ffs_bswap.c revision 185222
1/*	$NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $	*/
2
3/*
4 * Copyright (c) 1998 Manuel Bouyer.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Manuel Bouyer.
17 * 4. The name of the author may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 */
32
33#if HAVE_NBTOOL_CONFIG_H
34#include "nbtool_config.h"
35#endif
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $");
39
40#include <sys/param.h>
41#if defined(_KERNEL)
42#include <sys/systm.h>
43#endif
44
45#include <ufs/ufs/dinode.h>
46#include <ufs/ufs/ufs_bswap.h>
47#include <ufs/ffs/fs.h>
48#include <ufs/ffs/ffs_extern.h>
49
50#if !defined(_KERNEL)
51#include <stddef.h>
52#include <stdio.h>
53#include <stdlib.h>
54#include <string.h>
55#define panic(x)	printf("%s\n", (x)), abort()
56#endif
57
58void
59ffs_sb_swap(struct fs *o, struct fs *n)
60{
61	int i;
62	u_int32_t *o32, *n32;
63
64	/*
65	 * In order to avoid a lot of lines, as the first N fields (52)
66	 * of the superblock up to fs_fmod are u_int32_t, we just loop
67	 * here to convert them.
68	 */
69	o32 = (u_int32_t *)o;
70	n32 = (u_int32_t *)n;
71	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
72		n32[i] = bswap32(o32[i]);
73
74	n->fs_swuid = bswap64(o->fs_swuid);
75	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
76	n->fs_old_cpc = bswap32(o->fs_old_cpc);
77
78	/* These fields overlap with a possible location for the
79	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
80	 * first half of the historic FS_42POSTBLFMT postbl table.
81	 */
82	n->fs_maxbsize = bswap32(o->fs_maxbsize);
83	n->fs_sblockloc = bswap64(o->fs_sblockloc);
84	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
85	n->fs_time = bswap64(o->fs_time);
86	n->fs_size = bswap64(o->fs_size);
87	n->fs_dsize = bswap64(o->fs_dsize);
88	n->fs_csaddr = bswap64(o->fs_csaddr);
89	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
90	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
91
92	/* These fields overlap with the second half of the
93	 * historic FS_42POSTBLFMT postbl table
94	 */
95	for (i = 0; i < FSMAXSNAP; i++)
96		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
97	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
98	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
99	/* fs_sparecon[28] - ignore for now */
100	n->fs_flags = bswap32(o->fs_flags);
101	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
102	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
103	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
104	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
105	n->fs_qbmask = bswap64(o->fs_qbmask);
106	n->fs_qfmask = bswap64(o->fs_qfmask);
107	n->fs_state = bswap32(o->fs_state);
108	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
109	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
110	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
111	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
112
113	n->fs_magic = bswap32(o->fs_magic);
114}
115
116void
117ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
118{
119
120	n->di_mode = bswap16(o->di_mode);
121	n->di_nlink = bswap16(o->di_nlink);
122	n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
123	n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
124	n->di_size = bswap64(o->di_size);
125	n->di_atime = bswap32(o->di_atime);
126	n->di_atimensec = bswap32(o->di_atimensec);
127	n->di_mtime = bswap32(o->di_mtime);
128	n->di_mtimensec = bswap32(o->di_mtimensec);
129	n->di_ctime = bswap32(o->di_ctime);
130	n->di_ctimensec = bswap32(o->di_ctimensec);
131	memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
132	n->di_flags = bswap32(o->di_flags);
133	n->di_blocks = bswap32(o->di_blocks);
134	n->di_gen = bswap32(o->di_gen);
135	n->di_uid = bswap32(o->di_uid);
136	n->di_gid = bswap32(o->di_gid);
137}
138
139void
140ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
141{
142	n->di_mode = bswap16(o->di_mode);
143	n->di_nlink = bswap16(o->di_nlink);
144	n->di_uid = bswap32(o->di_uid);
145	n->di_gid = bswap32(o->di_gid);
146	n->di_blksize = bswap32(o->di_blksize);
147	n->di_size = bswap64(o->di_size);
148	n->di_blocks = bswap64(o->di_blocks);
149	n->di_atime = bswap64(o->di_atime);
150	n->di_atimensec = bswap32(o->di_atimensec);
151	n->di_mtime = bswap64(o->di_mtime);
152	n->di_mtimensec = bswap32(o->di_mtimensec);
153	n->di_ctime = bswap64(o->di_ctime);
154	n->di_ctimensec = bswap32(o->di_ctimensec);
155	n->di_birthtime = bswap64(o->di_ctime);
156	n->di_birthnsec = bswap32(o->di_ctimensec);
157	n->di_gen = bswap32(o->di_gen);
158	n->di_kernflags = bswap32(o->di_kernflags);
159	n->di_flags = bswap32(o->di_flags);
160	n->di_extsize = bswap32(o->di_extsize);
161	memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
162}
163
164void
165ffs_csum_swap(struct csum *o, struct csum *n, int size)
166{
167	int i;
168	u_int32_t *oint, *nint;
169
170	oint = (u_int32_t*)o;
171	nint = (u_int32_t*)n;
172
173	for (i = 0; i < size / sizeof(u_int32_t); i++)
174		nint[i] = bswap32(oint[i]);
175}
176
177void
178ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
179{
180	n->cs_ndir = bswap64(o->cs_ndir);
181	n->cs_nbfree = bswap64(o->cs_nbfree);
182	n->cs_nifree = bswap64(o->cs_nifree);
183	n->cs_nffree = bswap64(o->cs_nffree);
184}
185
186/*
187 * Note that ffs_cg_swap may be called with o == n.
