vnode_pager.c revision 155384
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 155384 2006-02-06 10:14:12Z jeff $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/sf_buf.h>
67
68#include <machine/atomic.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vm_map.h>
75#include <vm/vnode_pager.h>
76#include <vm/vm_extern.h>
77
78static daddr_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
79					 int *run);
80static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
81static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
82static void vnode_pager_dealloc(vm_object_t);
83static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
84static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
85static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
86static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t);
87
88struct pagerops vnodepagerops = {
89	.pgo_alloc =	vnode_pager_alloc,
90	.pgo_dealloc =	vnode_pager_dealloc,
91	.pgo_getpages =	vnode_pager_getpages,
92	.pgo_putpages =	vnode_pager_putpages,
93	.pgo_haspage =	vnode_pager_haspage,
94};
95
96int vnode_pbuf_freecnt;
97
98/* Create the VM system backing object for this vnode */
99int
100vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
101{
102	vm_object_t object;
103	vm_ooffset_t size = isize;
104	struct vattr va;
105
106	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
107		return (0);
108
109	while ((object = vp->v_object) != NULL) {
110		VM_OBJECT_LOCK(object);
111		if (!(object->flags & OBJ_DEAD)) {
112			VM_OBJECT_UNLOCK(object);
113			return (0);
114		}
115		VOP_UNLOCK(vp, 0, td);
116		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
117		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
118		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
119	}
120
121	if (size == 0) {
122		if (vn_isdisk(vp, NULL)) {
123			size = IDX_TO_OFF(INT_MAX);
124		} else {
125			if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0)
126				return (0);
127			size = va.va_size;
128		}
129	}
130
131	object = vnode_pager_alloc(vp, size, 0, 0);
132	/*
133	 * Dereference the reference we just created.  This assumes
134	 * that the object is associated with the vp.
135	 */
136	VM_OBJECT_LOCK(object);
137	object->ref_count--;
138	VM_OBJECT_UNLOCK(object);
139	vrele(vp);
140
141	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
142
143	return (0);
144}
145
146void
147vnode_destroy_vobject(struct vnode *vp)
148{
149	struct vm_object *obj;
150
151	obj = vp->v_object;
152	if (obj == NULL)
153		return;
154	ASSERT_VOP_LOCKED(vp, "vnode_destroy_vobject");
155	VM_OBJECT_LOCK(obj);
156	if (obj->ref_count == 0) {
157		/*
158		 * vclean() may be called twice. The first time
159		 * removes the primary reference to the object,
160		 * the second time goes one further and is a
161		 * special-case to terminate the object.
162		 *
163		 * don't double-terminate the object
164		 */
165		if ((obj->flags & OBJ_DEAD) == 0)
166			vm_object_terminate(obj);
167		else
168			VM_OBJECT_UNLOCK(obj);
169	} else {
170		/*
171		 * Woe to the process that tries to page now :-).
172		 */
173		vm_pager_deallocate(obj);
174		VM_OBJECT_UNLOCK(obj);
175	}
176	vp->v_object = NULL;
177}
178
179
180/*
181 * Allocate (or lookup) pager for a vnode.
182 * Handle is a vnode pointer.
183 *
184 * MPSAFE
185 */
186vm_object_t
187vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
188		  vm_ooffset_t offset)
189{
190	vm_object_t object;
191	struct vnode *vp;
192
193	/*
194	 * Pageout to vnode, no can do yet.
195	 */
196	if (handle == NULL)
197		return (NULL);
198
199	vp = (struct vnode *) handle;
200
201	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
202
203	/*
204	 * If the object is being terminated, wait for it to
205	 * go away.
206	 */
207	while ((object = vp->v_object) != NULL) {
208		VM_OBJECT_LOCK(object);
209		if ((object->flags & OBJ_DEAD) == 0)
210			break;
211		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
212		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
213	}
214
215	if (vp->v_usecount == 0)
216		panic("vnode_pager_alloc: no vnode reference");
217
218	if (object == NULL) {
219		/*
220		 * And an object of the appropriate size
221		 */
222		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
223
224		object->un_pager.vnp.vnp_size = size;
225
226		object->handle = handle;
227		if (VFS_NEEDSGIANT(vp->v_mount))
228			vm_object_set_flag(object, OBJ_NEEDGIANT);
229		vp->v_object = object;
230	} else {
231		object->ref_count++;
232		VM_OBJECT_UNLOCK(object);
233	}
234	vref(vp);
235	return (object);
236}
237
238/*
239 *	The object must be locked.
