vm_glue.c revision 126668
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 126668 2004-03-05 22:03:11Z truckman $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	vm_map_lock_read(kernel_map);
148	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
149	vm_map_unlock_read(kernel_map);
150	return (rv == TRUE);
151}
152
153/*
154 * MPSAFE
155 *
156 * WARNING!  This code calls vm_map_check_protection() which only checks
157 * the associated vm_map_entry range.  It does not determine whether the
158 * contents of the memory is actually readable or writable.  vmapbuf(),
159 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
160 * used in conjuction with this call.
161 */
162int
163useracc(addr, len, rw)
164	void *addr;
165	int len, rw;
166{
167	boolean_t rv;
168	vm_prot_t prot;
169	vm_map_t map;
170
171	KASSERT((rw & ~VM_PROT_ALL) == 0,
172	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
173	prot = rw;
174	map = &curproc->p_vmspace->vm_map;
175	if ((vm_offset_t)addr + len > vm_map_max(map) ||
176	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
177		return (FALSE);
178	}
179	vm_map_lock_read(map);
180	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
181	    round_page((vm_offset_t)addr + len), prot);
182	vm_map_unlock_read(map);
183	return (rv == TRUE);
184}
185
186/*
187 * MPSAFE
188 */
189int
190vslock(td, addr, size)
191	struct thread *td;
192	vm_offset_t addr;
193	vm_size_t size;
194{
195	vm_offset_t start, end;
196	struct proc *proc = td->td_proc;
197	int error, npages;
198
199	start = trunc_page(addr);
200	end = round_page(addr + size);
201
202	/* disable wrap around */
203	if (end <= start)
204		return (EINVAL);
205
206	npages = atop(end - start);
207
208	if (npages > vm_page_max_wired)
209		return (ENOMEM);
210
211	PROC_LOCK(proc);
212	if (npages + pmap_wired_count(vm_map_pmap(&proc->p_vmspace->vm_map)) >
213	    atop(lim_cur(proc, RLIMIT_MEMLOCK))) {
214		PROC_UNLOCK(proc);
215		return (ENOMEM);
216	}
217	PROC_UNLOCK(proc);
218
219#if 0
220	/*
221	 * XXX - not yet
222	 *
223	 * The limit for transient usage of wired pages should be
224	 * larger than for "permanent" wired pages (mlock()).
225	 *
226	 * Also, the sysctl code, which is the only present user
227	 * of vslock(), does a hard loop on EAGAIN.
228	 */
229	if (npages + cnt.v_wire_count > vm_page_max_wired)
230		return (EAGAIN);
231#endif
232
233	error = vm_map_wire(&proc->p_vmspace->vm_map, start, end,
234	     VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
235
236	/* EINVAL is probably a better error to return than ENOMEM */
237	return (error == KERN_SUCCESS ? 0 : EINVAL);
238}
239
240/*
241 * MPSAFE
242 */
243int
244vsunlock(td, addr, size)
245	struct thread *td;
246	vm_offset_t addr;
247	vm_size_t size;
248{
249	vm_offset_t start, end;
250	int error;
251
252	start = trunc_page(addr);
253	end = round_page(addr + size);
254
255	/* disable wrap around */
256	if (end <= start)
257		return (EINVAL);
258
259	error = vm_map_unwire(&td->td_proc->p_vmspace->vm_map, start, end,
260	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
261	return (error == KERN_SUCCESS ? 0 : EINVAL);
262}
263
264/*
265 * Create the U area for a new process.
266 * This routine directly affects the fork perf for a process.
267 */
268void
269vm_proc_new(struct proc *p)
270{
271	vm_page_t ma[UAREA_PAGES];
272	vm_object_t upobj;
273	vm_offset_t up;
274	vm_page_t m;
275	u_int i;
276
277	/*
278	 * Get a kernel virtual address for the U area for this process.
