vm_glue.c revision 132898
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 132898 2004-07-30 20:31:02Z alc $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_pageout.h>
88#include <vm/vm_object.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pager.h>
92#include <vm/swap_pager.h>
93
94#include <sys/user.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
115static void swapout(struct proc *);
116static void vm_proc_swapin(struct proc *p);
117static void vm_proc_swapout(struct proc *p);
118#endif
119
120/*
121 * MPSAFE
122 *
123 * WARNING!  This code calls vm_map_check_protection() which only checks
124 * the associated vm_map_entry range.  It does not determine whether the
125 * contents of the memory is actually readable or writable.  In most cases
126 * just checking the vm_map_entry is sufficient within the kernel's address
127 * space.
128 */
129int
130kernacc(addr, len, rw)
131	void *addr;
132	int len, rw;
133{
134	boolean_t rv;
135	vm_offset_t saddr, eaddr;
136	vm_prot_t prot;
137
138	KASSERT((rw & ~VM_PROT_ALL) == 0,
139	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140	prot = rw;
141	saddr = trunc_page((vm_offset_t)addr);
142	eaddr = round_page((vm_offset_t)addr + len);
143	vm_map_lock_read(kernel_map);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	vm_map_unlock_read(kernel_map);
146	return (rv == TRUE);
147}
148
149/*
150 * MPSAFE
151 *
152 * WARNING!  This code calls vm_map_check_protection() which only checks
153 * the associated vm_map_entry range.  It does not determine whether the
154 * contents of the memory is actually readable or writable.  vmapbuf(),
155 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156 * used in conjuction with this call.
157 */
158int
159useracc(addr, len, rw)
160	void *addr;
161	int len, rw;
162{
163	boolean_t rv;
164	vm_prot_t prot;
165	vm_map_t map;
166
167	KASSERT((rw & ~VM_PROT_ALL) == 0,
168	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169	prot = rw;
170	map = &curproc->p_vmspace->vm_map;
171	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173		return (FALSE);
174	}
175	vm_map_lock_read(map);
176	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177	    round_page((vm_offset_t)addr + len), prot);
178	vm_map_unlock_read(map);
179	return (rv == TRUE);
180}
181
182int
183vslock(void *addr, size_t len)
184{
185	vm_offset_t end, last, start;
186	vm_size_t npages;
187	int error;
188
189	last = (vm_offset_t)addr + len;
190	start = trunc_page((vm_offset_t)addr);
191	end = round_page(last);
192	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
193		return (EINVAL);
194	npages = atop(end - start);
195	if (npages > vm_page_max_wired)
196		return (ENOMEM);
197	PROC_LOCK(curproc);
198	if (ptoa(npages +
199	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
200	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
201		PROC_UNLOCK(curproc);
202		return (ENOMEM);
203	}
204	PROC_UNLOCK(curproc);
205#if 0
206	/*
207	 * XXX - not yet
208	 *
209	 * The limit for transient usage of wired pages should be
210	 * larger than for "permanent" wired pages (mlock()).
211	 *
212	 * Also, the sysctl code, which is the only present user
213	 * of vslock(), does a hard loop on EAGAIN.
214	 */
215	if (npages + cnt.v_wire_count > vm_page_max_wired)
216		return (EAGAIN);
217#endif
218	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
219	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220	/*
221	 * Return EFAULT on error to match copy{in,out}() behaviour
222	 * rather than returning ENOMEM like mlock() would.
223	 */
224	return (error == KERN_SUCCESS ? 0 : EFAULT);
225}
226
227void
228vsunlock(void *addr, size_t len)
229{
230
231	/* Rely on the parameter sanity checks performed by vslock(). */
232	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
233	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
234	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
235}
236
237/*
238 * Create the U area for a new process.
239 * This routine directly affects the fork perf for a process.
