vm_glue.c revision 1827
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $Id: vm_glue.c,v 1.3 1994/08/02 07:55:19 davidg Exp $
63 */
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/proc.h>
68#include <sys/resourcevar.h>
69#include <sys/buf.h>
70#include <sys/user.h>
71
72#include <sys/kernel.h>
73#include <sys/dkstat.h>
74
75#include <vm/vm.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pageout.h>
78#include <vm/vm_kern.h>
79
80#include <machine/stdarg.h>
81
82extern char kstack[];
83int	avefree = 0;		/* XXX */
84int	readbuffers = 0;	/* XXX allow kgdb to read kernel buffer pool */
85/* vm_map_t upages_map; */
86
87void swapout(struct proc *p);
88int
89kernacc(addr, len, rw)
90	caddr_t addr;
91	int len, rw;
92{
93	boolean_t rv;
94	vm_offset_t saddr, eaddr;
95	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
96
97	saddr = trunc_page(addr);
98	eaddr = round_page(addr+len);
99	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
100	return(rv == TRUE);
101}
102
103int
104useracc(addr, len, rw)
105	caddr_t addr;
106	int len, rw;
107{
108	boolean_t rv;
109	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
110
111	/*
112	 * XXX - check separately to disallow access to user area and user
113	 * page tables - they are in the map.
114	 *
115	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was
116	 * once only used (as an end address) in trap.c.  Use it as an end
117	 * address here too.  This bogusness has spread.  I just fixed
118	 * where it was used as a max in vm_mmap.c.
119	 */
120	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
121	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
122		return (FALSE);
123	}
124
125	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
126	    trunc_page(addr), round_page(addr+len), prot);
127	return(rv == TRUE);
128}
129
130#ifdef KGDB
131/*
132 * Change protections on kernel pages from addr to addr+len
133 * (presumably so debugger can plant a breakpoint).
134 * All addresses are assumed to reside in the Sysmap,
135 */
136chgkprot(addr, len, rw)
137	register caddr_t addr;
138	int len, rw;
139{
140	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
141
142	vm_map_protect(kernel_map, trunc_page(addr),
143		       round_page(addr+len), prot, FALSE);
144}
145#endif
146void
147vslock(addr, len)
148	caddr_t	addr;
149	u_int	len;
150{
151	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
152			round_page(addr+len), FALSE);
153}
154
155void
156vsunlock(addr, len, dirtied)
157	caddr_t	addr;
158	u_int	len;
159	int dirtied;
160{
161#ifdef	lint
162	dirtied++;
163#endif	lint
164		vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
165			round_page(addr+len), TRUE);
166}
167
168/*
169 * Implement fork's actions on an address space.
170 * Here we arrange for the address space to be copied or referenced,
171 * allocate a user struct (pcb and kernel stack), then call the
172 * machine-dependent layer to fill those in and make the new process
173 * ready to run.
174 * NOTE: the kernel stack may be at a different location in the child
175 * process, and thus addresses of automatic variables may be invalid
176 * after cpu_fork returns in the child process.  We do nothing here
177 * after cpu_fork returns.
178 */
179int
180vm_fork(p1, p2, isvfork)
181	register struct proc *p1, *p2;
182	int isvfork;
183{
184	register struct user *up;
185	vm_offset_t addr, ptaddr;
186	int i;
187	struct vm_map *vp;
188
189	while( cnt.v_free_count < cnt.v_free_min)
190		VM_WAIT;
191
192	/*
193	 * avoid copying any of the parent's pagetables or other per-process
194	 * objects that reside in the map by marking all of them non-inheritable
195	 */
196	(void)vm_map_inherit(&p1->p_vmspace->vm_map,
197		UPT_MIN_ADDRESS - UPAGES * NBPG, VM_MAX_ADDRESS, VM_INHERIT_NONE);
198	p2->p_vmspace = vmspace_fork(p1->p_vmspace);
199
200#ifdef SYSVSHM
201	if (p1->p_vmspace->vm_shm)
202		shmfork(p1, p2, isvfork);
203#endif
204
205	/*
206	 * Allocate a wired-down (for now) pcb and kernel stack for the process
207	 */
208
209	addr = (vm_offset_t) kstack;
210
211	vp = &p2->p_vmspace->vm_map;
212
213	/* ream out old pagetables and kernel stack */
214	(void)vm_deallocate(vp, addr, UPT_MAX_ADDRESS - addr);
215
216	/* get new pagetables and kernel stack */
217	(void)vm_allocate(vp, &addr, UPT_MAX_ADDRESS - addr, FALSE);
218
219	/* force in the page table encompassing the UPAGES */
220	ptaddr = trunc_page((u_int)vtopte(addr));
221	vm_map_pageable(vp, ptaddr, ptaddr + NBPG, FALSE);
222
223	/* and force in (demand-zero) the UPAGES */
224	vm_map_pageable(vp, addr, addr + UPAGES * NBPG, FALSE);
225
226	/* get a kernel virtual address for the UPAGES for this proc */
227	up = (struct user *)kmem_alloc_pageable(kernel_map, UPAGES * NBPG);
228
229	/* and force-map the upages into the kernel pmap */
230	for (i = 0; i < UPAGES; i++)
231		pmap_enter(vm_map_pmap(kernel_map),
232			((vm_offset_t) up) + NBPG * i,
233			pmap_extract(vp->pmap, addr + NBPG * i),
234			VM_PROT_READ|VM_PROT_WRITE, 1);
235
236	/* and allow the UPAGES page table entry to be paged (at the vm system level) */
237	vm_map_pageable(vp, ptaddr, ptaddr + NBPG, TRUE);
238
239	p2->p_addr = up;
240
241	/*
242	 * p_stats and p_sigacts currently point at fields
243	 * in the user struct but not at &u, instead at p_addr.