279	 */
280	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
281	if (up == 0)
282		panic("vm_proc_new: upage allocation failed");
283	p->p_uarea = (struct user *)up;
284
285	/*
286	 * Allocate object and page(s) for the U area.
287	 */
288	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
289	p->p_upages_obj = upobj;
290	VM_OBJECT_LOCK(upobj);
291	for (i = 0; i < UAREA_PAGES; i++) {
292		m = vm_page_grab(upobj, i,
293		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
294		ma[i] = m;
295
296		vm_page_lock_queues();
297		vm_page_wakeup(m);
298		m->valid = VM_PAGE_BITS_ALL;
299		vm_page_unlock_queues();
300	}
301	VM_OBJECT_UNLOCK(upobj);
302
303	/*
304	 * Enter the pages into the kernel address space.
305	 */
306	pmap_qenter(up, ma, UAREA_PAGES);
307}
308
309/*
310 * Dispose the U area for a process that has exited.
311 * This routine directly impacts the exit perf of a process.
312 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
313 */
314void
315vm_proc_dispose(struct proc *p)
316{
317	vm_object_t upobj;
318	vm_offset_t up;
319	vm_page_t m;
320
321	upobj = p->p_upages_obj;
322	VM_OBJECT_LOCK(upobj);
323	if (upobj->resident_page_count != UAREA_PAGES)
324		panic("vm_proc_dispose: incorrect number of pages in upobj");
325	vm_page_lock_queues();
326	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
327		vm_page_busy(m);
328		vm_page_unwire(m, 0);
329		vm_page_free(m);
330	}
331	vm_page_unlock_queues();
332	VM_OBJECT_UNLOCK(upobj);
333	up = (vm_offset_t)p->p_uarea;
334	pmap_qremove(up, UAREA_PAGES);
335	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
336	vm_object_deallocate(upobj);
337}
338
339#ifndef NO_SWAPPING
340/*
341 * Allow the U area for a process to be prejudicially paged out.
342 */
343static void
344vm_proc_swapout(struct proc *p)
345{
346	vm_object_t upobj;
347	vm_offset_t up;
348	vm_page_t m;
349
350	upobj = p->p_upages_obj;
351	VM_OBJECT_LOCK(upobj);
352	if (upobj->resident_page_count != UAREA_PAGES)
353		panic("vm_proc_dispose: incorrect number of pages in upobj");
354	vm_page_lock_queues();
355	TAILQ_FOREACH(m, &upobj->memq, listq) {
356		vm_page_dirty(m);
357		vm_page_unwire(m, 0);
358	}
359	vm_page_unlock_queues();
360	VM_OBJECT_UNLOCK(upobj);
361	up = (vm_offset_t)p->p_uarea;
362	pmap_qremove(up, UAREA_PAGES);
363}
364
365/*
366 * Bring the U area for a specified process back in.
367 */
368static void
369vm_proc_swapin(struct proc *p)
370{
371	vm_page_t ma[UAREA_PAGES];
372	vm_object_t upobj;
373	vm_offset_t up;
374	vm_page_t m;
375	int rv;
376	int i;
377
378	upobj = p->p_upages_obj;
379	VM_OBJECT_LOCK(upobj);
380	for (i = 0; i < UAREA_PAGES; i++) {
381		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
382		if (m->valid != VM_PAGE_BITS_ALL) {
383			rv = vm_pager_get_pages(upobj, &m, 1, 0);
384			if (rv != VM_PAGER_OK)
385				panic("vm_proc_swapin: cannot get upage");
386		}
387		ma[i] = m;
388	}
389	if (upobj->resident_page_count != UAREA_PAGES)
390		panic("vm_proc_swapin: lost pages from upobj");
391	vm_page_lock_queues();
392	TAILQ_FOREACH(m, &upobj->memq, listq) {
393		m->valid = VM_PAGE_BITS_ALL;
394		vm_page_wire(m);
395		vm_page_wakeup(m);
396	}
397	vm_page_unlock_queues();
398	VM_OBJECT_UNLOCK(upobj);
399	up = (vm_offset_t)p->p_uarea;
400	pmap_qenter(up, ma, UAREA_PAGES);
401}
402
403/*
404 * Swap in the UAREAs of all processes swapped out to the given device.
