vnode_pager.c revision 136927
1/*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 136927 2004-10-24 20:03:41Z phk $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/conf.h>
65#include <sys/sf_buf.h>
66
67#include <vm/vm.h>
68#include <vm/vm_object.h>
69#include <vm/vm_page.h>
70#include <vm/vm_pager.h>
71#include <vm/vm_map.h>
72#include <vm/vnode_pager.h>
73#include <vm/vm_extern.h>
74
75static void vnode_pager_init(void);
76static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
77					 int *run);
78static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
79static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
80static void vnode_pager_dealloc(vm_object_t);
81static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
82static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
83static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
84
85struct pagerops vnodepagerops = {
86	.pgo_init =	vnode_pager_init,
87	.pgo_alloc =	vnode_pager_alloc,
88	.pgo_dealloc =	vnode_pager_dealloc,
89	.pgo_getpages =	vnode_pager_getpages,
90	.pgo_putpages =	vnode_pager_putpages,
91	.pgo_haspage =	vnode_pager_haspage,
92};
93
94int vnode_pbuf_freecnt;
95
96static void
97vnode_pager_init(void)
98{
99
100	vnode_pbuf_freecnt = nswbuf / 2 + 1;
101}
102
103/*
104 * Allocate (or lookup) pager for a vnode.
105 * Handle is a vnode pointer.
106 *
107 * MPSAFE
108 */
109vm_object_t
110vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
111		  vm_ooffset_t offset)
112{
113	vm_object_t object;
114	struct vnode *vp;
115
116	/*
117	 * Pageout to vnode, no can do yet.
118	 */
119	if (handle == NULL)
120		return (NULL);
121
122	vp = (struct vnode *) handle;
123
124	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
125
126	/*
127	 * Prevent race condition when allocating the object. This
128	 * can happen with NFS vnodes since the nfsnode isn't locked.
129	 */
130	VI_LOCK(vp);
131	while (vp->v_iflag & VI_OLOCK) {
132		vp->v_iflag |= VI_OWANT;
133		msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
134	}
135	vp->v_iflag |= VI_OLOCK;
136	VI_UNLOCK(vp);
137
138	/*
139	 * If the object is being terminated, wait for it to
140	 * go away.
141	 */
142	while ((object = vp->v_object) != NULL) {
143		VM_OBJECT_LOCK(object);
144		if ((object->flags & OBJ_DEAD) == 0)
145			break;
146		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
147	}
148
149	if (vp->v_usecount == 0)
150		panic("vnode_pager_alloc: no vnode reference");
151
152	if (object == NULL) {
153		/*
154		 * And an object of the appropriate size
155		 */
156		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
157
158		object->un_pager.vnp.vnp_size = size;
159
160		object->handle = handle;
161		vp->v_object = object;
162	} else {
163		object->ref_count++;
164		VM_OBJECT_UNLOCK(object);
165	}
166	VI_LOCK(vp);
167	vp->v_usecount++;
168	vp->v_iflag &= ~VI_OLOCK;
169	if (vp->v_iflag & VI_OWANT) {
170		vp->v_iflag &= ~VI_OWANT;
171		wakeup(vp);
172	}
173	VI_UNLOCK(vp);
174	return (object);
175}
176
177/*
178 *	The object must be locked.
179 */
180static void
181vnode_pager_dealloc(object)
182	vm_object_t object;
183{
184	struct vnode *vp = object->handle;
185
186	if (vp == NULL)
187		panic("vnode_pager_dealloc: pager already dealloced");
188
189	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
190	vm_object_pip_wait(object, "vnpdea");
191
192	object->handle = NULL;
193	object->type = OBJT_DEAD;
194	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
195	vp->v_object = NULL;
196	vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF);
197}
198
199static boolean_t
200vnode_pager_haspage(object, pindex, before, after)
201	vm_object_t object;
202	vm_pindex_t pindex;
203	int *before;
204	int *after;
205{
206	struct vnode *vp = object->handle;
207	daddr_t bn;
208	int err;
209	daddr_t reqblock;
210	int poff;
211	int bsize;
212	int pagesperblock, blocksperpage;
213
214	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
215	/*
216	 * If no vp or vp is doomed or marked transparent to VM, we do not
217	 * have the page.