240 */
241static void
242vnode_pager_dealloc(object)
243	vm_object_t object;
244{
245	struct vnode *vp = object->handle;
246
247	if (vp == NULL)
248		panic("vnode_pager_dealloc: pager already dealloced");
249
250	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
251	vm_object_pip_wait(object, "vnpdea");
252
253	object->handle = NULL;
254	object->type = OBJT_DEAD;
255	if (object->flags & OBJ_DISCONNECTWNT) {
256		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
257		wakeup(object);
258	}
259	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
260	vp->v_object = NULL;
261	vp->v_vflag &= ~VV_TEXT;
262}
263
264static boolean_t
265vnode_pager_haspage(object, pindex, before, after)
266	vm_object_t object;
267	vm_pindex_t pindex;
268	int *before;
269	int *after;
270{
271	struct vnode *vp = object->handle;
272	daddr_t bn;
273	int err;
274	daddr_t reqblock;
275	int poff;
276	int bsize;
277	int pagesperblock, blocksperpage;
278	int vfslocked;
279
280	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281	/*
282	 * If no vp or vp is doomed or marked transparent to VM, we do not
283	 * have the page.
284	 */
285	if (vp == NULL || vp->v_iflag & VI_DOOMED)
286		return FALSE;
287	/*
288	 * If the offset is beyond end of file we do
289	 * not have the page.
290	 */
291	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
292		return FALSE;
293
294	bsize = vp->v_mount->mnt_stat.f_iosize;
295	pagesperblock = bsize / PAGE_SIZE;
296	blocksperpage = 0;
297	if (pagesperblock > 0) {
298		reqblock = pindex / pagesperblock;
299	} else {
300		blocksperpage = (PAGE_SIZE / bsize);
301		reqblock = pindex * blocksperpage;
302	}
303	VM_OBJECT_UNLOCK(object);
304	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
305	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
306	VFS_UNLOCK_GIANT(vfslocked);
307	VM_OBJECT_LOCK(object);
308	if (err)
309		return TRUE;
310	if (bn == -1)
311		return FALSE;
312	if (pagesperblock > 0) {
313		poff = pindex - (reqblock * pagesperblock);
314		if (before) {
315			*before *= pagesperblock;
316			*before += poff;
317		}
318		if (after) {
319			int numafter;
320			*after *= pagesperblock;
321			numafter = pagesperblock - (poff + 1);
322			if (IDX_TO_OFF(pindex + numafter) >
323			    object->un_pager.vnp.vnp_size) {
324				numafter =
325		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
326				    pindex;
327			}
328			*after += numafter;
329		}
330	} else {
331		if (before) {
332			*before /= blocksperpage;
333		}
334
335		if (after) {
336			*after /= blocksperpage;
337		}
338	}
339	return TRUE;
340}
341
342/*
343 * Lets the VM system know about a change in size for a file.
344 * We adjust our own internal size and flush any cached pages in
345 * the associated object that are affected by the size change.
346 *
347 * Note: this routine may be invoked as a result of a pager put
348 * operation (possibly at object termination time), so we must be careful.
349 */
350void
351vnode_pager_setsize(vp, nsize)
352	struct vnode *vp;
353	vm_ooffset_t nsize;
354{
355	vm_object_t object;
356	vm_page_t m;
357	vm_pindex_t nobjsize;
358
359	if ((object = vp->v_object) == NULL)
360		return;
361	VM_OBJECT_LOCK(object);
362	if (nsize == object->un_pager.vnp.vnp_size) {
363		/*
364		 * Hasn't changed size
365		 */
366		VM_OBJECT_UNLOCK(object);
367		return;
368	}
369	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
370	if (nsize < object->un_pager.vnp.vnp_size) {
371		/*
372		 * File has shrunk. Toss any cached pages beyond the new EOF.
373		 */
374		if (nobjsize < object->size)
375			vm_object_page_remove(object, nobjsize, object->size,
376			    FALSE);
377		/*
378		 * this gets rid of garbage at the end of a page that is now
379		 * only partially backed by the vnode.