240 */
241void
242vm_proc_new(struct proc *p)
243{
244	vm_page_t ma[UAREA_PAGES];
245	vm_object_t upobj;
246	vm_offset_t up;
247	vm_page_t m;
248	u_int i;
249
250	/*
251	 * Get a kernel virtual address for the U area for this process.
252	 */
253	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
254	if (up == 0)
255		panic("vm_proc_new: upage allocation failed");
256	p->p_uarea = (struct user *)up;
257
258	/*
259	 * Allocate object and page(s) for the U area.
260	 */
261	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
262	p->p_upages_obj = upobj;
263	VM_OBJECT_LOCK(upobj);
264	for (i = 0; i < UAREA_PAGES; i++) {
265		m = vm_page_grab(upobj, i,
266		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
267		ma[i] = m;
268
269		vm_page_lock_queues();
270		vm_page_wakeup(m);
271		m->valid = VM_PAGE_BITS_ALL;
272		vm_page_unlock_queues();
273	}
274	VM_OBJECT_UNLOCK(upobj);
275
276	/*
277	 * Enter the pages into the kernel address space.
278	 */
279	pmap_qenter(up, ma, UAREA_PAGES);
280}
281
282/*
283 * Dispose the U area for a process that has exited.
284 * This routine directly impacts the exit perf of a process.
285 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
286 */
287void
288vm_proc_dispose(struct proc *p)
289{
290	vm_object_t upobj;
291	vm_offset_t up;
292	vm_page_t m;
293
294	upobj = p->p_upages_obj;
295	VM_OBJECT_LOCK(upobj);
296	if (upobj->resident_page_count != UAREA_PAGES)
297		panic("vm_proc_dispose: incorrect number of pages in upobj");
298	vm_page_lock_queues();
299	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
300		vm_page_busy(m);
301		vm_page_unwire(m, 0);
302		vm_page_free(m);
303	}
304	vm_page_unlock_queues();
305	VM_OBJECT_UNLOCK(upobj);
306	up = (vm_offset_t)p->p_uarea;
307	pmap_qremove(up, UAREA_PAGES);
308	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
309	vm_object_deallocate(upobj);
310}
311
312#ifndef NO_SWAPPING
313/*
314 * Allow the U area for a process to be prejudicially paged out.
315 */
316static void
317vm_proc_swapout(struct proc *p)
318{
319	vm_object_t upobj;
320	vm_offset_t up;
321	vm_page_t m;
322
323	upobj = p->p_upages_obj;
324	VM_OBJECT_LOCK(upobj);
325	if (upobj->resident_page_count != UAREA_PAGES)
326		panic("vm_proc_dispose: incorrect number of pages in upobj");
327	vm_page_lock_queues();
328	TAILQ_FOREACH(m, &upobj->memq, listq) {
329		vm_page_dirty(m);
330		vm_page_unwire(m, 0);
331	}
332	vm_page_unlock_queues();
333	VM_OBJECT_UNLOCK(upobj);
334	up = (vm_offset_t)p->p_uarea;
335	pmap_qremove(up, UAREA_PAGES);
336}
337
338/*
339 * Bring the U area for a specified process back in.
340 */
341static void
342vm_proc_swapin(struct proc *p)
343{
344	vm_page_t ma[UAREA_PAGES];
345	vm_object_t upobj;
346	vm_offset_t up;
347	vm_page_t m;
348	int rv;
349	int i;
350
351	upobj = p->p_upages_obj;
352	VM_OBJECT_LOCK(upobj);
353	for (i = 0; i < UAREA_PAGES; i++) {
354		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
355		if (m->valid != VM_PAGE_BITS_ALL) {
356			rv = vm_pager_get_pages(upobj, &m, 1, 0);
357			if (rv != VM_PAGER_OK)
358				panic("vm_proc_swapin: cannot get upage");
359		}
360		ma[i] = m;
361	}
362	if (upobj->resident_page_count != UAREA_PAGES)
363		panic("vm_proc_swapin: lost pages from upobj");
364	vm_page_lock_queues();
365	TAILQ_FOREACH(m, &upobj->memq, listq) {
366		m->valid = VM_PAGE_BITS_ALL;
367		vm_page_wire(m);
368		vm_page_wakeup(m);
369	}
370	vm_page_unlock_queues();
371	VM_OBJECT_UNLOCK(upobj);
372	up = (vm_offset_t)p->p_uarea;
373	pmap_qenter(up, ma, UAREA_PAGES);
374}
375
376/*
377 * Swap in the UAREAs of all processes swapped out to the given device.
