vnode_pager.c revision 140723
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 140723 2005-01-24 10:48:29Z jeff $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/conf.h>
65#include <sys/sf_buf.h>
66
67#include <vm/vm.h>
68#include <vm/vm_object.h>
69#include <vm/vm_page.h>
70#include <vm/vm_pager.h>
71#include <vm/vm_map.h>
72#include <vm/vnode_pager.h>
73#include <vm/vm_extern.h>
74
75static void vnode_pager_init(void);
76static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
77					 int *run);
78static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
79static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
80static void vnode_pager_dealloc(vm_object_t);
81static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
82static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
83static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
84
85struct pagerops vnodepagerops = {
86	.pgo_init =	vnode_pager_init,
87	.pgo_alloc =	vnode_pager_alloc,
88	.pgo_dealloc =	vnode_pager_dealloc,
89	.pgo_getpages =	vnode_pager_getpages,
90	.pgo_putpages =	vnode_pager_putpages,
91	.pgo_haspage =	vnode_pager_haspage,
92};
93
94int vnode_pbuf_freecnt;
95
96static void
97vnode_pager_init(void)
98{
99
100	vnode_pbuf_freecnt = nswbuf / 2 + 1;
101}
102
103/*
104 * Allocate (or lookup) pager for a vnode.
105 * Handle is a vnode pointer.
106 *
107 * MPSAFE
108 */
109vm_object_t
110vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
111		  vm_ooffset_t offset)
112{
113	vm_object_t object;
114	struct vnode *vp;
115
116	/*
117	 * Pageout to vnode, no can do yet.
118	 */
119	if (handle == NULL)
120		return (NULL);
121
122	vp = (struct vnode *) handle;
123
124	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
125
126	/*
127	 * Prevent race condition when allocating the object. This
128	 * can happen with NFS vnodes since the nfsnode isn't locked.
129	 */
130	VI_LOCK(vp);
131	while (vp->v_iflag & VI_OLOCK) {
132		vp->v_iflag |= VI_OWANT;
133		msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
134	}
135	vp->v_iflag |= VI_OLOCK;
136	VI_UNLOCK(vp);
137
138	/*
139	 * If the object is being terminated, wait for it to
140	 * go away.
141	 */
142	while ((object = vp->v_object) != NULL) {
143		VM_OBJECT_LOCK(object);
144		if ((object->flags & OBJ_DEAD) == 0)
145			break;
146		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
147		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
148	}
149
150	if (vp->v_usecount == 0)
151		panic("vnode_pager_alloc: no vnode reference");
152
153	if (object == NULL) {
154		/*
155		 * And an object of the appropriate size
156		 */
157		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
158
159		object->un_pager.vnp.vnp_size = size;
160
161		object->handle = handle;
162		vp->v_object = object;
163	} else {
164		object->ref_count++;
165		VM_OBJECT_UNLOCK(object);
166	}
167	VI_LOCK(vp);
168	vp->v_usecount++;
169	vp->v_iflag &= ~VI_OLOCK;
170	if (vp->v_iflag & VI_OWANT) {
171		vp->v_iflag &= ~VI_OWANT;
172		wakeup(vp);
173	}
174	VI_UNLOCK(vp);
175	return (object);
176}
177
178/*
179 *	The object must be locked.
180 */
181static void
182vnode_pager_dealloc(object)
183	vm_object_t object;
184{
185	struct vnode *vp = object->handle;
186
187	if (vp == NULL)
188		panic("vnode_pager_dealloc: pager already dealloced");
189
190	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
191	vm_object_pip_wait(object, "vnpdea");
192
193	object->handle = NULL;
194	object->type = OBJT_DEAD;
195	if (object->flags & OBJ_DISCONNECTWNT) {
196		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
197		wakeup(object);
198	}
199	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
200	vp->v_object = NULL;
201	vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF);
202}
203
204static boolean_t
205vnode_pager_haspage(object, pindex, before, after)
206	vm_object_t object;
207	vm_pindex_t pindex;
208	int *before;
209	int *after;
210{
211	struct vnode *vp = object->handle;
212	daddr_t bn;
213	int err;
214	daddr_t reqblock;
215	int poff;
216	int bsize;
217	int pagesperblock, blocksperpage;
218	int vfslocked;
219
220	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
221	/*
222	 * If no vp or vp is doomed or marked transparent to VM, we do not
223	 * have the page.
