vnode_pager.c revision 207410
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 207410 2010-04-30 00:46:43Z kmacy $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/sf_buf.h>
67
68#include <machine/atomic.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vm_map.h>
75#include <vm/vnode_pager.h>
76#include <vm/vm_extern.h>
77
78static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
79    daddr_t *rtaddress, int *run);
80static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
81static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
82static void vnode_pager_dealloc(vm_object_t);
83static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
84static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
85static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
86static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
87    vm_ooffset_t, struct ucred *cred);
88
89struct pagerops vnodepagerops = {
90	.pgo_alloc =	vnode_pager_alloc,
91	.pgo_dealloc =	vnode_pager_dealloc,
92	.pgo_getpages =	vnode_pager_getpages,
93	.pgo_putpages =	vnode_pager_putpages,
94	.pgo_haspage =	vnode_pager_haspage,
95};
96
97int vnode_pbuf_freecnt;
98
99/* Create the VM system backing object for this vnode */
100int
101vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
102{
103	vm_object_t object;
104	vm_ooffset_t size = isize;
105	struct vattr va;
106
107	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
108		return (0);
109
110	while ((object = vp->v_object) != NULL) {
111		VM_OBJECT_LOCK(object);
112		if (!(object->flags & OBJ_DEAD)) {
113			VM_OBJECT_UNLOCK(object);
114			return (0);
115		}
116		VOP_UNLOCK(vp, 0);
117		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
118		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
119		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
120	}
121
122	if (size == 0) {
123		if (vn_isdisk(vp, NULL)) {
124			size = IDX_TO_OFF(INT_MAX);
125		} else {
126			if (VOP_GETATTR(vp, &va, td->td_ucred))
127				return (0);
128			size = va.va_size;
129		}
130	}
131
132	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
133	/*
134	 * Dereference the reference we just created.  This assumes
135	 * that the object is associated with the vp.
136	 */
137	VM_OBJECT_LOCK(object);
138	object->ref_count--;
139	VM_OBJECT_UNLOCK(object);
140	vrele(vp);
141
142	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
143
144	return (0);
145}
146
147void
148vnode_destroy_vobject(struct vnode *vp)
149{
150	struct vm_object *obj;
151
152	obj = vp->v_object;
153	if (obj == NULL)
154		return;
155	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
156	VM_OBJECT_LOCK(obj);
157	if (obj->ref_count == 0) {
158		/*
159		 * vclean() may be called twice. The first time
160		 * removes the primary reference to the object,
161		 * the second time goes one further and is a
162		 * special-case to terminate the object.
163		 *
164		 * don't double-terminate the object
165		 */
166		if ((obj->flags & OBJ_DEAD) == 0)
167			vm_object_terminate(obj);
168		else
169			VM_OBJECT_UNLOCK(obj);
170	} else {
171		/*
172		 * Woe to the process that tries to page now :-).
173		 */
174		vm_pager_deallocate(obj);
175		VM_OBJECT_UNLOCK(obj);
176	}
177	vp->v_object = NULL;
178}
179
180
181/*
182 * Allocate (or lookup) pager for a vnode.
183 * Handle is a vnode pointer.
184 *
185 * MPSAFE
186 */
187vm_object_t
188vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
189    vm_ooffset_t offset, struct ucred *cred)
190{
191	vm_object_t object;
192	struct vnode *vp;
193
194	/*
195	 * Pageout to vnode, no can do yet.
196	 */
197	if (handle == NULL)
198		return (NULL);
199
200	vp = (struct vnode *) handle;
201
202	/*
203	 * If the object is being terminated, wait for it to
204	 * go away.
205	 */
206retry:
207	while ((object = vp->v_object) != NULL) {
208		VM_OBJECT_LOCK(object);
209		if ((object->flags & OBJ_DEAD) == 0)
210			break;
211		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
212		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
213	}
214
215	if (vp->v_usecount == 0)
216		panic("vnode_pager_alloc: no vnode reference");
217
218	if (object == NULL) {
219		/*
220		 * Add an object of the appropriate size
221		 */
222		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
223
224		object->un_pager.vnp.vnp_size = size;
225
226		object->handle = handle;
227		VI_LOCK(vp);
228		if (vp->v_object != NULL) {
229			/*
230			 * Object has been created while we were sleeping
231			 */
232			VI_UNLOCK(vp);
233			vm_object_destroy(object);
234			goto retry;
235		}
236		vp->v_object = object;
237		VI_UNLOCK(vp);
238	} else {
239		object->ref_count++;
240		VM_OBJECT_UNLOCK(object);
241	}
242	vref(vp);
243	return (object);
244}
245
246/*
247 *	The object must be locked.