378 * The pages in the UAREA are marked dirty and their swap metadata is freed.
379 */
380void
381vm_proc_swapin_all(struct swdevt *devidx)
382{
383	struct proc *p;
384	vm_object_t object;
385	vm_page_t m;
386
387retry:
388	sx_slock(&allproc_lock);
389	FOREACH_PROC_IN_SYSTEM(p) {
390		PROC_LOCK(p);
391		object = p->p_upages_obj;
392		if (object != NULL) {
393			VM_OBJECT_LOCK(object);
394			if (swap_pager_isswapped(object, devidx)) {
395				VM_OBJECT_UNLOCK(object);
396				sx_sunlock(&allproc_lock);
397				faultin(p);
398				PROC_UNLOCK(p);
399				VM_OBJECT_LOCK(object);
400				vm_page_lock_queues();
401				TAILQ_FOREACH(m, &object->memq, listq)
402					vm_page_dirty(m);
403				vm_page_unlock_queues();
404				swap_pager_freespace(object, 0,
405				    object->un_pager.swp.swp_bcount);
406				VM_OBJECT_UNLOCK(object);
407				goto retry;
408			}
409			VM_OBJECT_UNLOCK(object);
410		}
411		PROC_UNLOCK(p);
412	}
413	sx_sunlock(&allproc_lock);
414}
415#endif
416
417#ifndef KSTACK_MAX_PAGES
418#define KSTACK_MAX_PAGES 32
419#endif
420
421/*
422 * Create the kernel stack (including pcb for i386) for a new thread.
423 * This routine directly affects the fork perf for a process and
424 * create performance for a thread.
425 */
426void
427vm_thread_new(struct thread *td, int pages)
428{
429	vm_object_t ksobj;
430	vm_offset_t ks;
431	vm_page_t m, ma[KSTACK_MAX_PAGES];
432	int i;
433
434	/* Bounds check */
435	if (pages <= 1)
436		pages = KSTACK_PAGES;
437	else if (pages > KSTACK_MAX_PAGES)
438		pages = KSTACK_MAX_PAGES;
439	/*
440	 * Allocate an object for the kstack.
441	 */
442	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
443	td->td_kstack_obj = ksobj;
444	/*
445	 * Get a kernel virtual address for this thread's kstack.
446	 */
447	ks = kmem_alloc_nofault(kernel_map,
448	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
449	if (ks == 0)
450		panic("vm_thread_new: kstack allocation failed");
451	if (KSTACK_GUARD_PAGES != 0) {
452		pmap_qremove(ks, KSTACK_GUARD_PAGES);
453		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
454	}
455	td->td_kstack = ks;
456	/*
457	 * Knowing the number of pages allocated is useful when you
458	 * want to deallocate them.
459	 */
460	td->td_kstack_pages = pages;
461	/*
462	 * For the length of the stack, link in a real page of ram for each
463	 * page of stack.
464	 */
465	VM_OBJECT_LOCK(ksobj);
466	for (i = 0; i < pages; i++) {
467		/*
468		 * Get a kernel stack page.
469		 */
470		m = vm_page_grab(ksobj, i,
471		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
472		ma[i] = m;
473		vm_page_lock_queues();
474		vm_page_wakeup(m);
475		m->valid = VM_PAGE_BITS_ALL;
476		vm_page_unlock_queues();
477	}
478	VM_OBJECT_UNLOCK(ksobj);
479	pmap_qenter(ks, ma, pages);
480}
481
482/*
483 * Dispose of a thread's kernel stack.
