be used
349.     in the relocation sum.  If the target relocations don't have an
350.     addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
351.     dst_mask to extract the addend from the section contents.  If
352.     relocations do have an addend in the reloc, eg. ELF USE_RELA, this
353.     field should be zero.  Non-zero values for ELF USE_RELA targets are
354.     bogus as in those cases the value in the dst_mask part of the
355.     section contents should be treated as garbage.  *}
356.  bfd_vma src_mask;
357.
358.  {* dst_mask selects which parts of the instruction (or data) are
359.     replaced with a relocated value.  *}
360.  bfd_vma dst_mask;
361.
362.  {* When some formats create PC relative instructions, they leave
363.     the value of the pc of the place being relocated in the offset
364.     slot of the instruction, so that a PC relative relocation can
365.     be made just by adding in an ordinary offset (e.g., sun3 a.out).
366.     Some formats leave the displacement part of an instruction
367.     empty (e.g., m88k bcs); this flag signals the fact.  *}
368.  bfd_boolean pcrel_offset;
369.};
370.
371*/
372
373/*
374FUNCTION
375	The HOWTO Macro
376
377DESCRIPTION
378	The HOWTO define is horrible and will go away.
379
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381.  { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
382
383DESCRIPTION
384	And will be replaced with the totally magic way. But for the
385	moment, we are compatible, so do it this way.
386
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388.  HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389.         NAME, FALSE, 0, 0, IN)
390.
391
392DESCRIPTION
393	This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
396.  HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
397.         NULL, FALSE, 0, 0, FALSE)
398.
399
400DESCRIPTION
401	Helper routine to turn a symbol into a relocation value.
402
403.#define HOWTO_PREPARE(relocation, symbol)               \
404.  {                                                     \
405.    if (symbol != NULL)                                 \
406.      {                                                 \
407.        if (bfd_is_com_section (symbol->section))       \
408.          {                                             \
409.            relocation = 0;                             \
410.          }                                             \
411.        else                                            \
412.          {                                             \
413.            relocation = symbol->value;                 \
414.          }                                             \
415.      }                                                 \
416.  }
417.
418*/
419
420/*
421FUNCTION
422	bfd_get_reloc_size
423
424SYNOPSIS
425	unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428	For a reloc_howto_type that operates on a fixed number of bytes,
429	this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (reloc_howto_type *howto)
434{
435  switch (howto->size)
436    {
437    case 0: return 1;
438    case 1: return 2;
439    case 2: return 4;
440    case 3: return 0;
441    case 4: return 8;
442    case 8: return 16;
443    case -2: return 4;
444    default: abort ();
445    }
446}
447
448/*
449TYPEDEF
450	arelent_chain
451
452DESCRIPTION
453
454	How relocs are tied together in an <<asection>>:
455
456.typedef struct relent_chain
457.{
458.  arelent relent;
459.  struct relent_chain *next;
460.}
461.arelent_chain;
462.
463*/
464
465/* N_ONES produces N one bits, without overflowing machine arithmetic.  */
466#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
467
468/*
469FUNCTION
470	bfd_check_overflow
471
472SYNOPSIS
473	bfd_reloc_status_type bfd_check_overflow
474	  (enum complain_overflow how,
475	   unsigned int bitsize,
476	   unsigned int rightshift,
477	   unsigned int addrsize,
478	   bfd_vma relocation);
479
480DESCRIPTION
481	Perform overflow checking on @var{relocation} which has
482	@var{bitsize} significant bits and will be shifted right by
483	@var{rightshift} bits, on a machine with addresses containing
484	@var{addrsize} significant bits.  The result is either of
485	@code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
486
487*/
488
489bfd_reloc_status_type
490bfd_check_overflow (enum complain_overflow how,
491		    unsigned int bitsize,
492		    unsigned int rightshift,
493		    unsigned int addrsize,
494		    bfd_vma relocation)
495{
496  bfd_vma fieldmask, addrmask, signmask, ss, a;
497  bfd_reloc_status_type flag = bfd_reloc_ok;
498
499  a = relocation;
500
501  /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
502     we'll be permissive: extra bits in the field mask will
503     automatically extend the address mask for purposes of the
504     overflow check.  */
505  fieldmask = N_ONES (bitsize);
506  addrmask = N_ONES (addrsize) | fieldmask;
507
508  switch (how)
509    {
510    case complain_overflow_dont:
511      break;
512
513    case complain_overflow_signed:
514      /* If any sign bits are set, all sign bits must be set.  That
515         is, A must be a valid negative address after shifting.  */
516      a = (a & addrmask) >> rightshift;
517      signmask = ~ (fieldmask >> 1);
518      ss = a & signmask;
519      if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
520	flag = bfd_reloc_overflow;
521      break;
522
523    case complain_overflow_unsigned:
524      /* We have an overflow if the address does not fit in the field.  */
525      a = (a & addrmask) >> rightshift;
526      if ((a & ~ fieldmask) != 0)
527	flag = bfd_reloc_overflow;
528      break;
529
530    case complain_overflow_bitfield:
531      /* Bitfields are sometimes signed, sometimes unsigned.  We
532	 explicitly allow an address wrap too, which means a bitfield
533	 of n bits is allowed to store -2**n to 2**n-1.  Thus overflow
534	 if the value has some, but not all, bits set outside the
535	 field.  */
536      a >>= rightshift;
537      ss = a & ~ fieldmask;
538      if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
539	flag = bfd_reloc_overflow;
540      break;
541
542    default:
543      abort ();
544    }
545
546  return flag;
547}
548
549/*
550FUNCTION
551	bfd_perform_relocation
552
553SYNOPSIS
554	bfd_reloc_status_type bfd_perform_relocation
555          (bfd *abfd,
556           arelent *reloc_entry,
557           void *data,
558           asection *input_section,
559           bfd *output_bfd,
560	   char **error_message);
561
562DESCRIPTION
563	If @var{output_bfd} is supplied to this function, the
564	generated image will be relocatable; the relocations are
565	copied to the output file after they have been changed to
566	reflect the new state of the world. There are two ways of
567	reflecting the results of partial linkage in an output file:
568	by modifying the output data in place, and by modifying the
569	relocation record.  Some native formats (e.g., basic a.out and
570	basic coff) have no way of specifying an addend in the
571	relocation type, so the addend has to go in the output data.
572	This is no big deal since in these formats the output data
573	slot will always be big enough for the addend. Complex reloc
574	types with addends were invented to solve just this problem.
575	The @var{error_message} argument is set to an error message if
576	this return @code{bfd_reloc_dangerous}.
577
578*/
579
580bfd_reloc_status_type
581bfd_perform_relocation (bfd *abfd,
582			arelent *reloc_entry,
583			void *data,
584			asection *input_section,
585			bfd *output_bfd,
586			char **error_message)
587{
588  bfd_vma relocation;
589  bfd_reloc_status_type flag = bfd_reloc_ok;
590  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
591  bfd_vma output_base = 0;
592  reloc_howto_type *howto = reloc_entry->howto;
593  asection *reloc_target_output_section;
594  asymbol *symbol;
595
596  symbol = *(reloc_entry->sym_ptr_ptr);
597  if (bfd_is_abs_section (symbol->section)
598      && output_bfd != NULL)
599    {
600      reloc_entry->address += input_section->output_offset;
601      return bfd_reloc_ok;
602    }
603
604  /* If we are not producing relocatable output, return an error if
605     the symbol is not defined.  An undefined weak symbol is
606     considered to have a value of zero (SVR4 ABI, p. 4-27).  */
607  if (bfd_is_und_section (symbol->section)
608      && (symbol->flags & BSF_WEAK) == 0
609      && output_bfd == NULL)
610    flag = bfd_reloc_undefined;
611
612  /* If there is a function supplied to handle this relocation type,
613     call it.  It'll return `bfd_reloc_continue' if further processing
614     can be done.  */
615  if (howto->special_function)
616    {
617      bfd_reloc_status_type cont;
618      cont = howto->special_function (abfd, reloc_entry, symbol, data,
619				      input_section, output_bfd,
620				      error_message);
621      if (cont != bfd_reloc_continue)
622	return cont;
623    }
624
625  /* Is the address of the relocation really within the section?  */
626  if (reloc_entry->address > (input_section->_cooked_size
627			      / bfd_octets_per_byte (abfd)))
628    return bfd_reloc_outofrange;
629
630  /* Work out which section the relocation is targeted at and the
631     initial relocation command value.  */
632
633  /* Get symbol value.  (Common symbols are special.)  */
634  if (bfd_is_com_section (symbol->section))
635    relocation = 0;
636  else
637    relocation = symbol->value;
638
639  reloc_target_output_section = symbol->section->output_section;
640
641  /* Convert input-section-relative symbol value to absolute.  */
642  if ((output_bfd && ! howto->partial_inplace)
643      || reloc_target_output_section == NULL)
644    output_base = 0;
645  else
646    output_base = reloc_target_output_section->vma;
647
648  relocation += output_base + symbol->section->output_offset;
649
650  /* Add in supplied addend.  */
651  relocation += reloc_entry->addend;
652
653  /* Here the variable relocation holds the final address of the
654     symbol we are relocating against, plus any addend.  */
655
656  if (howto->pc_relative)
657    {
658      /* This is a PC relative relocation.  We want to set RELOCATION
659	 to the distance between the address of the symbol and the
660	 location.  RELOCATION is already the address of the symbol.
661
662	 We start by subtracting the address of the section containing
663	 the location.
664
665	 If pcrel_offset is set, we must further subtract the position
666	 of the location within the section.  Some targets arrange for
667	 the addend to be the negative of the position of the location
668	 within the section; for example, i386-aout does this.  For
669	 i386-aout, pcrel_offset is FALSE.  Some other targets do not
670	 include the position of the location; for example, m88kbcs,
671	 or ELF.  For those targets, pcrel_offset is TRUE.
672
673	 If we are producing relocatable output, then we must ensure
674	 that this reloc will be correctly computed when the final
675	 relocation is done.  If pcrel_offset is FALSE we want to wind
676	 up with the negative of the location within the section,
677	 which means we must adjust the existing addend by the change
678	 in the location within the section.  If pcrel_offset is TRUE
679	 we do not want to adjust the existing addend at all.
680
681	 FIXME: This seems logical to me, but for the case of
682	 producing relocatable output it is not what the code
683	 actually does.  I don't want to change it, because it seems
684	 far too likely that something will break.  */
685
686      relocation -=
687	input_section->output_section->vma + input_section->output_offset;
688
689      if (howto->pcrel_offset)
690	relocation -= reloc_entry->address;
691    }
692
693  if (output_bfd != NULL)
694    {
695      if (! howto->partial_inplace)
696	{
697	  /* This is a partial relocation, and we want to apply the relocation
698	     to the reloc entry rather than the raw data. Modify the reloc
699	     inplace to reflect what we now know.  */
700	  reloc_entry->addend = relocation;
701	  reloc_entry->address += input_section->output_offset;
702	  return flag;
703	}
704      else
705	{
706	  /* This is a partial relocation, but inplace, so modify the
707	     reloc record a bit.
708
709	     If we've relocated with a symbol with a section, change
710	     into a ref to the section belonging to the symbol.  */
711
712	  reloc_entry->address += input_section->output_offset;
713
714	  /* WTF?? */
715	  if (abfd->xvec->flavour == bfd_target_coff_flavour
716	      && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
717	      && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
718	    {
719#if 1
720	      /* For m68k-coff, the addend was being subtracted twice during
721		 relocation with -r.  Removing the line below this comment
722		 fixes that problem; see PR 2953.
723
724However, Ian wrote the following, regarding removing the line below,
725which explains why it is still enabled:  --djm
726
727If you put a patch like that into BFD you need to check all the COFF
728linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
729SCO); see coff_i386_reloc in coff-i386.c where I worked around the
730problem in a different way.  There may very well be a reason that the
731code works as it does.
732
733Hmmm.  The first obvious point is that bfd_perform_relocation should
734not have any tests that depend upon the flavour.  It's seem like
735entirely the wrong place for such a thing.  The second obvious point
736is that the current code ignores the reloc addend when producing
737relocatable output for COFF.  That's peculiar.  In fact, I really
738have no idea what the point of the line you want to remove is.
739
740A typical COFF reloc subtracts the old value of the symbol and adds in
741the new value to the location in the object file (if it's a pc
742relative reloc it adds the difference between the symbol value and the
743location).  When relocating we need to preserve that property.
744
745BFD handles this by setting the addend to the negative of the old
746value of the symbol.  Unfortunately it handles common symbols in a
747non-standard way (it doesn't subtract the old value) but that's a
748different story (we can't change it without losing backward
749compatibility with old object files) (coff-i386 does subtract the old
750value, to be compatible with existing coff-i386 targets, like SCO).
751
752So everything works fine when not producing relocatable output.  When
753we are producing relocatable output, logically we should do exactly
754what we do when not producing relocatable output.  Therefore, your
755patch is correct.  In fact, it should probably always just set
756reloc_entry->addend to 0 for all cases, since it is, in fact, going to
757add the value into the object file.  This won't hurt the COFF code,
758which doesn't use the addend; I'm not sure what it will do to other
759formats (the thing to check for would be whether any formats both use
760the addend and set partial_inplace).
761
762When I wanted to make coff-i386 produce relocatable output, I ran
763into the problem that you are running into: I wanted to remove that
764line.  Rather than risk it, I made the coff-i386 relocs use a special
765function; it's coff_i386_reloc in coff-i386.c.  The function
766specifically adds the addend field into the object file, knowing that
767bfd_perform_relocation is not going to.  If you remove that line, then
768coff-i386.c will wind up adding the addend field in twice.  It's
769trivial to fix; it just needs to be done.
770
771The problem with removing the line is just that it may break some
772working code.  With BFD it's hard to be sure of anything.  The right
773way to deal with this is simply to build and test at least all the
774supported COFF targets.  It should be straightforward if time and disk
775space consuming.  For each target:
776    1) build the linker
777    2) generate some executable, and link it using -r (I would
778       probably use paranoia.o and link against newlib/libc.a, which
779       for all the supported targets would be available in
780       /usr/cygnus/progressive/H-host/target/lib/libc.a).
781    3) make the change to reloc.c
782    4) rebuild the linker
783    5) repeat step 2
784    6) if the resulting object files are the same, you have at least
785       made it no worse
786    7) if they are different you have to figure out which version is
787       right
788*/
789	      relocation -= reloc_entry->addend;
790#endif
791	      reloc_entry->addend = 0;
792	    }
793	  else
794	    {
795	      reloc_entry->addend = relocation;
796	    }
797	}
798    }
799  else
800    {
801      reloc_entry->addend = 0;
802    }
803
804  /* FIXME: This overflow checking is incomplete, because the value
805     might have overflowed before we get here.  For a correct check we
806     need to compute the value in a size larger than bitsize, but we
807     can't reasonably do that for a reloc the same size as a host
808     machine word.
809     FIXME: We should also do overflow checking on the result after
810     adding in the value contained in the object file.  */
811  if (howto->complain_on_overflow != complain_overflow_dont
812      && flag == bfd_reloc_ok)
813    flag = bfd_check_overflow (howto->complain_on_overflow,
814			       howto->bitsize,
815			       howto->rightshift,
816			       bfd_arch_bits_per_address (abfd),
817			       relocation);
818
819  /* Either we are relocating all the way, or we don't want to apply
820     the relocation to the reloc entry (probably because there isn't
821     any room in the output format to describe addends to relocs).  */
822
823  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
824     (OSF version 1.3, compiler version 3.11).  It miscompiles the
825     following program:
826
827     struct str
828     {
829       unsigned int i0;
830     } s = { 0 };
831
832     int
833     main ()
834     {
835       unsigned long x;
836
837       x = 0x100000000;
838       x <<= (unsigned long) s.i0;
839       if (x == 0)
840	 printf ("failed\n");
841       else
842	 printf ("succeeded (%lx)\n", x);
843     }
844     */
845
846  relocation >>= (bfd_vma) howto->rightshift;
847
848  /* Shift everything up to where it's going to be used.  */
849  relocation <<= (bfd_vma) howto->bitpos;
850
851  /* Wait for the day when all have the mask in them.  */
852
853  /* What we do:
854     i instruction to be left alone
855     o offset within instruction
856     r relocation offset to apply
857     S src mask
858     D dst mask
859     N ~dst mask
860     A part 1
861     B part 2
862     R result
863
864     Do this:
865     ((  i i i i i o o o o o  from bfd_get<size>
866     and           S S S S S) to get the size offset we want
867     +   r r r r r r r r r r) to get the final value to place
868     and           D D D D D  to chop to right size
869     -----------------------
870     =             A A A A A
871     And this:
872     (   i i i i i o o o o o  from bfd_get<size>
873     and N N N N N          ) get instruction
874     -----------------------
875     =   B B B B B
876
877     And then:
878     (   B B B B B
879     or            A A A A A)
880     -----------------------
881     =   R R R R R R R R R R  put into bfd_put<size>
882     */
883
884#define DOIT(x) \
885  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
886
887  switch (howto->size)
888    {
889    case 0:
890      {
891	char x = bfd_get_8 (abfd, (char *) data + octets);
892	DOIT (x);
893	bfd_put_8 (abfd, x, (unsigned char *) data + octets);
894      }
895      break;
896
897    case 1:
898      {
899	short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
900	DOIT (x);
901	bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
902      }
903      break;
904    case 2:
905      {
906	long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
907	DOIT (x);
908	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
909      }
910      break;
911    case -2:
912      {
913	long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
914	relocation = -relocation;
915	DOIT (x);
916	bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
917      }
918      break;
919
920    case -1:
921      {
922	long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
923	relocation = -relocation;
924	DOIT (x);
925	bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
926      }
927      break;
928
929    case 3:
930      /* Do nothing */
931      break;
932
933    case 4:
934#ifdef BFD64
935      {
936	bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
937	DOIT (x);
938	bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
939      }
940#else
941      abort ();
942#endif
943      break;
944    default:
945      return bfd_reloc_other;
946    }
947
948  return flag;
949}
950
951/*
952FUNCTION
953	bfd_install_relocation
954
955SYNOPSIS
956	bfd_reloc_status_type bfd_install_relocation
957          (bfd *abfd,
958           arelent *reloc_entry,
959           void *data, bfd_vma data_start,
960           asection *input_section,
961	   char **error_message);
962
963DESCRIPTION
964	This looks remarkably like <<bfd_perform_relocation>>, except it
965	does not expect that the section contents have been filled in.