218	 */
219	if (vp == NULL)
220		return FALSE;
221
222	VI_LOCK(vp);
223	if (vp->v_iflag & VI_DOOMED) {
224		VI_UNLOCK(vp);
225		return FALSE;
226	}
227	VI_UNLOCK(vp);
228	/*
229	 * If filesystem no longer mounted or offset beyond end of file we do
230	 * not have the page.
231	 */
232	if ((vp->v_mount == NULL) ||
233	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
234		return FALSE;
235
236	bsize = vp->v_mount->mnt_stat.f_iosize;
237	pagesperblock = bsize / PAGE_SIZE;
238	blocksperpage = 0;
239	if (pagesperblock > 0) {
240		reqblock = pindex / pagesperblock;
241	} else {
242		blocksperpage = (PAGE_SIZE / bsize);
243		reqblock = pindex * blocksperpage;
244	}
245	VM_OBJECT_UNLOCK(object);
246	mtx_lock(&Giant);
247	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
248	mtx_unlock(&Giant);
249	VM_OBJECT_LOCK(object);
250	if (err)
251		return TRUE;
252	if (bn == -1)
253		return FALSE;
254	if (pagesperblock > 0) {
255		poff = pindex - (reqblock * pagesperblock);
256		if (before) {
257			*before *= pagesperblock;
258			*before += poff;
259		}
260		if (after) {
261			int numafter;
262			*after *= pagesperblock;
263			numafter = pagesperblock - (poff + 1);
264			if (IDX_TO_OFF(pindex + numafter) >
265			    object->un_pager.vnp.vnp_size) {
266				numafter =
267		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
268				    pindex;
269			}
270			*after += numafter;
271		}
272	} else {
273		if (before) {
274			*before /= blocksperpage;
275		}
276
277		if (after) {
278			*after /= blocksperpage;
279		}
280	}
281	return TRUE;
282}
283
284/*
285 * Lets the VM system know about a change in size for a file.
286 * We adjust our own internal size and flush any cached pages in
287 * the associated object that are affected by the size change.
288 *
289 * Note: this routine may be invoked as a result of a pager put
290 * operation (possibly at object termination time), so we must be careful.
291 */
292void
293vnode_pager_setsize(vp, nsize)
294	struct vnode *vp;
295	vm_ooffset_t nsize;
296{
297	vm_object_t object;
298	vm_page_t m;
299	vm_pindex_t nobjsize;
300
301	if ((object = vp->v_object) == NULL)
302		return;
303	VM_OBJECT_LOCK(object);
304	if (nsize == object->un_pager.vnp.vnp_size) {
305		/*
306		 * Hasn't changed size
307		 */
308		VM_OBJECT_UNLOCK(object);
309		return;
310	}
311	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
312	if (nsize < object->un_pager.vnp.vnp_size) {
313		/*
314		 * File has shrunk. Toss any cached pages beyond the new EOF.
315		 */
316		if (nobjsize < object->size)
317			vm_object_page_remove(object, nobjsize, object->size,
318			    FALSE);
319		/*
320		 * this gets rid of garbage at the end of a page that is now
321		 * only partially backed by the vnode.
322		 *
323		 * XXX for some reason (I don't know yet), if we take a
324		 * completely invalid page and mark it partially valid
325		 * it can screw up NFS reads, so we don't allow the case.
326		 */
327		if ((nsize & PAGE_MASK) &&
328		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
329		    m->valid != 0) {
330			int base = (int)nsize & PAGE_MASK;
331			int size = PAGE_SIZE - base;
332
333			/*
334			 * Clear out partial-page garbage in case
335			 * the page has been mapped.
336			 */
337			pmap_zero_page_area(m, base, size);
338
339			/*
340			 * XXX work around SMP data integrity race
341			 * by unmapping the page from user processes.
342			 * The garbage we just cleared may be mapped
343			 * to a user process running on another cpu
344			 * and this code is not running through normal
345			 * I/O channels which handle SMP issues for
346			 * us, so unmap page to synchronize all cpus.