244	 * Copy p_sigacts and parts of p_stats; zero the rest
245	 * of p_stats (statistics).
246	 */
247	p2->p_stats = &up->u_stats;
248	p2->p_sigacts = &up->u_sigacts;
249	up->u_sigacts = *p1->p_sigacts;
250	bzero(&up->u_stats.pstat_startzero,
251	    (unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
252	    (caddr_t)&up->u_stats.pstat_startzero));
253	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
254	    ((caddr_t)&up->u_stats.pstat_endcopy -
255	     (caddr_t)&up->u_stats.pstat_startcopy));
256
257
258	/*
259	 * cpu_fork will copy and update the kernel stack and pcb,
260	 * and make the child ready to run.  It marks the child
261	 * so that it can return differently than the parent.
262	 * It returns twice, once in the parent process and
263	 * once in the child.
264	 */
265	return (cpu_fork(p1, p2));
266}
267
268/*
269 * Set default limits for VM system.
270 * Called for proc 0, and then inherited by all others.
271 */
272void
273vm_init_limits(p)
274	register struct proc *p;
275{
276	int rss_limit;
277
278	/*
279	 * Set up the initial limits on process VM.
280	 * Set the maximum resident set size to be half
281	 * of (reasonably) available memory.  Since this
282	 * is a soft limit, it comes into effect only
283	 * when the system is out of memory - half of
284	 * main memory helps to favor smaller processes,
285	 * and reduces thrashing of the object cache.
286	 */
287        p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
288        p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
289        p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
290        p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
291	/* limit the limit to no less than 128K */
292	rss_limit = max(cnt.v_free_count / 2, 32);
293	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
294	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
295}
296
297#ifdef DEBUG
298int	enableswap = 1;
299int	swapdebug = 0;
300#define	SDB_FOLLOW	1
301#define SDB_SWAPIN	2
302#define SDB_SWAPOUT	4
303#endif
304
305void
306faultin(p)
307struct proc *p;
308{
309	vm_offset_t i;
310	vm_offset_t vaddr, ptaddr;
311	vm_offset_t v, v1;
312	struct user *up;
313	int s;
314	int opflag;
315
316	if ((p->p_flag & P_INMEM) == 0) {
317		int rv0, rv1;
318		vm_map_t map;
319
320		++p->p_lock;
321
322		map = &p->p_vmspace->vm_map;
323		/* force the page table encompassing the kernel stack (upages) */
324		ptaddr = trunc_page((u_int)vtopte(kstack));
325		vm_map_pageable(map, ptaddr, ptaddr + NBPG, FALSE);
326
327		/* wire in the UPAGES */
328		vm_map_pageable(map, (vm_offset_t) kstack,
329			(vm_offset_t) kstack + UPAGES * NBPG, FALSE);
330
331		/* and map them nicely into the kernel pmap */
332		for (i = 0; i < UPAGES; i++) {
333			vm_offset_t off = i * NBPG;
334			vm_offset_t pa = (vm_offset_t)
335				pmap_extract(&p->p_vmspace->vm_pmap,
336				(vm_offset_t) kstack + off);
337			pmap_enter(vm_map_pmap(kernel_map),
338				((vm_offset_t)p->p_addr) + off,
339					pa, VM_PROT_READ|VM_PROT_WRITE, 1);
340		}
341
342		/* and let the page table pages go (at least above pmap level) */
343		vm_map_pageable(map, ptaddr, ptaddr + NBPG, TRUE);
344
345		s = splhigh();
346
347		if (p->p_stat == SRUN)
348			setrunqueue(p);
349
350		p->p_flag |= P_INMEM;
351
352		/* undo the effect of setting SLOCK above */
353		--p->p_lock;
354		splx(s);
355
356	}
357
358}
359
360int swapinreq;
361int percentactive;
362/*
363 * This swapin algorithm attempts to swap-in processes only if there
364 * is enough space for them.  Of course, if a process waits for a long
365 * time, it will be swapped in anyway.