248 */
249static void
250vnode_pager_dealloc(object)
251	vm_object_t object;
252{
253	struct vnode *vp;
254	int refs;
255
256	vp = object->handle;
257	if (vp == NULL)
258		panic("vnode_pager_dealloc: pager already dealloced");
259
260	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
261	vm_object_pip_wait(object, "vnpdea");
262	refs = object->ref_count;
263
264	object->handle = NULL;
265	object->type = OBJT_DEAD;
266	if (object->flags & OBJ_DISCONNECTWNT) {
267		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
268		wakeup(object);
269	}
270	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
271	vp->v_object = NULL;
272	vp->v_vflag &= ~VV_TEXT;
273	while (refs-- > 0)
274		vunref(vp);
275}
276
277static boolean_t
278vnode_pager_haspage(object, pindex, before, after)
279	vm_object_t object;
280	vm_pindex_t pindex;
281	int *before;
282	int *after;
283{
284	struct vnode *vp = object->handle;
285	daddr_t bn;
286	int err;
287	daddr_t reqblock;
288	int poff;
289	int bsize;
290	int pagesperblock, blocksperpage;
291	int vfslocked;
292
293	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
294	/*
295	 * If no vp or vp is doomed or marked transparent to VM, we do not
296	 * have the page.
297	 */
298	if (vp == NULL || vp->v_iflag & VI_DOOMED)
299		return FALSE;
300	/*
301	 * If the offset is beyond end of file we do
302	 * not have the page.
303	 */
304	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
305		return FALSE;
306
307	bsize = vp->v_mount->mnt_stat.f_iosize;
308	pagesperblock = bsize / PAGE_SIZE;
309	blocksperpage = 0;
310	if (pagesperblock > 0) {
311		reqblock = pindex / pagesperblock;
312	} else {
313		blocksperpage = (PAGE_SIZE / bsize);
314		reqblock = pindex * blocksperpage;
315	}
316	VM_OBJECT_UNLOCK(object);
317	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
318	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
319	VFS_UNLOCK_GIANT(vfslocked);
320	VM_OBJECT_LOCK(object);
321	if (err)
322		return TRUE;
323	if (bn == -1)
324		return FALSE;
325	if (pagesperblock > 0) {
326		poff = pindex - (reqblock * pagesperblock);
327		if (before) {
328			*before *= pagesperblock;
329			*before += poff;
330		}
331		if (after) {
332			int numafter;
333			*after *= pagesperblock;
334			numafter = pagesperblock - (poff + 1);
335			if (IDX_TO_OFF(pindex + numafter) >
336			    object->un_pager.vnp.vnp_size) {
337				numafter =
338		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
339				    pindex;
340			}
341			*after += numafter;
342		}
343	} else {
344		if (before) {
345			*before /= blocksperpage;
346		}
347
348		if (after) {
349			*after /= blocksperpage;
350		}
351	}
352	return TRUE;
353}
354
355/*
356 * Lets the VM system know about a change in size for a file.
357 * We adjust our own internal size and flush any cached pages in
358 * the associated object that are affected by the size change.
359 *
360 * Note: this routine may be invoked as a result of a pager put
361 * operation (possibly at object termination time), so we must be careful.
362 */
363void
364vnode_pager_setsize(vp, nsize)
365	struct vnode *vp;
366	vm_ooffset_t nsize;
367{
368	vm_object_t object;
369	vm_page_t m;
370	vm_pindex_t nobjsize;
371
372	if ((object = vp->v_object) == NULL)
373		return;
374/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
375	VM_OBJECT_LOCK(object);
376	if (nsize == object->un_pager.vnp.vnp_size) {
377		/*
378		 * Hasn't changed size
379		 */
380		VM_OBJECT_UNLOCK(object);
381		return;
382	}
383	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
384	if (nsize < object->un_pager.vnp.vnp_size) {
385		/*
386		 * File has shrunk. Toss any cached pages beyond the new EOF.