484 */
485void
486vm_thread_dispose(struct thread *td)
487{
488	vm_object_t ksobj;
489	vm_offset_t ks;
490	vm_page_t m;
491	int i, pages;
492
493	pages = td->td_kstack_pages;
494	ksobj = td->td_kstack_obj;
495	ks = td->td_kstack;
496	pmap_qremove(ks, pages);
497	VM_OBJECT_LOCK(ksobj);
498	for (i = 0; i < pages; i++) {
499		m = vm_page_lookup(ksobj, i);
500		if (m == NULL)
501			panic("vm_thread_dispose: kstack already missing?");
502		vm_page_lock_queues();
503		vm_page_busy(m);
504		vm_page_unwire(m, 0);
505		vm_page_free(m);
506		vm_page_unlock_queues();
507	}
508	VM_OBJECT_UNLOCK(ksobj);
509	vm_object_deallocate(ksobj);
510	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
511	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
512}
513
514/*
515 * Allow a thread's kernel stack to be paged out.
516 */
517void
518vm_thread_swapout(struct thread *td)
519{
520	vm_object_t ksobj;
521	vm_page_t m;
522	int i, pages;
523
524	cpu_thread_swapout(td);
525	pages = td->td_kstack_pages;
526	ksobj = td->td_kstack_obj;
527	pmap_qremove(td->td_kstack, pages);
528	VM_OBJECT_LOCK(ksobj);
529	for (i = 0; i < pages; i++) {
530		m = vm_page_lookup(ksobj, i);
531		if (m == NULL)
532			panic("vm_thread_swapout: kstack already missing?");
533		vm_page_lock_queues();
534		vm_page_dirty(m);
535		vm_page_unwire(m, 0);
536		vm_page_unlock_queues();
537	}
538	VM_OBJECT_UNLOCK(ksobj);
539}
540
541/*
542 * Bring the kernel stack for a specified thread back in.
543 */
544void
545vm_thread_swapin(struct thread *td)
546{
547	vm_object_t ksobj;
548	vm_page_t m, ma[KSTACK_MAX_PAGES];
549	int i, pages, rv;
550
551	pages = td->td_kstack_pages;
552	ksobj = td->td_kstack_obj;
553	VM_OBJECT_LOCK(ksobj);
554	for (i = 0; i < pages; i++) {
555		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
556		if (m->valid != VM_PAGE_BITS_ALL) {
557			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
558			if (rv != VM_PAGER_OK)
559				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
560			m = vm_page_lookup(ksobj, i);
561			m->valid = VM_PAGE_BITS_ALL;
562		}
563		ma[i] = m;
564		vm_page_lock_queues();
565		vm_page_wire(m);
566		vm_page_wakeup(m);
567		vm_page_unlock_queues();
568	}
569	VM_OBJECT_UNLOCK(ksobj);
570	pmap_qenter(td->td_kstack, ma, pages);
571	cpu_thread_swapin(td);
572}
573
574/*
575 * Set up a variable-sized alternate kstack.
576 */
577void
578vm_thread_new_altkstack(struct thread *td, int pages)
579{
580
581	td->td_altkstack = td->td_kstack;
582	td->td_altkstack_obj = td->td_kstack_obj;
583	td->td_altkstack_pages = td->td_kstack_pages;
584
585	vm_thread_new(td, pages);
586}
587
588/*
589 * Restore the original kstack.
590 */
591void
592vm_thread_dispose_altkstack(struct thread *td)
593{
594
595	vm_thread_dispose(td);
596
597	td->td_kstack = td->td_altkstack;
598	td->td_kstack_obj = td->td_altkstack_obj;
599	td->td_kstack_pages = td->td_altkstack_pages;
600	td->td_altkstack = 0;
601	td->td_altkstack_obj = NULL;
602	td->td_altkstack_pages = 0;
603}
604
605/*
606 * Implement fork's actions on an address space.