224	 */
225	if (vp == NULL)
226		return FALSE;
227
228	VI_LOCK(vp);
229	if (vp->v_iflag & VI_DOOMED) {
230		VI_UNLOCK(vp);
231		return FALSE;
232	}
233	VI_UNLOCK(vp);
234	/*
235	 * If filesystem no longer mounted or offset beyond end of file we do
236	 * not have the page.
237	 */
238	if ((vp->v_mount == NULL) ||
239	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
240		return FALSE;
241
242	bsize = vp->v_mount->mnt_stat.f_iosize;
243	pagesperblock = bsize / PAGE_SIZE;
244	blocksperpage = 0;
245	if (pagesperblock > 0) {
246		reqblock = pindex / pagesperblock;
247	} else {
248		blocksperpage = (PAGE_SIZE / bsize);
249		reqblock = pindex * blocksperpage;
250	}
251	VM_OBJECT_UNLOCK(object);
252	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
253	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
254	VFS_UNLOCK_GIANT(vfslocked);
255	VM_OBJECT_LOCK(object);
256	if (err)
257		return TRUE;
258	if (bn == -1)
259		return FALSE;
260	if (pagesperblock > 0) {
261		poff = pindex - (reqblock * pagesperblock);
262		if (before) {
263			*before *= pagesperblock;
264			*before += poff;
265		}
266		if (after) {
267			int numafter;
268			*after *= pagesperblock;
269			numafter = pagesperblock - (poff + 1);
270			if (IDX_TO_OFF(pindex + numafter) >
271			    object->un_pager.vnp.vnp_size) {
272				numafter =
273		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
274				    pindex;
275			}
276			*after += numafter;
277		}
278	} else {
279		if (before) {
280			*before /= blocksperpage;
281		}
282
283		if (after) {
284			*after /= blocksperpage;
285		}
286	}
287	return TRUE;
288}
289
290/*
291 * Lets the VM system know about a change in size for a file.
292 * We adjust our own internal size and flush any cached pages in
293 * the associated object that are affected by the size change.
294 *
295 * Note: this routine may be invoked as a result of a pager put
296 * operation (possibly at object termination time), so we must be careful.
297 */
298void
299vnode_pager_setsize(vp, nsize)
300	struct vnode *vp;
301	vm_ooffset_t nsize;
302{
303	vm_object_t object;
304	vm_page_t m;
305	vm_pindex_t nobjsize;
306
307	if ((object = vp->v_object) == NULL)
308		return;
309	VM_OBJECT_LOCK(object);
310	if (nsize == object->un_pager.vnp.vnp_size) {
311		/*
312		 * Hasn't changed size
313		 */
314		VM_OBJECT_UNLOCK(object);
315		return;
316	}
317	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
318	if (nsize < object->un_pager.vnp.vnp_size) {
319		/*
320		 * File has shrunk. Toss any cached pages beyond the new EOF.
321		 */
322		if (nobjsize < object->size)
323			vm_object_page_remove(object, nobjsize, object->size,
324			    FALSE);
325		/*
326		 * this gets rid of garbage at the end of a page that is now
327		 * only partially backed by the vnode.
328		 *
329		 * XXX for some reason (I don't know yet), if we take a
330		 * completely invalid page and mark it partially valid
331		 * it can screw up NFS reads, so we don't allow the case.
332		 */
333		if ((nsize & PAGE_MASK) &&
334		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
335		    m->valid != 0) {
336			int base = (int)nsize & PAGE_MASK;
337			int size = PAGE_SIZE - base;
338
339			/*
340			 * Clear out partial-page garbage in case
341			 * the page has been mapped.
342			 */
343			pmap_zero_page_area(m, base, size);
344
345			/*
346			 * XXX work around SMP data integrity race
347			 * by unmapping the page from user processes.