387		 */
388		if (nobjsize < object->size)
389			vm_object_page_remove(object, nobjsize, object->size,
390			    FALSE);
391		/*
392		 * this gets rid of garbage at the end of a page that is now
393		 * only partially backed by the vnode.
394		 *
395		 * XXX for some reason (I don't know yet), if we take a
396		 * completely invalid page and mark it partially valid
397		 * it can screw up NFS reads, so we don't allow the case.
398		 */
399		if ((nsize & PAGE_MASK) &&
400		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
401		    m->valid != 0) {
402			int base = (int)nsize & PAGE_MASK;
403			int size = PAGE_SIZE - base;
404
405			/*
406			 * Clear out partial-page garbage in case
407			 * the page has been mapped.
408			 */
409			pmap_zero_page_area(m, base, size);
410
411			/*
412			 * Update the valid bits to reflect the blocks that
413			 * have been zeroed.  Some of these valid bits may
414			 * have already been set.
415			 */
416			vm_page_set_valid(m, base, size);
417
418			/*
419			 * Round "base" to the next block boundary so that the
420			 * dirty bit for a partially zeroed block is not
421			 * cleared.
422			 */
423			base = roundup2(base, DEV_BSIZE);
424
425			/*
426			 * Clear out partial-page dirty bits.
427			 *
428			 * note that we do not clear out the valid
429			 * bits.  This would prevent bogus_page
430			 * replacement from working properly.
431			 */
432			vm_page_lock(m);
433			vm_page_lock_queues();
434			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
435			vm_page_unlock_queues();
436			vm_page_unlock(m);
437		} else if ((nsize & PAGE_MASK) &&
438		    __predict_false(object->cache != NULL)) {
439			vm_page_cache_free(object, OFF_TO_IDX(nsize),
440			    nobjsize);
441		}
442	}
443	object->un_pager.vnp.vnp_size = nsize;
444	object->size = nobjsize;
445	VM_OBJECT_UNLOCK(object);
446}
447
448/*
449 * calculate the linear (byte) disk address of specified virtual
450 * file address
451 */
452static int
453vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
454    int *run)
455{
456	int bsize;
457	int err;
458	daddr_t vblock;
459	daddr_t voffset;
460
461	if (address < 0)
462		return -1;
463
464	if (vp->v_iflag & VI_DOOMED)
465		return -1;
466
467	bsize = vp->v_mount->mnt_stat.f_iosize;
468	vblock = address / bsize;
469	voffset = address % bsize;
470
471	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
472	if (err == 0) {
473		if (*rtaddress != -1)
474			*rtaddress += voffset / DEV_BSIZE;
475		if (run) {
476			*run += 1;
477			*run *= bsize/PAGE_SIZE;
478			*run -= voffset/PAGE_SIZE;
479		}
480	}
481
482	return (err);
483}
484
485/*
486 * small block filesystem vnode pager input
487 */
488static int
489vnode_pager_input_smlfs(object, m)
490	vm_object_t object;
491	vm_page_t m;
492{
493	int bits, i;
494	struct vnode *vp;
495	struct bufobj *bo;
496	struct buf *bp;
497	struct sf_buf *sf;
498	daddr_t fileaddr;
499	vm_offset_t bsize;
500	int error = 0;
501
502	vp = object->handle;
503	if (vp->v_iflag & VI_DOOMED)
504		return VM_PAGER_BAD;
505
506	bsize = vp->v_mount->mnt_stat.f_iosize;
507
508	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
509
510	sf = sf_buf_alloc(m, 0);
511
512	for (i = 0; i < PAGE_SIZE / bsize; i++) {
513		vm_ooffset_t address;
514
515		bits = vm_page_bits(i * bsize, bsize);
516		if (m->valid & bits)
517			continue;
518
519		address = IDX_TO_OFF(m->pindex) + i * bsize;
520		if (address >= object->un_pager.vnp.vnp_size) {
521			fileaddr = -1;
522		} else {
523			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
524			if (error)
525				break;
526		}
527		if (fileaddr != -1) {
528			bp = getpbuf(&vnode_pbuf_freecnt);
529
530			/* build a minimal buffer header */
531			bp->b_iocmd = BIO_READ;
532			bp->b_iodone = bdone;
533			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
534			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