366 */
367void
368scheduler()
369{
370	register struct proc *p;
371	register int pri;
372	struct proc *pp;
373	int ppri;
374	vm_offset_t addr;
375	int lastidle, lastrun;
376	int curidle, currun;
377	int forceload;
378	int percent;
379	int ntries;
380
381	lastidle = 0;
382	lastrun = 0;
383
384loop:
385	ntries = 0;
386	vmmeter();
387
388	curidle = cp_time[CP_IDLE];
389	currun = cp_time[CP_USER] + cp_time[CP_SYS] + cp_time[CP_NICE];
390	percent = (100*(currun-lastrun)) / ( 1 + (currun-lastrun) + (curidle-lastidle));
391	lastrun = currun;
392	lastidle = curidle;
393	if( percent > 100)
394		percent = 100;
395	percentactive = percent;
396
397	if( percentactive < 25)
398		forceload = 1;
399	else
400		forceload = 0;
401
402loop1:
403	pp = NULL;
404	ppri = INT_MIN;
405	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
406		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
407			int mempri;
408			pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
409			mempri = pri > 0 ? pri : 0;
410			/*
411			 * if this process is higher priority and there is
412			 * enough space, then select this process instead
413			 * of the previous selection.
414			 */
415			if (pri > ppri &&
416				(((cnt.v_free_count + (mempri * (4*PAGE_SIZE) / PAGE_SIZE) >= (p->p_vmspace->vm_swrss)) || (ntries > 0 && forceload)))) {
417				pp = p;
418				ppri = pri;
419			}
420		}
421	}
422
423	if ((pp == NULL) && (ntries == 0) && forceload) {
424		++ntries;
425		goto loop1;
426	}
427
428	/*
429	 * Nothing to do, back to sleep
430	 */
431	if ((p = pp) == NULL) {
432		tsleep((caddr_t)&proc0, PVM, "sched", 0);
433		goto loop;
434	}
435
436	/*
437	 * We would like to bring someone in. (only if there is space).
438	 */
439/*
440	printf("swapin: %d, free: %d, res: %d, min: %d\n",
441		p->p_pid, cnt.v_free_count, cnt.v_free_reserved, cnt.v_free_min);
442*/
443	(void) splhigh();
444	if ((forceload && (cnt.v_free_count > (cnt.v_free_reserved + UPAGES + 1))) ||
445	    (cnt.v_free_count >= cnt.v_free_min)) {
446		spl0();
447		faultin(p);
448		p->p_swtime = 0;
449		goto loop;
450	}
451	/*
452	 * log the memory shortage
453	 */
454	swapinreq += p->p_vmspace->vm_swrss;
455	/*
456	 * Not enough memory, jab the pageout daemon and wait til the
457	 * coast is clear.
458	 */
459	if( cnt.v_free_count < cnt.v_free_min) {
460		VM_WAIT;
461	} else {
462		tsleep((caddr_t)&proc0, PVM, "sched", 0);
463	}
464	(void) spl0();
465	goto loop;
466}
467
468#define	swappable(p) \
469	(((p)->p_lock == 0) && \
470		((p)->p_flag & (P_TRACED|P_NOSWAP|P_SYSTEM|P_INMEM|P_WEXIT|P_PHYSIO)) == P_INMEM)
471
472extern int vm_pageout_free_min;
473/*
474 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
475 * procs and unwire their u-areas.  We try to always "swap" at least one
476 * process in case we need the room for a swapin.
477 * If any procs have been sleeping/stopped for at least maxslp seconds,
478 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
479 * if any, otherwise the longest-resident process.
480 */
481void
482swapout_threads()
483{
484	register struct proc *p;
485	struct proc *outp, *outp2;
486	int outpri, outpri2;
487	int tpri;
488	int didswap = 0;
489	int swapneeded = swapinreq;
490	extern int maxslp;
491	int runnablenow;
492	int s;
493
494swapmore:
495	runnablenow = 0;
496	outp = outp2 = NULL;
497	outpri = outpri2 = INT_MIN;
498	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
499		if (!swappable(p))
500			continue;
501		switch (p->p_stat) {
502		case SRUN:
503			++runnablenow;
504			/*
505			 * count the process as being in a runnable state
506			 */
507			if ((tpri = p->p_swtime + p->p_nice * 8) > outpri2) {
508				outp2 = p;
509				outpri2 = tpri;
510			}
511			continue;
512
513		case SSLEEP:
514		case SSTOP:
515			/*
516			 * do not swapout a process that is waiting for VM datastructures
517			 * there is a possible deadlock.