380		 *
381		 * XXX for some reason (I don't know yet), if we take a
382		 * completely invalid page and mark it partially valid
383		 * it can screw up NFS reads, so we don't allow the case.
384		 */
385		if ((nsize & PAGE_MASK) &&
386		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
387		    m->valid != 0) {
388			int base = (int)nsize & PAGE_MASK;
389			int size = PAGE_SIZE - base;
390
391			/*
392			 * Clear out partial-page garbage in case
393			 * the page has been mapped.
394			 */
395			pmap_zero_page_area(m, base, size);
396
397			/*
398			 * XXX work around SMP data integrity race
399			 * by unmapping the page from user processes.
400			 * The garbage we just cleared may be mapped
401			 * to a user process running on another cpu
402			 * and this code is not running through normal
403			 * I/O channels which handle SMP issues for
404			 * us, so unmap page to synchronize all cpus.
405			 *
406			 * XXX should vm_pager_unmap_page() have
407			 * dealt with this?
408			 */
409			vm_page_lock_queues();
410			pmap_remove_all(m);
411
412			/*
413			 * Clear out partial-page dirty bits.  This
414			 * has the side effect of setting the valid
415			 * bits, but that is ok.  There are a bunch
416			 * of places in the VM system where we expected
417			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
418			 * case is one of them.  If the page is still
419			 * partially dirty, make it fully dirty.
420			 *
421			 * note that we do not clear out the valid
422			 * bits.  This would prevent bogus_page
423			 * replacement from working properly.
424			 */
425			vm_page_set_validclean(m, base, size);
426			if (m->dirty != 0)
427				m->dirty = VM_PAGE_BITS_ALL;
428			vm_page_unlock_queues();
429		}
430	}
431	object->un_pager.vnp.vnp_size = nsize;
432	object->size = nobjsize;
433	VM_OBJECT_UNLOCK(object);
434}
435
436/*
437 * calculate the linear (byte) disk address of specified virtual
438 * file address
439 */
440static daddr_t
441vnode_pager_addr(vp, address, run)
442	struct vnode *vp;
443	vm_ooffset_t address;
444	int *run;
445{
446	daddr_t rtaddress;
447	int bsize;
448	daddr_t block;
449	int err;
450	daddr_t vblock;
451	daddr_t voffset;
452
453	if (address < 0)
454		return -1;
455
456	if (vp->v_iflag & VI_DOOMED)
457		return -1;
458
459	bsize = vp->v_mount->mnt_stat.f_iosize;
460	vblock = address / bsize;
461	voffset = address % bsize;
462
463	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
464
465	if (err || (block == -1))
466		rtaddress = -1;
467	else {
468		rtaddress = block + voffset / DEV_BSIZE;
469		if (run) {
470			*run += 1;
471			*run *= bsize/PAGE_SIZE;
472			*run -= voffset/PAGE_SIZE;
473		}
474	}
475
476	return rtaddress;
477}
478
479/*
480 * small block filesystem vnode pager input
481 */
482static int
483vnode_pager_input_smlfs(object, m)
484	vm_object_t object;
485	vm_page_t m;
486{
487	int i;
488	struct vnode *vp;
489	struct bufobj *bo;
490	struct buf *bp;
491	struct sf_buf *sf;
492	daddr_t fileaddr;
493	vm_offset_t bsize;
494	int error = 0;
495
496	vp = object->handle;
497	if (vp->v_iflag & VI_DOOMED)
498		return VM_PAGER_BAD;
499
500	bsize = vp->v_mount->mnt_stat.f_iosize;
501
502	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
503
504	sf = sf_buf_alloc(m, 0);
505
506	for (i = 0; i < PAGE_SIZE / bsize; i++) {
507		vm_ooffset_t address;
508
509		if (vm_page_bits(i * bsize, bsize) & m->valid)
510			continue;
511
512		address = IDX_TO_OFF(m->pindex) + i * bsize;
513		if (address >= object->un_pager.vnp.vnp_size) {
514			fileaddr = -1;
515		} else {
516			fileaddr = vnode_pager_addr(vp, address, NULL);
517		}
518		if (fileaddr != -1) {
519			bp = getpbuf(&vnode_pbuf_freecnt);
520
521			/* build a minimal buffer header */
522			bp->b_iocmd = BIO_READ;
523			bp->b_iodone = bdone;
524			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
525			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
526			bp->b_rcred = crhold(curthread->td_ucred);
527			bp->b_wcred = crhold(curthread->td_ucred);
528			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