535			bp->b_rcred = crhold(curthread->td_ucred);
536			bp->b_wcred = crhold(curthread->td_ucred);
537			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
538			bp->b_blkno = fileaddr;
539			pbgetbo(bo, bp);
540			bp->b_bcount = bsize;
541			bp->b_bufsize = bsize;
542			bp->b_runningbufspace = bp->b_bufsize;
543			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
544
545			/* do the input */
546			bp->b_iooffset = dbtob(bp->b_blkno);
547			bstrategy(bp);
548
549			bwait(bp, PVM, "vnsrd");
550
551			if ((bp->b_ioflags & BIO_ERROR) != 0)
552				error = EIO;
553
554			/*
555			 * free the buffer header back to the swap buffer pool
556			 */
557			pbrelbo(bp);
558			relpbuf(bp, &vnode_pbuf_freecnt);
559			if (error)
560				break;
561		} else
562			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
563		KASSERT((m->dirty & bits) == 0,
564		    ("vnode_pager_input_smlfs: page %p is dirty", m));
565		VM_OBJECT_LOCK(object);
566		m->valid |= bits;
567		VM_OBJECT_UNLOCK(object);
568	}
569	sf_buf_free(sf);
570	if (error) {
571		return VM_PAGER_ERROR;
572	}
573	return VM_PAGER_OK;
574}
575
576/*
577 * old style vnode pager input routine
578 */
579static int
580vnode_pager_input_old(object, m)
581	vm_object_t object;
582	vm_page_t m;
583{
584	struct uio auio;
585	struct iovec aiov;
586	int error;
587	int size;
588	struct sf_buf *sf;
589	struct vnode *vp;
590
591	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
592	error = 0;
593
594	/*
595	 * Return failure if beyond current EOF
596	 */
597	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
598		return VM_PAGER_BAD;
599	} else {
600		size = PAGE_SIZE;
601		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
602			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
603		vp = object->handle;
604		VM_OBJECT_UNLOCK(object);
605
606		/*
607		 * Allocate a kernel virtual address and initialize so that
608		 * we can use VOP_READ/WRITE routines.
609		 */
610		sf = sf_buf_alloc(m, 0);
611
612		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
613		aiov.iov_len = size;
614		auio.uio_iov = &aiov;
615		auio.uio_iovcnt = 1;
616		auio.uio_offset = IDX_TO_OFF(m->pindex);
617		auio.uio_segflg = UIO_SYSSPACE;
618		auio.uio_rw = UIO_READ;
619		auio.uio_resid = size;
620		auio.uio_td = curthread;
621
622		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
623		if (!error) {
624			int count = size - auio.uio_resid;
625
626			if (count == 0)
627				error = EINVAL;
628			else if (count != PAGE_SIZE)
629				bzero((caddr_t)sf_buf_kva(sf) + count,
630				    PAGE_SIZE - count);
631		}
632		sf_buf_free(sf);
633
634		VM_OBJECT_LOCK(object);
635	}
636	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
637	if (!error)
638		m->valid = VM_PAGE_BITS_ALL;
639	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
640}
641
642/*
643 * generic vnode pager input routine
644 */
645
646/*
647 * Local media VFS's that do not implement their own VOP_GETPAGES
648 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
649 * to implement the previous behaviour.
650 *
651 * All other FS's should use the bypass to get to the local media
652 * backing vp's VOP_GETPAGES.
653 */
654static int
655vnode_pager_getpages(object, m, count, reqpage)
656	vm_object_t object;
657	vm_page_t *m;
658	int count;
659	int reqpage;
660{
661	int rtval;
662	struct vnode *vp;
663	int bytes = count * PAGE_SIZE;
664	int vfslocked;
665
666	vp = object->handle;
667	VM_OBJECT_UNLOCK(object);
668	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
669	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
670	KASSERT(rtval != EOPNOTSUPP,
671	    ("vnode_pager: FS getpages not implemented\n"));
672	VFS_UNLOCK_GIANT(vfslocked);
673	VM_OBJECT_LOCK(object);
674	return rtval;
675}
676
677/*
678 * This is now called from local media FS's to operate against their
679 * own vnodes if they fail to implement VOP_GETPAGES.