966	I.e., it's suitable for use when creating, rather than applying
967	a relocation.
968
969	For now, this function should be considered reserved for the
970	assembler.
971*/
972
973bfd_reloc_status_type
974bfd_install_relocation (bfd *abfd,
975			arelent *reloc_entry,
976			void *data_start,
977			bfd_vma data_start_offset,
978			asection *input_section,
979			char **error_message)
980{
981  bfd_vma relocation;
982  bfd_reloc_status_type flag = bfd_reloc_ok;
983  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
984  bfd_vma output_base = 0;
985  reloc_howto_type *howto = reloc_entry->howto;
986  asection *reloc_target_output_section;
987  asymbol *symbol;
988  bfd_byte *data;
989
990  symbol = *(reloc_entry->sym_ptr_ptr);
991  if (bfd_is_abs_section (symbol->section))
992    {
993      reloc_entry->address += input_section->output_offset;
994      return bfd_reloc_ok;
995    }
996
997  /* If there is a function supplied to handle this relocation type,
998     call it.  It'll return `bfd_reloc_continue' if further processing
999     can be done.  */
1000  if (howto->special_function)
1001    {
1002      bfd_reloc_status_type cont;
1003
1004      /* XXX - The special_function calls haven't been fixed up to deal
1005	 with creating new relocations and section contents.  */
1006      cont = howto->special_function (abfd, reloc_entry, symbol,
1007				      /* XXX - Non-portable! */
1008				      ((bfd_byte *) data_start
1009				       - data_start_offset),
1010				      input_section, abfd, error_message);
1011      if (cont != bfd_reloc_continue)
1012	return cont;
1013    }
1014
1015  /* Is the address of the relocation really within the section?  */
1016  if (reloc_entry->address > (input_section->_cooked_size
1017			      / bfd_octets_per_byte (abfd)))
1018    return bfd_reloc_outofrange;
1019
1020  /* Work out which section the relocation is targeted at and the
1021     initial relocation command value.  */
1022
1023  /* Get symbol value.  (Common symbols are special.)  */
1024  if (bfd_is_com_section (symbol->section))
1025    relocation = 0;
1026  else
1027    relocation = symbol->value;
1028
1029  reloc_target_output_section = symbol->section->output_section;
1030
1031  /* Convert input-section-relative symbol value to absolute.  */
1032  if (! howto->partial_inplace)
1033    output_base = 0;
1034  else
1035    output_base = reloc_target_output_section->vma;
1036
1037  relocation += output_base + symbol->section->output_offset;
1038
1039  /* Add in supplied addend.  */
1040  relocation += reloc_entry->addend;
1041
1042  /* Here the variable relocation holds the final address of the
1043     symbol we are relocating against, plus any addend.  */
1044
1045  if (howto->pc_relative)
1046    {
1047      /* This is a PC relative relocation.  We want to set RELOCATION
1048	 to the distance between the address of the symbol and the
1049	 location.  RELOCATION is already the address of the symbol.
1050
1051	 We start by subtracting the address of the section containing
1052	 the location.
1053
1054	 If pcrel_offset is set, we must further subtract the position
1055	 of the location within the section.  Some targets arrange for
1056	 the addend to be the negative of the position of the location
1057	 within the section; for example, i386-aout does this.  For
1058	 i386-aout, pcrel_offset is FALSE.  Some other targets do not
1059	 include the position of the location; for example, m88kbcs,
1060	 or ELF.  For those targets, pcrel_offset is TRUE.
1061
1062	 If we are producing relocatable output, then we must ensure
1063	 that this reloc will be correctly computed when the final
1064	 relocation is done.  If pcrel_offset is FALSE we want to wind
1065	 up with the negative of the location within the section,
1066	 which means we must adjust the existing addend by the change
1067	 in the location within the section.  If pcrel_offset is TRUE
1068	 we do not want to adjust the existing addend at all.
1069
1070	 FIXME: This seems logical to me, but for the case of
1071	 producing relocatable output it is not what the code
1072	 actually does.  I don't want to change it, because it seems
1073	 far too likely that something will break.  */
1074
1075      relocation -=
1076	input_section->output_section->vma + input_section->output_offset;
1077
1078      if (howto->pcrel_offset && howto->partial_inplace)
1079	relocation -= reloc_entry->address;
1080    }
1081
1082  if (! howto->partial_inplace)
1083    {
1084      /* This is a partial relocation, and we want to apply the relocation
1085	 to the reloc entry rather than the raw data. Modify the reloc
1086	 inplace to reflect what we now know.  */
1087      reloc_entry->addend = relocation;
1088      reloc_entry->address += input_section->output_offset;
1089      return flag;
1090    }
1091  else
1092    {
1093      /* This is a partial relocation, but inplace, so modify the
1094	 reloc record a bit.
1095
1096	 If we've relocated with a symbol with a section, change
1097	 into a ref to the section belonging to the symbol.  */
1098      reloc_entry->address += input_section->output_offset;
1099
1100      /* WTF?? */
1101      if (abfd->xvec->flavour == bfd_target_coff_flavour
1102	  && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1103	  && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1104	{
1105#if 1
1106/* For m68k-coff, the addend was being subtracted twice during
1107   relocation with -r.  Removing the line below this comment
1108   fixes that problem; see PR 2953.
1109
1110However, Ian wrote the following, regarding removing the line below,
1111which explains why it is still enabled:  --djm
1112
1113If you put a patch like that into BFD you need to check all the COFF
1114linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
1115SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1116problem in a different way.  There may very well be a reason that the
1117code works as it does.
1118
1119Hmmm.  The first obvious point is that bfd_install_relocation should
1120not have any tests that depend upon the flavour.  It's seem like
1121entirely the wrong place for such a thing.  The second obvious point
1122is that the current code ignores the reloc addend when producing
1123relocatable output for COFF.  That's peculiar.  In fact, I really
1124have no idea what the point of the line you want to remove is.
1125
1126A typical COFF reloc subtracts the old value of the symbol and adds in
1127the new value to the location in the object file (if it's a pc
1128relative reloc it adds the difference between the symbol value and the
1129location).  When relocating we need to preserve that property.
1130
1131BFD handles this by setting the addend to the negative of the old
1132value of the symbol.  Unfortunately it handles common symbols in a
1133non-standard way (it doesn't subtract the old value) but that's a
1134different story (we can't change it without losing backward
1135compatibility with old object files) (coff-i386 does subtract the old
1136value, to be compatible with existing coff-i386 targets, like SCO).
1137
1138So everything works fine when not producing relocatable output.  When
1139we are producing relocatable output, logically we should do exactly
1140what we do when not producing relocatable output.  Therefore, your
1141patch is correct.  In fact, it should probably always just set
1142reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1143add the value into the object file.  This won't hurt the COFF code,
1144which doesn't use the addend; I'm not sure what it will do to other
1145formats (the thing to check for would be whether any formats both use
1146the addend and set partial_inplace).
1147
1148When I wanted to make coff-i386 produce relocatable output, I ran
1149into the problem that you are running into: I wanted to remove that
1150line.  Rather than risk it, I made the coff-i386 relocs use a special
1151function; it's coff_i386_reloc in coff-i386.c.  The function
1152specifically adds the addend field into the object file, knowing that
1153bfd_install_relocation is not going to.  If you remove that line, then
1154coff-i386.c will wind up adding the addend field in twice.  It's
1155trivial to fix; it just needs to be done.
1156
1157The problem with removing the line is just that it may break some
1158working code.  With BFD it's hard to be sure of anything.  The right
1159way to deal with this is simply to build and test at least all the
1160supported COFF targets.  It should be straightforward if time and disk
1161space consuming.  For each target:
1162    1) build the linker
1163    2) generate some executable, and link it using -r (I would
1164       probably use paranoia.o and link against newlib/libc.a, which
1165       for all the supported targets would be available in
1166       /usr/cygnus/progressive/H-host/target/lib/libc.a).
1167    3) make the change to reloc.c
1168    4) rebuild the linker
1169    5) repeat step 2
1170    6) if the resulting object files are the same, you have at least
1171       made it no worse
1172    7) if they are different you have to figure out which version is
1173       right.  */
1174	  relocation -= reloc_entry->addend;
1175#endif
1176	  reloc_entry->addend = 0;
1177	}
1178      else
1179	{
1180	  reloc_entry->addend = relocation;
1181	}
1182    }
1183
1184  /* FIXME: This overflow checking is incomplete, because the value
1185     might have overflowed before we get here.  For a correct check we
1186     need to compute the value in a size larger than bitsize, but we
1187     can't reasonably do that for a reloc the same size as a host
1188     machine word.
1189     FIXME: We should also do overflow checking on the result after
1190     adding in the value contained in the object file.  */
1191  if (howto->complain_on_overflow != complain_overflow_dont)
1192    flag = bfd_check_overflow (howto->complain_on_overflow,
1193			       howto->bitsize,
1194			       howto->rightshift,
1195			       bfd_arch_bits_per_address (abfd),
1196			       relocation);
1197
1198  /* Either we are relocating all the way, or we don't want to apply
1199     the relocation to the reloc entry (probably because there isn't
1200     any room in the output format to describe addends to relocs).  */
1201
1202  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1203     (OSF version 1.3, compiler version 3.11).  It miscompiles the
1204     following program:
1205
1206     struct str
1207     {
1208       unsigned int i0;
1209     } s = { 0 };
1210
1211     int
1212     main ()
1213     {
1214       unsigned long x;
1215
1216       x = 0x100000000;
1217       x <<= (unsigned long) s.i0;
1218       if (x == 0)
1219	 printf ("failed\n");
1220       else
1221	 printf ("succeeded (%lx)\n", x);
1222     }
1223     */
1224
1225  relocation >>= (bfd_vma) howto->rightshift;
1226
1227  /* Shift everything up to where it's going to be used.  */
1228  relocation <<= (bfd_vma) howto->bitpos;
1229
1230  /* Wait for the day when all have the mask in them.  */
1231
1232  /* What we do:
1233     i instruction to be left alone
1234     o offset within instruction
1235     r relocation offset to apply
1236     S src mask
1237     D dst mask
1238     N ~dst mask
1239     A part 1
1240     B part 2
1241     R result
1242
1243     Do this:
1244     ((  i i i i i o o o o o  from bfd_get<size>
1245     and           S S S S S) to get the size offset we want
1246     +   r r r r r r r r r r) to get the final value to place
1247     and           D D D D D  to chop to right size
1248     -----------------------
1249     =             A A A A A
1250     And this:
1251     (   i i i i i o o o o o  from bfd_get<size>
1252     and N N N N N          ) get instruction
1253     -----------------------
1254     =   B B B B B
1255
1256     And then:
1257     (   B B B B B
1258     or            A A A A A)
1259     -----------------------
1260     =   R R R R R R R R R R  put into bfd_put<size>
1261     */
1262
1263#define DOIT(x) \
1264  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
1265
1266  data = (bfd_byte *) data_start + (octets - data_start_offset);
1267
1268  switch (howto->size)
1269    {
1270    case 0:
1271      {
1272	char x = bfd_get_8 (abfd, data);
1273	DOIT (x);
1274	bfd_put_8 (abfd, x, data);
1275      }
1276      break;
1277
1278    case 1:
1279      {
1280	short x = bfd_get_16 (abfd, data);
1281	DOIT (x);
1282	bfd_put_16 (abfd, (bfd_vma) x, data);
1283      }
1284      break;
1285    case 2:
1286      {
1287	long x = bfd_get_32 (abfd, data);
1288	DOIT (x);
1289	bfd_put_32 (abfd, (bfd_vma) x, data);
1290      }
1291      break;
1292    case -2:
1293      {
1294	long x = bfd_get_32 (abfd, data);
1295	relocation = -relocation;
1296	DOIT (x);
1297	bfd_put_32 (abfd, (bfd_vma) x, data);
1298      }
1299      break;
1300
1301    case 3:
1302      /* Do nothing */
1303      break;
1304
1305    case 4:
1306      {
1307	bfd_vma x = bfd_get_64 (abfd, data);
1308	DOIT (x);
1309	bfd_put_64 (abfd, x, data);
1310      }
1311      break;
1312    default:
1313      return bfd_reloc_other;
1314    }
1315
1316  return flag;
1317}
1318
1319/* This relocation routine is used by some of the backend linkers.
1320   They do not construct asymbol or arelent structures, so there is no
1321   reason for them to use bfd_perform_relocation.  Also,
1322   bfd_perform_relocation is so hacked up it is easier to write a new
1323   function than to try to deal with it.
1324
1325   This routine does a final relocation.  Whether it is useful for a
1326   relocatable link depends upon how the object format defines
1327   relocations.
1328
1329   FIXME: This routine ignores any special_function in the HOWTO,
1330   since the existing special_function values have been written for
1331   bfd_perform_relocation.
1332
1333   HOWTO is the reloc howto information.
1334   INPUT_BFD is the BFD which the reloc applies to.
1335   INPUT_SECTION is the section which the reloc applies to.
1336   CONTENTS is the contents of the section.
1337   ADDRESS is the address of the reloc within INPUT_SECTION.
1338   VALUE is the value of the symbol the reloc refers to.
1339   ADDEND is the addend of the reloc.  */
1340
1341bfd_reloc_status_type
1342_bfd_final_link_relocate (reloc_howto_type *howto,
1343			  bfd *input_bfd,
1344			  asection *input_section,
1345			  bfd_byte *contents,
1346			  bfd_vma address,
1347			  bfd_vma value,
1348			  bfd_vma addend)
1349{
1350  bfd_vma relocation;
1351
1352  /* Sanity check the address.  */
1353  if (address > input_section->_raw_size)
1354    return bfd_reloc_outofrange;
1355
1356  /* This function assumes that we are dealing with a basic relocation
1357     against a symbol.  We want to compute the value of the symbol to
1358     relocate to.  This is just VALUE, the value of the symbol, plus
1359     ADDEND, any addend associated with the reloc.  */
1360  relocation = value + addend;
1361
1362  /* If the relocation is PC relative, we want to set RELOCATION to
1363     the distance between the symbol (currently in RELOCATION) and the
1364     location we are relocating.  Some targets (e.g., i386-aout)
1365     arrange for the contents of the section to be the negative of the
1366     offset of the location within the section; for such targets
1367     pcrel_offset is FALSE.  Other targets (e.g., m88kbcs or ELF)
1368     simply leave the contents of the section as zero; for such
1369     targets pcrel_offset is TRUE.  If pcrel_offset is FALSE we do not
1370     need to subtract out the offset of the location within the
1371     section (which is just ADDRESS).  */
1372  if (howto->pc_relative)
1373    {
1374      relocation -= (input_section->output_section->vma
1375		     + input_section->output_offset);
1376      if (howto->pcrel_offset)
1377	relocation -= address;
1378    }
1379
1380  return _bfd_relocate_contents (howto, input_bfd, relocation,
1381				 contents + address);
1382}
1383
1384/* Relocate a given location using a given value and howto.  */
1385
1386bfd_reloc_status_type
1387_bfd_relocate_contents (reloc_howto_type *howto,
1388			bfd *input_bfd,
1389			bfd_vma relocation,
1390			bfd_byte *location)
1391{
1392  int size;
1393  bfd_vma x = 0;
1394  bfd_reloc_status_type flag;
1395  unsigned int rightshift = howto->rightshift;
1396  unsigned int bitpos = howto->bitpos;
1397
1398  /* If the size is negative, negate RELOCATION.  This isn't very
1399     general.  */
1400  if (howto->size < 0)
1401    relocation = -relocation;
1402
1403  /* Get the value we are going to relocate.  */
1404  size = bfd_get_reloc_size (howto);
1405  switch (size)
1406    {
1407    default:
1408    case 0:
1409      abort ();
1410    case 1:
1411      x = bfd_get_8 (input_bfd, location);
1412      break;
1413    case 2:
1414      x = bfd_get_16 (input_bfd, location);
1415      break;
1416    case 4:
1417      x = bfd_get_32 (input_bfd, location);
1418      break;
1419    case 8:
1420#ifdef BFD64
1421      x = bfd_get_64 (input_bfd, location);
1422#else
1423      abort ();
1424#endif
1425      break;
1426    }
1427
1428  /* Check for overflow.  FIXME: We may drop bits during the addition
1429     which we don't check for.  We must either check at every single
1430     operation, which would be tedious, or we must do the computations
1431     in a type larger than bfd_vma, which would be inefficient.  */
1432  flag = bfd_reloc_ok;
1433  if (howto->complain_on_overflow != complain_overflow_dont)
1434    {
1435      bfd_vma addrmask, fieldmask, signmask, ss;
1436      bfd_vma a, b, sum;
1437
1438      /* Get the values to be added together.  For signed and unsigned
1439         relocations, we assume that all values should be truncated to
1440         the size of an address.  For bitfields, all the bits matter.