529			bp->b_blkno = fileaddr;
530			pbgetbo(bo, bp);
531			bp->b_bcount = bsize;
532			bp->b_bufsize = bsize;
533			bp->b_runningbufspace = bp->b_bufsize;
534			atomic_add_int(&runningbufspace, bp->b_runningbufspace);
535
536			/* do the input */
537			bp->b_iooffset = dbtob(bp->b_blkno);
538			bstrategy(bp);
539
540			bwait(bp, PVM, "vnsrd");
541
542			if ((bp->b_ioflags & BIO_ERROR) != 0)
543				error = EIO;
544
545			/*
546			 * free the buffer header back to the swap buffer pool
547			 */
548			pbrelbo(bp);
549			relpbuf(bp, &vnode_pbuf_freecnt);
550			if (error)
551				break;
552
553			VM_OBJECT_LOCK(object);
554			vm_page_lock_queues();
555			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
556			vm_page_unlock_queues();
557			VM_OBJECT_UNLOCK(object);
558		} else {
559			VM_OBJECT_LOCK(object);
560			vm_page_lock_queues();
561			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
562			vm_page_unlock_queues();
563			VM_OBJECT_UNLOCK(object);
564			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
565		}
566	}
567	sf_buf_free(sf);
568	vm_page_lock_queues();
569	pmap_clear_modify(m);
570	vm_page_unlock_queues();
571	if (error) {
572		return VM_PAGER_ERROR;
573	}
574	return VM_PAGER_OK;
575
576}
577
578
579/*
580 * old style vnode pager input routine
581 */
582static int
583vnode_pager_input_old(object, m)
584	vm_object_t object;
585	vm_page_t m;
586{
587	struct uio auio;
588	struct iovec aiov;
589	int error;
590	int size;
591	struct sf_buf *sf;
592	struct vnode *vp;
593
594	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
595	error = 0;
596
597	/*
598	 * Return failure if beyond current EOF
599	 */
600	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
601		return VM_PAGER_BAD;
602	} else {
603		size = PAGE_SIZE;
604		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
605			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
606		vp = object->handle;
607		VM_OBJECT_UNLOCK(object);
608
609		/*
610		 * Allocate a kernel virtual address and initialize so that
611		 * we can use VOP_READ/WRITE routines.
612		 */
613		sf = sf_buf_alloc(m, 0);
614
615		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
616		aiov.iov_len = size;
617		auio.uio_iov = &aiov;
618		auio.uio_iovcnt = 1;
619		auio.uio_offset = IDX_TO_OFF(m->pindex);
620		auio.uio_segflg = UIO_SYSSPACE;
621		auio.uio_rw = UIO_READ;
622		auio.uio_resid = size;
623		auio.uio_td = curthread;
624
625		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
626		if (!error) {
627			int count = size - auio.uio_resid;
628
629			if (count == 0)
630				error = EINVAL;
631			else if (count != PAGE_SIZE)
632				bzero((caddr_t)sf_buf_kva(sf) + count,
633				    PAGE_SIZE - count);
634		}
635		sf_buf_free(sf);
636
637		VM_OBJECT_LOCK(object);
638	}
639	vm_page_lock_queues();
640	pmap_clear_modify(m);
641	vm_page_undirty(m);
642	vm_page_unlock_queues();
643	if (!error)
644		m->valid = VM_PAGE_BITS_ALL;
645	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
646}
647
648/*
649 * generic vnode pager input routine
650 */
651
652/*
653 * Local media VFS's that do not implement their own VOP_GETPAGES
654 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
655 * to implement the previous behaviour.
656 *
657 * All other FS's should use the bypass to get to the local media
658 * backing vp's VOP_GETPAGES.
659 */
660static int
661vnode_pager_getpages(object, m, count, reqpage)
662	vm_object_t object;
663	vm_page_t *m;
664	int count;
665	int reqpage;
666{
667	int rtval;
668	struct vnode *vp;
669	int bytes = count * PAGE_SIZE;
670	int vfslocked;
671
672	vp = object->handle;
673	VM_OBJECT_UNLOCK(object);
674	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
675	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
676	KASSERT(rtval != EOPNOTSUPP,
677	    ("vnode_pager: FS getpages not implemented\n"));
678	VFS_UNLOCK_GIANT(vfslocked);
679	VM_OBJECT_LOCK(object);
680	return rtval;
681}
682
683/*
684 * This is now called from local media FS's to operate against their
685 * own vnodes if they fail to implement VOP_GETPAGES.