680 */
681int
682vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
683	struct vnode *vp;
684	vm_page_t *m;
685	int bytecount;
686	int reqpage;
687{
688	vm_object_t object;
689	vm_offset_t kva;
690	off_t foff, tfoff, nextoff;
691	int i, j, size, bsize, first;
692	daddr_t firstaddr, reqblock;
693	struct bufobj *bo;
694	int runpg;
695	int runend;
696	struct buf *bp;
697	int count;
698	int error;
699
700	object = vp->v_object;
701	count = bytecount / PAGE_SIZE;
702
703	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
704	    ("vnode_pager_generic_getpages does not support devices"));
705	if (vp->v_iflag & VI_DOOMED)
706		return VM_PAGER_BAD;
707
708	bsize = vp->v_mount->mnt_stat.f_iosize;
709
710	/* get the UNDERLYING device for the file with VOP_BMAP() */
711
712	/*
713	 * originally, we did not check for an error return value -- assuming
714	 * an fs always has a bmap entry point -- that assumption is wrong!!!
715	 */
716	foff = IDX_TO_OFF(m[reqpage]->pindex);
717
718	/*
719	 * if we can't bmap, use old VOP code
720	 */
721	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
722	if (error == EOPNOTSUPP) {
723		VM_OBJECT_LOCK(object);
724
725		for (i = 0; i < count; i++)
726			if (i != reqpage) {
727				vm_page_lock(m[i]);
728				vm_page_lock_queues();
729				vm_page_free(m[i]);
730				vm_page_unlock_queues();
731				vm_page_unlock(m[i]);
732			}
733		PCPU_INC(cnt.v_vnodein);
734		PCPU_INC(cnt.v_vnodepgsin);
735		error = vnode_pager_input_old(object, m[reqpage]);
736		VM_OBJECT_UNLOCK(object);
737		return (error);
738	} else if (error != 0) {
739		VM_OBJECT_LOCK(object);
740		for (i = 0; i < count; i++)
741			if (i != reqpage) {
742				vm_page_lock(m[i]);
743				vm_page_lock_queues();
744				vm_page_free(m[i]);
745				vm_page_unlock_queues();
746				vm_page_unlock(m[i]);
747			}
748		VM_OBJECT_UNLOCK(object);
749		return (VM_PAGER_ERROR);
750
751		/*
752		 * if the blocksize is smaller than a page size, then use
753		 * special small filesystem code.  NFS sometimes has a small
754		 * blocksize, but it can handle large reads itself.
755		 */
756	} else if ((PAGE_SIZE / bsize) > 1 &&
757	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
758		VM_OBJECT_LOCK(object);
759		for (i = 0; i < count; i++)
760			if (i != reqpage) {
761				vm_page_lock(m[i]);
762				vm_page_lock_queues();
763				vm_page_free(m[i]);
764				vm_page_unlock_queues();
765				vm_page_unlock(m[i]);
766			}
767		VM_OBJECT_UNLOCK(object);
768		PCPU_INC(cnt.v_vnodein);
769		PCPU_INC(cnt.v_vnodepgsin);
770		return vnode_pager_input_smlfs(object, m[reqpage]);
771	}
772
773	/*
774	 * If we have a completely valid page available to us, we can
775	 * clean up and return.  Otherwise we have to re-read the
776	 * media.