347			 *
348			 * XXX should vm_pager_unmap_page() have
349			 * dealt with this?
350			 */
351			vm_page_lock_queues();
352			pmap_remove_all(m);
353
354			/*
355			 * Clear out partial-page dirty bits.  This
356			 * has the side effect of setting the valid
357			 * bits, but that is ok.  There are a bunch
358			 * of places in the VM system where we expected
359			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
360			 * case is one of them.  If the page is still
361			 * partially dirty, make it fully dirty.
362			 *
363			 * note that we do not clear out the valid
364			 * bits.  This would prevent bogus_page
365			 * replacement from working properly.
366			 */
367			vm_page_set_validclean(m, base, size);
368			if (m->dirty != 0)
369				m->dirty = VM_PAGE_BITS_ALL;
370			vm_page_unlock_queues();
371		}
372	}
373	object->un_pager.vnp.vnp_size = nsize;
374	object->size = nobjsize;
375	VM_OBJECT_UNLOCK(object);
376}
377
378/*
379 * calculate the linear (byte) disk address of specified virtual
380 * file address
381 */
382static vm_offset_t
383vnode_pager_addr(vp, address, run)
384	struct vnode *vp;
385	vm_ooffset_t address;
386	int *run;
387{
388	int rtaddress;
389	int bsize;
390	daddr_t block;
391	int err;
392	daddr_t vblock;
393	int voffset;
394
395	GIANT_REQUIRED;
396	if ((int) address < 0)
397		return -1;
398
399	if (vp->v_mount == NULL)
400		return -1;
401
402	bsize = vp->v_mount->mnt_stat.f_iosize;
403	vblock = address / bsize;
404	voffset = address % bsize;
405
406	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
407
408	if (err || (block == -1))
409		rtaddress = -1;
410	else {
411		rtaddress = block + voffset / DEV_BSIZE;
412		if (run) {
413			*run += 1;
414			*run *= bsize/PAGE_SIZE;
415			*run -= voffset/PAGE_SIZE;
416		}
417	}
418
419	return rtaddress;
420}
421
422/*
423 * small block filesystem vnode pager input
424 */
425static int
426vnode_pager_input_smlfs(object, m)
427	vm_object_t object;
428	vm_page_t m;
429{
430	int i;
431	struct vnode *dp, *vp;
432	struct buf *bp;
433	struct sf_buf *sf;
434	int fileaddr;
435	vm_offset_t bsize;
436	int error = 0;
437
438	GIANT_REQUIRED;
439
440	vp = object->handle;
441	if (vp->v_mount == NULL)
442		return VM_PAGER_BAD;
443
444	bsize = vp->v_mount->mnt_stat.f_iosize;
445
446	VOP_BMAP(vp, 0, &dp, 0, NULL, NULL);
447
448	sf = sf_buf_alloc(m, 0);
449
450	for (i = 0; i < PAGE_SIZE / bsize; i++) {
451		vm_ooffset_t address;
452
453		if (vm_page_bits(i * bsize, bsize) & m->valid)
454			continue;
455
456		address = IDX_TO_OFF(m->pindex) + i * bsize;
457		if (address >= object->un_pager.vnp.vnp_size) {
458			fileaddr = -1;
459		} else {
460			fileaddr = vnode_pager_addr(vp, address, NULL);
461		}
462		if (fileaddr != -1) {
463			bp = getpbuf(&vnode_pbuf_freecnt);
464
465			/* build a minimal buffer header */
466			bp->b_iocmd = BIO_READ;
467			bp->b_iodone = bdone;
468			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
469			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
470			bp->b_rcred = crhold(curthread->td_ucred);
471			bp->b_wcred = crhold(curthread->td_ucred);
472			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
473			bp->b_blkno = fileaddr;
474			pbgetvp(dp, bp);
475			bp->b_bcount = bsize;
476			bp->b_bufsize = bsize;
477			bp->b_runningbufspace = bp->b_bufsize;
478			runningbufspace += bp->b_runningbufspace;
479
480			/* do the input */
481			bp->b_iooffset = dbtob(bp->b_blkno);
482			bstrategy(bp);
483
484			/* we definitely need to be at splvm here */
485
486			bwait(bp, PVM, "vnsrd");
487
488			if ((bp->b_ioflags & BIO_ERROR) != 0)