1441         See also bfd_check_overflow.  */
1442      fieldmask = N_ONES (howto->bitsize);
1443      addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1444      a = relocation;
1445      b = x & howto->src_mask;
1446
1447      switch (howto->complain_on_overflow)
1448	{
1449	case complain_overflow_signed:
1450	  a = (a & addrmask) >> rightshift;
1451
1452	  /* If any sign bits are set, all sign bits must be set.
1453	     That is, A must be a valid negative address after
1454	     shifting.  */
1455	  signmask = ~ (fieldmask >> 1);
1456	  ss = a & signmask;
1457	  if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1458	    flag = bfd_reloc_overflow;
1459
1460	  /* We only need this next bit of code if the sign bit of B
1461             is below the sign bit of A.  This would only happen if
1462             SRC_MASK had fewer bits than BITSIZE.  Note that if
1463             SRC_MASK has more bits than BITSIZE, we can get into
1464             trouble; we would need to verify that B is in range, as
1465             we do for A above.  */
1466	  signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1467
1468	  /* Set all the bits above the sign bit.  */
1469	  b = (b ^ signmask) - signmask;
1470
1471	  b = (b & addrmask) >> bitpos;
1472
1473	  /* Now we can do the addition.  */
1474	  sum = a + b;
1475
1476	  /* See if the result has the correct sign.  Bits above the
1477             sign bit are junk now; ignore them.  If the sum is
1478             positive, make sure we did not have all negative inputs;
1479             if the sum is negative, make sure we did not have all
1480             positive inputs.  The test below looks only at the sign
1481             bits, and it really just
1482	         SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1483	     */
1484	  signmask = (fieldmask >> 1) + 1;
1485	  if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1486	    flag = bfd_reloc_overflow;
1487
1488	  break;
1489
1490	case complain_overflow_unsigned:
1491	  /* Checking for an unsigned overflow is relatively easy:
1492             trim the addresses and add, and trim the result as well.
1493             Overflow is normally indicated when the result does not
1494             fit in the field.  However, we also need to consider the
1495             case when, e.g., fieldmask is 0x7fffffff or smaller, an
1496             input is 0x80000000, and bfd_vma is only 32 bits; then we
1497             will get sum == 0, but there is an overflow, since the
1498             inputs did not fit in the field.  Instead of doing a
1499             separate test, we can check for this by or-ing in the
1500             operands when testing for the sum overflowing its final
1501             field.  */
1502	  a = (a & addrmask) >> rightshift;
1503	  b = (b & addrmask) >> bitpos;
1504	  sum = (a + b) & addrmask;
1505	  if ((a | b | sum) & ~ fieldmask)
1506	    flag = bfd_reloc_overflow;
1507
1508	  break;
1509
1510	case complain_overflow_bitfield:
1511	  /* Much like the signed check, but for a field one bit
1512	     wider, and no trimming inputs with addrmask.  We allow a
1513	     bitfield to represent numbers in the range -2**n to
1514	     2**n-1, where n is the number of bits in the field.
1515	     Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1516	     overflow, which is exactly what we want.  */
1517	  a >>= rightshift;
1518
1519	  signmask = ~ fieldmask;
1520	  ss = a & signmask;
1521	  if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1522	    flag = bfd_reloc_overflow;
1523
1524	  signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1525	  b = (b ^ signmask) - signmask;
1526
1527	  b >>= bitpos;
1528
1529	  sum = a + b;
1530
1531	  /* We mask with addrmask here to explicitly allow an address
1532	     wrap-around.  The Linux kernel relies on it, and it is
1533	     the only way to write assembler code which can run when
1534	     loaded at a location 0x80000000 away from the location at
1535	     which it is linked.  */
1536	  signmask = fieldmask + 1;
1537	  if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1538	    flag = bfd_reloc_overflow;
1539
1540	  break;
1541
1542	default:
1543	  abort ();
1544	}
1545    }
1546
1547  /* Put RELOCATION in the right bits.  */
1548  relocation >>= (bfd_vma) rightshift;
1549  relocation <<= (bfd_vma) bitpos;
1550
1551  /* Add RELOCATION to the right bits of X.  */
1552  x = ((x & ~howto->dst_mask)
1553       | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1554
1555  /* Put the relocated value back in the object file.  */
1556  switch (size)
1557    {
1558    default:
1559    case 0:
1560      abort ();
1561    case 1:
1562      bfd_put_8 (input_bfd, x, location);
1563      break;
1564    case 2:
1565      bfd_put_16 (input_bfd, x, location);
1566      break;
1567    case 4:
1568      bfd_put_32 (input_bfd, x, location);
1569      break;
1570    case 8:
1571#ifdef BFD64
1572      bfd_put_64 (input_bfd, x, location);
1573#else
1574      abort ();
1575#endif
1576      break;
1577    }
1578
1579  return flag;
1580}
1581
1582/*
1583DOCDD
1584INODE
1585	howto manager,  , typedef arelent, Relocations
1586
1587SECTION
1588	The howto manager
1589
1590	When an application wants to create a relocation, but doesn't
1591	know what the target machine might call it, it can find out by
1592	using this bit of code.
1593
1594*/
1595
1596/*
1597TYPEDEF
1598	bfd_reloc_code_type
1599
1600DESCRIPTION
1601	The insides of a reloc code.  The idea is that, eventually, there
1602	will be one enumerator for every type of relocation we ever do.
1603	Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1604	return a howto pointer.
1605
1606	This does mean that the application must determine the correct
1607	enumerator value; you can't get a howto pointer from a random set
1608	of attributes.
1609
1610SENUM
1611   bfd_reloc_code_real
1612
1613ENUM
1614  BFD_RELOC_64
1615ENUMX
1616  BFD_RELOC_32
1617ENUMX
1618  BFD_RELOC_26
1619ENUMX
1620  BFD_RELOC_24
1621ENUMX
1622  BFD_RELOC_16
1623ENUMX
1624  BFD_RELOC_14
1625ENUMX
1626  BFD_RELOC_8
1627ENUMDOC
1628  Basic absolute relocations of N bits.
1629
1630ENUM
1631  BFD_RELOC_64_PCREL
1632ENUMX
1633  BFD_RELOC_32_PCREL
1634ENUMX
1635  BFD_RELOC_24_PCREL
1636ENUMX
1637  BFD_RELOC_16_PCREL
1638ENUMX
1639  BFD_RELOC_12_PCREL
1640ENUMX
1641  BFD_RELOC_8_PCREL
1642ENUMDOC
1643  PC-relative relocations.  Sometimes these are relative to the address
1644of the relocation itself; sometimes they are relative to the start of
1645the section containing the relocation.  It depends on the specific target.
1646
1647The 24-bit relocation is used in some Intel 960 configurations.
1648
1649ENUM
1650  BFD_RELOC_32_GOT_PCREL
1651ENUMX
1652  BFD_RELOC_16_GOT_PCREL
1653ENUMX
1654  BFD_RELOC_8_GOT_PCREL
1655ENUMX
1656  BFD_RELOC_32_GOTOFF
1657ENUMX
1658  BFD_RELOC_16_GOTOFF
1659ENUMX
1660  BFD_RELOC_LO16_GOTOFF
1661ENUMX
1662  BFD_RELOC_HI16_GOTOFF
1663ENUMX
1664  BFD_RELOC_HI16_S_GOTOFF
1665ENUMX
1666  BFD_RELOC_8_GOTOFF
1667ENUMX
1668  BFD_RELOC_64_PLT_PCREL
1669ENUMX
1670  BFD_RELOC_32_PLT_PCREL
1671ENUMX
1672  BFD_RELOC_24_PLT_PCREL
1673ENUMX
1674  BFD_RELOC_16_PLT_PCREL
1675ENUMX
1676  BFD_RELOC_8_PLT_PCREL
1677ENUMX
1678  BFD_RELOC_64_PLTOFF
1679ENUMX
1680  BFD_RELOC_32_PLTOFF
1681ENUMX
1682  BFD_RELOC_16_PLTOFF
1683ENUMX
1684  BFD_RELOC_LO16_PLTOFF
1685ENUMX
1686  BFD_RELOC_HI16_PLTOFF
1687ENUMX
1688  BFD_RELOC_HI16_S_PLTOFF
1689ENUMX
1690  BFD_RELOC_8_PLTOFF
1691ENUMDOC
1692  For ELF.
1693
1694ENUM
1695  BFD_RELOC_68K_GLOB_DAT
1696ENUMX
1697  BFD_RELOC_68K_JMP_SLOT
1698ENUMX
1699  BFD_RELOC_68K_RELATIVE
1700ENUMDOC
1701  Relocations used by 68K ELF.
1702
1703ENUM
1704  BFD_RELOC_32_BASEREL
1705ENUMX
1706  BFD_RELOC_16_BASEREL
1707ENUMX
1708  BFD_RELOC_LO16_BASEREL
1709ENUMX
1710  BFD_RELOC_HI16_BASEREL
1711ENUMX
1712  BFD_RELOC_HI16_S_BASEREL
1713ENUMX
1714  BFD_RELOC_8_BASEREL
1715ENUMX
1716  BFD_RELOC_RVA
1717ENUMDOC
1718  Linkage-table relative.
1719
1720ENUM
1721  BFD_RELOC_8_FFnn
1722ENUMDOC
1723  Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1724
1725ENUM
1726  BFD_RELOC_32_PCREL_S2
1727ENUMX
1728  BFD_RELOC_16_PCREL_S2
1729ENUMX
1730  BFD_RELOC_23_PCREL_S2
1731ENUMDOC
1732  These PC-relative relocations are stored as word displacements --
1733i.e., byte displacements shifted right two bits.  The 30-bit word
1734displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1735SPARC.  (SPARC tools generally refer to this as <<WDISP30>>.)  The
1736signed 16-bit displacement is used on the MIPS, and the 23-bit
1737displacement is used on the Alpha.
1738
1739ENUM
1740  BFD_RELOC_HI22
1741ENUMX
1742  BFD_RELOC_LO10
1743ENUMDOC
1744  High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1745the target word.  These are used on the SPARC.
1746
1747ENUM
1748  BFD_RELOC_GPREL16
1749ENUMX
1750  BFD_RELOC_GPREL32
1751ENUMDOC
1752  For systems that allocate a Global Pointer register, these are
1753displacements off that register.  These relocation types are
1754handled specially, because the value the register will have is
1755decided relatively late.
1756
1757ENUM
1758  BFD_RELOC_I960_CALLJ
1759ENUMDOC
1760  Reloc types used for i960/b.out.
1761
1762ENUM
1763  BFD_RELOC_NONE
1764ENUMX
1765  BFD_RELOC_SPARC_WDISP22
1766ENUMX
1767  BFD_RELOC_SPARC22
1768ENUMX
1769  BFD_RELOC_SPARC13
1770ENUMX
1771  BFD_RELOC_SPARC_GOT10
1772ENUMX
1773  BFD_RELOC_SPARC_GOT13
1774ENUMX
1775  BFD_RELOC_SPARC_GOT22
1776ENUMX
1777  BFD_RELOC_SPARC_PC10
1778ENUMX
1779  BFD_RELOC_SPARC_PC22
1780ENUMX
1781  BFD_RELOC_SPARC_WPLT30
1782ENUMX
1783  BFD_RELOC_SPARC_COPY
1784ENUMX
1785  BFD_RELOC_SPARC_GLOB_DAT
1786ENUMX
1787  BFD_RELOC_SPARC_JMP_SLOT
1788ENUMX
1789  BFD_RELOC_SPARC_RELATIVE
1790ENUMX
1791  BFD_RELOC_SPARC_UA16
1792ENUMX
1793  BFD_RELOC_SPARC_UA32
1794ENUMX
1795  BFD_RELOC_SPARC_UA64
1796ENUMDOC
1797  SPARC ELF relocations.  There is probably some overlap with other
1798  relocation types already defined.
1799
1800ENUM
1801  BFD_RELOC_SPARC_BASE13
1802ENUMX
1803  BFD_RELOC_SPARC_BASE22
1804ENUMDOC
1805  I think these are specific to SPARC a.out (e.g., Sun 4).
1806
1807ENUMEQ
1808  BFD_RELOC_SPARC_64
1809  BFD_RELOC_64
1810ENUMX
1811  BFD_RELOC_SPARC_10
1812ENUMX
1813  BFD_RELOC_SPARC_11
1814ENUMX
1815  BFD_RELOC_SPARC_OLO10
1816ENUMX
1817  BFD_RELOC_SPARC_HH22
1818ENUMX
1819  BFD_RELOC_SPARC_HM10
1820ENUMX
1821  BFD_RELOC_SPARC_LM22
1822ENUMX
1823  BFD_RELOC_SPARC_PC_HH22
1824ENUMX
1825  BFD_RELOC_SPARC_PC_HM10
1826ENUMX
1827  BFD_RELOC_SPARC_PC_LM22
1828ENUMX
1829  BFD_RELOC_SPARC_WDISP16
1830ENUMX
1831  BFD_RELOC_SPARC_WDISP19
1832ENUMX
1833  BFD_RELOC_SPARC_7
1834ENUMX
1835  BFD_RELOC_SPARC_6
1836ENUMX
1837  BFD_RELOC_SPARC_5
1838ENUMEQX
1839  BFD_RELOC_SPARC_DISP64
1840  BFD_RELOC_64_PCREL
1841ENUMX
1842  BFD_RELOC_SPARC_PLT32
1843ENUMX
1844  BFD_RELOC_SPARC_PLT64
1845ENUMX
1846  BFD_RELOC_SPARC_HIX22
1847ENUMX
1848  BFD_RELOC_SPARC_LOX10
1849ENUMX
1850  BFD_RELOC_SPARC_H44
1851ENUMX
1852  BFD_RELOC_SPARC_M44
1853ENUMX
1854  BFD_RELOC_SPARC_L44
1855ENUMX
1856  BFD_RELOC_SPARC_REGISTER
1857ENUMDOC
1858  SPARC64 relocations
1859
1860ENUM
1861  BFD_RELOC_SPARC_REV32
1862ENUMDOC
1863  SPARC little endian relocation
1864ENUM
1865  BFD_RELOC_SPARC_TLS_GD_HI22
1866ENUMX
1867  BFD_RELOC_SPARC_TLS_GD_LO10
1868ENUMX
1869  BFD_RELOC_SPARC_TLS_GD_ADD
1870ENUMX
1871  BFD_RELOC_SPARC_TLS_GD_CALL
1872ENUMX
1873  BFD_RELOC_SPARC_TLS_LDM_HI22
1874ENUMX
1875  BFD_RELOC_SPARC_TLS_LDM_LO10
1876ENUMX
1877  BFD_RELOC_SPARC_TLS_LDM_ADD
1878ENUMX
1879  BFD_RELOC_SPARC_TLS_LDM_CALL
1880ENUMX
1881  BFD_RELOC_SPARC_TLS_LDO_HIX22
1882ENUMX
1883  BFD_RELOC_SPARC_TLS_LDO_LOX10
1884ENUMX
1885  BFD_RELOC_SPARC_TLS_LDO_ADD
1886ENUMX
1887  BFD_RELOC_SPARC_TLS_IE_HI22
1888ENUMX
1889  BFD_RELOC_SPARC_TLS_IE_LO10
1890ENUMX
1891  BFD_RELOC_SPARC_TLS_IE_LD
1892ENUMX
1893  BFD_RELOC_SPARC_TLS_IE_LDX
1894ENUMX
1895  BFD_RELOC_SPARC_TLS_IE_ADD
1896ENUMX
1897  BFD_RELOC_SPARC_TLS_LE_HIX22
1898ENUMX
1899  BFD_RELOC_SPARC_TLS_LE_LOX10
1900ENUMX
1901  BFD_RELOC_SPARC_TLS_DTPMOD32
1902ENUMX
1903  BFD_RELOC_SPARC_TLS_DTPMOD64
1904ENUMX
1905  BFD_RELOC_SPARC_TLS_DTPOFF32
1906ENUMX
1907  BFD_RELOC_SPARC_TLS_DTPOFF64
1908ENUMX
1909  BFD_RELOC_SPARC_TLS_TPOFF32
1910ENUMX
1911  BFD_RELOC_SPARC_TLS_TPOFF64
1912ENUMDOC
1913  SPARC TLS relocations
1914
1915ENUM
1916  BFD_RELOC_ALPHA_GPDISP_HI16
1917ENUMDOC
1918  Alpha ECOFF and ELF relocations.  Some of these treat the symbol or
1919     "addend" in some special way.
1920  For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1921     writing; when reading, it will be the absolute section symbol.  The
1922     addend is the displacement in bytes of the "lda" instruction from
1923     the "ldah" instruction (which is at the address of this reloc).
1924ENUM
1925  BFD_RELOC_ALPHA_GPDISP_LO16
1926ENUMDOC
1927  For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1928     with GPDISP_HI16 relocs.  The addend is ignored when writing the
1929     relocations out, and is filled in with the file's GP value on
1930     reading, for convenience.