405 * The pages in the UAREA are marked dirty and their swap metadata is freed.
406 */
407void
408vm_proc_swapin_all(struct swdevt *devidx)
409{
410	struct proc *p;
411	vm_object_t object;
412	vm_page_t m;
413
414retry:
415	sx_slock(&allproc_lock);
416	FOREACH_PROC_IN_SYSTEM(p) {
417		PROC_LOCK(p);
418		object = p->p_upages_obj;
419		if (object != NULL) {
420			VM_OBJECT_LOCK(object);
421			if (swap_pager_isswapped(object, devidx)) {
422				VM_OBJECT_UNLOCK(object);
423				sx_sunlock(&allproc_lock);
424				faultin(p);
425				PROC_UNLOCK(p);
426				VM_OBJECT_LOCK(object);
427				vm_page_lock_queues();
428				TAILQ_FOREACH(m, &object->memq, listq)
429					vm_page_dirty(m);
430				vm_page_unlock_queues();
431				swap_pager_freespace(object, 0,
432				    object->un_pager.swp.swp_bcount);
433				VM_OBJECT_UNLOCK(object);
434				goto retry;
435			}
436			VM_OBJECT_UNLOCK(object);
437		}
438		PROC_UNLOCK(p);
439	}
440	sx_sunlock(&allproc_lock);
441}
442#endif
443
444#ifndef KSTACK_MAX_PAGES
445#define KSTACK_MAX_PAGES 32
446#endif
447
448/*
449 * Create the kernel stack (including pcb for i386) for a new thread.
450 * This routine directly affects the fork perf for a process and
451 * create performance for a thread.
452 */
453void
454vm_thread_new(struct thread *td, int pages)
455{
456	vm_object_t ksobj;
457	vm_offset_t ks;
458	vm_page_t m, ma[KSTACK_MAX_PAGES];
459	int i;
460
461	/* Bounds check */
462	if (pages <= 1)
463		pages = KSTACK_PAGES;
464	else if (pages > KSTACK_MAX_PAGES)
465		pages = KSTACK_MAX_PAGES;
466	/*
467	 * Allocate an object for the kstack.
468	 */
469	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
470	td->td_kstack_obj = ksobj;
471	/*
472	 * Get a kernel virtual address for this thread's kstack.
473	 */
474	ks = kmem_alloc_nofault(kernel_map,
475	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
476	if (ks == 0)
477		panic("vm_thread_new: kstack allocation failed");
478	if (KSTACK_GUARD_PAGES != 0) {
479		pmap_qremove(ks, KSTACK_GUARD_PAGES);
480		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
481	}
482	td->td_kstack = ks;
483	/*
484	 * Knowing the number of pages allocated is useful when you
485	 * want to deallocate them.
486	 */
487	td->td_kstack_pages = pages;
488	/*
489	 * For the length of the stack, link in a real page of ram for each
490	 * page of stack.
491	 */
492	VM_OBJECT_LOCK(ksobj);
493	for (i = 0; i < pages; i++) {
494		/*
495		 * Get a kernel stack page.
496		 */
497		m = vm_page_grab(ksobj, i,
498		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
499		ma[i] = m;
500		vm_page_lock_queues();
501		vm_page_wakeup(m);
502		m->valid = VM_PAGE_BITS_ALL;
503		vm_page_unlock_queues();
504	}
505	VM_OBJECT_UNLOCK(ksobj);
506	pmap_qenter(ks, ma, pages);
507}
508
509/*
510 * Dispose of a thread's kernel stack.
