vm_glue.c revision 126253
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 126253 2004-02-26 00:27:04Z truckman $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	vm_map_lock_read(kernel_map);
148	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
149	vm_map_unlock_read(kernel_map);
150	return (rv == TRUE);
151}
152
153/*
154 * MPSAFE
155 *
156 * WARNING!  This code calls vm_map_check_protection() which only checks
157 * the associated vm_map_entry range.  It does not determine whether the
158 * contents of the memory is actually readable or writable.  vmapbuf(),
159 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
160 * used in conjuction with this call.
161 */
162int
163useracc(addr, len, rw)
164	void *addr;
165	int len, rw;
166{
167	boolean_t rv;
168	vm_prot_t prot;
169	vm_map_t map;
170
171	KASSERT((rw & ~VM_PROT_ALL) == 0,
172	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
173	prot = rw;
174	map = &curproc->p_vmspace->vm_map;
175	if ((vm_offset_t)addr + len > vm_map_max(map) ||
176	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
177		return (FALSE);
178	}
179	vm_map_lock_read(map);
180	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
181	    round_page((vm_offset_t)addr + len), prot);
182	vm_map_unlock_read(map);
183	return (rv == TRUE);
184}
185
186/*
187 * Create the U area for a new process.
188 * This routine directly affects the fork perf for a process.
189 */
190void
191vm_proc_new(struct proc *p)
192{
193	vm_page_t ma[UAREA_PAGES];
194	vm_object_t upobj;
195	vm_offset_t up;
196	vm_page_t m;
197	u_int i;
198
199	/*
200	 * Get a kernel virtual address for the U area for this process.
201	 */
202	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
203	if (up == 0)
204		panic("vm_proc_new: upage allocation failed");
205	p->p_uarea = (struct user *)up;
206
207	/*
208	 * Allocate object and page(s) for the U area.
209	 */
210	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
211	p->p_upages_obj = upobj;
212	VM_OBJECT_LOCK(upobj);
213	for (i = 0; i < UAREA_PAGES; i++) {
214		m = vm_page_grab(upobj, i,
215		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
216		ma[i] = m;
217
218		vm_page_lock_queues();
219		vm_page_wakeup(m);
220		m->valid = VM_PAGE_BITS_ALL;
221		vm_page_unlock_queues();
222	}
223	VM_OBJECT_UNLOCK(upobj);
224
225	/*
226	 * Enter the pages into the kernel address space.
227	 */
228	pmap_qenter(up, ma, UAREA_PAGES);
229}
230
231/*
232 * Dispose the U area for a process that has exited.
233 * This routine directly impacts the exit perf of a process.
234 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
235 */
236void
237vm_proc_dispose(struct proc *p)
238{
239	vm_object_t upobj;
240	vm_offset_t up;
241	vm_page_t m;
242
243	upobj = p->p_upages_obj;
244	VM_OBJECT_LOCK(upobj);
245	if (upobj->resident_page_count != UAREA_PAGES)
246		panic("vm_proc_dispose: incorrect number of pages in upobj");
247	vm_page_lock_queues();
248	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
249		vm_page_busy(m);
250		vm_page_unwire(m, 0);
251		vm_page_free(m);
252	}
253	vm_page_unlock_queues();
254	VM_OBJECT_UNLOCK(upobj);
255	up = (vm_offset_t)p->p_uarea;
256	pmap_qremove(up, UAREA_PAGES);
257	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
258	vm_object_deallocate(upobj);
259}
260
261#ifndef NO_SWAPPING
262/*
263 * Allow the U area for a process to be prejudicially paged out.
264 */
265static void
266vm_proc_swapout(struct proc *p)
267{
268	vm_object_t upobj;
269	vm_offset_t up;
270	vm_page_t m;
271
272	upobj = p->p_upages_obj;
273	VM_OBJECT_LOCK(upobj);
274	if (upobj->resident_page_count != UAREA_PAGES)
275		panic("vm_proc_dispose: incorrect number of pages in upobj");
276	vm_page_lock_queues();
277	TAILQ_FOREACH(m, &upobj->memq, listq) {
278		vm_page_dirty(m);
279		vm_page_unwire(m, 0);
280	}
281	vm_page_unlock_queues();
282	VM_OBJECT_UNLOCK(upobj);
283	up = (vm_offset_t)p->p_uarea;
284	pmap_qremove(up, UAREA_PAGES);
285}
286
287/*
288 * Bring the U area for a specified process back in.