686 */
687int
688vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
689	struct vnode *vp;
690	vm_page_t *m;
691	int bytecount;
692	int reqpage;
693{
694	vm_object_t object;
695	vm_offset_t kva;
696	off_t foff, tfoff, nextoff;
697	int i, j, size, bsize, first;
698	daddr_t firstaddr;
699	struct bufobj *bo;
700	int runpg;
701	int runend;
702	struct buf *bp;
703	int count;
704	int error = 0;
705
706	object = vp->v_object;
707	count = bytecount / PAGE_SIZE;
708
709	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
710	    ("vnode_pager_generic_getpages does not support devices"));
711	if (vp->v_iflag & VI_DOOMED)
712		return VM_PAGER_BAD;
713
714	bsize = vp->v_mount->mnt_stat.f_iosize;
715
716	/* get the UNDERLYING device for the file with VOP_BMAP() */
717
718	/*
719	 * originally, we did not check for an error return value -- assuming
720	 * an fs always has a bmap entry point -- that assumption is wrong!!!
721	 */
722	foff = IDX_TO_OFF(m[reqpage]->pindex);
723
724	/*
725	 * if we can't bmap, use old VOP code
726	 */
727	if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) {
728		VM_OBJECT_LOCK(object);
729		vm_page_lock_queues();
730		for (i = 0; i < count; i++)
731			if (i != reqpage)
732				vm_page_free(m[i]);
733		vm_page_unlock_queues();
734		cnt.v_vnodein++;
735		cnt.v_vnodepgsin++;
736		error = vnode_pager_input_old(object, m[reqpage]);
737		VM_OBJECT_UNLOCK(object);
738		return (error);
739
740		/*
741		 * if the blocksize is smaller than a page size, then use
742		 * special small filesystem code.  NFS sometimes has a small
743		 * blocksize, but it can handle large reads itself.
744		 */
745	} else if ((PAGE_SIZE / bsize) > 1 &&
746	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
747		VM_OBJECT_LOCK(object);
748		vm_page_lock_queues();
749		for (i = 0; i < count; i++)
750			if (i != reqpage)
751				vm_page_free(m[i]);
752		vm_page_unlock_queues();
753		VM_OBJECT_UNLOCK(object);
754		cnt.v_vnodein++;
755		cnt.v_vnodepgsin++;
756		return vnode_pager_input_smlfs(object, m[reqpage]);
757	}
758
759	/*
760	 * If we have a completely valid page available to us, we can
761	 * clean up and return.  Otherwise we have to re-read the
762	 * media.
763	 */
764	VM_OBJECT_LOCK(object);
765	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
766		vm_page_lock_queues();
767		for (i = 0; i < count; i++)
768			if (i != reqpage)
769				vm_page_free(m[i]);
770		vm_page_unlock_queues();
771		VM_OBJECT_UNLOCK(object);
772		return VM_PAGER_OK;
773	}
774	m[reqpage]->valid = 0;
775	VM_OBJECT_UNLOCK(object);
776
777	/*
778	 * here on direct device I/O
779	 */
780	firstaddr = -1;
781
782	/*
783	 * calculate the run that includes the required page
784	 */
785	for (first = 0, i = 0; i < count; i = runend) {
786		firstaddr = vnode_pager_addr(vp,
787			IDX_TO_OFF(m[i]->pindex), &runpg);
788		if (firstaddr == -1) {
789			VM_OBJECT_LOCK(object);
790			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
791				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
792				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
793				    (uintmax_t)foff,
794				    (uintmax_t)
795				    (object->un_pager.vnp.vnp_size >> 32),
796				    (uintmax_t)object->un_pager.vnp.vnp_size);
797			}
798			vm_page_lock_queues();
799			vm_page_free(m[i]);
800			vm_page_unlock_queues();
801			VM_OBJECT_UNLOCK(object);
802			runend = i + 1;
803			first = runend;
804			continue;
805		}
806		runend = i + runpg;
807		if (runend <= reqpage) {
808			VM_OBJECT_LOCK(object);
809			vm_page_lock_queues();
810			for (j = i; j < runend; j++)
811				vm_page_free(m[j]);
812			vm_page_unlock_queues();
813			VM_OBJECT_UNLOCK(object);
814		} else {
815			if (runpg < (count - first)) {
816				VM_OBJECT_LOCK(object);
817				vm_page_lock_queues();
818				for (i = first + runpg; i < count; i++)
819					vm_page_free(m[i]);
820				vm_page_unlock_queues();
821				VM_OBJECT_UNLOCK(object);
822				count = first + runpg;
823			}
824			break;
825		}
826		first = runend;
827	}
828
829	/*
830	 * the first and last page have been calculated now, move input pages
831	 * to be zero based...