511 */
512void
513vm_thread_dispose(struct thread *td)
514{
515	vm_object_t ksobj;
516	vm_offset_t ks;
517	vm_page_t m;
518	int i, pages;
519
520	pages = td->td_kstack_pages;
521	ksobj = td->td_kstack_obj;
522	ks = td->td_kstack;
523	pmap_qremove(ks, pages);
524	VM_OBJECT_LOCK(ksobj);
525	for (i = 0; i < pages; i++) {
526		m = vm_page_lookup(ksobj, i);
527		if (m == NULL)
528			panic("vm_thread_dispose: kstack already missing?");
529		vm_page_lock_queues();
530		vm_page_busy(m);
531		vm_page_unwire(m, 0);
532		vm_page_free(m);
533		vm_page_unlock_queues();
534	}
535	VM_OBJECT_UNLOCK(ksobj);
536	vm_object_deallocate(ksobj);
537	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
538	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
539}
540
541/*
542 * Allow a thread's kernel stack to be paged out.
543 */
544void
545vm_thread_swapout(struct thread *td)
546{
547	vm_object_t ksobj;
548	vm_page_t m;
549	int i, pages;
550
551	cpu_thread_swapout(td);
552	pages = td->td_kstack_pages;
553	ksobj = td->td_kstack_obj;
554	pmap_qremove(td->td_kstack, pages);
555	VM_OBJECT_LOCK(ksobj);
556	for (i = 0; i < pages; i++) {
557		m = vm_page_lookup(ksobj, i);
558		if (m == NULL)
559			panic("vm_thread_swapout: kstack already missing?");
560		vm_page_lock_queues();
561		vm_page_dirty(m);
562		vm_page_unwire(m, 0);
563		vm_page_unlock_queues();
564	}
565	VM_OBJECT_UNLOCK(ksobj);
566}
567
568/*
569 * Bring the kernel stack for a specified thread back in.
570 */
571void
572vm_thread_swapin(struct thread *td)
573{
574	vm_object_t ksobj;
575	vm_page_t m, ma[KSTACK_MAX_PAGES];
576	int i, pages, rv;
577
578	pages = td->td_kstack_pages;
579	ksobj = td->td_kstack_obj;
580	VM_OBJECT_LOCK(ksobj);
581	for (i = 0; i < pages; i++) {
582		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
583		if (m->valid != VM_PAGE_BITS_ALL) {
584			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
585			if (rv != VM_PAGER_OK)
586				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
587			m = vm_page_lookup(ksobj, i);
588			m->valid = VM_PAGE_BITS_ALL;
589		}
590		ma[i] = m;
591		vm_page_lock_queues();
592		vm_page_wire(m);
593		vm_page_wakeup(m);
594		vm_page_unlock_queues();
595	}
596	VM_OBJECT_UNLOCK(ksobj);
597	pmap_qenter(td->td_kstack, ma, pages);
598	cpu_thread_swapin(td);
599}
600
601/*
602 * Set up a variable-sized alternate kstack.
603 */
604void
605vm_thread_new_altkstack(struct thread *td, int pages)
606{
607
608	td->td_altkstack = td->td_kstack;
609	td->td_altkstack_obj = td->td_kstack_obj;
610	td->td_altkstack_pages = td->td_kstack_pages;
611
612	vm_thread_new(td, pages);
613}
614
615/*
616 * Restore the original kstack.
617 */
618void
619vm_thread_dispose_altkstack(struct thread *td)
620{
621
622	vm_thread_dispose(td);
623
624	td->td_kstack = td->td_altkstack;
625	td->td_kstack_obj = td->td_altkstack_obj;
626	td->td_kstack_pages = td->td_altkstack_pages;
627	td->td_altkstack = 0;
628	td->td_altkstack_obj = NULL;
629	td->td_altkstack_pages = 0;
630}
631
632/*
633 * Implement fork's actions on an address space.
634 * Here we arrange for the address space to be copied or referenced,
635 * allocate a user struct (pcb and kernel stack), then call the
636 * machine-dependent layer to fill those in and make the new process
637 * ready to run.  The new process is set up so that it returns directly
638 * to user mode to avoid stack copying and relocation problems.