1931
1932ENUM
1933  BFD_RELOC_ALPHA_GPDISP
1934ENUMDOC
1935  The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1936     relocation except that there is no accompanying GPDISP_LO16
1937     relocation.
1938
1939ENUM
1940  BFD_RELOC_ALPHA_LITERAL
1941ENUMX
1942  BFD_RELOC_ALPHA_ELF_LITERAL
1943ENUMX
1944  BFD_RELOC_ALPHA_LITUSE
1945ENUMDOC
1946  The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1947     the assembler turns it into a LDQ instruction to load the address of
1948     the symbol, and then fills in a register in the real instruction.
1949
1950     The LITERAL reloc, at the LDQ instruction, refers to the .lita
1951     section symbol.  The addend is ignored when writing, but is filled
1952     in with the file's GP value on reading, for convenience, as with the
1953     GPDISP_LO16 reloc.
1954
1955     The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1956     It should refer to the symbol to be referenced, as with 16_GOTOFF,
1957     but it generates output not based on the position within the .got
1958     section, but relative to the GP value chosen for the file during the
1959     final link stage.
1960
1961     The LITUSE reloc, on the instruction using the loaded address, gives
1962     information to the linker that it might be able to use to optimize
1963     away some literal section references.  The symbol is ignored (read
1964     as the absolute section symbol), and the "addend" indicates the type
1965     of instruction using the register:
1966              1 - "memory" fmt insn
1967              2 - byte-manipulation (byte offset reg)
1968              3 - jsr (target of branch)
1969
1970ENUM
1971  BFD_RELOC_ALPHA_HINT
1972ENUMDOC
1973  The HINT relocation indicates a value that should be filled into the
1974     "hint" field of a jmp/jsr/ret instruction, for possible branch-
1975     prediction logic which may be provided on some processors.
1976
1977ENUM
1978  BFD_RELOC_ALPHA_LINKAGE
1979ENUMDOC
1980  The LINKAGE relocation outputs a linkage pair in the object file,
1981     which is filled by the linker.
1982
1983ENUM
1984  BFD_RELOC_ALPHA_CODEADDR
1985ENUMDOC
1986  The CODEADDR relocation outputs a STO_CA in the object file,
1987     which is filled by the linker.
1988
1989ENUM
1990  BFD_RELOC_ALPHA_GPREL_HI16
1991ENUMX
1992  BFD_RELOC_ALPHA_GPREL_LO16
1993ENUMDOC
1994  The GPREL_HI/LO relocations together form a 32-bit offset from the
1995     GP register.
1996
1997ENUM
1998  BFD_RELOC_ALPHA_BRSGP
1999ENUMDOC
2000  Like BFD_RELOC_23_PCREL_S2, except that the source and target must
2001  share a common GP, and the target address is adjusted for
2002  STO_ALPHA_STD_GPLOAD.
2003
2004ENUM
2005  BFD_RELOC_ALPHA_TLSGD
2006ENUMX
2007  BFD_RELOC_ALPHA_TLSLDM
2008ENUMX
2009  BFD_RELOC_ALPHA_DTPMOD64
2010ENUMX
2011  BFD_RELOC_ALPHA_GOTDTPREL16
2012ENUMX
2013  BFD_RELOC_ALPHA_DTPREL64
2014ENUMX
2015  BFD_RELOC_ALPHA_DTPREL_HI16
2016ENUMX
2017  BFD_RELOC_ALPHA_DTPREL_LO16
2018ENUMX
2019  BFD_RELOC_ALPHA_DTPREL16
2020ENUMX
2021  BFD_RELOC_ALPHA_GOTTPREL16
2022ENUMX
2023  BFD_RELOC_ALPHA_TPREL64
2024ENUMX
2025  BFD_RELOC_ALPHA_TPREL_HI16
2026ENUMX
2027  BFD_RELOC_ALPHA_TPREL_LO16
2028ENUMX
2029  BFD_RELOC_ALPHA_TPREL16
2030ENUMDOC
2031  Alpha thread-local storage relocations.
2032
2033ENUM
2034  BFD_RELOC_MIPS_JMP
2035ENUMDOC
2036  Bits 27..2 of the relocation address shifted right 2 bits;
2037     simple reloc otherwise.
2038
2039ENUM
2040  BFD_RELOC_MIPS16_JMP
2041ENUMDOC
2042  The MIPS16 jump instruction.
2043
2044ENUM
2045  BFD_RELOC_MIPS16_GPREL
2046ENUMDOC
2047  MIPS16 GP relative reloc.
2048
2049ENUM
2050  BFD_RELOC_HI16
2051ENUMDOC
2052  High 16 bits of 32-bit value; simple reloc.
2053ENUM
2054  BFD_RELOC_HI16_S
2055ENUMDOC
2056  High 16 bits of 32-bit value but the low 16 bits will be sign
2057     extended and added to form the final result.  If the low 16
2058     bits form a negative number, we need to add one to the high value
2059     to compensate for the borrow when the low bits are added.
2060ENUM
2061  BFD_RELOC_LO16
2062ENUMDOC
2063  Low 16 bits.
2064ENUM
2065  BFD_RELOC_PCREL_HI16_S
2066ENUMDOC
2067  Like BFD_RELOC_HI16_S, but PC relative.
2068ENUM
2069  BFD_RELOC_PCREL_LO16
2070ENUMDOC
2071  Like BFD_RELOC_LO16, but PC relative.
2072
2073ENUM
2074  BFD_RELOC_MIPS_LITERAL
2075ENUMDOC
2076  Relocation against a MIPS literal section.
2077
2078ENUM
2079  BFD_RELOC_MIPS_GOT16
2080ENUMX
2081  BFD_RELOC_MIPS_CALL16
2082ENUMX
2083  BFD_RELOC_MIPS_GOT_HI16
2084ENUMX
2085  BFD_RELOC_MIPS_GOT_LO16
2086ENUMX
2087  BFD_RELOC_MIPS_CALL_HI16
2088ENUMX
2089  BFD_RELOC_MIPS_CALL_LO16
2090ENUMX
2091  BFD_RELOC_MIPS_SUB
2092ENUMX
2093  BFD_RELOC_MIPS_GOT_PAGE
2094ENUMX
2095  BFD_RELOC_MIPS_GOT_OFST
2096ENUMX
2097  BFD_RELOC_MIPS_GOT_DISP
2098ENUMX
2099  BFD_RELOC_MIPS_SHIFT5
2100ENUMX
2101  BFD_RELOC_MIPS_SHIFT6
2102ENUMX
2103  BFD_RELOC_MIPS_INSERT_A
2104ENUMX
2105  BFD_RELOC_MIPS_INSERT_B
2106ENUMX
2107  BFD_RELOC_MIPS_DELETE
2108ENUMX
2109  BFD_RELOC_MIPS_HIGHEST
2110ENUMX
2111  BFD_RELOC_MIPS_HIGHER
2112ENUMX
2113  BFD_RELOC_MIPS_SCN_DISP
2114ENUMX
2115  BFD_RELOC_MIPS_REL16
2116ENUMX
2117  BFD_RELOC_MIPS_RELGOT
2118ENUMX
2119  BFD_RELOC_MIPS_JALR
2120ENUMDOC
2121  MIPS ELF relocations.
2122COMMENT
2123
2124ENUM
2125  BFD_RELOC_FRV_LABEL16
2126ENUMX
2127  BFD_RELOC_FRV_LABEL24
2128ENUMX
2129  BFD_RELOC_FRV_LO16
2130ENUMX
2131  BFD_RELOC_FRV_HI16
2132ENUMX
2133  BFD_RELOC_FRV_GPREL12
2134ENUMX
2135  BFD_RELOC_FRV_GPRELU12
2136ENUMX
2137  BFD_RELOC_FRV_GPREL32
2138ENUMX
2139  BFD_RELOC_FRV_GPRELHI
2140ENUMX
2141  BFD_RELOC_FRV_GPRELLO
2142ENUMX
2143  BFD_RELOC_FRV_GOT12
2144ENUMX
2145  BFD_RELOC_FRV_GOTHI
2146ENUMX
2147  BFD_RELOC_FRV_GOTLO
2148ENUMX
2149  BFD_RELOC_FRV_FUNCDESC
2150ENUMX
2151  BFD_RELOC_FRV_FUNCDESC_GOT12
2152ENUMX
2153  BFD_RELOC_FRV_FUNCDESC_GOTHI
2154ENUMX
2155  BFD_RELOC_FRV_FUNCDESC_GOTLO
2156ENUMX
2157  BFD_RELOC_FRV_FUNCDESC_VALUE
2158ENUMX
2159  BFD_RELOC_FRV_FUNCDESC_GOTOFF12
2160ENUMX
2161  BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
2162ENUMX
2163  BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
2164ENUMX
2165  BFD_RELOC_FRV_GOTOFF12
2166ENUMX
2167  BFD_RELOC_FRV_GOTOFFHI
2168ENUMX
2169  BFD_RELOC_FRV_GOTOFFLO
2170ENUMDOC
2171  Fujitsu Frv Relocations.
2172COMMENT
2173
2174ENUM
2175  BFD_RELOC_MN10300_GOTOFF24
2176ENUMDOC
2177  This is a 24bit GOT-relative reloc for the mn10300.
2178ENUM
2179  BFD_RELOC_MN10300_GOT32
2180ENUMDOC
2181  This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes
2182  in the instruction.
2183ENUM
2184  BFD_RELOC_MN10300_GOT24
2185ENUMDOC
2186  This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes
2187  in the instruction.
2188ENUM
2189  BFD_RELOC_MN10300_GOT16
2190ENUMDOC
2191  This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes
2192  in the instruction.