489				error = EIO;
490
491			/*
492			 * free the buffer header back to the swap buffer pool
493			 */
494			relpbuf(bp, &vnode_pbuf_freecnt);
495			if (error)
496				break;
497
498			VM_OBJECT_LOCK(object);
499			vm_page_lock_queues();
500			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
501			vm_page_unlock_queues();
502			VM_OBJECT_UNLOCK(object);
503		} else {
504			VM_OBJECT_LOCK(object);
505			vm_page_lock_queues();
506			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
507			vm_page_unlock_queues();
508			VM_OBJECT_UNLOCK(object);
509			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
510		}
511	}
512	sf_buf_free(sf);
513	vm_page_lock_queues();
514	pmap_clear_modify(m);
515	vm_page_unlock_queues();
516	if (error) {
517		return VM_PAGER_ERROR;
518	}
519	return VM_PAGER_OK;
520
521}
522
523
524/*
525 * old style vnode pager output routine
526 */
527static int
528vnode_pager_input_old(object, m)
529	vm_object_t object;
530	vm_page_t m;
531{
532	struct uio auio;
533	struct iovec aiov;
534	int error;
535	int size;
536	struct sf_buf *sf;
537	struct vnode *vp;
538
539	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
540	error = 0;
541
542	/*
543	 * Return failure if beyond current EOF
544	 */
545	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
546		return VM_PAGER_BAD;
547	} else {
548		size = PAGE_SIZE;
549		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
550			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
551		vp = object->handle;
552		VM_OBJECT_UNLOCK(object);
553
554		/*
555		 * Allocate a kernel virtual address and initialize so that
556		 * we can use VOP_READ/WRITE routines.
557		 */
558		sf = sf_buf_alloc(m, 0);
559
560		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
561		aiov.iov_len = size;
562		auio.uio_iov = &aiov;
563		auio.uio_iovcnt = 1;
564		auio.uio_offset = IDX_TO_OFF(m->pindex);
565		auio.uio_segflg = UIO_SYSSPACE;
566		auio.uio_rw = UIO_READ;
567		auio.uio_resid = size;
568		auio.uio_td = curthread;
569
570		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
571		if (!error) {
572			int count = size - auio.uio_resid;
573
574			if (count == 0)
575				error = EINVAL;
576			else if (count != PAGE_SIZE)
577				bzero((caddr_t)sf_buf_kva(sf) + count,
578				    PAGE_SIZE - count);
579		}
580		sf_buf_free(sf);
581
582		VM_OBJECT_LOCK(object);
583	}
584	vm_page_lock_queues();
585	pmap_clear_modify(m);
586	vm_page_undirty(m);
587	vm_page_unlock_queues();
588	if (!error)
589		m->valid = VM_PAGE_BITS_ALL;
590	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
591}
592
593/*
594 * generic vnode pager input routine
595 */
596
597/*
598 * Local media VFS's that do not implement their own VOP_GETPAGES
599 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
600 * to implement the previous behaviour.
601 *
602 * All other FS's should use the bypass to get to the local media
603 * backing vp's VOP_GETPAGES.
604 */
605static int
606vnode_pager_getpages(object, m, count, reqpage)
607	vm_object_t object;
608	vm_page_t *m;
609	int count;
610	int reqpage;
611{
612	int rtval;
613	struct vnode *vp;
614	int bytes = count * PAGE_SIZE;
615
616	vp = object->handle;
617	VM_OBJECT_UNLOCK(object);
618	mtx_lock(&Giant);
619	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
620	KASSERT(rtval != EOPNOTSUPP,
621	    ("vnode_pager: FS getpages not implemented\n"));
622	mtx_unlock(&Giant);
623	VM_OBJECT_LOCK(object);
624	return rtval;
625}
626
627/*
628 * This is now called from local media FS's to operate against their
629 * own vnodes if they fail to implement VOP_GETPAGES.