777	 */
778	VM_OBJECT_LOCK(object);
779	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
780		for (i = 0; i < count; i++)
781			if (i != reqpage) {
782				vm_page_lock(m[i]);
783				vm_page_lock_queues();
784				vm_page_free(m[i]);
785				vm_page_unlock_queues();
786				vm_page_unlock(m[i]);
787			}
788		VM_OBJECT_UNLOCK(object);
789		return VM_PAGER_OK;
790	} else if (reqblock == -1) {
791		pmap_zero_page(m[reqpage]);
792		KASSERT(m[reqpage]->dirty == 0,
793		    ("vnode_pager_generic_getpages: page %p is dirty", m));
794		m[reqpage]->valid = VM_PAGE_BITS_ALL;
795		for (i = 0; i < count; i++)
796			if (i != reqpage) {
797				vm_page_lock(m[i]);
798				vm_page_lock_queues();
799				vm_page_free(m[i]);
800				vm_page_unlock_queues();
801				vm_page_unlock(m[i]);
802			}
803		VM_OBJECT_UNLOCK(object);
804		return (VM_PAGER_OK);
805	}
806	m[reqpage]->valid = 0;
807	VM_OBJECT_UNLOCK(object);
808
809	/*
810	 * here on direct device I/O
811	 */
812	firstaddr = -1;
813
814	/*
815	 * calculate the run that includes the required page
816	 */
817	for (first = 0, i = 0; i < count; i = runend) {
818		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
819		    &runpg) != 0) {
820			VM_OBJECT_LOCK(object);
821			for (; i < count; i++)
822				if (i != reqpage) {
823					vm_page_lock(m[i]);
824					vm_page_lock_queues();
825					vm_page_free(m[i]);
826					vm_page_unlock_queues();
827					vm_page_unlock(m[i]);
828				}
829			VM_OBJECT_UNLOCK(object);
830			return (VM_PAGER_ERROR);
831		}
832		if (firstaddr == -1) {
833			VM_OBJECT_LOCK(object);
834			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
835				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
836				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
837				    (uintmax_t)foff,
838				    (uintmax_t)
839				    (object->un_pager.vnp.vnp_size >> 32),
840				    (uintmax_t)object->un_pager.vnp.vnp_size);
841			}
842			vm_page_lock(m[i]);
843			vm_page_lock_queues();
844			vm_page_free(m[i]);
845			vm_page_unlock_queues();
846			vm_page_unlock(m[i]);
847			VM_OBJECT_UNLOCK(object);
848			runend = i + 1;
849			first = runend;
850			continue;
851		}
852		runend = i + runpg;
853		if (runend <= reqpage) {
854			VM_OBJECT_LOCK(object);
855			for (j = i; j < runend; j++) {
856				vm_page_lock(m[j]);
857				vm_page_lock_queues();
858				vm_page_free(m[j]);
859				vm_page_unlock_queues();
860				vm_page_unlock(m[j]);
861			}
862			VM_OBJECT_UNLOCK(object);
863		} else {
864			if (runpg < (count - first)) {
865				VM_OBJECT_LOCK(object);
866				for (i = first + runpg; i < count; i++) {
867					vm_page_lock(m[i]);
868					vm_page_lock_queues();
869					vm_page_free(m[i]);
870					vm_page_unlock_queues();
871					vm_page_unlock(m[i]);
872				}
873				VM_OBJECT_UNLOCK(object);
874				count = first + runpg;
875			}
876			break;
877		}
878		first = runend;
879	}
880
881	/*
882	 * the first and last page have been calculated now, move input pages
883	 * to be zero based...
884	 */
885	if (first != 0) {
886		m += first;
887		count -= first;
888		reqpage -= first;
889	}
890
891	/*
892	 * calculate the file virtual address for the transfer
893	 */
894	foff = IDX_TO_OFF(m[0]->pindex);
895
896	/*
897	 * calculate the size of the transfer
898	 */
899	size = count * PAGE_SIZE;
900	KASSERT(count > 0, ("zero count"));
901	if ((foff + size) > object->un_pager.vnp.vnp_size)
902		size = object->un_pager.vnp.vnp_size - foff;
903	KASSERT(size > 0, ("zero size"));
904
905	/*
906	 * round up physical size for real devices.
907	 */
908	if (1) {
909		int secmask = bo->bo_bsize - 1;
910		KASSERT(secmask < PAGE_SIZE && secmask > 0,
911		    ("vnode_pager_generic_getpages: sector size %d too large",
912		    secmask + 1));
913		size = (size + secmask) & ~secmask;
914	}
915
916	bp = getpbuf(&vnode_pbuf_freecnt);
917	kva = (vm_offset_t) bp->b_data;
918
919	/*
920	 * and map the pages to be read into the kva
921	 */
922	pmap_qenter(kva, m, count);
923
924	/* build a minimal buffer header */
925	bp->b_iocmd = BIO_READ;
926	bp->b_iodone = bdone;
927	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
928	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
929	bp->b_rcred = crhold(curthread->td_ucred);
930	bp->b_wcred = crhold(curthread->td_ucred);
931	bp->b_blkno = firstaddr;
932	pbgetbo(bo, bp);
933	bp->b_bcount = size;
934	bp->b_bufsize = size;
935	bp->b_runningbufspace = bp->b_bufsize;
936	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
937
938	PCPU_INC(cnt.v_vnodein);
939	PCPU_ADD(cnt.v_vnodepgsin, count);
940
941	/* do the input */
942	bp->b_iooffset = dbtob(bp->b_blkno);
943	bstrategy(bp);
944
945	bwait(bp, PVM, "vnread");
946
947	if ((bp->b_ioflags & BIO_ERROR) != 0)
948		error = EIO;
949
950	if (!error) {
951		if (size != count * PAGE_SIZE)
952			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
953	}
954	pmap_qremove(kva, count);
955
956	/*
957	 * free the buffer header back to the swap buffer pool
958	 */
959	pbrelbo(bp);
960	relpbuf(bp, &vnode_pbuf_freecnt);
961
962	VM_OBJECT_LOCK(object);
963	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
964		vm_page_t mt;
965
966		nextoff = tfoff + PAGE_SIZE;
967		mt = m[i];
968
969		vm_page_lock(mt);
970		vm_page_lock_queues();
971		if (nextoff <= object->un_pager.vnp.vnp_size) {
972			/*
973			 * Read filled up entire page.