518			 */
519			if (!lock_try_write( &p->p_vmspace->vm_map.lock)) {
520				continue;
521			}
522			vm_map_unlock( &p->p_vmspace->vm_map);
523			if (p->p_slptime > maxslp) {
524				swapout(p);
525				didswap++;
526			} else if ((tpri = p->p_slptime + p->p_nice * 8) > outpri) {
527				outp = p;
528				outpri = tpri ;
529			}
530			continue;
531		}
532	}
533	/*
534	 * We swapout only if there are more than two runnable processes or if
535	 * another process needs some space to swapin.
536	 */
537	if ((swapinreq || ((percentactive > 90) && (runnablenow > 2))) &&
538			(((cnt.v_free_count + cnt.v_inactive_count) <= (cnt.v_free_target + cnt.v_inactive_target)) ||
539			(cnt.v_free_count < cnt.v_free_min))) {
540		if ((p = outp) == 0) {
541			p = outp2;
542		}
543
544		if (p) {
545			swapout(p);
546			didswap = 1;
547		}
548	}
549
550	/*
551	 * if we previously had found a process to swapout, and we need to swapout
552	 * more then try again.
553	 */
554#if 0
555	if( p && swapinreq)
556		goto swapmore;
557#endif
558
559	/*
560	 * If we swapped something out, and another process needed memory,
561	 * then wakeup the sched process.
562	 */
563	if (didswap) {
564		if (swapneeded)
565			wakeup((caddr_t)&proc0);
566		swapinreq = 0;
567	}
568}
569
570void
571swapout(p)
572	register struct proc *p;
573{
574	vm_offset_t addr;
575	struct pmap *pmap = &p->p_vmspace->vm_pmap;
576	vm_map_t map = &p->p_vmspace->vm_map;
577	vm_offset_t ptaddr;
578	int i;
579
580	++p->p_stats->p_ru.ru_nswap;
581	/*
582	 * remember the process resident count
583	 */
584	p->p_vmspace->vm_swrss =
585			p->p_vmspace->vm_pmap.pm_stats.resident_count;
586	/*
587	 * and decrement the amount of needed space
588	 */
589	swapinreq -= min(swapinreq, p->p_vmspace->vm_pmap.pm_stats.resident_count);
590
591	(void) splhigh();
592	p->p_flag &= ~P_INMEM;
593	if (p->p_stat == SRUN)
594		remrq(p);
595	(void) spl0();
596
597	++p->p_lock;
598/* let the upages be paged */
599	pmap_remove(vm_map_pmap(kernel_map),
600		(vm_offset_t) p->p_addr, ((vm_offset_t) p->p_addr) + UPAGES * NBPG);
601
602	vm_map_pageable(map, (vm_offset_t) kstack,
603		(vm_offset_t) kstack + UPAGES * NBPG, TRUE);
604
605	--p->p_lock;
606	p->p_swtime = 0;
607}
608
609/*
610 * The rest of these routines fake thread handling
611 */
612
613#ifndef assert_wait
614void
615assert_wait(event, ruptible)
616	int event;
617	boolean_t ruptible;
618{
619#ifdef lint
620	ruptible++;
621#endif
622	curproc->p_thread = event;
623}
624#endif
625
626void
627thread_block(char *msg)
628{
629	if (curproc->p_thread)
630		tsleep((caddr_t)curproc->p_thread, PVM, msg, 0);
631}
632
633
634void
635thread_sleep_(event, lock, wmesg)
636	int event;
637	simple_lock_t lock;
638	char *wmesg;
639{
640
641	curproc->p_thread = event;
642	simple_unlock(lock);
643	if (curproc->p_thread) {
644		tsleep((caddr_t)event, PVM, wmesg, 0);
645	}
646}
647
648#ifndef thread_wakeup
649void
650thread_wakeup(event)
651	int event;
652{
653	wakeup((caddr_t)event);
654}
655#endif
656
657/*
658 * DEBUG stuff
659 */
660
661int indent = 0;
662
663#include <machine/stdarg.h>		/* see subr_prf.c */
664
665/*ARGSUSED2*/
666void
667#if __STDC__
668iprintf(const char *fmt, ...)
669#else
670iprintf(fmt /* , va_alist */)
671	char *fmt;
672	/* va_dcl */
673#endif
674{
675	register int i;
676	va_list ap;
677
678	for (i = indent; i >= 8; i -= 8)
679		printf("\t");
680	while (--i >= 0)
681		printf(" ");
682	va_start(ap, fmt);
683	printf("%r", fmt, ap);
684	va_end(ap);
685}
686