832	 */
833	if (first != 0) {
834		for (i = first; i < count; i++) {
835			m[i - first] = m[i];
836		}
837		count -= first;
838		reqpage -= first;
839	}
840
841	/*
842	 * calculate the file virtual address for the transfer
843	 */
844	foff = IDX_TO_OFF(m[0]->pindex);
845
846	/*
847	 * calculate the size of the transfer
848	 */
849	size = count * PAGE_SIZE;
850	KASSERT(count > 0, ("zero count"));
851	if ((foff + size) > object->un_pager.vnp.vnp_size)
852		size = object->un_pager.vnp.vnp_size - foff;
853	KASSERT(size > 0, ("zero size"));
854
855	/*
856	 * round up physical size for real devices.
857	 */
858	if (1) {
859		int secmask = bo->bo_bsize - 1;
860		KASSERT(secmask < PAGE_SIZE && secmask > 0,
861		    ("vnode_pager_generic_getpages: sector size %d too large",
862		    secmask + 1));
863		size = (size + secmask) & ~secmask;
864	}
865
866	bp = getpbuf(&vnode_pbuf_freecnt);
867	kva = (vm_offset_t) bp->b_data;
868
869	/*
870	 * and map the pages to be read into the kva
871	 */
872	pmap_qenter(kva, m, count);
873
874	/* build a minimal buffer header */
875	bp->b_iocmd = BIO_READ;
876	bp->b_iodone = bdone;
877	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
878	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
879	bp->b_rcred = crhold(curthread->td_ucred);
880	bp->b_wcred = crhold(curthread->td_ucred);
881	bp->b_blkno = firstaddr;
882	pbgetbo(bo, bp);
883	bp->b_bcount = size;
884	bp->b_bufsize = size;
885	bp->b_runningbufspace = bp->b_bufsize;
886	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
887
888	cnt.v_vnodein++;
889	cnt.v_vnodepgsin += count;
890
891	/* do the input */
892	bp->b_iooffset = dbtob(bp->b_blkno);
893	bstrategy(bp);
894
895	bwait(bp, PVM, "vnread");
896
897	if ((bp->b_ioflags & BIO_ERROR) != 0)
898		error = EIO;
899
900	if (!error) {
901		if (size != count * PAGE_SIZE)
902			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
903	}
904	pmap_qremove(kva, count);
905
906	/*
907	 * free the buffer header back to the swap buffer pool
908	 */
909	pbrelbo(bp);
910	relpbuf(bp, &vnode_pbuf_freecnt);
911
912	VM_OBJECT_LOCK(object);
913	vm_page_lock_queues();
914	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
915		vm_page_t mt;
916
917		nextoff = tfoff + PAGE_SIZE;
918		mt = m[i];
919
920		if (nextoff <= object->un_pager.vnp.vnp_size) {
921			/*
922			 * Read filled up entire page.
923			 */
924			mt->valid = VM_PAGE_BITS_ALL;
925			vm_page_undirty(mt);	/* should be an assert? XXX */
926			pmap_clear_modify(mt);
927		} else {
928			/*
929			 * Read did not fill up entire page.  Since this
930			 * is getpages, the page may be mapped, so we have
931			 * to zero the invalid portions of the page even
932			 * though we aren't setting them valid.
933			 *
934			 * Currently we do not set the entire page valid,
935			 * we just try to clear the piece that we couldn't
936			 * read.