639 */
640void
641vm_forkproc(td, p2, td2, flags)
642	struct thread *td;
643	struct proc *p2;
644	struct thread *td2;
645	int flags;
646{
647	struct proc *p1 = td->td_proc;
648	struct user *up;
649
650	GIANT_REQUIRED;
651
652	if ((flags & RFPROC) == 0) {
653		/*
654		 * Divorce the memory, if it is shared, essentially
655		 * this changes shared memory amongst threads, into
656		 * COW locally.
657		 */
658		if ((flags & RFMEM) == 0) {
659			if (p1->p_vmspace->vm_refcnt > 1) {
660				vmspace_unshare(p1);
661			}
662		}
663		cpu_fork(td, p2, td2, flags);
664		return;
665	}
666
667	if (flags & RFMEM) {
668		p2->p_vmspace = p1->p_vmspace;
669		p1->p_vmspace->vm_refcnt++;
670	}
671
672	while (vm_page_count_severe()) {
673		VM_WAIT;
674	}
675
676	if ((flags & RFMEM) == 0) {
677		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
678
679		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
680
681		if (p1->p_vmspace->vm_shm)
682			shmfork(p1, p2);
683	}
684
685	/* XXXKSE this is unsatisfactory but should be adequate */
686	up = p2->p_uarea;
687	MPASS(p2->p_sigacts != NULL);
688
689	/*
690	 * p_stats currently points at fields in the user struct
691	 * but not at &u, instead at p_addr. Copy parts of
692	 * p_stats; zero the rest of p_stats (statistics).
693	 */
694	p2->p_stats = &up->u_stats;
695	bzero(&up->u_stats.pstat_startzero,
696	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
697		(caddr_t) &up->u_stats.pstat_startzero));
698	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
699	    ((caddr_t) &up->u_stats.pstat_endcopy -
700		(caddr_t) &up->u_stats.pstat_startcopy));
701
702	/*
703	 * cpu_fork will copy and update the pcb, set up the kernel stack,
704	 * and make the child ready to run.
705	 */
706	cpu_fork(td, p2, td2, flags);
707}
708
709/*
710 * Called after process has been wait(2)'ed apon and is being reaped.
711 * The idea is to reclaim resources that we could not reclaim while
712 * the process was still executing.
713 */
714void
715vm_waitproc(p)
716	struct proc *p;
717{
718
719	GIANT_REQUIRED;
720	vmspace_exitfree(p);		/* and clean-out the vmspace */
721}
722
723/*
724 * Set default limits for VM system.
725 * Called for proc 0, and then inherited by all others.
726 *
727 * XXX should probably act directly on proc0.
728 */
729static void
730vm_init_limits(udata)
731	void *udata;
732{
733	struct proc *p = udata;
734	struct plimit *limp;
735	int rss_limit;
736
737	/*
738	 * Set up the initial limits on process VM. Set the maximum resident
739	 * set size to be half of (reasonably) available memory.  Since this
740	 * is a soft limit, it comes into effect only when the system is out
741	 * of memory - half of main memory helps to favor smaller processes,
742	 * and reduces thrashing of the object cache.
743	 */
744	limp = p->p_limit;
745	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
746	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
747	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
748	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
749	/* limit the limit to no less than 2MB */
750	rss_limit = max(cnt.v_free_count, 512);
751	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
752	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
753}
754
755void
756faultin(p)
757	struct proc *p;
758{
759#ifdef NO_SWAPPING
760
761	PROC_LOCK_ASSERT(p, MA_OWNED);
762	if ((p->p_sflag & PS_INMEM) == 0)
763		panic("faultin: proc swapped out with NO_SWAPPING!");
764#else /* !NO_SWAPPING */
765	struct thread *td;
766
767	GIANT_REQUIRED;
768	PROC_LOCK_ASSERT(p, MA_OWNED);
769	/*
770	 * If another process is swapping in this process,
771	 * just wait until it finishes.