630 */
631int
632vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
633	struct vnode *vp;
634	vm_page_t *m;
635	int bytecount;
636	int reqpage;
637{
638	vm_object_t object;
639	vm_offset_t kva;
640	off_t foff, tfoff, nextoff;
641	int i, j, size, bsize, first, firstaddr;
642	struct vnode *dp;
643	int runpg;
644	int runend;
645	struct buf *bp;
646	int count;
647	int error = 0;
648
649	GIANT_REQUIRED;
650	object = vp->v_object;
651	count = bytecount / PAGE_SIZE;
652
653	if (vp->v_mount == NULL)
654		return VM_PAGER_BAD;
655
656	bsize = vp->v_mount->mnt_stat.f_iosize;
657
658	/* get the UNDERLYING device for the file with VOP_BMAP() */
659
660	/*
661	 * originally, we did not check for an error return value -- assuming
662	 * an fs always has a bmap entry point -- that assumption is wrong!!!
663	 */
664	foff = IDX_TO_OFF(m[reqpage]->pindex);
665
666	/*
667	 * if we can't bmap, use old VOP code
668	 */
669	if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) {
670		VM_OBJECT_LOCK(object);
671		vm_page_lock_queues();
672		for (i = 0; i < count; i++)
673			if (i != reqpage)
674				vm_page_free(m[i]);
675		vm_page_unlock_queues();
676		cnt.v_vnodein++;
677		cnt.v_vnodepgsin++;
678		error = vnode_pager_input_old(object, m[reqpage]);
679		VM_OBJECT_UNLOCK(object);
680		return (error);
681
682		/*
683		 * if the blocksize is smaller than a page size, then use
684		 * special small filesystem code.  NFS sometimes has a small
685		 * blocksize, but it can handle large reads itself.
686		 */
687	} else if ((PAGE_SIZE / bsize) > 1 &&
688	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
689		VM_OBJECT_LOCK(object);
690		vm_page_lock_queues();
691		for (i = 0; i < count; i++)
692			if (i != reqpage)
693				vm_page_free(m[i]);
694		vm_page_unlock_queues();
695		VM_OBJECT_UNLOCK(object);
696		cnt.v_vnodein++;
697		cnt.v_vnodepgsin++;
698		return vnode_pager_input_smlfs(object, m[reqpage]);
699	}
700
701	/*
702	 * If we have a completely valid page available to us, we can
703	 * clean up and return.  Otherwise we have to re-read the
704	 * media.
705	 */
706	VM_OBJECT_LOCK(object);
707	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
708		vm_page_lock_queues();
709		for (i = 0; i < count; i++)
710			if (i != reqpage)
711				vm_page_free(m[i]);
712		vm_page_unlock_queues();
713		VM_OBJECT_UNLOCK(object);
714		return VM_PAGER_OK;
715	}
716	m[reqpage]->valid = 0;
717	VM_OBJECT_UNLOCK(object);
718
719	/*
720	 * here on direct device I/O
721	 */
722	firstaddr = -1;
723
724	/*
725	 * calculate the run that includes the required page
726	 */
727	for (first = 0, i = 0; i < count; i = runend) {
728		firstaddr = vnode_pager_addr(vp,
729			IDX_TO_OFF(m[i]->pindex), &runpg);
730		if (firstaddr == -1) {
731			VM_OBJECT_LOCK(object);
732			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
733				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
734				    firstaddr, (uintmax_t)(foff >> 32),
735				    (uintmax_t)foff,
736				    (uintmax_t)
737				    (object->un_pager.vnp.vnp_size >> 32),
738				    (uintmax_t)object->un_pager.vnp.vnp_size);
739			}
740			vm_page_lock_queues();
741			vm_page_free(m[i]);
742			vm_page_unlock_queues();
743			VM_OBJECT_UNLOCK(object);
744			runend = i + 1;
745			first = runend;
746			continue;
747		}
748		runend = i + runpg;
749		if (runend <= reqpage) {
750			VM_OBJECT_LOCK(object);
751			vm_page_lock_queues();
752			for (j = i; j < runend; j++)
753				vm_page_free(m[j]);
754			vm_page_unlock_queues();
755			VM_OBJECT_UNLOCK(object);
756		} else {
757			if (runpg < (count - first)) {
758				VM_OBJECT_LOCK(object);
759				vm_page_lock_queues();
760				for (i = first + runpg; i < count; i++)
761					vm_page_free(m[i]);
762				vm_page_unlock_queues();
763				VM_OBJECT_UNLOCK(object);
764				count = first + runpg;
765			}
766			break;
767		}
768		first = runend;
769	}
770
771	/*
772	 * the first and last page have been calculated now, move input pages
773	 * to be zero based...