937			 */
938			vm_page_set_validclean(mt, 0,
939			    object->un_pager.vnp.vnp_size - tfoff);
940			/* handled by vm_fault now */
941			/* vm_page_zero_invalid(mt, FALSE); */
942		}
943
944		if (i != reqpage) {
945
946			/*
947			 * whether or not to leave the page activated is up in
948			 * the air, but we should put the page on a page queue
949			 * somewhere. (it already is in the object). Result:
950			 * It appears that empirical results show that
951			 * deactivating pages is best.
952			 */
953
954			/*
955			 * just in case someone was asking for this page we
956			 * now tell them that it is ok to use
957			 */
958			if (!error) {
959				if (mt->flags & PG_WANTED)
960					vm_page_activate(mt);
961				else
962					vm_page_deactivate(mt);
963				vm_page_wakeup(mt);
964			} else {
965				vm_page_free(mt);
966			}
967		}
968	}
969	vm_page_unlock_queues();
970	VM_OBJECT_UNLOCK(object);
971	if (error) {
972		printf("vnode_pager_getpages: I/O read error\n");
973	}
974	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
975}
976
977/*
978 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
979 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
980 * vnode_pager_generic_putpages() to implement the previous behaviour.
981 *
982 * All other FS's should use the bypass to get to the local media
983 * backing vp's VOP_PUTPAGES.
984 */
985static void
986vnode_pager_putpages(object, m, count, sync, rtvals)
987	vm_object_t object;
988	vm_page_t *m;
989	int count;
990	boolean_t sync;
991	int *rtvals;
992{
993	int rtval;
994	struct vnode *vp;
995	struct mount *mp;
996	int bytes = count * PAGE_SIZE;
997
998	/*
999	 * Force synchronous operation if we are extremely low on memory
1000	 * to prevent a low-memory deadlock.  VOP operations often need to
1001	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1002	 * operation ).  The swapper handles the case by limiting the amount
1003	 * of asynchronous I/O, but that sort of solution doesn't scale well
1004	 * for the vnode pager without a lot of work.
1005	 *
1006	 * Also, the backing vnode's iodone routine may not wake the pageout
1007	 * daemon up.  This should be probably be addressed XXX.
1008	 */
1009
1010	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1011		sync |= OBJPC_SYNC;
1012
1013	/*
1014	 * Call device-specific putpages function
1015	 */
1016	vp = object->handle;
1017	VM_OBJECT_UNLOCK(object);
1018	if (vp->v_type != VREG)
1019		mp = NULL;
1020	(void)vn_start_write(vp, &mp, V_WAIT);
1021	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1022	KASSERT(rtval != EOPNOTSUPP,
1023	    ("vnode_pager: stale FS putpages\n"));
1024	vn_finished_write(mp);
1025	VM_OBJECT_LOCK(object);
1026}
1027
1028
1029/*
1030 * This is now called from local media FS's to operate against their
1031 * own vnodes if they fail to implement VOP_PUTPAGES.
1032 *
1033 * This is typically called indirectly via the pageout daemon and
1034 * clustering has already typically occured, so in general we ask the
1035 * underlying filesystem to write the data out asynchronously rather
1036 * then delayed.
1037 */
1038int
1039vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1040	struct vnode *vp;
1041	vm_page_t *m;
1042	int bytecount;
1043	int flags;
1044	int *rtvals;
1045{
1046	int i;
1047	vm_object_t object;
1048	int count;
1049
1050	int maxsize, ncount;
1051	vm_ooffset_t poffset;
1052	struct uio auio;
1053	struct iovec aiov;
1054	int error;
1055	int ioflags;
1056	int ppscheck = 0;
1057	static struct timeval lastfail;
1058	static int curfail;
1059
1060	object = vp->v_object;
1061	count = bytecount / PAGE_SIZE;
1062
1063	for (i = 0; i < count; i++)
1064		rtvals[i] = VM_PAGER_AGAIN;
1065
1066	if ((int64_t)m[0]->pindex < 0) {
1067		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1068			(long)m[0]->pindex, (u_long)m[0]->dirty);
1069		rtvals[0] = VM_PAGER_BAD;
1070		return VM_PAGER_BAD;
1071	}
1072
1073	maxsize = count * PAGE_SIZE;
1074	ncount = count;
1075
1076	poffset = IDX_TO_OFF(m[0]->pindex);
1077
1078	/*
1079	 * If the page-aligned write is larger then the actual file we
1080	 * have to invalidate pages occuring beyond the file EOF.  However,
1081	 * there is an edge case where a file may not be page-aligned where
1082	 * the last page is partially invalid.  In this case the filesystem
1083	 * may not properly clear the dirty bits for the entire page (which
1084	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1085	 * With the page locked we are free to fix-up the dirty bits here.