772	 */
773	if (p->p_sflag & PS_SWAPPINGIN)
774		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
775	else if ((p->p_sflag & PS_INMEM) == 0) {
776		/*
777		 * Don't let another thread swap process p out while we are
778		 * busy swapping it in.
779		 */
780		++p->p_lock;
781		mtx_lock_spin(&sched_lock);
782		p->p_sflag |= PS_SWAPPINGIN;
783		mtx_unlock_spin(&sched_lock);
784		PROC_UNLOCK(p);
785
786		vm_proc_swapin(p);
787		FOREACH_THREAD_IN_PROC(p, td)
788			vm_thread_swapin(td);
789
790		PROC_LOCK(p);
791		mtx_lock_spin(&sched_lock);
792		p->p_sflag &= ~PS_SWAPPINGIN;
793		p->p_sflag |= PS_INMEM;
794		FOREACH_THREAD_IN_PROC(p, td) {
795			TD_CLR_SWAPPED(td);
796			if (TD_CAN_RUN(td))
797				setrunnable(td);
798		}
799		mtx_unlock_spin(&sched_lock);
800
801		wakeup(&p->p_sflag);
802
803		/* Allow other threads to swap p out now. */
804		--p->p_lock;
805	}
806#endif /* NO_SWAPPING */
807}
808
809/*
810 * This swapin algorithm attempts to swap-in processes only if there
811 * is enough space for them.  Of course, if a process waits for a long
812 * time, it will be swapped in anyway.
813 *
814 *  XXXKSE - process with the thread with highest priority counts..
815 *
816 * Giant is still held at this point, to be released in tsleep.
817 */
818/* ARGSUSED*/
819static void
820scheduler(dummy)
821	void *dummy;
822{
823	struct proc *p;
824	struct thread *td;
825	int pri;
826	struct proc *pp;
827	int ppri;
828
829	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
830	/* GIANT_REQUIRED */
831
832loop:
833	if (vm_page_count_min()) {
834		VM_WAIT;
835		goto loop;
836	}
837
838	pp = NULL;
839	ppri = INT_MIN;
840	sx_slock(&allproc_lock);
841	FOREACH_PROC_IN_SYSTEM(p) {
842		struct ksegrp *kg;
843		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
844			continue;
845		}
846		mtx_lock_spin(&sched_lock);
847		FOREACH_THREAD_IN_PROC(p, td) {
848			/*
849			 * An otherwise runnable thread of a process
850			 * swapped out has only the TDI_SWAPPED bit set.
851			 *
852			 */
853			if (td->td_inhibitors == TDI_SWAPPED) {
854				kg = td->td_ksegrp;
855				pri = p->p_swtime + kg->kg_slptime;
856				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
857					pri -= kg->kg_nice * 8;
858				}
859
860				/*
861				 * if this ksegrp is higher priority
862				 * and there is enough space, then select
863				 * this process instead of the previous
864				 * selection.
865				 */
866				if (pri > ppri) {
867					pp = p;
868					ppri = pri;
869				}
870			}
871		}
872		mtx_unlock_spin(&sched_lock);
873	}
874	sx_sunlock(&allproc_lock);
875
876	/*
877	 * Nothing to do, back to sleep.
878	 */
879	if ((p = pp) == NULL) {
880		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
881		goto loop;
882	}
883	PROC_LOCK(p);
884
885	/*
886	 * Another process may be bringing or may have already
887	 * brought this process in while we traverse all threads.
888	 * Or, this process may even be being swapped out again.
889	 */
890	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
891		PROC_UNLOCK(p);
892		goto loop;
893	}
894
895	mtx_lock_spin(&sched_lock);
896	p->p_sflag &= ~PS_SWAPINREQ;
897	mtx_unlock_spin(&sched_lock);
898
899	/*
900	 * We would like to bring someone in. (only if there is space).