2193ENUM
2194  BFD_RELOC_MN10300_COPY
2195ENUMDOC
2196  Copy symbol at runtime.
2197ENUM
2198  BFD_RELOC_MN10300_GLOB_DAT
2199ENUMDOC
2200  Create GOT entry.
2201ENUM
2202  BFD_RELOC_MN10300_JMP_SLOT
2203ENUMDOC
2204  Create PLT entry.
2205ENUM
2206  BFD_RELOC_MN10300_RELATIVE
2207ENUMDOC
2208  Adjust by program base.
2209COMMENT
2210
2211ENUM
2212  BFD_RELOC_386_GOT32
2213ENUMX
2214  BFD_RELOC_386_PLT32
2215ENUMX
2216  BFD_RELOC_386_COPY
2217ENUMX
2218  BFD_RELOC_386_GLOB_DAT
2219ENUMX
2220  BFD_RELOC_386_JUMP_SLOT
2221ENUMX
2222  BFD_RELOC_386_RELATIVE
2223ENUMX
2224  BFD_RELOC_386_GOTOFF
2225ENUMX
2226  BFD_RELOC_386_GOTPC
2227ENUMX
2228  BFD_RELOC_386_TLS_TPOFF
2229ENUMX
2230  BFD_RELOC_386_TLS_IE
2231ENUMX
2232  BFD_RELOC_386_TLS_GOTIE
2233ENUMX
2234  BFD_RELOC_386_TLS_LE
2235ENUMX
2236  BFD_RELOC_386_TLS_GD
2237ENUMX
2238  BFD_RELOC_386_TLS_LDM
2239ENUMX
2240  BFD_RELOC_386_TLS_LDO_32
2241ENUMX
2242  BFD_RELOC_386_TLS_IE_32
2243ENUMX
2244  BFD_RELOC_386_TLS_LE_32
2245ENUMX
2246  BFD_RELOC_386_TLS_DTPMOD32
2247ENUMX
2248  BFD_RELOC_386_TLS_DTPOFF32
2249ENUMX
2250  BFD_RELOC_386_TLS_TPOFF32
2251ENUMDOC
2252  i386/elf relocations
2253
2254ENUM
2255  BFD_RELOC_X86_64_GOT32
2256ENUMX
2257  BFD_RELOC_X86_64_PLT32
2258ENUMX
2259  BFD_RELOC_X86_64_COPY
2260ENUMX
2261  BFD_RELOC_X86_64_GLOB_DAT
2262ENUMX
2263  BFD_RELOC_X86_64_JUMP_SLOT
2264ENUMX
2265  BFD_RELOC_X86_64_RELATIVE
2266ENUMX
2267  BFD_RELOC_X86_64_GOTPCREL
2268ENUMX
2269  BFD_RELOC_X86_64_32S
2270ENUMX
2271  BFD_RELOC_X86_64_DTPMOD64
2272ENUMX
2273  BFD_RELOC_X86_64_DTPOFF64
2274ENUMX
2275  BFD_RELOC_X86_64_TPOFF64
2276ENUMX
2277  BFD_RELOC_X86_64_TLSGD
2278ENUMX
2279  BFD_RELOC_X86_64_TLSLD
2280ENUMX
2281  BFD_RELOC_X86_64_DTPOFF32
2282ENUMX
2283  BFD_RELOC_X86_64_GOTTPOFF
2284ENUMX
2285  BFD_RELOC_X86_64_TPOFF32
2286ENUMDOC
2287  x86-64/elf relocations
2288
2289ENUM
2290  BFD_RELOC_NS32K_IMM_8
2291ENUMX
2292  BFD_RELOC_NS32K_IMM_16
2293ENUMX
2294  BFD_RELOC_NS32K_IMM_32
2295ENUMX
2296  BFD_RELOC_NS32K_IMM_8_PCREL
2297ENUMX
2298  BFD_RELOC_NS32K_IMM_16_PCREL
2299ENUMX
2300  BFD_RELOC_NS32K_IMM_32_PCREL
2301ENUMX
2302  BFD_RELOC_NS32K_DISP_8
2303ENUMX
2304  BFD_RELOC_NS32K_DISP_16
2305ENUMX
2306  BFD_RELOC_NS32K_DISP_32
2307ENUMX
2308  BFD_RELOC_NS32K_DISP_8_PCREL
2309ENUMX
2310  BFD_RELOC_NS32K_DISP_16_PCREL
2311ENUMX
2312  BFD_RELOC_NS32K_DISP_32_PCREL
2313ENUMDOC
2314  ns32k relocations
2315
2316ENUM
2317  BFD_RELOC_PDP11_DISP_8_PCREL
2318ENUMX
2319  BFD_RELOC_PDP11_DISP_6_PCREL
2320ENUMDOC
2321  PDP11 relocations
2322
2323ENUM
2324  BFD_RELOC_PJ_CODE_HI16
2325ENUMX
2326  BFD_RELOC_PJ_CODE_LO16
2327ENUMX
2328  BFD_RELOC_PJ_CODE_DIR16
2329ENUMX
2330  BFD_RELOC_PJ_CODE_DIR32
2331ENUMX
2332  BFD_RELOC_PJ_CODE_REL16
2333ENUMX
2334  BFD_RELOC_PJ_CODE_REL32
2335ENUMDOC
2336  Picojava relocs.  Not all of these appear in object files.
2337
2338ENUM
2339  BFD_RELOC_PPC_B26
2340ENUMX
2341  BFD_RELOC_PPC_BA26
2342ENUMX
2343  BFD_RELOC_PPC_TOC16
2344ENUMX
2345  BFD_RELOC_PPC_B16
2346ENUMX
2347  BFD_RELOC_PPC_B16_BRTAKEN
2348ENUMX
2349  BFD_RELOC_PPC_B16_BRNTAKEN
2350ENUMX
2351  BFD_RELOC_PPC_BA16
2352ENUMX
2353  BFD_RELOC_PPC_BA16_BRTAKEN
2354ENUMX
2355  BFD_RELOC_PPC_BA16_BRNTAKEN
2356ENUMX
2357  BFD_RELOC_PPC_COPY
2358ENUMX
2359  BFD_RELOC_PPC_GLOB_DAT
2360ENUMX
2361  BFD_RELOC_PPC_JMP_SLOT
2362ENUMX
2363  BFD_RELOC_PPC_RELATIVE
2364ENUMX
2365  BFD_RELOC_PPC_LOCAL24PC
2366ENUMX
2367  BFD_RELOC_PPC_EMB_NADDR32
2368ENUMX
2369  BFD_RELOC_PPC_EMB_NADDR16
2370ENUMX
2371  BFD_RELOC_PPC_EMB_NADDR16_LO
2372ENUMX
2373  BFD_RELOC_PPC_EMB_NADDR16_HI
2374ENUMX
2375  BFD_RELOC_PPC_EMB_NADDR16_HA
2376ENUMX
2377  BFD_RELOC_PPC_EMB_SDAI16
2378ENUMX
2379  BFD_RELOC_PPC_EMB_SDA2I16
2380ENUMX
2381  BFD_RELOC_PPC_EMB_SDA2REL
2382ENUMX
2383  BFD_RELOC_PPC_EMB_SDA21
2384ENUMX
2385  BFD_RELOC_PPC_EMB_MRKREF
2386ENUMX
2387  BFD_RELOC_PPC_EMB_RELSEC16
2388ENUMX
2389  BFD_RELOC_PPC_EMB_RELST_LO
2390ENUMX
2391  BFD_RELOC_PPC_EMB_RELST_HI
2392ENUMX
2393  BFD_RELOC_PPC_EMB_RELST_HA
2394ENUMX
2395  BFD_RELOC_PPC_EMB_BIT_FLD
2396ENUMX
2397  BFD_RELOC_PPC_EMB_RELSDA
2398ENUMX
2399  BFD_RELOC_PPC64_HIGHER
2400ENUMX
2401  BFD_RELOC_PPC64_HIGHER_S
2402ENUMX
2403  BFD_RELOC_PPC64_HIGHEST
2404ENUMX
2405  BFD_RELOC_PPC64_HIGHEST_S
2406ENUMX
2407  BFD_RELOC_PPC64_TOC16_LO
2408ENUMX
2409  BFD_RELOC_PPC64_TOC16_HI
2410ENUMX
2411  BFD_RELOC_PPC64_TOC16_HA
2412ENUMX
2413  BFD_RELOC_PPC64_TOC
2414ENUMX
2415  BFD_RELOC_PPC64_PLTGOT16
2416ENUMX
2417  BFD_RELOC_PPC64_PLTGOT16_LO
2418ENUMX
2419  BFD_RELOC_PPC64_PLTGOT16_HI
2420ENUMX
2421  BFD_RELOC_PPC64_PLTGOT16_HA
2422ENUMX
2423  BFD_RELOC_PPC64_ADDR16_DS
2424ENUMX
2425  BFD_RELOC_PPC64_ADDR16_LO_DS
2426ENUMX
2427  BFD_RELOC_PPC64_GOT16_DS
2428ENUMX
2429  BFD_RELOC_PPC64_GOT16_LO_DS
2430ENUMX
2431  BFD_RELOC_PPC64_PLT16_LO_DS
2432ENUMX
2433  BFD_RELOC_PPC64_SECTOFF_DS
2434ENUMX
2435  BFD_RELOC_PPC64_SECTOFF_LO_DS
2436ENUMX
2437  BFD_RELOC_PPC64_TOC16_DS
2438ENUMX
2439  BFD_RELOC_PPC64_TOC16_LO_DS
2440ENUMX
2441  BFD_RELOC_PPC64_PLTGOT16_DS
2442ENUMX
2443  BFD_RELOC_PPC64_PLTGOT16_LO_DS
2444ENUMDOC
2445  Power(rs6000) and PowerPC relocations.
2446
2447ENUM
2448  BFD_RELOC_PPC_TLS
2449ENUMX
2450  BFD_RELOC_PPC_DTPMOD
2451ENUMX
2452  BFD_RELOC_PPC_TPREL16
2453ENUMX
2454  BFD_RELOC_PPC_TPREL16_LO
2455ENUMX
2456  BFD_RELOC_PPC_TPREL16_HI
2457ENUMX
2458  BFD_RELOC_PPC_TPREL16_HA
2459ENUMX
2460  BFD_RELOC_PPC_TPREL
2461ENUMX
2462  BFD_RELOC_PPC_DTPREL16
2463ENUMX
2464  BFD_RELOC_PPC_DTPREL16_LO
2465ENUMX
2466  BFD_RELOC_PPC_DTPREL16_HI
2467ENUMX
2468  BFD_RELOC_PPC_DTPREL16_HA
2469ENUMX
2470  BFD_RELOC_PPC_DTPREL
2471ENUMX
2472  BFD_RELOC_PPC_GOT_TLSGD16
2473ENUMX
2474  BFD_RELOC_PPC_GOT_TLSGD16_LO
2475ENUMX
2476  BFD_RELOC_PPC_GOT_TLSGD16_HI
2477ENUMX
2478  BFD_RELOC_PPC_GOT_TLSGD16_HA
2479ENUMX
2480  BFD_RELOC_PPC_GOT_TLSLD16
2481ENUMX
2482  BFD_RELOC_PPC_GOT_TLSLD16_LO
2483ENUMX
2484  BFD_RELOC_PPC_GOT_TLSLD16_HI
2485ENUMX
2486  BFD_RELOC_PPC_GOT_TLSLD16_HA
2487ENUMX
2488  BFD_RELOC_PPC_GOT_TPREL16
2489ENUMX
2490  BFD_RELOC_PPC_GOT_TPREL16_LO
2491ENUMX
2492  BFD_RELOC_PPC_GOT_TPREL16_HI
2493ENUMX
2494  BFD_RELOC_PPC_GOT_TPREL16_HA
2495ENUMX
2496  BFD_RELOC_PPC_GOT_DTPREL16
2497ENUMX
2498  BFD_RELOC_PPC_GOT_DTPREL16_LO
2499ENUMX
2500  BFD_RELOC_PPC_GOT_DTPREL16_HI
2501ENUMX
2502  BFD_RELOC_PPC_GOT_DTPREL16_HA
2503ENUMX
2504  BFD_RELOC_PPC64_TPREL16_DS
2505ENUMX
2506  BFD_RELOC_PPC64_TPREL16_LO_DS
2507ENUMX
2508  BFD_RELOC_PPC64_TPREL16_HIGHER
2509ENUMX
2510  BFD_RELOC_PPC64_TPREL16_HIGHERA
2511ENUMX
2512  BFD_RELOC_PPC64_TPREL16_HIGHEST
2513ENUMX
2514  BFD_RELOC_PPC64_TPREL16_HIGHESTA
2515ENUMX
2516  BFD_RELOC_PPC64_DTPREL16_DS
2517ENUMX
2518  BFD_RELOC_PPC64_DTPREL16_LO_DS
2519ENUMX
2520  BFD_RELOC_PPC64_DTPREL16_HIGHER
2521ENUMX
2522  BFD_RELOC_PPC64_DTPREL16_HIGHERA
2523ENUMX
2524  BFD_RELOC_PPC64_DTPREL16_HIGHEST
2525ENUMX
2526  BFD_RELOC_PPC64_DTPREL16_HIGHESTA
2527ENUMDOC
2528  PowerPC and PowerPC64 thread-local storage relocations.
2529
2530ENUM
2531  BFD_RELOC_I370_D12
2532ENUMDOC
2533  IBM 370/390 relocations
2534
2535ENUM
2536  BFD_RELOC_CTOR
2537ENUMDOC
2538  The type of reloc used to build a constructor table - at the moment
2539  probably a 32 bit wide absolute relocation, but the target can choose.
2540  It generally does map to one of the other relocation types.
2541
2542ENUM
2543  BFD_RELOC_ARM_PCREL_BRANCH
2544ENUMDOC
2545  ARM 26 bit pc-relative branch.  The lowest two bits must be zero and are
2546  not stored in the instruction.
2547ENUM
2548  BFD_RELOC_ARM_PCREL_BLX
2549ENUMDOC
2550  ARM 26 bit pc-relative branch.  The lowest bit must be zero and is
2551  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2552  field in the instruction.
2553ENUM
2554  BFD_RELOC_THUMB_PCREL_BLX
2555ENUMDOC
2556  Thumb 22 bit pc-relative branch.  The lowest bit must be zero and is
2557  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2558  field in the instruction.
2559ENUM
2560  BFD_RELOC_ARM_IMMEDIATE
2561ENUMX
2562  BFD_RELOC_ARM_ADRL_IMMEDIATE
2563ENUMX
2564  BFD_RELOC_ARM_OFFSET_IMM
2565ENUMX
2566  BFD_RELOC_ARM_SHIFT_IMM
2567ENUMX
2568  BFD_RELOC_ARM_SWI
2569ENUMX
2570  BFD_RELOC_ARM_MULTI
2571ENUMX
2572  BFD_RELOC_ARM_CP_OFF_IMM
2573ENUMX
2574  BFD_RELOC_ARM_CP_OFF_IMM_S2
2575ENUMX
2576  BFD_RELOC_ARM_ADR_IMM
2577ENUMX
2578  BFD_RELOC_ARM_LDR_IMM
2579ENUMX
2580  BFD_RELOC_ARM_LITERAL
2581ENUMX
2582  BFD_RELOC_ARM_IN_POOL
2583ENUMX
2584  BFD_RELOC_ARM_OFFSET_IMM8
2585ENUMX
2586  BFD_RELOC_ARM_HWLITERAL
2587ENUMX
2588  BFD_RELOC_ARM_THUMB_ADD
2589ENUMX
2590  BFD_RELOC_ARM_THUMB_IMM
2591ENUMX
2592  BFD_RELOC_ARM_THUMB_SHIFT
2593ENUMX
2594  BFD_RELOC_ARM_THUMB_OFFSET
2595ENUMX
2596  BFD_RELOC_ARM_GOT12
2597ENUMX
2598  BFD_RELOC_ARM_GOT32
2599ENUMX
2600  BFD_RELOC_ARM_JUMP_SLOT
2601ENUMX
2602  BFD_RELOC_ARM_COPY
2603ENUMX
2604  BFD_RELOC_ARM_GLOB_DAT
2605ENUMX
2606  BFD_RELOC_ARM_PLT32
2607ENUMX
2608  BFD_RELOC_ARM_RELATIVE
2609ENUMX
2610  BFD_RELOC_ARM_GOTOFF
2611ENUMX
2612  BFD_RELOC_ARM_GOTPC
2613ENUMDOC
2614  These relocs are only used within the ARM assembler.  They are not
2615  (at present) written to any object files.
2616
2617ENUM
2618  BFD_RELOC_SH_PCDISP8BY2
2619ENUMX
2620  BFD_RELOC_SH_PCDISP12BY2
2621ENUMX
2622  BFD_RELOC_SH_IMM4
2623ENUMX
2624  BFD_RELOC_SH_IMM4BY2
2625ENUMX
2626  BFD_RELOC_SH_IMM4BY4
2627ENUMX
2628  BFD_RELOC_SH_IMM8
2629ENUMX
2630  BFD_RELOC_SH_IMM8BY2
2631ENUMX
2632  BFD_RELOC_SH_IMM8BY4
2633ENUMX
2634  BFD_RELOC_SH_PCRELIMM8BY2
2635ENUMX
2636  BFD_RELOC_SH_PCRELIMM8BY4
2637ENUMX
2638  BFD_RELOC_SH_SWITCH16
2639ENUMX
2640  BFD_RELOC_SH_SWITCH32
2641ENUMX
2642  BFD_RELOC_SH_USES
2643ENUMX
2644  BFD_RELOC_SH_COUNT
2645ENUMX
2646  BFD_RELOC_SH_ALIGN
2647ENUMX
2648  BFD_RELOC_SH_CODE
2649ENUMX
2650  BFD_RELOC_SH_DATA
2651ENUMX
2652  BFD_RELOC_SH_LABEL
2653ENUMX
2654  BFD_RELOC_SH_LOOP_START
2655ENUMX
2656  BFD_RELOC_SH_LOOP_END
2657ENUMX
2658  BFD_RELOC_SH_COPY
2659ENUMX
2660  BFD_RELOC_SH_GLOB_DAT
2661ENUMX
2662  BFD_RELOC_SH_JMP_SLOT
2663ENUMX
2664  BFD_RELOC_SH_RELATIVE
2665ENUMX
2666  BFD_RELOC_SH_GOTPC
2667ENUMX
2668  BFD_RELOC_SH_GOT_LOW16
2669ENUMX
2670  BFD_RELOC_SH_GOT_MEDLOW16
2671ENUMX
2672  BFD_RELOC_SH_GOT_MEDHI16
2673ENUMX
2674  BFD_RELOC_SH_GOT_HI16
2675ENUMX
2676  BFD_RELOC_SH_GOTPLT_LOW16
2677ENUMX
2678  BFD_RELOC_SH_GOTPLT_MEDLOW16
2679ENUMX
2680  BFD_RELOC_SH_GOTPLT_MEDHI16
2681ENUMX
2682  BFD_RELOC_SH_GOTPLT_HI16
2683ENUMX
2684  BFD_RELOC_SH_PLT_LOW16
2685ENUMX
2686  BFD_RELOC_SH_PLT_MEDLOW16
2687ENUMX
2688  BFD_RELOC_SH_PLT_MEDHI16
2689ENUMX
2690  BFD_RELOC_SH_PLT_HI16
2691ENUMX
2692  BFD_RELOC_SH_GOTOFF_LOW16
2693ENUMX
2694  BFD_RELOC_SH_GOTOFF_MEDLOW16
2695ENUMX
2696  BFD_RELOC_SH_GOTOFF_MEDHI16
2697ENUMX
2698  BFD_RELOC_SH_GOTOFF_HI16
2699ENUMX
2700  BFD_RELOC_SH_GOTPC_LOW16
2701ENUMX
2702  BFD_RELOC_SH_GOTPC_MEDLOW16
2703ENUMX
2704  BFD_RELOC_SH_GOTPC_MEDHI16
2705ENUMX
2706  BFD_RELOC_SH_GOTPC_HI16
2707ENUMX
2708  BFD_RELOC_SH_COPY64
2709ENUMX
2710  BFD_RELOC_SH_GLOB_DAT64
2711ENUMX
2712  BFD_RELOC_SH_JMP_SLOT64
2713ENUMX
2714  BFD_RELOC_SH_RELATIVE64
2715ENUMX
2716  BFD_RELOC_SH_GOT10BY4
2717ENUMX
2718  BFD_RELOC_SH_GOT10BY8
2719ENUMX
2720  BFD_RELOC_SH_GOTPLT10BY4
2721ENUMX
2722  BFD_RELOC_SH_GOTPLT10BY8
2723ENUMX
2724  BFD_RELOC_SH_GOTPLT32
2725ENUMX
2726  BFD_RELOC_SH_SHMEDIA_CODE
2727ENUMX
2728  BFD_RELOC_SH_IMMU5
2729ENUMX
2730  BFD_RELOC_SH_IMMS6
2731ENUMX
2732  BFD_RELOC_SH_IMMS6BY32
2733ENUMX
2734  BFD_RELOC_SH_IMMU6
2735ENUMX
2736  BFD_RELOC_SH_IMMS10
2737ENUMX
2738  BFD_RELOC_SH_IMMS10BY2
2739ENUMX
2740  BFD_RELOC_SH_IMMS10BY4
2741ENUMX
2742  BFD_RELOC_SH_IMMS10BY8
2743ENUMX
2744  BFD_RELOC_SH_IMMS16
2745ENUMX
2746  BFD_RELOC_SH_IMMU16
2747ENUMX
2748  BFD_RELOC_SH_IMM_LOW16
2749ENUMX
2750  BFD_RELOC_SH_IMM_LOW16_PCREL
2751ENUMX
2752  BFD_RELOC_SH_IMM_MEDLOW16
2753ENUMX
2754  BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2755ENUMX
2756  BFD_RELOC_SH_IMM_MEDHI16
2757ENUMX
2758  BFD_RELOC_SH_IMM_MEDHI16_PCREL
2759ENUMX
2760  BFD_RELOC_SH_IMM_HI16
2761ENUMX
2762  BFD_RELOC_SH_IMM_HI16_PCREL
2763ENUMX
2764  BFD_RELOC_SH_PT_16
2765ENUMX
2766  BFD_RELOC_SH_TLS_GD_32
2767ENUMX
2768  BFD_RELOC_SH_TLS_LD_32
2769ENUMX
2770  BFD_RELOC_SH_TLS_LDO_32
2771ENUMX
2772  BFD_RELOC_SH_TLS_IE_32
2773ENUMX
2774  BFD_RELOC_SH_TLS_LE_32
2775ENUMX
2776  BFD_RELOC_SH_TLS_DTPMOD32
2777ENUMX
2778  BFD_RELOC_SH_TLS_DTPOFF32
2779ENUMX
2780  BFD_RELOC_SH_TLS_TPOFF32
2781ENUMDOC
2782  Renesas / SuperH SH relocs.  Not all of these appear in object files.
2783
2784ENUM
2785  BFD_RELOC_THUMB_PCREL_BRANCH9
2786ENUMX
2787  BFD_RELOC_THUMB_PCREL_BRANCH12
2788ENUMX
2789  BFD_RELOC_THUMB_PCREL_BRANCH23
2790ENUMDOC
2791  Thumb 23-, 12- and 9-bit pc-relative branches.  The lowest bit must
2792  be zero and is not stored in the instruction.
2793
2794ENUM
2795  BFD_RELOC_ARC_B22_PCREL
2796ENUMDOC
2797  ARC Cores relocs.
2798  ARC 22 bit pc-relative branch.  The lowest two bits must be zero and are
2799  not stored in the instruction.  The high 20 bits are installed in bits 26
2800  through 7 of the instruction.
2801ENUM
2802  BFD_RELOC_ARC_B26
2803ENUMDOC
2804  ARC 26 bit absolute branch.  The lowest two bits must be zero and are not
2805  stored in the instruction.  The high 24 bits are installed in bits 23
2806  through 0.
2807
2808ENUM
2809  BFD_RELOC_D10V_10_PCREL_R
2810ENUMDOC
2811  Mitsubishi D10V relocs.
2812  This is a 10-bit reloc with the right 2 bits
2813  assumed to be 0.
2814ENUM
2815  BFD_RELOC_D10V_10_PCREL_L
2816ENUMDOC
2817  Mitsubishi D10V relocs.
2818  This is a 10-bit reloc with the right 2 bits
2819  assumed to be 0.  This is the same as the previous reloc
2820  except it is in the left container, i.e.,
2821  shifted left 15 bits.
2822ENUM
2823  BFD_RELOC_D10V_18
2824ENUMDOC
2825  This is an 18-bit reloc with the right 2 bits
2826  assumed to be 0.
2827ENUM
2828  BFD_RELOC_D10V_18_PCREL
2829ENUMDOC
2830  This is an 18-bit reloc with the right 2 bits
2831  assumed to be 0.
2832
2833ENUM
2834  BFD_RELOC_D30V_6
2835ENUMDOC
2836  Mitsubishi D30V relocs.
2837  This is a 6-bit absolute reloc.
2838ENUM
2839  BFD_RELOC_D30V_9_PCREL
2840ENUMDOC
2841  This is a 6-bit pc-relative reloc with
2842  the right 3 bits assumed to be 0.