289 */
290static void
291vm_proc_swapin(struct proc *p)
292{
293	vm_page_t ma[UAREA_PAGES];
294	vm_object_t upobj;
295	vm_offset_t up;
296	vm_page_t m;
297	int rv;
298	int i;
299
300	upobj = p->p_upages_obj;
301	VM_OBJECT_LOCK(upobj);
302	for (i = 0; i < UAREA_PAGES; i++) {
303		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
304		if (m->valid != VM_PAGE_BITS_ALL) {
305			rv = vm_pager_get_pages(upobj, &m, 1, 0);
306			if (rv != VM_PAGER_OK)
307				panic("vm_proc_swapin: cannot get upage");
308		}
309		ma[i] = m;
310	}
311	if (upobj->resident_page_count != UAREA_PAGES)
312		panic("vm_proc_swapin: lost pages from upobj");
313	vm_page_lock_queues();
314	TAILQ_FOREACH(m, &upobj->memq, listq) {
315		m->valid = VM_PAGE_BITS_ALL;
316		vm_page_wire(m);
317		vm_page_wakeup(m);
318	}
319	vm_page_unlock_queues();
320	VM_OBJECT_UNLOCK(upobj);
321	up = (vm_offset_t)p->p_uarea;
322	pmap_qenter(up, ma, UAREA_PAGES);
323}
324
325/*
326 * Swap in the UAREAs of all processes swapped out to the given device.
327 * The pages in the UAREA are marked dirty and their swap metadata is freed.
328 */
329void
330vm_proc_swapin_all(struct swdevt *devidx)
331{
332	struct proc *p;
333	vm_object_t object;
334	vm_page_t m;
335
336retry:
337	sx_slock(&allproc_lock);
338	FOREACH_PROC_IN_SYSTEM(p) {
339		PROC_LOCK(p);
340		object = p->p_upages_obj;
341		if (object != NULL) {
342			VM_OBJECT_LOCK(object);
343			if (swap_pager_isswapped(object, devidx)) {
344				VM_OBJECT_UNLOCK(object);
345				sx_sunlock(&allproc_lock);
346				faultin(p);
347				PROC_UNLOCK(p);
348				VM_OBJECT_LOCK(object);
349				vm_page_lock_queues();
350				TAILQ_FOREACH(m, &object->memq, listq)
351					vm_page_dirty(m);
352				vm_page_unlock_queues();
353				swap_pager_freespace(object, 0,
354				    object->un_pager.swp.swp_bcount);
355				VM_OBJECT_UNLOCK(object);
356				goto retry;
357			}
358			VM_OBJECT_UNLOCK(object);
359		}
360		PROC_UNLOCK(p);
361	}
362	sx_sunlock(&allproc_lock);
363}
364#endif
365
366#ifndef KSTACK_MAX_PAGES
367#define KSTACK_MAX_PAGES 32
368#endif
369
370/*
371 * Create the kernel stack (including pcb for i386) for a new thread.
372 * This routine directly affects the fork perf for a process and
373 * create performance for a thread.
374 */
375void
376vm_thread_new(struct thread *td, int pages)
377{
378	vm_object_t ksobj;
379	vm_offset_t ks;
380	vm_page_t m, ma[KSTACK_MAX_PAGES];
381	int i;
382
383	/* Bounds check */
384	if (pages <= 1)
385		pages = KSTACK_PAGES;
386	else if (pages > KSTACK_MAX_PAGES)
387		pages = KSTACK_MAX_PAGES;
388	/*
389	 * Allocate an object for the kstack.
390	 */
391	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
392	td->td_kstack_obj = ksobj;
393	/*
394	 * Get a kernel virtual address for this thread's kstack.