774	 */
775	if (first != 0) {
776		for (i = first; i < count; i++) {
777			m[i - first] = m[i];
778		}
779		count -= first;
780		reqpage -= first;
781	}
782
783	/*
784	 * calculate the file virtual address for the transfer
785	 */
786	foff = IDX_TO_OFF(m[0]->pindex);
787
788	/*
789	 * calculate the size of the transfer
790	 */
791	size = count * PAGE_SIZE;
792	KASSERT(count > 0, ("zero count"));
793	if ((foff + size) > object->un_pager.vnp.vnp_size)
794		size = object->un_pager.vnp.vnp_size - foff;
795	KASSERT(size > 0, ("zero size"));
796
797	/*
798	 * round up physical size for real devices.
799	 */
800	if (dp->v_type == VBLK || dp->v_type == VCHR) {
801		int secmask = dp->v_rdev->si_bsize_phys - 1;
802		KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
803		size = (size + secmask) & ~secmask;
804	}
805
806	bp = getpbuf(&vnode_pbuf_freecnt);
807	kva = (vm_offset_t) bp->b_data;
808
809	/*
810	 * and map the pages to be read into the kva
811	 */
812	pmap_qenter(kva, m, count);
813
814	/* build a minimal buffer header */
815	bp->b_iocmd = BIO_READ;
816	bp->b_iodone = bdone;
817	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
818	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
819	bp->b_rcred = crhold(curthread->td_ucred);
820	bp->b_wcred = crhold(curthread->td_ucred);
821	bp->b_blkno = firstaddr;
822	pbgetvp(dp, bp);
823	bp->b_bcount = size;
824	bp->b_bufsize = size;
825	bp->b_runningbufspace = bp->b_bufsize;
826	runningbufspace += bp->b_runningbufspace;
827
828	cnt.v_vnodein++;
829	cnt.v_vnodepgsin += count;
830
831	/* do the input */
832	bp->b_iooffset = dbtob(bp->b_blkno);
833	bstrategy(bp);
834
835	bwait(bp, PVM, "vnread");
836
837	if ((bp->b_ioflags & BIO_ERROR) != 0)
838		error = EIO;
839
840	if (!error) {
841		if (size != count * PAGE_SIZE)
842			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
843	}
844	pmap_qremove(kva, count);
845
846	/*
847	 * free the buffer header back to the swap buffer pool
848	 */
849	relpbuf(bp, &vnode_pbuf_freecnt);
850
851	VM_OBJECT_LOCK(object);
852	vm_page_lock_queues();
853	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
854		vm_page_t mt;
855
856		nextoff = tfoff + PAGE_SIZE;
857		mt = m[i];
858
859		if (nextoff <= object->un_pager.vnp.vnp_size) {
860			/*
861			 * Read filled up entire page.
862			 */
863			mt->valid = VM_PAGE_BITS_ALL;
864			vm_page_undirty(mt);	/* should be an assert? XXX */
865			pmap_clear_modify(mt);
866		} else {
867			/*
868			 * Read did not fill up entire page.  Since this
869			 * is getpages, the page may be mapped, so we have
870			 * to zero the invalid portions of the page even
871			 * though we aren't setting them valid.
872			 *
873			 * Currently we do not set the entire page valid,
874			 * we just try to clear the piece that we couldn't
875			 * read.