607 * Here we arrange for the address space to be copied or referenced,
608 * allocate a user struct (pcb and kernel stack), then call the
609 * machine-dependent layer to fill those in and make the new process
610 * ready to run.  The new process is set up so that it returns directly
611 * to user mode to avoid stack copying and relocation problems.
612 */
613void
614vm_forkproc(td, p2, td2, flags)
615	struct thread *td;
616	struct proc *p2;
617	struct thread *td2;
618	int flags;
619{
620	struct proc *p1 = td->td_proc;
621
622	GIANT_REQUIRED;
623
624	if ((flags & RFPROC) == 0) {
625		/*
626		 * Divorce the memory, if it is shared, essentially
627		 * this changes shared memory amongst threads, into
628		 * COW locally.
629		 */
630		if ((flags & RFMEM) == 0) {
631			if (p1->p_vmspace->vm_refcnt > 1) {
632				vmspace_unshare(p1);
633			}
634		}
635		cpu_fork(td, p2, td2, flags);
636		return;
637	}
638
639	if (flags & RFMEM) {
640		p2->p_vmspace = p1->p_vmspace;
641		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
642	}
643
644	while (vm_page_count_severe()) {
645		VM_WAIT;
646	}
647
648	if ((flags & RFMEM) == 0) {
649		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
650		if (p1->p_vmspace->vm_shm)
651			shmfork(p1, p2);
652	}
653
654	/*
655	 * p_stats currently points at fields in the user struct.
656	 * Copy parts of p_stats; zero the rest of p_stats (statistics).
657	 */
658#define	RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
659
660	p2->p_stats = &p2->p_uarea->u_stats;
661	bzero(&p2->p_stats->pstat_startzero,
662	    (unsigned) RANGEOF(struct pstats, pstat_startzero, pstat_endzero));
663	bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
664	    (unsigned) RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy));
665#undef RANGEOF
666
667	/*
668	 * cpu_fork will copy and update the pcb, set up the kernel stack,
669	 * and make the child ready to run.
670	 */
671	cpu_fork(td, p2, td2, flags);
672}
673
674/*
675 * Called after process has been wait(2)'ed apon and is being reaped.
676 * The idea is to reclaim resources that we could not reclaim while
677 * the process was still executing.
678 */
679void
680vm_waitproc(p)
681	struct proc *p;
682{
683
684	vmspace_exitfree(p);		/* and clean-out the vmspace */
685}
686
687/*
688 * Set default limits for VM system.
689 * Called for proc 0, and then inherited by all others.
690 *
691 * XXX should probably act directly on proc0.
692 */
693static void
694vm_init_limits(udata)
695	void *udata;
696{
697	struct proc *p = udata;
698	struct plimit *limp;
699	int rss_limit;
700
701	/*
702	 * Set up the initial limits on process VM. Set the maximum resident
703	 * set size to be half of (reasonably) available memory.  Since this
704	 * is a soft limit, it comes into effect only when the system is out
705	 * of memory - half of main memory helps to favor smaller processes,
706	 * and reduces thrashing of the object cache.
707	 */
708	limp = p->p_limit;
709	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
710	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
711	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
712	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
713	/* limit the limit to no less than 2MB */
714	rss_limit = max(cnt.v_free_count, 512);
715	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
716	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
717}
718
719void
720faultin(p)
721	struct proc *p;
722{
723#ifdef NO_SWAPPING
724
725	PROC_LOCK_ASSERT(p, MA_OWNED);
726	if ((p->p_sflag & PS_INMEM) == 0)
727		panic("faultin: proc swapped out with NO_SWAPPING!");
728#else /* !NO_SWAPPING */
729	struct thread *td;
730
731	GIANT_REQUIRED;
732	PROC_LOCK_ASSERT(p, MA_OWNED);
733	/*
734	 * If another process is swapping in this process,
735	 * just wait until it finishes.