395	 */
396	ks = kmem_alloc_nofault(kernel_map,
397	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
398	if (ks == 0)
399		panic("vm_thread_new: kstack allocation failed");
400	if (KSTACK_GUARD_PAGES != 0) {
401		pmap_qremove(ks, KSTACK_GUARD_PAGES);
402		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
403	}
404	td->td_kstack = ks;
405	/*
406	 * Knowing the number of pages allocated is useful when you
407	 * want to deallocate them.
408	 */
409	td->td_kstack_pages = pages;
410	/*
411	 * For the length of the stack, link in a real page of ram for each
412	 * page of stack.
413	 */
414	VM_OBJECT_LOCK(ksobj);
415	for (i = 0; i < pages; i++) {
416		/*
417		 * Get a kernel stack page.
418		 */
419		m = vm_page_grab(ksobj, i,
420		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
421		ma[i] = m;
422		vm_page_lock_queues();
423		vm_page_wakeup(m);
424		m->valid = VM_PAGE_BITS_ALL;
425		vm_page_unlock_queues();
426	}
427	VM_OBJECT_UNLOCK(ksobj);
428	pmap_qenter(ks, ma, pages);
429}
430
431/*
432 * Dispose of a thread's kernel stack.
433 */
434void
435vm_thread_dispose(struct thread *td)
436{
437	vm_object_t ksobj;
438	vm_offset_t ks;
439	vm_page_t m;
440	int i, pages;
441
442	pages = td->td_kstack_pages;
443	ksobj = td->td_kstack_obj;
444	ks = td->td_kstack;
445	pmap_qremove(ks, pages);
446	VM_OBJECT_LOCK(ksobj);
447	for (i = 0; i < pages; i++) {
448		m = vm_page_lookup(ksobj, i);
449		if (m == NULL)
450			panic("vm_thread_dispose: kstack already missing?");
451		vm_page_lock_queues();
452		vm_page_busy(m);
453		vm_page_unwire(m, 0);
454		vm_page_free(m);
455		vm_page_unlock_queues();
456	}
457	VM_OBJECT_UNLOCK(ksobj);
458	vm_object_deallocate(ksobj);
459	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
460	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
461}
462
463/*
464 * Allow a thread's kernel stack to be paged out.
465 */
466void
467vm_thread_swapout(struct thread *td)
468{
469	vm_object_t ksobj;
470	vm_page_t m;
471	int i, pages;
472
473	cpu_thread_swapout(td);
474	pages = td->td_kstack_pages;
475	ksobj = td->td_kstack_obj;
476	pmap_qremove(td->td_kstack, pages);
477	VM_OBJECT_LOCK(ksobj);
478	for (i = 0; i < pages; i++) {
479		m = vm_page_lookup(ksobj, i);
480		if (m == NULL)
481			panic("vm_thread_swapout: kstack already missing?");
482		vm_page_lock_queues();
483		vm_page_dirty(m);
484		vm_page_unwire(m, 0);
485		vm_page_unlock_queues();
486	}
487	VM_OBJECT_UNLOCK(ksobj);
488}
489
490/*
491 * Bring the kernel stack for a specified thread back in.
492 */
493void
494vm_thread_swapin(struct thread *td)
495{
496	vm_object_t ksobj;
497	vm_page_t m, ma[KSTACK_MAX_PAGES];
498	int i, pages, rv;
499
500	pages = td->td_kstack_pages;
501	ksobj = td->td_kstack_obj;
502	VM_OBJECT_LOCK(ksobj);
503	for (i = 0; i < pages; i++) {
504		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
505		if (m->valid != VM_PAGE_BITS_ALL) {
506			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
507			if (rv != VM_PAGER_OK)
508				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
509			m = vm_page_lookup(ksobj, i);
510			m->valid = VM_PAGE_BITS_ALL;
511		}
512		ma[i] = m;
513		vm_page_lock_queues();
514		vm_page_wire(m);
515		vm_page_wakeup(m);
516		vm_page_unlock_queues();
517	}
518	VM_OBJECT_UNLOCK(ksobj);
519	pmap_qenter(td->td_kstack, ma, pages);
520	cpu_thread_swapin(td);
521}
522
523/*
524 * Set up a variable-sized alternate kstack.