348			 * The garbage we just cleared may be mapped
349			 * to a user process running on another cpu
350			 * and this code is not running through normal
351			 * I/O channels which handle SMP issues for
352			 * us, so unmap page to synchronize all cpus.
353			 *
354			 * XXX should vm_pager_unmap_page() have
355			 * dealt with this?
356			 */
357			vm_page_lock_queues();
358			pmap_remove_all(m);
359
360			/*
361			 * Clear out partial-page dirty bits.  This
362			 * has the side effect of setting the valid
363			 * bits, but that is ok.  There are a bunch
364			 * of places in the VM system where we expected
365			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
366			 * case is one of them.  If the page is still
367			 * partially dirty, make it fully dirty.
368			 *
369			 * note that we do not clear out the valid
370			 * bits.  This would prevent bogus_page
371			 * replacement from working properly.
372			 */
373			vm_page_set_validclean(m, base, size);
374			if (m->dirty != 0)
375				m->dirty = VM_PAGE_BITS_ALL;
376			vm_page_unlock_queues();
377		}
378	}
379	object->un_pager.vnp.vnp_size = nsize;
380	object->size = nobjsize;
381	VM_OBJECT_UNLOCK(object);
382}
383
384/*
385 * calculate the linear (byte) disk address of specified virtual
386 * file address
387 */
388static vm_offset_t
389vnode_pager_addr(vp, address, run)
390	struct vnode *vp;
391	vm_ooffset_t address;
392	int *run;
393{
394	int rtaddress;
395	int bsize;
396	daddr_t block;
397	int err;
398	daddr_t vblock;
399	int voffset;
400
401	if (address < 0)
402		return -1;
403
404	if (vp->v_mount == NULL)
405		return -1;
406
407	bsize = vp->v_mount->mnt_stat.f_iosize;
408	vblock = address / bsize;
409	voffset = address % bsize;
410
411	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
412
413	if (err || (block == -1))
414		rtaddress = -1;
415	else {
416		rtaddress = block + voffset / DEV_BSIZE;
417		if (run) {
418			*run += 1;
419			*run *= bsize/PAGE_SIZE;
420			*run -= voffset/PAGE_SIZE;
421		}
422	}
423
424	return rtaddress;
425}
426
427/*
428 * small block filesystem vnode pager input
429 */
430static int
431vnode_pager_input_smlfs(object, m)
432	vm_object_t object;
433	vm_page_t m;
434{
435	int i;
436	struct vnode *vp;
437	struct bufobj *bo;
438	struct buf *bp;
439	struct sf_buf *sf;
440	int fileaddr;
441	vm_offset_t bsize;
442	int error = 0;
443
444	vp = object->handle;
445	if (vp->v_mount == NULL)
446		return VM_PAGER_BAD;
447
448	bsize = vp->v_mount->mnt_stat.f_iosize;
449
450	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
451
452	sf = sf_buf_alloc(m, 0);
453
454	for (i = 0; i < PAGE_SIZE / bsize; i++) {
455		vm_ooffset_t address;
456
457		if (vm_page_bits(i * bsize, bsize) & m->valid)
458			continue;
459
460		address = IDX_TO_OFF(m->pindex) + i * bsize;
461		if (address >= object->un_pager.vnp.vnp_size) {
462			fileaddr = -1;
463		} else {
464			fileaddr = vnode_pager_addr(vp, address, NULL);
465		}
466		if (fileaddr != -1) {
467			bp = getpbuf(&vnode_pbuf_freecnt);
468
469			/* build a minimal buffer header */
470			bp->b_iocmd = BIO_READ;
471			bp->b_iodone = bdone;
472			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
473			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
474			bp->b_rcred = crhold(curthread->td_ucred);
475			bp->b_wcred = crhold(curthread->td_ucred);
476			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
477			bp->b_blkno = fileaddr;
478			pbgetbo(bo, bp);
479			bp->b_bcount = bsize;
480			bp->b_bufsize = bsize;
481			bp->b_runningbufspace = bp->b_bufsize;
482			runningbufspace += bp->b_runningbufspace;
483
484			/* do the input */
485			bp->b_iooffset = dbtob(bp->b_blkno);
486			bstrategy(bp);
487
488			/* we definitely need to be at splvm here */
489