736	 */
737	if (p->p_sflag & PS_SWAPPINGIN)
738		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
739	else if ((p->p_sflag & PS_INMEM) == 0) {
740		/*
741		 * Don't let another thread swap process p out while we are
742		 * busy swapping it in.
743		 */
744		++p->p_lock;
745		mtx_lock_spin(&sched_lock);
746		p->p_sflag |= PS_SWAPPINGIN;
747		mtx_unlock_spin(&sched_lock);
748		PROC_UNLOCK(p);
749
750		vm_proc_swapin(p);
751		FOREACH_THREAD_IN_PROC(p, td)
752			vm_thread_swapin(td);
753
754		PROC_LOCK(p);
755		mtx_lock_spin(&sched_lock);
756		p->p_sflag &= ~PS_SWAPPINGIN;
757		p->p_sflag |= PS_INMEM;
758		FOREACH_THREAD_IN_PROC(p, td) {
759			TD_CLR_SWAPPED(td);
760			if (TD_CAN_RUN(td))
761				setrunnable(td);
762		}
763		mtx_unlock_spin(&sched_lock);
764
765		wakeup(&p->p_sflag);
766
767		/* Allow other threads to swap p out now. */
768		--p->p_lock;
769	}
770#endif /* NO_SWAPPING */
771}
772
773/*
774 * This swapin algorithm attempts to swap-in processes only if there
775 * is enough space for them.  Of course, if a process waits for a long
776 * time, it will be swapped in anyway.
777 *
778 *  XXXKSE - process with the thread with highest priority counts..
779 *
780 * Giant is still held at this point, to be released in tsleep.
781 */
782/* ARGSUSED*/
783static void
784scheduler(dummy)
785	void *dummy;
786{
787	struct proc *p;
788	struct thread *td;
789	int pri;
790	struct proc *pp;
791	int ppri;
792
793	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
794	/* GIANT_REQUIRED */
795
796loop:
797	if (vm_page_count_min()) {
798		VM_WAIT;
799		goto loop;
800	}
801
802	pp = NULL;
803	ppri = INT_MIN;
804	sx_slock(&allproc_lock);
805	FOREACH_PROC_IN_SYSTEM(p) {
806		struct ksegrp *kg;
807		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
808			continue;
809		}
810		mtx_lock_spin(&sched_lock);
811		FOREACH_THREAD_IN_PROC(p, td) {
812			/*
813			 * An otherwise runnable thread of a process
814			 * swapped out has only the TDI_SWAPPED bit set.
815			 *
816			 */
817			if (td->td_inhibitors == TDI_SWAPPED) {
818				kg = td->td_ksegrp;
819				pri = p->p_swtime + kg->kg_slptime;
820				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
821					pri -= p->p_nice * 8;
822				}
823
824				/*
825				 * if this ksegrp is higher priority
826				 * and there is enough space, then select
827				 * this process instead of the previous
828				 * selection.
829				 */
830				if (pri > ppri) {
831					pp = p;
832					ppri = pri;
833				}
834			}
835		}
836		mtx_unlock_spin(&sched_lock);
837	}
838	sx_sunlock(&allproc_lock);
839
840	/*
841	 * Nothing to do, back to sleep.
842	 */
843	if ((p = pp) == NULL) {
844		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
845		goto loop;
846	}
847	PROC_LOCK(p);
848
849	/*
850	 * Another process may be bringing or may have already
851	 * brought this process in while we traverse all threads.
852	 * Or, this process may even be being swapped out again.
853	 */
854	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
855		PROC_UNLOCK(p);
856		goto loop;
857	}
858
859	mtx_lock_spin(&sched_lock);
860	p->p_sflag &= ~PS_SWAPINREQ;
861	mtx_unlock_spin(&sched_lock);
862
863	/*
864	 * We would like to bring someone in. (only if there is space).