525 */
526void
527vm_thread_new_altkstack(struct thread *td, int pages)
528{
529
530	td->td_altkstack = td->td_kstack;
531	td->td_altkstack_obj = td->td_kstack_obj;
532	td->td_altkstack_pages = td->td_kstack_pages;
533
534	vm_thread_new(td, pages);
535}
536
537/*
538 * Restore the original kstack.
539 */
540void
541vm_thread_dispose_altkstack(struct thread *td)
542{
543
544	vm_thread_dispose(td);
545
546	td->td_kstack = td->td_altkstack;
547	td->td_kstack_obj = td->td_altkstack_obj;
548	td->td_kstack_pages = td->td_altkstack_pages;
549	td->td_altkstack = 0;
550	td->td_altkstack_obj = NULL;
551	td->td_altkstack_pages = 0;
552}
553
554/*
555 * Implement fork's actions on an address space.
556 * Here we arrange for the address space to be copied or referenced,
557 * allocate a user struct (pcb and kernel stack), then call the
558 * machine-dependent layer to fill those in and make the new process
559 * ready to run.  The new process is set up so that it returns directly
560 * to user mode to avoid stack copying and relocation problems.
561 */
562void
563vm_forkproc(td, p2, td2, flags)
564	struct thread *td;
565	struct proc *p2;
566	struct thread *td2;
567	int flags;
568{
569	struct proc *p1 = td->td_proc;
570	struct user *up;
571
572	GIANT_REQUIRED;
573
574	if ((flags & RFPROC) == 0) {
575		/*
576		 * Divorce the memory, if it is shared, essentially
577		 * this changes shared memory amongst threads, into
578		 * COW locally.
579		 */
580		if ((flags & RFMEM) == 0) {
581			if (p1->p_vmspace->vm_refcnt > 1) {
582				vmspace_unshare(p1);
583			}
584		}
585		cpu_fork(td, p2, td2, flags);
586		return;
587	}
588
589	if (flags & RFMEM) {
590		p2->p_vmspace = p1->p_vmspace;
591		p1->p_vmspace->vm_refcnt++;
592	}
593
594	while (vm_page_count_severe()) {
595		VM_WAIT;
596	}
597
598	if ((flags & RFMEM) == 0) {
599		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
600
601		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
602
603		if (p1->p_vmspace->vm_shm)
604			shmfork(p1, p2);
605	}
606
607	/* XXXKSE this is unsatisfactory but should be adequate */
608	up = p2->p_uarea;
609	MPASS(p2->p_sigacts != NULL);
610
611	/*
612	 * p_stats currently points at fields in the user struct
613	 * but not at &u, instead at p_addr. Copy parts of
614	 * p_stats; zero the rest of p_stats (statistics).
615	 */
616	p2->p_stats = &up->u_stats;
617	bzero(&up->u_stats.pstat_startzero,
618	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
619		(caddr_t) &up->u_stats.pstat_startzero));
620	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
621	    ((caddr_t) &up->u_stats.pstat_endcopy -
622		(caddr_t) &up->u_stats.pstat_startcopy));
623
624	/*
625	 * cpu_fork will copy and update the pcb, set up the kernel stack,
626	 * and make the child ready to run.
627	 */
628	cpu_fork(td, p2, td2, flags);
629}
630
631/*
632 * Called after process has been wait(2)'ed apon and is being reaped.
633 * The idea is to reclaim resources that we could not reclaim while
634 * the process was still executing.
635 */
636void
637vm_waitproc(p)
638	struct proc *p;
639{
640
641	GIANT_REQUIRED;
642	vmspace_exitfree(p);		/* and clean-out the vmspace */
643}
644
645/*
646 * Set default limits for VM system.
647 * Called for proc 0, and then inherited by all others.
648 *
649 * XXX should probably act directly on proc0.
650 */
651static void
652vm_init_limits(udata)
653	void *udata;
654{
655	struct proc *p = udata;
656	struct plimit *limp;
657	int rss_limit;
658
659	/*
660	 * Set up the initial limits on process VM. Set the maximum resident
661	 * set size to be half of (reasonably) available memory.  Since this
662	 * is a soft limit, it comes into effect only when the system is out
663	 * of memory - half of main memory helps to favor smaller processes,
664	 * and reduces thrashing of the object cache.