490			bwait(bp, PVM, "vnsrd");
491
492			if ((bp->b_ioflags & BIO_ERROR) != 0)
493				error = EIO;
494
495			/*
496			 * free the buffer header back to the swap buffer pool
497			 */
498			pbrelbo(bp);
499			relpbuf(bp, &vnode_pbuf_freecnt);
500			if (error)
501				break;
502
503			VM_OBJECT_LOCK(object);
504			vm_page_lock_queues();
505			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
506			vm_page_unlock_queues();
507			VM_OBJECT_UNLOCK(object);
508		} else {
509			VM_OBJECT_LOCK(object);
510			vm_page_lock_queues();
511			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
512			vm_page_unlock_queues();
513			VM_OBJECT_UNLOCK(object);
514			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
515		}
516	}
517	sf_buf_free(sf);
518	vm_page_lock_queues();
519	pmap_clear_modify(m);
520	vm_page_unlock_queues();
521	if (error) {
522		return VM_PAGER_ERROR;
523	}
524	return VM_PAGER_OK;
525
526}
527
528
529/*
530 * old style vnode pager input routine
531 */
532static int
533vnode_pager_input_old(object, m)
534	vm_object_t object;
535	vm_page_t m;
536{
537	struct uio auio;
538	struct iovec aiov;
539	int error;
540	int size;
541	struct sf_buf *sf;
542	struct vnode *vp;
543
544	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
545	error = 0;
546
547	/*
548	 * Return failure if beyond current EOF
549	 */
550	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
551		return VM_PAGER_BAD;
552	} else {
553		size = PAGE_SIZE;
554		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
555			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
556		vp = object->handle;
557		VM_OBJECT_UNLOCK(object);
558
559		/*
560		 * Allocate a kernel virtual address and initialize so that
561		 * we can use VOP_READ/WRITE routines.
562		 */
563		sf = sf_buf_alloc(m, 0);
564
565		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
566		aiov.iov_len = size;
567		auio.uio_iov = &aiov;
568		auio.uio_iovcnt = 1;
569		auio.uio_offset = IDX_TO_OFF(m->pindex);
570		auio.uio_segflg = UIO_SYSSPACE;
571		auio.uio_rw = UIO_READ;
572		auio.uio_resid = size;
573		auio.uio_td = curthread;
574
575		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
576		if (!error) {
577			int count = size - auio.uio_resid;
578
579			if (count == 0)
580				error = EINVAL;
581			else if (count != PAGE_SIZE)
582				bzero((caddr_t)sf_buf_kva(sf) + count,
583				    PAGE_SIZE - count);
584		}
585		sf_buf_free(sf);
586
587		VM_OBJECT_LOCK(object);
588	}
589	vm_page_lock_queues();
590	pmap_clear_modify(m);
591	vm_page_undirty(m);
592	vm_page_unlock_queues();
593	if (!error)
594		m->valid = VM_PAGE_BITS_ALL;
595	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
596}
597
598/*
599 * generic vnode pager input routine
600 */
601
602/*
603 * Local media VFS's that do not implement their own VOP_GETPAGES
604 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
605 * to implement the previous behaviour.
606 *
607 * All other FS's should use the bypass to get to the local media
608 * backing vp's VOP_GETPAGES.
609 */
610static int
611vnode_pager_getpages(object, m, count, reqpage)
612	vm_object_t object;
613	vm_page_t *m;
614	int count;
615	int reqpage;
616{
617	int rtval;
618	struct vnode *vp;
619	int bytes = count * PAGE_SIZE;
620	int vfslocked;
621
622	vp = object->handle;
623	VM_OBJECT_UNLOCK(object);
624	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
625	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
626	KASSERT(rtval != EOPNOTSUPP,
627	    ("vnode_pager: FS getpages not implemented\n"));
628	VFS_UNLOCK_GIANT(vfslocked);
629	VM_OBJECT_LOCK(object);
630	return rtval;
631}
632
633/*
634 * This is now called from local media FS's to operate against their
635 * own vnodes if they fail to implement VOP_GETPAGES.