865	 * [What checks the space? ]
866	 */
867	faultin(p);
868	PROC_UNLOCK(p);
869	mtx_lock_spin(&sched_lock);
870	p->p_swtime = 0;
871	mtx_unlock_spin(&sched_lock);
872	goto loop;
873}
874
875#ifndef NO_SWAPPING
876
877/*
878 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
879 */
880static int swap_idle_threshold1 = 2;
881SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
882    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
883
884/*
885 * Swap_idle_threshold2 is the time that a process can be idle before
886 * it will be swapped out, if idle swapping is enabled.
887 */
888static int swap_idle_threshold2 = 10;
889SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
890    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
891
892/*
893 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
894 * procs and unwire their u-areas.  We try to always "swap" at least one
895 * process in case we need the room for a swapin.
896 * If any procs have been sleeping/stopped for at least maxslp seconds,
897 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
898 * if any, otherwise the longest-resident process.
899 */
900void
901swapout_procs(action)
902int action;
903{
904	struct proc *p;
905	struct thread *td;
906	struct ksegrp *kg;
907	int didswap = 0;
908
909	GIANT_REQUIRED;
910
911retry:
912	sx_slock(&allproc_lock);
913	FOREACH_PROC_IN_SYSTEM(p) {
914		struct vmspace *vm;
915		int minslptime = 100000;
916
917		/*
918		 * Watch out for a process in
919		 * creation.  It may have no
920		 * address space or lock yet.
921		 */
922		mtx_lock_spin(&sched_lock);
923		if (p->p_state == PRS_NEW) {
924			mtx_unlock_spin(&sched_lock);
925			continue;
926		}
927		mtx_unlock_spin(&sched_lock);
928
929		/*
930		 * An aio daemon switches its
931		 * address space while running.
932		 * Perform a quick check whether
933		 * a process has P_SYSTEM.
934		 */
935		if ((p->p_flag & P_SYSTEM) != 0)
936			continue;
937
938		/*
939		 * Do not swapout a process that
940		 * is waiting for VM data
941		 * structures as there is a possible
942		 * deadlock.  Test this first as
943		 * this may block.
944		 *
945		 * Lock the map until swapout
946		 * finishes, or a thread of this
947		 * process may attempt to alter
948		 * the map.
949		 */
950		PROC_LOCK(p);
951		vm = p->p_vmspace;
952		KASSERT(vm != NULL,
953			("swapout_procs: a process has no address space"));
954		atomic_add_int(&vm->vm_refcnt, 1);
955		PROC_UNLOCK(p);
956		if (!vm_map_trylock(&vm->vm_map))
957			goto nextproc1;
958
959		PROC_LOCK(p);
960		if (p->p_lock != 0 ||
961		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
962		    ) != 0) {
963			goto nextproc2;
964		}
965		/*
966		 * only aiod changes vmspace, however it will be
967		 * skipped because of the if statement above checking
968		 * for P_SYSTEM
969		 */
970		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
971			goto nextproc2;
972
973		switch (p->p_state) {
974		default:
975			/* Don't swap out processes in any sort
976			 * of 'special' state. */
977			break;
978
979		case PRS_NORMAL:
980			mtx_lock_spin(&sched_lock);
981			/*
982			 * do not swapout a realtime process
983			 * Check all the thread groups..
984			 */
985			FOREACH_KSEGRP_IN_PROC(p, kg) {
986				if (PRI_IS_REALTIME(kg->kg_pri_class))
987					goto nextproc;
988
989				/*
990				 * Guarantee swap_idle_threshold1
991				 * time in memory.
992				 */
993				if (kg->kg_slptime < swap_idle_threshold1)
994					goto nextproc;
995
996				/*
997				 * Do not swapout a process if it is
998				 * waiting on a critical event of some
999				 * kind or there is a thread whose
1000				 * pageable memory may be accessed.
1001				 *
1002				 * This could be refined to support
1003				 * swapping out a thread.