901	 * [What checks the space? ]
902	 */
903	faultin(p);
904	PROC_UNLOCK(p);
905	mtx_lock_spin(&sched_lock);
906	p->p_swtime = 0;
907	mtx_unlock_spin(&sched_lock);
908	goto loop;
909}
910
911#ifndef NO_SWAPPING
912
913/*
914 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
915 */
916static int swap_idle_threshold1 = 2;
917SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
918    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
919
920/*
921 * Swap_idle_threshold2 is the time that a process can be idle before
922 * it will be swapped out, if idle swapping is enabled.
923 */
924static int swap_idle_threshold2 = 10;
925SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
926    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
927
928/*
929 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
930 * procs and unwire their u-areas.  We try to always "swap" at least one
931 * process in case we need the room for a swapin.
932 * If any procs have been sleeping/stopped for at least maxslp seconds,
933 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
934 * if any, otherwise the longest-resident process.
935 */
936void
937swapout_procs(action)
938int action;
939{
940	struct proc *p;
941	struct thread *td;
942	struct ksegrp *kg;
943	int didswap = 0;
944
945	GIANT_REQUIRED;
946
947retry:
948	sx_slock(&allproc_lock);
949	FOREACH_PROC_IN_SYSTEM(p) {
950		struct vmspace *vm;
951		int minslptime = 100000;
952
953		/*
954		 * Watch out for a process in
955		 * creation.  It may have no
956		 * address space or lock yet.
957		 */
958		mtx_lock_spin(&sched_lock);
959		if (p->p_state == PRS_NEW) {
960			mtx_unlock_spin(&sched_lock);
961			continue;
962		}
963		mtx_unlock_spin(&sched_lock);
964
965		/*
966		 * An aio daemon switches its
967		 * address space while running.
968		 * Perform a quick check whether
969		 * a process has P_SYSTEM.
970		 */
971		if ((p->p_flag & P_SYSTEM) != 0)
972			continue;
973
974		/*
975		 * Do not swapout a process that
976		 * is waiting for VM data
977		 * structures as there is a possible
978		 * deadlock.  Test this first as
979		 * this may block.
980		 *
981		 * Lock the map until swapout
982		 * finishes, or a thread of this
983		 * process may attempt to alter
984		 * the map.
985		 */
986		PROC_LOCK(p);
987		vm = p->p_vmspace;
988		KASSERT(vm != NULL,
989			("swapout_procs: a process has no address space"));
990		++vm->vm_refcnt;
991		PROC_UNLOCK(p);
992		if (!vm_map_trylock(&vm->vm_map))
993			goto nextproc1;
994
995		PROC_LOCK(p);
996		if (p->p_lock != 0 ||
997		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
998		    ) != 0) {
999			goto nextproc2;
1000		}
1001		/*
1002		 * only aiod changes vmspace, however it will be
1003		 * skipped because of the if statement above checking
1004		 * for P_SYSTEM
1005		 */
1006		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
1007			goto nextproc2;
1008
1009		switch (p->p_state) {
1010		default:
1011			/* Don't swap out processes in any sort
1012			 * of 'special' state. */
1013			break;
1014
1015		case PRS_NORMAL:
1016			mtx_lock_spin(&sched_lock);
1017			/*
1018			 * do not swapout a realtime process
1019			 * Check all the thread groups..
1020			 */
1021			FOREACH_KSEGRP_IN_PROC(p, kg) {
1022				if (PRI_IS_REALTIME(kg->kg_pri_class))
1023					goto nextproc;
1024
1025				/*
1026				 * Guarantee swap_idle_threshold1
1027				 * time in memory.
1028				 */
1029				if (kg->kg_slptime < swap_idle_threshold1)
1030					goto nextproc;
1031
1032				/*
1033				 * Do not swapout a process if it is
1034				 * waiting on a critical event of some
1035				 * kind or there is a thread whose
1036				 * pageable memory may be accessed.
1037				 *
1038				 * This could be refined to support
1039				 * swapping out a thread.