636 */
637int
638vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
639	struct vnode *vp;
640	vm_page_t *m;
641	int bytecount;
642	int reqpage;
643{
644	vm_object_t object;
645	vm_offset_t kva;
646	off_t foff, tfoff, nextoff;
647	int i, j, size, bsize, first, firstaddr;
648	struct bufobj *bo;
649	int runpg;
650	int runend;
651	struct buf *bp;
652	int count;
653	int error = 0;
654
655	object = vp->v_object;
656	count = bytecount / PAGE_SIZE;
657
658	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
659	    ("vnode_pager_generic_getpages does not support devices"));
660	if (vp->v_mount == NULL)
661		return VM_PAGER_BAD;
662
663	bsize = vp->v_mount->mnt_stat.f_iosize;
664
665	/* get the UNDERLYING device for the file with VOP_BMAP() */
666
667	/*
668	 * originally, we did not check for an error return value -- assuming
669	 * an fs always has a bmap entry point -- that assumption is wrong!!!
670	 */
671	foff = IDX_TO_OFF(m[reqpage]->pindex);
672
673	/*
674	 * if we can't bmap, use old VOP code
675	 */
676	if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) {
677		VM_OBJECT_LOCK(object);
678		vm_page_lock_queues();
679		for (i = 0; i < count; i++)
680			if (i != reqpage)
681				vm_page_free(m[i]);
682		vm_page_unlock_queues();
683		cnt.v_vnodein++;
684		cnt.v_vnodepgsin++;
685		error = vnode_pager_input_old(object, m[reqpage]);
686		VM_OBJECT_UNLOCK(object);
687		return (error);
688
689		/*
690		 * if the blocksize is smaller than a page size, then use
691		 * special small filesystem code.  NFS sometimes has a small
692		 * blocksize, but it can handle large reads itself.
693		 */
694	} else if ((PAGE_SIZE / bsize) > 1 &&
695	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
696		VM_OBJECT_LOCK(object);
697		vm_page_lock_queues();
698		for (i = 0; i < count; i++)
699			if (i != reqpage)
700				vm_page_free(m[i]);
701		vm_page_unlock_queues();
702		VM_OBJECT_UNLOCK(object);
703		cnt.v_vnodein++;
704		cnt.v_vnodepgsin++;
705		return vnode_pager_input_smlfs(object, m[reqpage]);
706	}
707
708	/*
709	 * If we have a completely valid page available to us, we can
710	 * clean up and return.  Otherwise we have to re-read the
711	 * media.
712	 */
713	VM_OBJECT_LOCK(object);
714	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
715		vm_page_lock_queues();
716		for (i = 0; i < count; i++)
717			if (i != reqpage)
718				vm_page_free(m[i]);
719		vm_page_unlock_queues();
720		VM_OBJECT_UNLOCK(object);
721		return VM_PAGER_OK;
722	}
723	m[reqpage]->valid = 0;
724	VM_OBJECT_UNLOCK(object);
725
726	/*
727	 * here on direct device I/O
728	 */
729	firstaddr = -1;
730
731	/*
732	 * calculate the run that includes the required page
733	 */
734	for (first = 0, i = 0; i < count; i = runend) {
735		firstaddr = vnode_pager_addr(vp,
736			IDX_TO_OFF(m[i]->pindex), &runpg);
737		if (firstaddr == -1) {
738			VM_OBJECT_LOCK(object);
739			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
740				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
741				    firstaddr, (uintmax_t)(foff >> 32),
742				    (uintmax_t)foff,
743				    (uintmax_t)
744				    (object->un_pager.vnp.vnp_size >> 32),
745				    (uintmax_t)object->un_pager.vnp.vnp_size);
746			}
747			vm_page_lock_queues();
748			vm_page_free(m[i]);
749			vm_page_unlock_queues();
750			VM_OBJECT_UNLOCK(object);
751			runend = i + 1;
752			first = runend;
753			continue;
754		}
755		runend = i + runpg;
756		if (runend <= reqpage) {
757			VM_OBJECT_LOCK(object);
758			vm_page_lock_queues();
759			for (j = i; j < runend; j++)
760				vm_page_free(m[j]);
761			vm_page_unlock_queues();
762			VM_OBJECT_UNLOCK(object);
763		} else {
764			if (runpg < (count - first)) {
765				VM_OBJECT_LOCK(object);
766				vm_page_lock_queues();
767				for (i = first + runpg; i < count; i++)
768					vm_page_free(m[i]);
769				vm_page_unlock_queues();
770				VM_OBJECT_UNLOCK(object);
771				count = first + runpg;
772			}
773			break;
774		}
775		first = runend;
776	}
777
778	/*
779	 * the first and last page have been calculated now, move input pages
780	 * to be zero based...