2843ENUM
2844  BFD_RELOC_D30V_9_PCREL_R
2845ENUMDOC
2846  This is a 6-bit pc-relative reloc with
2847  the right 3 bits assumed to be 0. Same
2848  as the previous reloc but on the right side
2849  of the container.
2850ENUM
2851  BFD_RELOC_D30V_15
2852ENUMDOC
2853  This is a 12-bit absolute reloc with the
2854  right 3 bitsassumed to be 0.
2855ENUM
2856  BFD_RELOC_D30V_15_PCREL
2857ENUMDOC
2858  This is a 12-bit pc-relative reloc with
2859  the right 3 bits assumed to be 0.
2860ENUM
2861  BFD_RELOC_D30V_15_PCREL_R
2862ENUMDOC
2863  This is a 12-bit pc-relative reloc with
2864  the right 3 bits assumed to be 0. Same
2865  as the previous reloc but on the right side
2866  of the container.
2867ENUM
2868  BFD_RELOC_D30V_21
2869ENUMDOC
2870  This is an 18-bit absolute reloc with
2871  the right 3 bits assumed to be 0.
2872ENUM
2873  BFD_RELOC_D30V_21_PCREL
2874ENUMDOC
2875  This is an 18-bit pc-relative reloc with
2876  the right 3 bits assumed to be 0.
2877ENUM
2878  BFD_RELOC_D30V_21_PCREL_R
2879ENUMDOC
2880  This is an 18-bit pc-relative reloc with
2881  the right 3 bits assumed to be 0. Same
2882  as the previous reloc but on the right side
2883  of the container.
2884ENUM
2885  BFD_RELOC_D30V_32
2886ENUMDOC
2887  This is a 32-bit absolute reloc.
2888ENUM
2889  BFD_RELOC_D30V_32_PCREL
2890ENUMDOC
2891  This is a 32-bit pc-relative reloc.
2892
2893ENUM
2894  BFD_RELOC_DLX_HI16_S
2895ENUMDOC
2896  DLX relocs
2897ENUM
2898  BFD_RELOC_DLX_LO16
2899ENUMDOC
2900  DLX relocs
2901ENUM
2902  BFD_RELOC_DLX_JMP26
2903ENUMDOC
2904  DLX relocs
2905
2906ENUM
2907  BFD_RELOC_M32R_24
2908ENUMDOC
2909  Renesas M32R (formerly Mitsubishi M32R) relocs.
2910  This is a 24 bit absolute address.
2911ENUM
2912  BFD_RELOC_M32R_10_PCREL
2913ENUMDOC
2914  This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2915ENUM
2916  BFD_RELOC_M32R_18_PCREL
2917ENUMDOC
2918  This is an 18-bit reloc with the right 2 bits assumed to be 0.
2919ENUM
2920  BFD_RELOC_M32R_26_PCREL
2921ENUMDOC
2922  This is a 26-bit reloc with the right 2 bits assumed to be 0.
2923ENUM
2924  BFD_RELOC_M32R_HI16_ULO
2925ENUMDOC
2926  This is a 16-bit reloc containing the high 16 bits of an address
2927  used when the lower 16 bits are treated as unsigned.
2928ENUM
2929  BFD_RELOC_M32R_HI16_SLO
2930ENUMDOC
2931  This is a 16-bit reloc containing the high 16 bits of an address
2932  used when the lower 16 bits are treated as signed.
2933ENUM
2934  BFD_RELOC_M32R_LO16
2935ENUMDOC
2936  This is a 16-bit reloc containing the lower 16 bits of an address.
2937ENUM
2938  BFD_RELOC_M32R_SDA16
2939ENUMDOC
2940  This is a 16-bit reloc containing the small data area offset for use in
2941  add3, load, and store instructions.
2942ENUM
2943  BFD_RELOC_M32R_GOT24
2944ENUMX
2945  BFD_RELOC_M32R_26_PLTREL
2946ENUMX
2947  BFD_RELOC_M32R_COPY
2948ENUMX
2949  BFD_RELOC_M32R_GLOB_DAT
2950ENUMX
2951  BFD_RELOC_M32R_JMP_SLOT
2952ENUMX
2953  BFD_RELOC_M32R_RELATIVE
2954ENUMX
2955  BFD_RELOC_M32R_GOTOFF
2956ENUMX
2957  BFD_RELOC_M32R_GOTPC24
2958ENUMX
2959  BFD_RELOC_M32R_GOT16_HI_ULO
2960ENUMX
2961  BFD_RELOC_M32R_GOT16_HI_SLO
2962ENUMX
2963  BFD_RELOC_M32R_GOT16_LO
2964ENUMX
2965  BFD_RELOC_M32R_GOTPC_HI_ULO
2966ENUMX
2967  BFD_RELOC_M32R_GOTPC_HI_SLO
2968ENUMX
2969  BFD_RELOC_M32R_GOTPC_LO
2970ENUMDOC
2971  For PIC.
2972
2973
2974ENUM
2975  BFD_RELOC_V850_9_PCREL
2976ENUMDOC
2977  This is a 9-bit reloc
2978ENUM
2979  BFD_RELOC_V850_22_PCREL
2980ENUMDOC
2981  This is a 22-bit reloc
2982
2983ENUM
2984  BFD_RELOC_V850_SDA_16_16_OFFSET
2985ENUMDOC
2986  This is a 16 bit offset from the short data area pointer.
2987ENUM
2988  BFD_RELOC_V850_SDA_15_16_OFFSET
2989ENUMDOC
2990  This is a 16 bit offset (of which only 15 bits are used) from the
2991  short data area pointer.
2992ENUM
2993  BFD_RELOC_V850_ZDA_16_16_OFFSET
2994ENUMDOC
2995  This is a 16 bit offset from the zero data area pointer.
2996ENUM
2997  BFD_RELOC_V850_ZDA_15_16_OFFSET
2998ENUMDOC
2999  This is a 16 bit offset (of which only 15 bits are used) from the
3000  zero data area pointer.
3001ENUM
3002  BFD_RELOC_V850_TDA_6_8_OFFSET
3003ENUMDOC
3004  This is an 8 bit offset (of which only 6 bits are used) from the
3005  tiny data area pointer.
3006ENUM
3007  BFD_RELOC_V850_TDA_7_8_OFFSET
3008ENUMDOC
3009  This is an 8bit offset (of which only 7 bits are used) from the tiny
3010  data area pointer.
3011ENUM
3012  BFD_RELOC_V850_TDA_7_7_OFFSET
3013ENUMDOC
3014  This is a 7 bit offset from the tiny data area pointer.
3015ENUM
3016  BFD_RELOC_V850_TDA_16_16_OFFSET
3017ENUMDOC
3018  This is a 16 bit offset from the tiny data area pointer.
3019COMMENT
3020ENUM
3021  BFD_RELOC_V850_TDA_4_5_OFFSET
3022ENUMDOC
3023  This is a 5 bit offset (of which only 4 bits are used) from the tiny
3024  data area pointer.
3025ENUM
3026  BFD_RELOC_V850_TDA_4_4_OFFSET
3027ENUMDOC
3028  This is a 4 bit offset from the tiny data area pointer.
3029ENUM
3030  BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
3031ENUMDOC
3032  This is a 16 bit offset from the short data area pointer, with the
3033  bits placed non-contiguously in the instruction.
3034ENUM
3035  BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
3036ENUMDOC
3037  This is a 16 bit offset from the zero data area pointer, with the
3038  bits placed non-contiguously in the instruction.
3039ENUM
3040  BFD_RELOC_V850_CALLT_6_7_OFFSET
3041ENUMDOC
3042  This is a 6 bit offset from the call table base pointer.
3043ENUM
3044  BFD_RELOC_V850_CALLT_16_16_OFFSET
3045ENUMDOC
3046  This is a 16 bit offset from the call table base pointer.
3047ENUM
3048  BFD_RELOC_V850_LONGCALL
3049ENUMDOC
3050  Used for relaxing indirect function calls.
3051ENUM
3052  BFD_RELOC_V850_LONGJUMP
3053ENUMDOC
3054  Used for relaxing indirect jumps.
3055ENUM
3056  BFD_RELOC_V850_ALIGN
3057ENUMDOC
3058  Used to maintain alignment whilst relaxing.
3059ENUM
3060  BFD_RELOC_MN10300_32_PCREL
3061ENUMDOC
3062  This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
3063  instruction.
3064ENUM
3065  BFD_RELOC_MN10300_16_PCREL
3066ENUMDOC
3067  This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
3068  instruction.
3069
3070ENUM
3071  BFD_RELOC_TIC30_LDP
3072ENUMDOC
3073  This is a 8bit DP reloc for the tms320c30, where the most
3074  significant 8 bits of a 24 bit word are placed into the least
3075  significant 8 bits of the opcode.
3076
3077ENUM
3078  BFD_RELOC_TIC54X_PARTLS7
3079ENUMDOC
3080  This is a 7bit reloc for the tms320c54x, where the least
3081  significant 7 bits of a 16 bit word are placed into the least
3082  significant 7 bits of the opcode.
3083
3084ENUM
3085  BFD_RELOC_TIC54X_PARTMS9
3086ENUMDOC
3087  This is a 9bit DP reloc for the tms320c54x, where the most
3088  significant 9 bits of a 16 bit word are placed into the least
3089  significant 9 bits of the opcode.
3090
3091ENUM
3092  BFD_RELOC_TIC54X_23
3093ENUMDOC
3094  This is an extended address 23-bit reloc for the tms320c54x.
3095
3096ENUM
3097  BFD_RELOC_TIC54X_16_OF_23
3098ENUMDOC
3099  This is a 16-bit reloc for the tms320c54x, where the least
3100  significant 16 bits of a 23-bit extended address are placed into
3101  the opcode.
3102
3103ENUM
3104  BFD_RELOC_TIC54X_MS7_OF_23
3105ENUMDOC
3106  This is a reloc for the tms320c54x, where the most
3107  significant 7 bits of a 23-bit extended address are placed into
3108  the opcode.
3109
3110ENUM
3111  BFD_RELOC_FR30_48
3112ENUMDOC
3113  This is a 48 bit reloc for the FR30 that stores 32 bits.
3114ENUM
3115  BFD_RELOC_FR30_20
3116ENUMDOC
3117  This is a 32 bit reloc for the FR30 that stores 20 bits split up into
3118  two sections.
3119ENUM
3120  BFD_RELOC_FR30_6_IN_4
3121ENUMDOC
3122  This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
3123  4 bits.
3124ENUM
3125  BFD_RELOC_FR30_8_IN_8
3126ENUMDOC
3127  This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
3128  into 8 bits.
3129ENUM
3130  BFD_RELOC_FR30_9_IN_8
3131ENUMDOC
3132  This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
3133  into 8 bits.
3134ENUM
3135  BFD_RELOC_FR30_10_IN_8
3136ENUMDOC
3137  This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
3138  into 8 bits.
3139ENUM
3140  BFD_RELOC_FR30_9_PCREL
3141ENUMDOC
3142  This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
3143  short offset into 8 bits.
3144ENUM
3145  BFD_RELOC_FR30_12_PCREL
3146ENUMDOC
3147  This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
3148  short offset into 11 bits.
3149
3150ENUM
3151  BFD_RELOC_MCORE_PCREL_IMM8BY4
3152ENUMX
3153  BFD_RELOC_MCORE_PCREL_IMM11BY2
3154ENUMX
3155  BFD_RELOC_MCORE_PCREL_IMM4BY2
3156ENUMX
3157  BFD_RELOC_MCORE_PCREL_32
3158ENUMX
3159  BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
3160ENUMX
3161  BFD_RELOC_MCORE_RVA
3162ENUMDOC
3163  Motorola Mcore relocations.
3164
3165ENUM
3166  BFD_RELOC_MMIX_GETA
3167ENUMX
3168  BFD_RELOC_MMIX_GETA_1
3169ENUMX
3170  BFD_RELOC_MMIX_GETA_2
3171ENUMX
3172  BFD_RELOC_MMIX_GETA_3
3173ENUMDOC
3174  These are relocations for the GETA instruction.
3175ENUM
3176  BFD_RELOC_MMIX_CBRANCH
3177ENUMX
3178  BFD_RELOC_MMIX_CBRANCH_J
3179ENUMX
3180  BFD_RELOC_MMIX_CBRANCH_1
3181ENUMX
3182  BFD_RELOC_MMIX_CBRANCH_2
3183ENUMX
3184  BFD_RELOC_MMIX_CBRANCH_3
3185ENUMDOC
3186  These are relocations for a conditional branch instruction.
3187ENUM
3188  BFD_RELOC_MMIX_PUSHJ
3189ENUMX
3190  BFD_RELOC_MMIX_PUSHJ_1
3191ENUMX
3192  BFD_RELOC_MMIX_PUSHJ_2
3193ENUMX
3194  BFD_RELOC_MMIX_PUSHJ_3
3195ENUMX
3196  BFD_RELOC_MMIX_PUSHJ_STUBBABLE
3197ENUMDOC
3198  These are relocations for the PUSHJ instruction.
3199ENUM
3200  BFD_RELOC_MMIX_JMP
3201ENUMX
3202  BFD_RELOC_MMIX_JMP_1
3203ENUMX
3204  BFD_RELOC_MMIX_JMP_2
3205ENUMX
3206  BFD_RELOC_MMIX_JMP_3
3207ENUMDOC
3208  These are relocations for the JMP instruction.
3209ENUM
3210  BFD_RELOC_MMIX_ADDR19
3211ENUMDOC
3212  This is a relocation for a relative address as in a GETA instruction or
3213  a branch.
3214ENUM
3215  BFD_RELOC_MMIX_ADDR27
3216ENUMDOC
3217  This is a relocation for a relative address as in a JMP instruction.
3218ENUM
3219  BFD_RELOC_MMIX_REG_OR_BYTE
3220ENUMDOC
3221  This is a relocation for an instruction field that may be a general
3222  register or a value 0..255.
3223ENUM
3224  BFD_RELOC_MMIX_REG
3225ENUMDOC
3226  This is a relocation for an instruction field that may be a general
3227  register.
3228ENUM
3229  BFD_RELOC_MMIX_BASE_PLUS_OFFSET
3230ENUMDOC
3231  This is a relocation for two instruction fields holding a register and
3232  an offset, the equivalent of the relocation.
3233ENUM
3234  BFD_RELOC_MMIX_LOCAL
3235ENUMDOC
3236  This relocation is an assertion that the expression is not allocated as
3237  a global register.  It does not modify contents.
3238
3239ENUM
3240  BFD_RELOC_AVR_7_PCREL
3241ENUMDOC
3242  This is a 16 bit reloc for the AVR that stores 8 bit pc relative
3243  short offset into 7 bits.
3244ENUM
3245  BFD_RELOC_AVR_13_PCREL
3246ENUMDOC
3247  This is a 16 bit reloc for the AVR that stores 13 bit pc relative
3248  short offset into 12 bits.
3249ENUM
3250  BFD_RELOC_AVR_16_PM
3251ENUMDOC
3252  This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3253  program memory address) into 16 bits.
3254ENUM
3255  BFD_RELOC_AVR_LO8_LDI
3256ENUMDOC
3257  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3258  data memory address) into 8 bit immediate value of LDI insn.
3259ENUM
3260  BFD_RELOC_AVR_HI8_LDI
3261ENUMDOC
3262  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3263  of data memory address) into 8 bit immediate value of LDI insn.
3264ENUM
3265  BFD_RELOC_AVR_HH8_LDI
3266ENUMDOC
3267  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3268  of program memory address) into 8 bit immediate value of LDI insn.
3269ENUM
3270  BFD_RELOC_AVR_LO8_LDI_NEG
3271ENUMDOC
3272  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3273  (usually data memory address) into 8 bit immediate value of SUBI insn.
3274ENUM
3275  BFD_RELOC_AVR_HI8_LDI_NEG
3276ENUMDOC
3277  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3278  (high 8 bit of data memory address) into 8 bit immediate value of
3279  SUBI insn.
3280ENUM
3281  BFD_RELOC_AVR_HH8_LDI_NEG
3282ENUMDOC
3283  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3284  (most high 8 bit of program memory address) into 8 bit immediate value
3285  of LDI or SUBI insn.
3286ENUM
3287  BFD_RELOC_AVR_LO8_LDI_PM
3288ENUMDOC
3289  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3290  command address) into 8 bit immediate value of LDI insn.
3291ENUM
3292  BFD_RELOC_AVR_HI8_LDI_PM
3293ENUMDOC
3294  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3295  of command address) into 8 bit immediate value of LDI insn.
3296ENUM
3297  BFD_RELOC_AVR_HH8_LDI_PM
3298ENUMDOC
3299  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3300  of command address) into 8 bit immediate value of LDI insn.
3301ENUM
3302  BFD_RELOC_AVR_LO8_LDI_PM_NEG
3303ENUMDOC
3304  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3305  (usually command address) into 8 bit immediate value of SUBI insn.
3306ENUM
3307  BFD_RELOC_AVR_HI8_LDI_PM_NEG
3308ENUMDOC
3309  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3310  (high 8 bit of 16 bit command address) into 8 bit immediate value
3311  of SUBI insn.
3312ENUM
3313  BFD_RELOC_AVR_HH8_LDI_PM_NEG
3314ENUMDOC
3315  This is a 16 bit reloc for the AVR that stores negated 8 bit value
3316  (high 6 bit of 22 bit command address) into 8 bit immediate
3317  value of SUBI insn.