1040				 */
1041				FOREACH_THREAD_IN_GROUP(kg, td) {
1042					if ((td->td_priority) < PSOCK ||
1043					    !thread_safetoswapout(td))
1044						goto nextproc;
1045				}
1046				/*
1047				 * If the system is under memory stress,
1048				 * or if we are swapping
1049				 * idle processes >= swap_idle_threshold2,
1050				 * then swap the process out.
1051				 */
1052				if (((action & VM_SWAP_NORMAL) == 0) &&
1053				    (((action & VM_SWAP_IDLE) == 0) ||
1054				    (kg->kg_slptime < swap_idle_threshold2)))
1055					goto nextproc;
1056
1057				if (minslptime > kg->kg_slptime)
1058					minslptime = kg->kg_slptime;
1059			}
1060
1061			/*
1062			 * If the process has been asleep for awhile and had
1063			 * most of its pages taken away already, swap it out.
1064			 */
1065			if ((action & VM_SWAP_NORMAL) ||
1066				((action & VM_SWAP_IDLE) &&
1067				 (minslptime > swap_idle_threshold2))) {
1068				swapout(p);
1069				didswap++;
1070				mtx_unlock_spin(&sched_lock);
1071				PROC_UNLOCK(p);
1072				vm_map_unlock(&vm->vm_map);
1073				vmspace_free(vm);
1074				sx_sunlock(&allproc_lock);
1075				goto retry;
1076			}
1077nextproc:
1078			mtx_unlock_spin(&sched_lock);
1079		}
1080nextproc2:
1081		PROC_UNLOCK(p);
1082		vm_map_unlock(&vm->vm_map);
1083nextproc1:
1084		vmspace_free(vm);
1085		continue;
1086	}
1087	sx_sunlock(&allproc_lock);
1088	/*
1089	 * If we swapped something out, and another process needed memory,
1090	 * then wakeup the sched process.
1091	 */
1092	if (didswap)
1093		wakeup(&proc0);
1094}
1095
1096static void
1097swapout(p)
1098	struct proc *p;
1099{
1100	struct thread *td;
1101
1102	PROC_LOCK_ASSERT(p, MA_OWNED);
1103	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1104#if defined(SWAP_DEBUG)
1105	printf("swapping out %d\n", p->p_pid);
1106#endif
1107
1108	/*
1109	 * The states of this process and its threads may have changed
1110	 * by now.  Assuming that there is only one pageout daemon thread,
1111	 * this process should still be in memory.
1112	 */
1113	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1114		("swapout: lost a swapout race?"));
1115
1116#if defined(INVARIANTS)
1117	/*
1118	 * Make sure that all threads are safe to be swapped out.
1119	 *
1120	 * Alternatively, we could swap out only safe threads.
1121	 */
1122	FOREACH_THREAD_IN_PROC(p, td) {
1123		KASSERT(thread_safetoswapout(td),
1124			("swapout: there is a thread not safe for swapout"));
1125	}
1126#endif /* INVARIANTS */
1127
1128	++p->p_stats->p_ru.ru_nswap;
1129	/*
1130	 * remember the process resident count
1131	 */
1132	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1133
1134	p->p_sflag &= ~PS_INMEM;
1135	p->p_sflag |= PS_SWAPPINGOUT;
1136	PROC_UNLOCK(p);
1137	FOREACH_THREAD_IN_PROC(p, td)
1138		TD_SET_SWAPPED(td);
1139	mtx_unlock_spin(&sched_lock);
1140
1141	vm_proc_swapout(p);
1142	FOREACH_THREAD_IN_PROC(p, td)
1143		vm_thread_swapout(td);
1144
1145	PROC_LOCK(p);
1146	mtx_lock_spin(&sched_lock);
1147	p->p_sflag &= ~PS_SWAPPINGOUT;
1148	p->p_swtime = 0;
1149}
1150#endif /* !NO_SWAPPING */
1151