781	 */
782	if (first != 0) {
783		for (i = first; i < count; i++) {
784			m[i - first] = m[i];
785		}
786		count -= first;
787		reqpage -= first;
788	}
789
790	/*
791	 * calculate the file virtual address for the transfer
792	 */
793	foff = IDX_TO_OFF(m[0]->pindex);
794
795	/*
796	 * calculate the size of the transfer
797	 */
798	size = count * PAGE_SIZE;
799	KASSERT(count > 0, ("zero count"));
800	if ((foff + size) > object->un_pager.vnp.vnp_size)
801		size = object->un_pager.vnp.vnp_size - foff;
802	KASSERT(size > 0, ("zero size"));
803
804	/*
805	 * round up physical size for real devices.
806	 */
807	if (1) {
808		int secmask = bo->bo_bsize - 1;
809		KASSERT(secmask < PAGE_SIZE && secmask > 0,
810		    ("vnode_pager_generic_getpages: sector size %d too large",
811		    secmask + 1));
812		size = (size + secmask) & ~secmask;
813	}
814
815	bp = getpbuf(&vnode_pbuf_freecnt);
816	kva = (vm_offset_t) bp->b_data;
817
818	/*
819	 * and map the pages to be read into the kva
820	 */
821	pmap_qenter(kva, m, count);
822
823	/* build a minimal buffer header */
824	bp->b_iocmd = BIO_READ;
825	bp->b_iodone = bdone;
826	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
827	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
828	bp->b_rcred = crhold(curthread->td_ucred);
829	bp->b_wcred = crhold(curthread->td_ucred);
830	bp->b_blkno = firstaddr;
831	pbgetbo(bo, bp);
832	bp->b_bcount = size;
833	bp->b_bufsize = size;
834	bp->b_runningbufspace = bp->b_bufsize;
835	runningbufspace += bp->b_runningbufspace;
836
837	cnt.v_vnodein++;
838	cnt.v_vnodepgsin += count;
839
840	/* do the input */
841	bp->b_iooffset = dbtob(bp->b_blkno);
842	bstrategy(bp);
843
844	bwait(bp, PVM, "vnread");
845
846	if ((bp->b_ioflags & BIO_ERROR) != 0)
847		error = EIO;
848
849	if (!error) {
850		if (size != count * PAGE_SIZE)
851			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
852	}
853	pmap_qremove(kva, count);
854
855	/*
856	 * free the buffer header back to the swap buffer pool
857	 */
858	pbrelbo(bp);
859	relpbuf(bp, &vnode_pbuf_freecnt);
860
861	VM_OBJECT_LOCK(object);
862	vm_page_lock_queues();
863	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
864		vm_page_t mt;
865
866		nextoff = tfoff + PAGE_SIZE;
867		mt = m[i];
868
869		if (nextoff <= object->un_pager.vnp.vnp_size) {
870			/*
871			 * Read filled up entire page.
872			 */
873			mt->valid = VM_PAGE_BITS_ALL;
874			vm_page_undirty(mt);	/* should be an assert? XXX */
875			pmap_clear_modify(mt);
876		} else {
877			/*
878			 * Read did not fill up entire page.  Since this
879			 * is getpages, the page may be mapped, so we have
880			 * to zero the invalid portions of the page even
881			 * though we aren't setting them valid.
882			 *
883			 * Currently we do not set the entire page valid,
884			 * we just try to clear the piece that we couldn't
885			 * read.