3318ENUM
3319  BFD_RELOC_AVR_CALL
3320ENUMDOC
3321  This is a 32 bit reloc for the AVR that stores 23 bit value
3322  into 22 bits.
3323
3324ENUM
3325  BFD_RELOC_390_12
3326ENUMDOC
3327   Direct 12 bit.
3328ENUM
3329  BFD_RELOC_390_GOT12
3330ENUMDOC
3331  12 bit GOT offset.
3332ENUM
3333  BFD_RELOC_390_PLT32
3334ENUMDOC
3335  32 bit PC relative PLT address.
3336ENUM
3337  BFD_RELOC_390_COPY
3338ENUMDOC
3339  Copy symbol at runtime.
3340ENUM
3341  BFD_RELOC_390_GLOB_DAT
3342ENUMDOC
3343  Create GOT entry.
3344ENUM
3345  BFD_RELOC_390_JMP_SLOT
3346ENUMDOC
3347  Create PLT entry.
3348ENUM
3349  BFD_RELOC_390_RELATIVE
3350ENUMDOC
3351  Adjust by program base.
3352ENUM
3353  BFD_RELOC_390_GOTPC
3354ENUMDOC
3355  32 bit PC relative offset to GOT.
3356ENUM
3357  BFD_RELOC_390_GOT16
3358ENUMDOC
3359  16 bit GOT offset.
3360ENUM
3361  BFD_RELOC_390_PC16DBL
3362ENUMDOC
3363  PC relative 16 bit shifted by 1.
3364ENUM
3365  BFD_RELOC_390_PLT16DBL
3366ENUMDOC
3367  16 bit PC rel. PLT shifted by 1.
3368ENUM
3369  BFD_RELOC_390_PC32DBL
3370ENUMDOC
3371  PC relative 32 bit shifted by 1.
3372ENUM
3373  BFD_RELOC_390_PLT32DBL
3374ENUMDOC
3375  32 bit PC rel. PLT shifted by 1.
3376ENUM
3377  BFD_RELOC_390_GOTPCDBL
3378ENUMDOC
3379  32 bit PC rel. GOT shifted by 1.
3380ENUM
3381  BFD_RELOC_390_GOT64
3382ENUMDOC
3383  64 bit GOT offset.
3384ENUM
3385  BFD_RELOC_390_PLT64
3386ENUMDOC
3387  64 bit PC relative PLT address.
3388ENUM
3389  BFD_RELOC_390_GOTENT
3390ENUMDOC
3391  32 bit rel. offset to GOT entry.
3392ENUM
3393  BFD_RELOC_390_GOTOFF64
3394ENUMDOC
3395  64 bit offset to GOT.
3396ENUM
3397  BFD_RELOC_390_GOTPLT12
3398ENUMDOC
3399  12-bit offset to symbol-entry within GOT, with PLT handling.
3400ENUM
3401  BFD_RELOC_390_GOTPLT16
3402ENUMDOC
3403  16-bit offset to symbol-entry within GOT, with PLT handling.
3404ENUM
3405  BFD_RELOC_390_GOTPLT32
3406ENUMDOC
3407  32-bit offset to symbol-entry within GOT, with PLT handling.
3408ENUM
3409  BFD_RELOC_390_GOTPLT64
3410ENUMDOC
3411  64-bit offset to symbol-entry within GOT, with PLT handling.
3412ENUM
3413  BFD_RELOC_390_GOTPLTENT
3414ENUMDOC
3415  32-bit rel. offset to symbol-entry within GOT, with PLT handling.
3416ENUM
3417  BFD_RELOC_390_PLTOFF16
3418ENUMDOC
3419  16-bit rel. offset from the GOT to a PLT entry.
3420ENUM
3421  BFD_RELOC_390_PLTOFF32
3422ENUMDOC
3423  32-bit rel. offset from the GOT to a PLT entry.
3424ENUM
3425  BFD_RELOC_390_PLTOFF64
3426ENUMDOC
3427  64-bit rel. offset from the GOT to a PLT entry.
3428
3429ENUM
3430  BFD_RELOC_390_TLS_LOAD
3431ENUMX
3432  BFD_RELOC_390_TLS_GDCALL
3433ENUMX
3434  BFD_RELOC_390_TLS_LDCALL
3435ENUMX
3436  BFD_RELOC_390_TLS_GD32
3437ENUMX
3438  BFD_RELOC_390_TLS_GD64
3439ENUMX
3440  BFD_RELOC_390_TLS_GOTIE12
3441ENUMX
3442  BFD_RELOC_390_TLS_GOTIE32
3443ENUMX
3444  BFD_RELOC_390_TLS_GOTIE64
3445ENUMX
3446  BFD_RELOC_390_TLS_LDM32
3447ENUMX
3448  BFD_RELOC_390_TLS_LDM64
3449ENUMX
3450  BFD_RELOC_390_TLS_IE32
3451ENUMX
3452  BFD_RELOC_390_TLS_IE64
3453ENUMX
3454  BFD_RELOC_390_TLS_IEENT
3455ENUMX
3456  BFD_RELOC_390_TLS_LE32
3457ENUMX
3458  BFD_RELOC_390_TLS_LE64
3459ENUMX
3460  BFD_RELOC_390_TLS_LDO32
3461ENUMX
3462  BFD_RELOC_390_TLS_LDO64
3463ENUMX
3464  BFD_RELOC_390_TLS_DTPMOD
3465ENUMX
3466  BFD_RELOC_390_TLS_DTPOFF
3467ENUMX
3468  BFD_RELOC_390_TLS_TPOFF
3469ENUMDOC
3470  s390 tls relocations.
3471
3472ENUM
3473  BFD_RELOC_390_20
3474ENUMX
3475  BFD_RELOC_390_GOT20
3476ENUMX
3477  BFD_RELOC_390_GOTPLT20
3478ENUMX
3479  BFD_RELOC_390_TLS_GOTIE20
3480ENUMDOC
3481  Long displacement extension.
3482
3483ENUM
3484  BFD_RELOC_IP2K_FR9
3485ENUMDOC
3486  Scenix IP2K - 9-bit register number / data address
3487ENUM
3488  BFD_RELOC_IP2K_BANK
3489ENUMDOC
3490  Scenix IP2K - 4-bit register/data bank number
3491ENUM
3492  BFD_RELOC_IP2K_ADDR16CJP
3493ENUMDOC
3494  Scenix IP2K - low 13 bits of instruction word address
3495ENUM
3496  BFD_RELOC_IP2K_PAGE3
3497ENUMDOC
3498  Scenix IP2K - high 3 bits of instruction word address
3499ENUM
3500  BFD_RELOC_IP2K_LO8DATA
3501ENUMX
3502  BFD_RELOC_IP2K_HI8DATA
3503ENUMX
3504  BFD_RELOC_IP2K_EX8DATA
3505ENUMDOC
3506  Scenix IP2K - ext/low/high 8 bits of data address
3507ENUM
3508  BFD_RELOC_IP2K_LO8INSN
3509ENUMX
3510  BFD_RELOC_IP2K_HI8INSN
3511ENUMDOC
3512  Scenix IP2K - low/high 8 bits of instruction word address
3513ENUM
3514  BFD_RELOC_IP2K_PC_SKIP
3515ENUMDOC
3516  Scenix IP2K - even/odd PC modifier to modify snb pcl.0
3517ENUM
3518  BFD_RELOC_IP2K_TEXT
3519ENUMDOC
3520  Scenix IP2K - 16 bit word address in text section.
3521ENUM
3522  BFD_RELOC_IP2K_FR_OFFSET
3523ENUMDOC
3524  Scenix IP2K - 7-bit sp or dp offset
3525ENUM
3526  BFD_RELOC_VPE4KMATH_DATA
3527ENUMX
3528  BFD_RELOC_VPE4KMATH_INSN
3529ENUMDOC
3530  Scenix VPE4K coprocessor - data/insn-space addressing
3531
3532ENUM
3533  BFD_RELOC_VTABLE_INHERIT
3534ENUMX
3535  BFD_RELOC_VTABLE_ENTRY
3536ENUMDOC
3537  These two relocations are used by the linker to determine which of
3538  the entries in a C++ virtual function table are actually used.  When
3539  the --gc-sections option is given, the linker will zero out the entries
3540  that are not used, so that the code for those functions need not be
3541  included in the output.
3542
3543  VTABLE_INHERIT is a zero-space relocation used to describe to the
3544  linker the inheritance tree of a C++ virtual function table.  The
3545  relocation's symbol should be the parent class' vtable, and the
3546  relocation should be located at the child vtable.
3547
3548  VTABLE_ENTRY is a zero-space relocation that describes the use of a
3549  virtual function table entry.  The reloc's symbol should refer to the
3550  table of the class mentioned in the code.  Off of that base, an offset
3551  describes the entry that is being used.  For Rela hosts, this offset
3552  is stored in the reloc's addend.  For Rel hosts, we are forced to put
3553  this offset in the reloc's section offset.
3554
3555ENUM
3556  BFD_RELOC_IA64_IMM14
3557ENUMX
3558  BFD_RELOC_IA64_IMM22
3559ENUMX
3560  BFD_RELOC_IA64_IMM64
3561ENUMX
3562  BFD_RELOC_IA64_DIR32MSB
3563ENUMX
3564  BFD_RELOC_IA64_DIR32LSB
3565ENUMX
3566  BFD_RELOC_IA64_DIR64MSB
3567ENUMX
3568  BFD_RELOC_IA64_DIR64LSB
3569ENUMX
3570  BFD_RELOC_IA64_GPREL22
3571ENUMX
3572  BFD_RELOC_IA64_GPREL64I
3573ENUMX
3574  BFD_RELOC_IA64_GPREL32MSB
3575ENUMX
3576  BFD_RELOC_IA64_GPREL32LSB
3577ENUMX
3578  BFD_RELOC_IA64_GPREL64MSB
3579ENUMX
3580  BFD_RELOC_IA64_GPREL64LSB
3581ENUMX
3582  BFD_RELOC_IA64_LTOFF22
3583ENUMX
3584  BFD_RELOC_IA64_LTOFF64I
3585ENUMX
3586  BFD_RELOC_IA64_PLTOFF22
3587ENUMX
3588  BFD_RELOC_IA64_PLTOFF64I
3589ENUMX
3590  BFD_RELOC_IA64_PLTOFF64MSB
3591ENUMX
3592  BFD_RELOC_IA64_PLTOFF64LSB
3593ENUMX
3594  BFD_RELOC_IA64_FPTR64I
3595ENUMX
3596  BFD_RELOC_IA64_FPTR32MSB
3597ENUMX
3598  BFD_RELOC_IA64_FPTR32LSB
3599ENUMX
3600  BFD_RELOC_IA64_FPTR64MSB
3601ENUMX
3602  BFD_RELOC_IA64_FPTR64LSB
3603ENUMX
3604  BFD_RELOC_IA64_PCREL21B
3605ENUMX
3606  BFD_RELOC_IA64_PCREL21BI
3607ENUMX
3608  BFD_RELOC_IA64_PCREL21M
3609ENUMX
3610  BFD_RELOC_IA64_PCREL21F
3611ENUMX
3612  BFD_RELOC_IA64_PCREL22
3613ENUMX
3614  BFD_RELOC_IA64_PCREL60B
3615ENUMX
3616  BFD_RELOC_IA64_PCREL64I
3617ENUMX
3618  BFD_RELOC_IA64_PCREL32MSB
3619ENUMX
3620  BFD_RELOC_IA64_PCREL32LSB
3621ENUMX
3622  BFD_RELOC_IA64_PCREL64MSB
3623ENUMX
3624  BFD_RELOC_IA64_PCREL64LSB
3625ENUMX
3626  BFD_RELOC_IA64_LTOFF_FPTR22
3627ENUMX
3628  BFD_RELOC_IA64_LTOFF_FPTR64I
3629ENUMX
3630  BFD_RELOC_IA64_LTOFF_FPTR32MSB
3631ENUMX
3632  BFD_RELOC_IA64_LTOFF_FPTR32LSB
3633ENUMX
3634  BFD_RELOC_IA64_LTOFF_FPTR64MSB
3635ENUMX
3636  BFD_RELOC_IA64_LTOFF_FPTR64LSB
3637ENUMX
3638  BFD_RELOC_IA64_SEGREL32MSB
3639ENUMX
3640  BFD_RELOC_IA64_SEGREL32LSB
3641ENUMX
3642  BFD_RELOC_IA64_SEGREL64MSB
3643ENUMX
3644  BFD_RELOC_IA64_SEGREL64LSB
3645ENUMX
3646  BFD_RELOC_IA64_SECREL32MSB
3647ENUMX
3648  BFD_RELOC_IA64_SECREL32LSB
3649ENUMX
3650  BFD_RELOC_IA64_SECREL64MSB
3651ENUMX
3652  BFD_RELOC_IA64_SECREL64LSB
3653ENUMX
3654  BFD_RELOC_IA64_REL32MSB
3655ENUMX
3656  BFD_RELOC_IA64_REL32LSB
3657ENUMX
3658  BFD_RELOC_IA64_REL64MSB
3659ENUMX
3660  BFD_RELOC_IA64_REL64LSB
3661ENUMX
3662  BFD_RELOC_IA64_LTV32MSB
3663ENUMX
3664  BFD_RELOC_IA64_LTV32LSB
3665ENUMX
3666  BFD_RELOC_IA64_LTV64MSB
3667ENUMX
3668  BFD_RELOC_IA64_LTV64LSB
3669ENUMX
3670  BFD_RELOC_IA64_IPLTMSB
3671ENUMX
3672  BFD_RELOC_IA64_IPLTLSB
3673ENUMX
3674  BFD_RELOC_IA64_COPY
3675ENUMX
3676  BFD_RELOC_IA64_LTOFF22X
3677ENUMX
3678  BFD_RELOC_IA64_LDXMOV
3679ENUMX
3680  BFD_RELOC_IA64_TPREL14
3681ENUMX
3682  BFD_RELOC_IA64_TPREL22
3683ENUMX
3684  BFD_RELOC_IA64_TPREL64I
3685ENUMX
3686  BFD_RELOC_IA64_TPREL64MSB
3687ENUMX
3688  BFD_RELOC_IA64_TPREL64LSB
3689ENUMX
3690  BFD_RELOC_IA64_LTOFF_TPREL22
3691ENUMX
3692  BFD_RELOC_IA64_DTPMOD64MSB
3693ENUMX
3694  BFD_RELOC_IA64_DTPMOD64LSB
3695ENUMX
3696  BFD_RELOC_IA64_LTOFF_DTPMOD22
3697ENUMX
3698  BFD_RELOC_IA64_DTPREL14
3699ENUMX
3700  BFD_RELOC_IA64_DTPREL22
3701ENUMX
3702  BFD_RELOC_IA64_DTPREL64I
3703ENUMX
3704  BFD_RELOC_IA64_DTPREL32MSB
3705ENUMX
3706  BFD_RELOC_IA64_DTPREL32LSB
3707ENUMX
3708  BFD_RELOC_IA64_DTPREL64MSB
3709ENUMX
3710  BFD_RELOC_IA64_DTPREL64LSB
3711ENUMX
3712  BFD_RELOC_IA64_LTOFF_DTPREL22
3713ENUMDOC
3714  Intel IA64 Relocations.
3715
3716ENUM
3717  BFD_RELOC_M68HC11_HI8
3718ENUMDOC
3719  Motorola 68HC11 reloc.
3720  This is the 8 bit high part of an absolute address.
3721ENUM
3722  BFD_RELOC_M68HC11_LO8
3723ENUMDOC
3724  Motorola 68HC11 reloc.
3725  This is the 8 bit low part of an absolute address.
3726ENUM
3727  BFD_RELOC_M68HC11_3B
3728ENUMDOC
3729  Motorola 68HC11 reloc.
3730  This is the 3 bit of a value.
3731ENUM
3732  BFD_RELOC_M68HC11_RL_JUMP
3733ENUMDOC
3734  Motorola 68HC11 reloc.
3735  This reloc marks the beginning of a jump/call instruction.
3736  It is used for linker relaxation to correctly identify beginning
3737  of instruction and change some branches to use PC-relative
3738  addressing mode.
3739ENUM
3740  BFD_RELOC_M68HC11_RL_GROUP
3741ENUMDOC
3742  Motorola 68HC11 reloc.
3743  This reloc marks a group of several instructions that gcc generates
3744  and for which the linker relaxation pass can modify and/or remove
3745  some of them.
3746ENUM
3747  BFD_RELOC_M68HC11_LO16
3748ENUMDOC
3749  Motorola 68HC11 reloc.
3750  This is the 16-bit lower part of an address.  It is used for 'call'
3751  instruction to specify the symbol address without any special
3752  transformation (due to memory bank window).
3753ENUM
3754  BFD_RELOC_M68HC11_PAGE
3755ENUMDOC
3756  Motorola 68HC11 reloc.
3757  This is a 8-bit reloc that specifies the page number of an address.
3758  It is used by 'call' instruction to specify the page number of
3759  the symbol.