1086	 *
1087	 * We do not under any circumstances truncate the valid bits, as
1088	 * this will screw up bogus page replacement.
1089	 */
1090	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1091		if (object->un_pager.vnp.vnp_size > poffset) {
1092			int pgoff;
1093
1094			maxsize = object->un_pager.vnp.vnp_size - poffset;
1095			ncount = btoc(maxsize);
1096			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1097				vm_page_lock_queues();
1098				vm_page_clear_dirty(m[ncount - 1], pgoff,
1099					PAGE_SIZE - pgoff);
1100				vm_page_unlock_queues();
1101			}
1102		} else {
1103			maxsize = 0;
1104			ncount = 0;
1105		}
1106		if (ncount < count) {
1107			for (i = ncount; i < count; i++) {
1108				rtvals[i] = VM_PAGER_BAD;
1109			}
1110		}
1111	}
1112
1113	/*
1114	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1115	 * rather then a bdwrite() to prevent paging I/O from saturating
1116	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1117	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1118	 * the system decides how to cluster.
1119	 */
1120	ioflags = IO_VMIO;
1121	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1122		ioflags |= IO_SYNC;
1123	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1124		ioflags |= IO_ASYNC;
1125	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1126	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1127
1128	aiov.iov_base = (caddr_t) 0;
1129	aiov.iov_len = maxsize;
1130	auio.uio_iov = &aiov;
1131	auio.uio_iovcnt = 1;
1132	auio.uio_offset = poffset;
1133	auio.uio_segflg = UIO_NOCOPY;
1134	auio.uio_rw = UIO_WRITE;
1135	auio.uio_resid = maxsize;
1136	auio.uio_td = (struct thread *) 0;
1137	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1138	cnt.v_vnodeout++;
1139	cnt.v_vnodepgsout += ncount;
1140
1141	if (error) {
1142		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1143			printf("vnode_pager_putpages: I/O error %d\n", error);
1144	}
1145	if (auio.uio_resid) {
1146		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1147			printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1148			    auio.uio_resid, (u_long)m[0]->pindex);
1149	}
1150	for (i = 0; i < ncount; i++) {
1151		rtvals[i] = VM_PAGER_OK;
1152	}
1153	return rtvals[0];
1154}
1155
1156struct vnode *
1157vnode_pager_lock(vm_object_t first_object)
1158{
1159	struct vnode *vp;
1160	vm_object_t backing_object, object;
1161
1162	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1163	for (object = first_object; object != NULL; object = backing_object) {
1164		if (object->type != OBJT_VNODE) {
1165			if ((backing_object = object->backing_object) != NULL)
1166				VM_OBJECT_LOCK(backing_object);
1167			if (object != first_object)
1168				VM_OBJECT_UNLOCK(object);
1169			continue;
1170		}
1171	retry:
1172		if (object->flags & OBJ_DEAD) {
1173			if (object != first_object)
1174				VM_OBJECT_UNLOCK(object);
1175			return NULL;
1176		}
1177		vp = object->handle;
1178		VI_LOCK(vp);
1179		VM_OBJECT_UNLOCK(object);
1180		if (first_object != object)
1181			VM_OBJECT_UNLOCK(first_object);
1182		VFS_ASSERT_GIANT(vp->v_mount);
1183		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK |
1184		    LK_RETRY | LK_SHARED, curthread)) {
1185			VM_OBJECT_LOCK(first_object);
1186			if (object != first_object)
1187				VM_OBJECT_LOCK(object);
1188			if (object->type != OBJT_VNODE) {
1189				if (object != first_object)
1190					VM_OBJECT_UNLOCK(object);
1191				return NULL;
1192			}
1193			printf("vnode_pager_lock: retrying\n");
1194			goto retry;
1195		}
1196		VM_OBJECT_LOCK(first_object);
1197		return (vp);
1198	}
1199	return NULL;
1200}
1201