886			 */
887			vm_page_set_validclean(mt, 0,
888			    object->un_pager.vnp.vnp_size - tfoff);
889			/* handled by vm_fault now */
890			/* vm_page_zero_invalid(mt, FALSE); */
891		}
892
893		if (i != reqpage) {
894
895			/*
896			 * whether or not to leave the page activated is up in
897			 * the air, but we should put the page on a page queue
898			 * somewhere. (it already is in the object). Result:
899			 * It appears that empirical results show that
900			 * deactivating pages is best.
901			 */
902
903			/*
904			 * just in case someone was asking for this page we
905			 * now tell them that it is ok to use
906			 */
907			if (!error) {
908				if (mt->flags & PG_WANTED)
909					vm_page_activate(mt);
910				else
911					vm_page_deactivate(mt);
912				vm_page_wakeup(mt);
913			} else {
914				vm_page_free(mt);
915			}
916		}
917	}
918	vm_page_unlock_queues();
919	VM_OBJECT_UNLOCK(object);
920	if (error) {
921		printf("vnode_pager_getpages: I/O read error\n");
922	}
923	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
924}
925
926/*
927 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
928 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
929 * vnode_pager_generic_putpages() to implement the previous behaviour.
930 *
931 * All other FS's should use the bypass to get to the local media
932 * backing vp's VOP_PUTPAGES.
933 */
934static void
935vnode_pager_putpages(object, m, count, sync, rtvals)
936	vm_object_t object;
937	vm_page_t *m;
938	int count;
939	boolean_t sync;
940	int *rtvals;
941{
942	int rtval;
943	struct vnode *vp;
944	struct mount *mp;
945	int bytes = count * PAGE_SIZE;
946
947	/*
948	 * Force synchronous operation if we are extremely low on memory
949	 * to prevent a low-memory deadlock.  VOP operations often need to
950	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
951	 * operation ).  The swapper handles the case by limiting the amount
952	 * of asynchronous I/O, but that sort of solution doesn't scale well
953	 * for the vnode pager without a lot of work.
954	 *
955	 * Also, the backing vnode's iodone routine may not wake the pageout
956	 * daemon up.  This should be probably be addressed XXX.
957	 */
958
959	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
960		sync |= OBJPC_SYNC;
961
962	/*
963	 * Call device-specific putpages function
964	 */
965	vp = object->handle;
966	VM_OBJECT_UNLOCK(object);
967	if (vp->v_type != VREG)
968		mp = NULL;
969	(void)vn_start_write(vp, &mp, V_WAIT);
970	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
971	KASSERT(rtval != EOPNOTSUPP,
972	    ("vnode_pager: stale FS putpages\n"));
973	vn_finished_write(mp);
974	VM_OBJECT_LOCK(object);
975}
976
977
978/*
979 * This is now called from local media FS's to operate against their
980 * own vnodes if they fail to implement VOP_PUTPAGES.
981 *
982 * This is typically called indirectly via the pageout daemon and
983 * clustering has already typically occured, so in general we ask the
984 * underlying filesystem to write the data out asynchronously rather
985 * then delayed.
986 */
987int
988vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
989	struct vnode *vp;
990	vm_page_t *m;
991	int bytecount;
992	int flags;
993	int *rtvals;
994{
995	int i;
996	vm_object_t object;
997	int count;
998
999	int maxsize, ncount;
1000	vm_ooffset_t poffset;
1001	struct uio auio;
1002	struct iovec aiov;
1003	int error;
1004	int ioflags;
1005
1006	object = vp->v_object;
1007	count = bytecount / PAGE_SIZE;
1008
1009	for (i = 0; i < count; i++)
1010		rtvals[i] = VM_PAGER_AGAIN;
1011
1012	if ((int64_t)m[0]->pindex < 0) {
1013		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1014			(long)m[0]->pindex, (u_long)m[0]->dirty);
1015		rtvals[0] = VM_PAGER_BAD;
1016		return VM_PAGER_BAD;
1017	}
1018
1019	maxsize = count * PAGE_SIZE;
1020	ncount = count;
1021
1022	poffset = IDX_TO_OFF(m[0]->pindex);
1023
1024	/*
1025	 * If the page-aligned write is larger then the actual file we
1026	 * have to invalidate pages occuring beyond the file EOF.  However,
1027	 * there is an edge case where a file may not be page-aligned where
1028	 * the last page is partially invalid.  In this case the filesystem
1029	 * may not properly clear the dirty bits for the entire page (which
1030	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1031	 * With the page locked we are free to fix-up the dirty bits here.