3760ENUM
3761  BFD_RELOC_M68HC11_24
3762ENUMDOC
3763  Motorola 68HC11 reloc.
3764  This is a 24-bit reloc that represents the address with a 16-bit
3765  value and a 8-bit page number.  The symbol address is transformed
3766  to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
3767ENUM
3768  BFD_RELOC_M68HC12_5B
3769ENUMDOC
3770  Motorola 68HC12 reloc.
3771  This is the 5 bits of a value.
3772
3773ENUM
3774  BFD_RELOC_CRIS_BDISP8
3775ENUMX
3776  BFD_RELOC_CRIS_UNSIGNED_5
3777ENUMX
3778  BFD_RELOC_CRIS_SIGNED_6
3779ENUMX
3780  BFD_RELOC_CRIS_UNSIGNED_6
3781ENUMX
3782  BFD_RELOC_CRIS_UNSIGNED_4
3783ENUMDOC
3784  These relocs are only used within the CRIS assembler.  They are not
3785  (at present) written to any object files.
3786ENUM
3787  BFD_RELOC_CRIS_COPY
3788ENUMX
3789  BFD_RELOC_CRIS_GLOB_DAT
3790ENUMX
3791  BFD_RELOC_CRIS_JUMP_SLOT
3792ENUMX
3793  BFD_RELOC_CRIS_RELATIVE
3794ENUMDOC
3795  Relocs used in ELF shared libraries for CRIS.
3796ENUM
3797  BFD_RELOC_CRIS_32_GOT
3798ENUMDOC
3799  32-bit offset to symbol-entry within GOT.
3800ENUM
3801  BFD_RELOC_CRIS_16_GOT
3802ENUMDOC
3803  16-bit offset to symbol-entry within GOT.
3804ENUM
3805  BFD_RELOC_CRIS_32_GOTPLT
3806ENUMDOC
3807  32-bit offset to symbol-entry within GOT, with PLT handling.
3808ENUM
3809  BFD_RELOC_CRIS_16_GOTPLT
3810ENUMDOC
3811  16-bit offset to symbol-entry within GOT, with PLT handling.
3812ENUM
3813  BFD_RELOC_CRIS_32_GOTREL
3814ENUMDOC
3815  32-bit offset to symbol, relative to GOT.
3816ENUM
3817  BFD_RELOC_CRIS_32_PLT_GOTREL
3818ENUMDOC
3819  32-bit offset to symbol with PLT entry, relative to GOT.
3820ENUM
3821  BFD_RELOC_CRIS_32_PLT_PCREL
3822ENUMDOC
3823  32-bit offset to symbol with PLT entry, relative to this relocation.
3824
3825ENUM
3826  BFD_RELOC_860_COPY
3827ENUMX
3828  BFD_RELOC_860_GLOB_DAT
3829ENUMX
3830  BFD_RELOC_860_JUMP_SLOT
3831ENUMX
3832  BFD_RELOC_860_RELATIVE
3833ENUMX
3834  BFD_RELOC_860_PC26
3835ENUMX
3836  BFD_RELOC_860_PLT26
3837ENUMX
3838  BFD_RELOC_860_PC16
3839ENUMX
3840  BFD_RELOC_860_LOW0
3841ENUMX
3842  BFD_RELOC_860_SPLIT0
3843ENUMX
3844  BFD_RELOC_860_LOW1
3845ENUMX
3846  BFD_RELOC_860_SPLIT1
3847ENUMX
3848  BFD_RELOC_860_LOW2
3849ENUMX
3850  BFD_RELOC_860_SPLIT2
3851ENUMX
3852  BFD_RELOC_860_LOW3
3853ENUMX
3854  BFD_RELOC_860_LOGOT0
3855ENUMX
3856  BFD_RELOC_860_SPGOT0
3857ENUMX
3858  BFD_RELOC_860_LOGOT1
3859ENUMX
3860  BFD_RELOC_860_SPGOT1
3861ENUMX
3862  BFD_RELOC_860_LOGOTOFF0
3863ENUMX
3864  BFD_RELOC_860_SPGOTOFF0
3865ENUMX
3866  BFD_RELOC_860_LOGOTOFF1
3867ENUMX
3868  BFD_RELOC_860_SPGOTOFF1
3869ENUMX
3870  BFD_RELOC_860_LOGOTOFF2
3871ENUMX
3872  BFD_RELOC_860_LOGOTOFF3
3873ENUMX
3874  BFD_RELOC_860_LOPC
3875ENUMX
3876  BFD_RELOC_860_HIGHADJ
3877ENUMX
3878  BFD_RELOC_860_HAGOT
3879ENUMX
3880  BFD_RELOC_860_HAGOTOFF
3881ENUMX
3882  BFD_RELOC_860_HAPC
3883ENUMX
3884  BFD_RELOC_860_HIGH
3885ENUMX
3886  BFD_RELOC_860_HIGOT
3887ENUMX
3888  BFD_RELOC_860_HIGOTOFF
3889ENUMDOC
3890  Intel i860 Relocations.
3891
3892ENUM
3893  BFD_RELOC_OPENRISC_ABS_26
3894ENUMX
3895  BFD_RELOC_OPENRISC_REL_26
3896ENUMDOC
3897  OpenRISC Relocations.
3898
3899ENUM
3900  BFD_RELOC_H8_DIR16A8
3901ENUMX
3902  BFD_RELOC_H8_DIR16R8
3903ENUMX
3904  BFD_RELOC_H8_DIR24A8
3905ENUMX
3906  BFD_RELOC_H8_DIR24R8
3907ENUMX
3908  BFD_RELOC_H8_DIR32A16
3909ENUMDOC
3910  H8 elf Relocations.
3911
3912ENUM
3913  BFD_RELOC_XSTORMY16_REL_12
3914ENUMX
3915  BFD_RELOC_XSTORMY16_12
3916ENUMX
3917  BFD_RELOC_XSTORMY16_24
3918ENUMX
3919  BFD_RELOC_XSTORMY16_FPTR16
3920ENUMDOC
3921  Sony Xstormy16 Relocations.
3922
3923ENUM
3924  BFD_RELOC_VAX_GLOB_DAT
3925ENUMX
3926  BFD_RELOC_VAX_JMP_SLOT
3927ENUMX
3928  BFD_RELOC_VAX_RELATIVE
3929ENUMDOC
3930  Relocations used by VAX ELF.
3931
3932ENUM
3933  BFD_RELOC_MSP430_10_PCREL
3934ENUMX
3935  BFD_RELOC_MSP430_16_PCREL
3936ENUMX
3937  BFD_RELOC_MSP430_16
3938ENUMX
3939  BFD_RELOC_MSP430_16_PCREL_BYTE
3940ENUMX
3941  BFD_RELOC_MSP430_16_BYTE
3942ENUMDOC
3943  msp430 specific relocation codes
3944
3945ENUM
3946  BFD_RELOC_IQ2000_OFFSET_16
3947ENUMX
3948  BFD_RELOC_IQ2000_OFFSET_21
3949ENUMX
3950  BFD_RELOC_IQ2000_UHI16
3951ENUMDOC
3952  IQ2000 Relocations.
3953
3954ENUM
3955  BFD_RELOC_XTENSA_RTLD
3956ENUMDOC
3957  Special Xtensa relocation used only by PLT entries in ELF shared
3958  objects to indicate that the runtime linker should set the value
3959  to one of its own internal functions or data structures.
3960ENUM
3961  BFD_RELOC_XTENSA_GLOB_DAT
3962ENUMX
3963  BFD_RELOC_XTENSA_JMP_SLOT
3964ENUMX
3965  BFD_RELOC_XTENSA_RELATIVE
3966ENUMDOC
3967  Xtensa relocations for ELF shared objects.
3968ENUM
3969  BFD_RELOC_XTENSA_PLT
3970ENUMDOC
3971  Xtensa relocation used in ELF object files for symbols that may require
3972  PLT entries.  Otherwise, this is just a generic 32-bit relocation.
3973ENUM
3974  BFD_RELOC_XTENSA_OP0
3975ENUMX
3976  BFD_RELOC_XTENSA_OP1
3977ENUMX
3978  BFD_RELOC_XTENSA_OP2
3979ENUMDOC
3980  Generic Xtensa relocations.  Only the operand number is encoded
3981  in the relocation.  The details are determined by extracting the
3982  instruction opcode.
3983ENUM
3984  BFD_RELOC_XTENSA_ASM_EXPAND
3985ENUMDOC
3986  Xtensa relocation to mark that the assembler expanded the
3987  instructions from an original target.  The expansion size is
3988  encoded in the reloc size.
3989ENUM
3990  BFD_RELOC_XTENSA_ASM_SIMPLIFY
3991ENUMDOC
3992  Xtensa relocation to mark that the linker should simplify
3993  assembler-expanded instructions.  This is commonly used
3994  internally by the linker after analysis of a
3995  BFD_RELOC_XTENSA_ASM_EXPAND.
3996
3997ENDSENUM
3998  BFD_RELOC_UNUSED
3999CODE_FRAGMENT
4000.
4001.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
4002*/
4003
4004/*
4005FUNCTION
4006	bfd_reloc_type_lookup
4007
4008SYNOPSIS
4009	reloc_howto_type *bfd_reloc_type_lookup
4010	  (bfd *abfd, bfd_reloc_code_real_type code);
4011
4012DESCRIPTION
4013	Return a pointer to a howto structure which, when
4014	invoked, will perform the relocation @var{code} on data from the
4015	architecture noted.
4016
4017*/
4018
4019reloc_howto_type *
4020bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
4021{
4022  return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
4023}
4024
4025static reloc_howto_type bfd_howto_32 =
4026HOWTO (0, 00, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "VRT32", FALSE, 0xffffffff, 0xffffffff, TRUE);
4027
4028/*
4029INTERNAL_FUNCTION
4030	bfd_default_reloc_type_lookup
4031
4032SYNOPSIS
4033	reloc_howto_type *bfd_default_reloc_type_lookup
4034	  (bfd *abfd, bfd_reloc_code_real_type  code);
4035
4036DESCRIPTION
4037	Provides a default relocation lookup routine for any architecture.
4038
4039*/
4040
4041reloc_howto_type *
4042bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
4043{
4044  switch (code)
4045    {
4046    case BFD_RELOC_CTOR:
4047      /* The type of reloc used in a ctor, which will be as wide as the
4048	 address - so either a 64, 32, or 16 bitter.  */
4049      switch (bfd_get_arch_info (abfd)->bits_per_address)
4050	{
4051	case 64:
4052	  BFD_FAIL ();
4053	case 32:
4054	  return &bfd_howto_32;
4055	case 16:
4056	  BFD_FAIL ();
4057	default:
4058	  BFD_FAIL ();
4059	}
4060    default:
4061      BFD_FAIL ();
4062    }
4063  return NULL;
4064}
4065
4066/*
4067FUNCTION
4068	bfd_get_reloc_code_name
4069
4070SYNOPSIS
4071	const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
4072
4073DESCRIPTION
4074	Provides a printable name for the supplied relocation code.
4075	Useful mainly for printing error messages.
4076*/
4077
4078const char *
4079bfd_get_reloc_code_name (bfd_reloc_code_real_type code)
4080{
4081  if (code > BFD_RELOC_UNUSED)
4082    return 0;
4083  return bfd_reloc_code_real_names[code];
4084}
4085
4086/*
4087INTERNAL_FUNCTION
4088	bfd_generic_relax_section
4089
4090SYNOPSIS
4091	bfd_boolean bfd_generic_relax_section
4092	  (bfd *abfd,
4093	   asection *section,
4094	   struct bfd_link_info *,
4095	   bfd_boolean *);
4096
4097DESCRIPTION
4098	Provides default handling for relaxing for back ends which
4099	don't do relaxing -- i.e., does nothing except make sure that the
4100	final size of the section is set.
4101*/
4102
4103bfd_boolean
4104bfd_generic_relax_section (bfd *abfd ATTRIBUTE_UNUSED,
4105			   asection *section ATTRIBUTE_UNUSED,
4106			   struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
4107			   bfd_boolean *again)
4108{
4109  /* We're not relaxing the section, so just copy the size info if it's
4110     zero.  Someone else, like bfd_merge_sections, might have set it, so
4111     don't overwrite a non-zero value.  */
4112  if (section->_cooked_size == 0)
4113    section->_cooked_size = section->_raw_size;
4114  *again = FALSE;
4115  return TRUE;
4116}
4117
4118/*
4119INTERNAL_FUNCTION
4120	bfd_generic_gc_sections
4121
4122SYNOPSIS
4123	bfd_boolean bfd_generic_gc_sections
4124	  (bfd *, struct bfd_link_info *);
4125
4126DESCRIPTION
4127	Provides default handling for relaxing for back ends which
4128	don't do section gc -- i.e., does nothing.
4129*/
4130
4131bfd_boolean
4132bfd_generic_gc_sections (bfd *abfd ATTRIBUTE_UNUSED,
4133			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
4134{
4135  return TRUE;
4136}
4137
4138/*
4139INTERNAL_FUNCTION
4140	bfd_generic_merge_sections
4141
4142SYNOPSIS
4143	bfd_boolean bfd_generic_merge_sections
4144	  (bfd *, struct bfd_link_info *);
4145
4146DESCRIPTION
4147	Provides default handling for SEC_MERGE section merging for back ends
4148	which don't have SEC_MERGE support -- i.e., does nothing.
4149*/
4150
4151bfd_boolean
4152bfd_generic_merge_sections (bfd *abfd ATTRIBUTE_UNUSED,
4153			    struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
4154{
4155  return TRUE;
4156}
4157
4158/*
4159INTERNAL_FUNCTION
4160	bfd_generic_get_relocated_section_contents
4161
4162SYNOPSIS
4163	bfd_byte *bfd_generic_get_relocated_section_contents
4164	  (bfd *abfd,
4165	   struct bfd_link_info *link_info,
4166	   struct bfd_link_order *link_order,
4167	   bfd_byte *data,
4168	   bfd_boolean relocatable,
4169	   asymbol **symbols);
4170
4171DESCRIPTION
4172	Provides default handling of relocation effort for back ends
4173	which can't be bothered to do it efficiently.
4174
4175*/
4176
4177bfd_byte *
4178bfd_generic_get_relocated_section_contents (bfd *abfd,
4179					    struct bfd_link_info *link_info,
4180					    struct bfd_link_order *link_order,
4181					    bfd_byte *data,
4182					    bfd_boolean relocatable,
4183					    asymbol **symbols)
4184{
4185  /* Get enough memory to hold the stuff.  */
4186  bfd *input_bfd = link_order->u.indirect.section->owner;
4187  asection *input_section = link_order->u.indirect.section;
4188
4189  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
4190  arelent **reloc_vector = NULL;
4191  long reloc_count;
4192
4193  if (reloc_size < 0)
4194    goto error_return;
4195
4196  reloc_vector = bfd_malloc (reloc_size);
4197  if (reloc_vector == NULL && reloc_size != 0)
4198    goto error_return;
4199
4200  /* Read in the section.  */
4201  if (!bfd_get_section_contents (input_bfd,
4202				 input_section,
4203				 data,
4204				 0,
4205				 input_section->_raw_size))
4206    goto error_return;
4207
4208  /* Don't set input_section->_cooked_size here.  The caller has set
4209     _cooked_size or called bfd_relax_section, which sets _cooked_size.
4210     Despite using this generic relocation function, some targets perform
4211     target-specific relaxation or string merging, which happens before
4212     this function is called.  We do not want to clobber the _cooked_size
4213     they computed.  */
4214
4215  input_section->reloc_done = TRUE;
4216
4217  reloc_count = bfd_canonicalize_reloc (input_bfd,
4218					input_section,
4219					reloc_vector,
4220					symbols);
4221  if (reloc_count < 0)
4222    goto error_return;
4223
4224  if (reloc_count > 0)
4225    {
4226      arelent **parent;
4227      for (parent = reloc_vector; *parent != NULL; parent++)
4228	{
4229	  char *error_message = NULL;
4230	  bfd_reloc_status_type r =
4231	    bfd_perform_relocation (input_bfd,
4232				    *parent,
4233				    data,
4234				    input_section,
4235				    relocatable ? abfd : NULL,
4236				    &error_message);
4237
4238	  if (relocatable)
4239	    {
4240	      asection *os = input_section->output_section;
4241
4242	      /* A partial link, so keep the relocs.  */
4243	      os->orelocation[os->reloc_count] = *parent;
4244	      os->reloc_count++;
4245	    }
4246
4247	  if (r != bfd_reloc_ok)
4248	    {
4249	      switch (r)
4250		{
4251		case bfd_reloc_undefined:
4252		  if (!((*link_info->callbacks->undefined_symbol)
4253			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
4254			 input_bfd, input_section, (*parent)->address,
4255			 TRUE)))
4256		    goto error_return;
4257		  break;
4258		case bfd_reloc_dangerous:
4259		  BFD_ASSERT (error_message != NULL);
4260		  if (!((*link_info->callbacks->reloc_dangerous)
4261			(link_info, error_message, input_bfd, input_section,
4262			 (*parent)->address)))
4263		    goto error_return;
4264		  break;
4265		case bfd_reloc_overflow:
4266		  if (!((*link_info->callbacks->reloc_overflow)
4267			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
4268			 (*parent)->howto->name, (*parent)->addend,
4269			 input_bfd, input_section, (*parent)->address)))
4270		    goto error_return;
4271		  break;
4272		case bfd_reloc_outofrange:
4273		default:
4274		  abort ();
4275		  break;
4276		}
4277
4278	    }
4279	}
4280    }
4281  if (reloc_vector != NULL)
4282    free (reloc_vector);
4283  return data;
4284
4285error_return:
4286  if (reloc_vector != NULL)
4287    free (reloc_vector);
4288  return NULL;
4289}
4290