876			 */
877			vm_page_set_validclean(mt, 0,
878			    object->un_pager.vnp.vnp_size - tfoff);
879			/* handled by vm_fault now */
880			/* vm_page_zero_invalid(mt, FALSE); */
881		}
882
883		if (i != reqpage) {
884
885			/*
886			 * whether or not to leave the page activated is up in
887			 * the air, but we should put the page on a page queue
888			 * somewhere. (it already is in the object). Result:
889			 * It appears that empirical results show that
890			 * deactivating pages is best.
891			 */
892
893			/*
894			 * just in case someone was asking for this page we
895			 * now tell them that it is ok to use
896			 */
897			if (!error) {
898				if (mt->flags & PG_WANTED)
899					vm_page_activate(mt);
900				else
901					vm_page_deactivate(mt);
902				vm_page_wakeup(mt);
903			} else {
904				vm_page_free(mt);
905			}
906		}
907	}
908	vm_page_unlock_queues();
909	VM_OBJECT_UNLOCK(object);
910	if (error) {
911		printf("vnode_pager_getpages: I/O read error\n");
912	}
913	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
914}
915
916/*
917 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
918 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
919 * vnode_pager_generic_putpages() to implement the previous behaviour.
920 *
921 * All other FS's should use the bypass to get to the local media
922 * backing vp's VOP_PUTPAGES.
923 */
924static void
925vnode_pager_putpages(object, m, count, sync, rtvals)
926	vm_object_t object;
927	vm_page_t *m;
928	int count;
929	boolean_t sync;
930	int *rtvals;
931{
932	int rtval;
933	struct vnode *vp;
934	struct mount *mp;
935	int bytes = count * PAGE_SIZE;
936
937	GIANT_REQUIRED;
938	/*
939	 * Force synchronous operation if we are extremely low on memory
940	 * to prevent a low-memory deadlock.  VOP operations often need to
941	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
942	 * operation ).  The swapper handles the case by limiting the amount
943	 * of asynchronous I/O, but that sort of solution doesn't scale well
944	 * for the vnode pager without a lot of work.
945	 *
946	 * Also, the backing vnode's iodone routine may not wake the pageout
947	 * daemon up.  This should be probably be addressed XXX.
948	 */
949
950	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
951		sync |= OBJPC_SYNC;
952
953	/*
954	 * Call device-specific putpages function
955	 */
956	vp = object->handle;
957	VM_OBJECT_UNLOCK(object);
958	if (vp->v_type != VREG)
959		mp = NULL;
960	(void)vn_start_write(vp, &mp, V_WAIT);
961	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
962	KASSERT(rtval != EOPNOTSUPP,
963	    ("vnode_pager: stale FS putpages\n"));
964	vn_finished_write(mp);
965	VM_OBJECT_LOCK(object);
966}
967
968
969/*
970 * This is now called from local media FS's to operate against their
971 * own vnodes if they fail to implement VOP_PUTPAGES.
972 *
973 * This is typically called indirectly via the pageout daemon and
974 * clustering has already typically occured, so in general we ask the
975 * underlying filesystem to write the data out asynchronously rather
976 * then delayed.
977 */
978int
979vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
980	struct vnode *vp;
981	vm_page_t *m;
982	int bytecount;
983	int flags;
984	int *rtvals;
985{
986	int i;
987	vm_object_t object;
988	int count;
989
990	int maxsize, ncount;
991	vm_ooffset_t poffset;
992	struct uio auio;
993	struct iovec aiov;
994	int error;
995	int ioflags;
996
997	GIANT_REQUIRED;
998	object = vp->v_object;
999	count = bytecount / PAGE_SIZE;
1000
1001	for (i = 0; i < count; i++)
1002		rtvals[i] = VM_PAGER_AGAIN;
1003
1004	if ((int) m[0]->pindex < 0) {
1005		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1006			(long)m[0]->pindex, (u_long)m[0]->dirty);
1007		rtvals[0] = VM_PAGER_BAD;
1008		return VM_PAGER_BAD;
1009	}
1010
1011	maxsize = count * PAGE_SIZE;
1012	ncount = count;
1013
1014	poffset = IDX_TO_OFF(m[0]->pindex);
1015
1016	/*
1017	 * If the page-aligned write is larger then the actual file we
1018	 * have to invalidate pages occuring beyond the file EOF.  However,
1019	 * there is an edge case where a file may not be page-aligned where
1020	 * the last page is partially invalid.  In this case the filesystem
1021	 * may not properly clear the dirty bits for the entire page (which
1022	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1023	 * With the page locked we are free to fix-up the dirty bits here.