1032	 *
1033	 * We do not under any circumstances truncate the valid bits, as
1034	 * this will screw up bogus page replacement.
1035	 */
1036	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1037		if (object->un_pager.vnp.vnp_size > poffset) {
1038			int pgoff;
1039
1040			maxsize = object->un_pager.vnp.vnp_size - poffset;
1041			ncount = btoc(maxsize);
1042			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1043				vm_page_lock_queues();
1044				vm_page_clear_dirty(m[ncount - 1], pgoff,
1045					PAGE_SIZE - pgoff);
1046				vm_page_unlock_queues();
1047			}
1048		} else {
1049			maxsize = 0;
1050			ncount = 0;
1051		}
1052		if (ncount < count) {
1053			for (i = ncount; i < count; i++) {
1054				rtvals[i] = VM_PAGER_BAD;
1055			}
1056		}
1057	}
1058
1059	/*
1060	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1061	 * rather then a bdwrite() to prevent paging I/O from saturating
1062	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1063	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1064	 * the system decides how to cluster.
1065	 */
1066	ioflags = IO_VMIO;
1067	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1068		ioflags |= IO_SYNC;
1069	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1070		ioflags |= IO_ASYNC;
1071	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1072	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1073
1074	aiov.iov_base = (caddr_t) 0;
1075	aiov.iov_len = maxsize;
1076	auio.uio_iov = &aiov;
1077	auio.uio_iovcnt = 1;
1078	auio.uio_offset = poffset;
1079	auio.uio_segflg = UIO_NOCOPY;
1080	auio.uio_rw = UIO_WRITE;
1081	auio.uio_resid = maxsize;
1082	auio.uio_td = (struct thread *) 0;
1083	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1084	cnt.v_vnodeout++;
1085	cnt.v_vnodepgsout += ncount;
1086
1087	if (error) {
1088		printf("vnode_pager_putpages: I/O error %d\n", error);
1089	}
1090	if (auio.uio_resid) {
1091		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1092		    auio.uio_resid, (u_long)m[0]->pindex);
1093	}
1094	for (i = 0; i < ncount; i++) {
1095		rtvals[i] = VM_PAGER_OK;
1096	}
1097	return rtvals[0];
1098}
1099
1100struct vnode *
1101vnode_pager_lock(vm_object_t first_object)
1102{
1103	struct vnode *vp;
1104	vm_object_t backing_object, object;
1105
1106	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1107	for (object = first_object; object != NULL; object = backing_object) {
1108		if (object->type != OBJT_VNODE) {
1109			if ((backing_object = object->backing_object) != NULL)
1110				VM_OBJECT_LOCK(backing_object);
1111			if (object != first_object)
1112				VM_OBJECT_UNLOCK(object);
1113			continue;
1114		}
1115	retry:
1116		if (object->flags & OBJ_DEAD) {
1117			if (object != first_object)
1118				VM_OBJECT_UNLOCK(object);
1119			return NULL;
1120		}
1121		vp = object->handle;
1122		VI_LOCK(vp);
1123		VM_OBJECT_UNLOCK(object);
1124		if (first_object != object)
1125			VM_OBJECT_UNLOCK(first_object);
1126		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
1127		    LK_RETRY | LK_SHARED, curthread)) {
1128			VM_OBJECT_LOCK(first_object);
1129			if (object != first_object)
1130				VM_OBJECT_LOCK(object);
1131			if (object->type != OBJT_VNODE) {
1132				if (object != first_object)
1133					VM_OBJECT_UNLOCK(object);
1134				return NULL;
1135			}
1136			printf("vnode_pager_lock: retrying\n");
1137			goto retry;
1138		}
1139		VM_OBJECT_LOCK(first_object);
1140		return (vp);
1141	}
1142	return NULL;
1143}
1144