188 */
189void
190ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
191{
192	int i;
193	u_int32_t *n32, *o32;
194	u_int16_t *n16, *o16;
195	int32_t btotoff, boff, clustersumoff;
196
197	n->cg_firstfield = bswap32(o->cg_firstfield);
198	n->cg_magic = bswap32(o->cg_magic);
199	n->cg_old_time = bswap32(o->cg_old_time);
200	n->cg_cgx = bswap32(o->cg_cgx);
201	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
202	n->cg_old_niblk = bswap16(o->cg_old_niblk);
203	n->cg_ndblk = bswap32(o->cg_ndblk);
204	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
205	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
206	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
207	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
208	n->cg_rotor = bswap32(o->cg_rotor);
209	n->cg_frotor = bswap32(o->cg_frotor);
210	n->cg_irotor = bswap32(o->cg_irotor);
211	for (i = 0; i < MAXFRAG; i++)
212		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
213
214	if ((fs->fs_magic != FS_UFS2_MAGIC) &&
215			(fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
216		struct ocg *on, *oo;
217		int j;
218		on = (struct ocg *)n;
219		oo = (struct ocg *)o;
220
221		for (i = 0; i < 32; i++) {
222			on->cg_btot[i] = bswap32(oo->cg_btot[i]);
223			for (j = 0; j < 8; j++)
224				on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
225		}
226		memmove(on->cg_iused, oo->cg_iused, 256);
227		on->cg_magic = bswap32(oo->cg_magic);
228	} else {  /* new format */
229
230		n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
231		n->cg_old_boff = bswap32(o->cg_old_boff);
232		n->cg_iusedoff = bswap32(o->cg_iusedoff);
233		n->cg_freeoff = bswap32(o->cg_freeoff);
234		n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
235		n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
236		n->cg_clusteroff = bswap32(o->cg_clusteroff);
237		n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
238		n->cg_niblk = bswap32(o->cg_niblk);
239		n->cg_initediblk = bswap32(o->cg_initediblk);
240		n->cg_time = bswap64(o->cg_time);
241
242		if (fs->fs_magic == FS_UFS2_MAGIC)
243			return;
244
245		if (n->cg_magic == CG_MAGIC) {
246			btotoff = n->cg_old_btotoff;
247			boff = n->cg_old_boff;
248			clustersumoff = n->cg_clustersumoff;
249		} else {
250			btotoff = bswap32(n->cg_old_btotoff);
251			boff = bswap32(n->cg_old_boff);
252			clustersumoff = bswap32(n->cg_clustersumoff);
253		}
254		n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
255		o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
256		n16 = (u_int16_t *)((u_int8_t *)n + boff);
257		o16 = (u_int16_t *)((u_int8_t *)o + boff);
258
259		for (i = 0; i < fs->fs_old_cpg; i++)
260			n32[i] = bswap32(o32[i]);
261
262		for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
263			n16[i] = bswap16(o16[i]);
264
265		n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
266		o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
267		for (i = 1; i < fs->fs_contigsumsize + 1; i++)
268			n32[i] = bswap32(o32[i]);
269	}
270}
271