1004				 */
1005				FOREACH_THREAD_IN_GROUP(kg, td) {
1006					if ((td->td_priority) < PSOCK ||
1007					    !thread_safetoswapout(td))
1008						goto nextproc;
1009				}
1010				/*
1011				 * If the system is under memory stress,
1012				 * or if we are swapping
1013				 * idle processes >= swap_idle_threshold2,
1014				 * then swap the process out.
1015				 */
1016				if (((action & VM_SWAP_NORMAL) == 0) &&
1017				    (((action & VM_SWAP_IDLE) == 0) ||
1018				    (kg->kg_slptime < swap_idle_threshold2)))
1019					goto nextproc;
1020
1021				if (minslptime > kg->kg_slptime)
1022					minslptime = kg->kg_slptime;
1023			}
1024
1025			/*
1026			 * If the pageout daemon didn't free enough pages,
1027			 * or if this process is idle and the system is
1028			 * configured to swap proactively, swap it out.
1029			 */
1030			if ((action & VM_SWAP_NORMAL) ||
1031				((action & VM_SWAP_IDLE) &&
1032				 (minslptime > swap_idle_threshold2))) {
1033				swapout(p);
1034				didswap++;
1035				mtx_unlock_spin(&sched_lock);
1036				PROC_UNLOCK(p);
1037				vm_map_unlock(&vm->vm_map);
1038				vmspace_free(vm);
1039				sx_sunlock(&allproc_lock);
1040				goto retry;
1041			}
1042nextproc:
1043			mtx_unlock_spin(&sched_lock);
1044		}
1045nextproc2:
1046		PROC_UNLOCK(p);
1047		vm_map_unlock(&vm->vm_map);
1048nextproc1:
1049		vmspace_free(vm);
1050		continue;
1051	}
1052	sx_sunlock(&allproc_lock);
1053	/*
1054	 * If we swapped something out, and another process needed memory,
1055	 * then wakeup the sched process.
1056	 */
1057	if (didswap)
1058		wakeup(&proc0);
1059}
1060
1061static void
1062swapout(p)
1063	struct proc *p;
1064{
1065	struct thread *td;
1066
1067	PROC_LOCK_ASSERT(p, MA_OWNED);
1068	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1069#if defined(SWAP_DEBUG)
1070	printf("swapping out %d\n", p->p_pid);
1071#endif
1072
1073	/*
1074	 * The states of this process and its threads may have changed
1075	 * by now.  Assuming that there is only one pageout daemon thread,
1076	 * this process should still be in memory.
1077	 */
1078	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1079		("swapout: lost a swapout race?"));
1080
1081#if defined(INVARIANTS)
1082	/*
1083	 * Make sure that all threads are safe to be swapped out.
1084	 *
1085	 * Alternatively, we could swap out only safe threads.
1086	 */
1087	FOREACH_THREAD_IN_PROC(p, td) {
1088		KASSERT(thread_safetoswapout(td),
1089			("swapout: there is a thread not safe for swapout"));
1090	}
1091#endif /* INVARIANTS */
1092
1093	++p->p_stats->p_ru.ru_nswap;
1094	/*
1095	 * remember the process resident count
1096	 */
1097	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1098
1099	p->p_sflag &= ~PS_INMEM;
1100	p->p_sflag |= PS_SWAPPINGOUT;
1101	PROC_UNLOCK(p);
1102	FOREACH_THREAD_IN_PROC(p, td)
1103		TD_SET_SWAPPED(td);
1104	mtx_unlock_spin(&sched_lock);
1105
1106	vm_proc_swapout(p);
1107	FOREACH_THREAD_IN_PROC(p, td)
1108		vm_thread_swapout(td);
1109
1110	PROC_LOCK(p);
1111	mtx_lock_spin(&sched_lock);
1112	p->p_sflag &= ~PS_SWAPPINGOUT;
1113	p->p_swtime = 0;
1114}
1115#endif /* !NO_SWAPPING */
1116