974			 */
975			mt->valid = VM_PAGE_BITS_ALL;
976			KASSERT(mt->dirty == 0,
977			    ("vnode_pager_generic_getpages: page %p is dirty",
978			    mt));
979			KASSERT(!pmap_page_is_mapped(mt),
980			    ("vnode_pager_generic_getpages: page %p is mapped",
981			    mt));
982		} else {
983			/*
984			 * Read did not fill up entire page.
985			 *
986			 * Currently we do not set the entire page valid,
987			 * we just try to clear the piece that we couldn't
988			 * read.
989			 */
990			vm_page_set_valid(mt, 0,
991			    object->un_pager.vnp.vnp_size - tfoff);
992			KASSERT((mt->dirty & vm_page_bits(0,
993			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
994			    ("vnode_pager_generic_getpages: page %p is dirty",
995			    mt));
996		}
997
998		if (i != reqpage) {
999
1000			/*
1001			 * whether or not to leave the page activated is up in
1002			 * the air, but we should put the page on a page queue
1003			 * somewhere. (it already is in the object). Result:
1004			 * It appears that empirical results show that
1005			 * deactivating pages is best.
1006			 */
1007
1008			/*
1009			 * just in case someone was asking for this page we
1010			 * now tell them that it is ok to use
1011			 */
1012			if (!error) {
1013				if (mt->oflags & VPO_WANTED)
1014					vm_page_activate(mt);
1015				else
1016					vm_page_deactivate(mt);
1017				vm_page_wakeup(mt);
1018			} else {
1019				vm_page_free(mt);
1020			}
1021		}
1022		vm_page_unlock_queues();
1023		vm_page_unlock(mt);
1024	}
1025	VM_OBJECT_UNLOCK(object);
1026	if (error) {
1027		printf("vnode_pager_getpages: I/O read error\n");
1028	}
1029	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1030}
1031
1032/*
1033 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1034 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1035 * vnode_pager_generic_putpages() to implement the previous behaviour.
1036 *
1037 * All other FS's should use the bypass to get to the local media
1038 * backing vp's VOP_PUTPAGES.
1039 */
1040static void
1041vnode_pager_putpages(object, m, count, sync, rtvals)
1042	vm_object_t object;
1043	vm_page_t *m;
1044	int count;
1045	boolean_t sync;
1046	int *rtvals;
1047{
1048	int rtval;
1049	struct vnode *vp;
1050	int bytes = count * PAGE_SIZE;
1051
1052	/*
1053	 * Force synchronous operation if we are extremely low on memory
1054	 * to prevent a low-memory deadlock.  VOP operations often need to
1055	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1056	 * operation ).  The swapper handles the case by limiting the amount
1057	 * of asynchronous I/O, but that sort of solution doesn't scale well
1058	 * for the vnode pager without a lot of work.
1059	 *
1060	 * Also, the backing vnode's iodone routine may not wake the pageout
1061	 * daemon up.  This should be probably be addressed XXX.
1062	 */
1063
1064	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1065		sync |= OBJPC_SYNC;
1066
1067	/*
1068	 * Call device-specific putpages function
1069	 */
1070	vp = object->handle;
1071	VM_OBJECT_UNLOCK(object);
1072	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1073	KASSERT(rtval != EOPNOTSUPP,
1074	    ("vnode_pager: stale FS putpages\n"));
1075	VM_OBJECT_LOCK(object);
1076}
1077
1078
1079/*
1080 * This is now called from local media FS's to operate against their
1081 * own vnodes if they fail to implement VOP_PUTPAGES.