1024	 *
1025	 * We do not under any circumstances truncate the valid bits, as
1026	 * this will screw up bogus page replacement.
1027	 */
1028	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1029		if (object->un_pager.vnp.vnp_size > poffset) {
1030			int pgoff;
1031
1032			maxsize = object->un_pager.vnp.vnp_size - poffset;
1033			ncount = btoc(maxsize);
1034			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1035				vm_page_lock_queues();
1036				vm_page_clear_dirty(m[ncount - 1], pgoff,
1037					PAGE_SIZE - pgoff);
1038				vm_page_unlock_queues();
1039			}
1040		} else {
1041			maxsize = 0;
1042			ncount = 0;
1043		}
1044		if (ncount < count) {
1045			for (i = ncount; i < count; i++) {
1046				rtvals[i] = VM_PAGER_BAD;
1047			}
1048		}
1049	}
1050
1051	/*
1052	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1053	 * rather then a bdwrite() to prevent paging I/O from saturating
1054	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1055	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1056	 * the system decides how to cluster.
1057	 */
1058	ioflags = IO_VMIO;
1059	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1060		ioflags |= IO_SYNC;
1061	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1062		ioflags |= IO_ASYNC;
1063	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1064	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1065
1066	aiov.iov_base = (caddr_t) 0;
1067	aiov.iov_len = maxsize;
1068	auio.uio_iov = &aiov;
1069	auio.uio_iovcnt = 1;
1070	auio.uio_offset = poffset;
1071	auio.uio_segflg = UIO_NOCOPY;
1072	auio.uio_rw = UIO_WRITE;
1073	auio.uio_resid = maxsize;
1074	auio.uio_td = (struct thread *) 0;
1075	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1076	cnt.v_vnodeout++;
1077	cnt.v_vnodepgsout += ncount;
1078
1079	if (error) {
1080		printf("vnode_pager_putpages: I/O error %d\n", error);
1081	}
1082	if (auio.uio_resid) {
1083		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1084		    auio.uio_resid, (u_long)m[0]->pindex);
1085	}
1086	for (i = 0; i < ncount; i++) {
1087		rtvals[i] = VM_PAGER_OK;
1088	}
1089	return rtvals[0];
1090}
1091
1092struct vnode *
1093vnode_pager_lock(vm_object_t first_object)
1094{
1095	struct vnode *vp;
1096	vm_object_t backing_object, object;
1097
1098	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1099	for (object = first_object; object != NULL; object = backing_object) {
1100		if (object->type != OBJT_VNODE) {
1101			if ((backing_object = object->backing_object) != NULL)
1102				VM_OBJECT_LOCK(backing_object);
1103			if (object != first_object)
1104				VM_OBJECT_UNLOCK(object);
1105			continue;
1106		}
1107	retry:
1108		if (object->flags & OBJ_DEAD) {
1109			if (object != first_object)
1110				VM_OBJECT_UNLOCK(object);
1111			return NULL;
1112		}
1113		vp = object->handle;
1114		VI_LOCK(vp);
1115		VM_OBJECT_UNLOCK(object);
1116		if (first_object != object)
1117			VM_OBJECT_UNLOCK(first_object);
1118		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
1119		    LK_RETRY | LK_SHARED, curthread)) {
1120			VM_OBJECT_LOCK(first_object);
1121			if (object != first_object)
1122				VM_OBJECT_LOCK(object);
1123			if (object->type != OBJT_VNODE) {
1124				if (object != first_object)
1125					VM_OBJECT_UNLOCK(object);
1126				return NULL;
1127			}
1128			printf("vnode_pager_lock: retrying\n");
1129			goto retry;
1130		}
1131		VM_OBJECT_LOCK(first_object);
1132		return (vp);
1133	}
1134	return NULL;
1135}
1136