1082 *
1083 * This is typically called indirectly via the pageout daemon and
1084 * clustering has already typically occured, so in general we ask the
1085 * underlying filesystem to write the data out asynchronously rather
1086 * then delayed.
1087 */
1088int
1089vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1090	struct vnode *vp;
1091	vm_page_t *m;
1092	int bytecount;
1093	int flags;
1094	int *rtvals;
1095{
1096	int i;
1097	vm_object_t object;
1098	int count;
1099
1100	int maxsize, ncount;
1101	vm_ooffset_t poffset;
1102	struct uio auio;
1103	struct iovec aiov;
1104	int error;
1105	int ioflags;
1106	int ppscheck = 0;
1107	static struct timeval lastfail;
1108	static int curfail;
1109
1110	object = vp->v_object;
1111	count = bytecount / PAGE_SIZE;
1112
1113	for (i = 0; i < count; i++)
1114		rtvals[i] = VM_PAGER_AGAIN;
1115
1116	if ((int64_t)m[0]->pindex < 0) {
1117		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1118			(long)m[0]->pindex, (u_long)m[0]->dirty);
1119		rtvals[0] = VM_PAGER_BAD;
1120		return VM_PAGER_BAD;
1121	}
1122
1123	maxsize = count * PAGE_SIZE;
1124	ncount = count;
1125
1126	poffset = IDX_TO_OFF(m[0]->pindex);
1127
1128	/*
1129	 * If the page-aligned write is larger then the actual file we
1130	 * have to invalidate pages occuring beyond the file EOF.  However,
1131	 * there is an edge case where a file may not be page-aligned where
1132	 * the last page is partially invalid.  In this case the filesystem
1133	 * may not properly clear the dirty bits for the entire page (which
1134	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1135	 * With the page locked we are free to fix-up the dirty bits here.
1136	 *
1137	 * We do not under any circumstances truncate the valid bits, as
1138	 * this will screw up bogus page replacement.
1139	 */
1140	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1141		if (object->un_pager.vnp.vnp_size > poffset) {
1142			int pgoff;
1143
1144			maxsize = object->un_pager.vnp.vnp_size - poffset;
1145			ncount = btoc(maxsize);
1146			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1147				vm_page_lock(m[ncount - 1]);
1148				vm_page_lock_queues();
1149				vm_page_clear_dirty(m[ncount - 1], pgoff,
1150					PAGE_SIZE - pgoff);
1151				vm_page_unlock_queues();
1152				vm_page_unlock(m[ncount - 1]);
1153			}
1154		} else {
1155			maxsize = 0;
1156			ncount = 0;
1157		}
1158		if (ncount < count) {
1159			for (i = ncount; i < count; i++) {
1160				rtvals[i] = VM_PAGER_BAD;
1161			}
1162		}
1163	}
1164
1165	/*
1166	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1167	 * rather then a bdwrite() to prevent paging I/O from saturating
1168	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1169	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1170	 * the system decides how to cluster.
1171	 */
1172	ioflags = IO_VMIO;
1173	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1174		ioflags |= IO_SYNC;
1175	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1176		ioflags |= IO_ASYNC;
1177	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1178	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1179
1180	aiov.iov_base = (caddr_t) 0;
1181	aiov.iov_len = maxsize;
1182	auio.uio_iov = &aiov;
1183	auio.uio_iovcnt = 1;
1184	auio.uio_offset = poffset;
1185	auio.uio_segflg = UIO_NOCOPY;
1186	auio.uio_rw = UIO_WRITE;
1187	auio.uio_resid = maxsize;
1188	auio.uio_td = (struct thread *) 0;
1189	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1190	PCPU_INC(cnt.v_vnodeout);
1191	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1192
1193	if (error) {
1194		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1195			printf("vnode_pager_putpages: I/O error %d\n", error);
1196	}
1197	if (auio.uio_resid) {
1198		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1199			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1200			    auio.uio_resid, (u_long)m[0]->pindex);
1201	}
1202	for (i = 0; i < ncount; i++) {
1203		rtvals[i] = VM_PAGER_OK;
1204	}
1205	return rtvals[0];
1206}
1207