665	 */
666	limp = p->p_limit;
667	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
668	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
669	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
670	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
671	/* limit the limit to no less than 2MB */
672	rss_limit = max(cnt.v_free_count, 512);
673	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
674	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
675}
676
677void
678faultin(p)
679	struct proc *p;
680{
681#ifdef NO_SWAPPING
682
683	PROC_LOCK_ASSERT(p, MA_OWNED);
684	if ((p->p_sflag & PS_INMEM) == 0)
685		panic("faultin: proc swapped out with NO_SWAPPING!");
686#else /* !NO_SWAPPING */
687	struct thread *td;
688
689	GIANT_REQUIRED;
690	PROC_LOCK_ASSERT(p, MA_OWNED);
691	/*
692	 * If another process is swapping in this process,
693	 * just wait until it finishes.
694	 */
695	if (p->p_sflag & PS_SWAPPINGIN)
696		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
697	else if ((p->p_sflag & PS_INMEM) == 0) {
698		/*
699		 * Don't let another thread swap process p out while we are
700		 * busy swapping it in.
701		 */
702		++p->p_lock;
703		mtx_lock_spin(&sched_lock);
704		p->p_sflag |= PS_SWAPPINGIN;
705		mtx_unlock_spin(&sched_lock);
706		PROC_UNLOCK(p);
707
708		vm_proc_swapin(p);
709		FOREACH_THREAD_IN_PROC(p, td)
710			vm_thread_swapin(td);
711
712		PROC_LOCK(p);
713		mtx_lock_spin(&sched_lock);
714		p->p_sflag &= ~PS_SWAPPINGIN;
715		p->p_sflag |= PS_INMEM;
716		FOREACH_THREAD_IN_PROC(p, td) {
717			TD_CLR_SWAPPED(td);
718			if (TD_CAN_RUN(td))
719				setrunnable(td);
720		}
721		mtx_unlock_spin(&sched_lock);
722
723		wakeup(&p->p_sflag);
724
725		/* Allow other threads to swap p out now. */
726		--p->p_lock;
727	}
728#endif /* NO_SWAPPING */
729}
730
731/*
732 * This swapin algorithm attempts to swap-in processes only if there
733 * is enough space for them.  Of course, if a process waits for a long
734 * time, it will be swapped in anyway.
735 *
736 *  XXXKSE - process with the thread with highest priority counts..
737 *
738 * Giant is still held at this point, to be released in tsleep.
739 */
740/* ARGSUSED*/
741static void
742scheduler(dummy)
743	void *dummy;
744{
745	struct proc *p;
746	struct thread *td;
747	int pri;
748	struct proc *pp;
749	int ppri;
750
751	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
752	/* GIANT_REQUIRED */
753
754loop:
755	if (vm_page_count_min()) {
756		VM_WAIT;
757		goto loop;
758	}
759
760	pp = NULL;
761	ppri = INT_MIN;
762	sx_slock(&allproc_lock);
763	FOREACH_PROC_IN_SYSTEM(p) {
764		struct ksegrp *kg;
765		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
766			continue;
767		}
768		mtx_lock_spin(&sched_lock);
769		FOREACH_THREAD_IN_PROC(p, td) {
770			/*
771			 * An otherwise runnable thread of a process
772			 * swapped out has only the TDI_SWAPPED bit set.
773			 *
774			 */
775			if (td->td_inhibitors == TDI_SWAPPED) {
776				kg = td->td_ksegrp;
777				pri = p->p_swtime + kg->kg_slptime;
778				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
779					pri -= kg->kg_nice * 8;
780				}
781
782				/*
783				 * if this ksegrp is higher priority
784				 * and there is enough space, then select
785				 * this process instead of the previous
786				 * selection.
787				 */
788				if (pri > ppri) {
789					pp = p;
790					ppri = pri;
791				}
792			}
793		}
794		mtx_unlock_spin(&sched_lock);
795	}
796	sx_sunlock(&allproc_lock);
797
798	/*
799	 * Nothing to do, back to sleep.
800	 */
801	if ((p = pp) == NULL) {
802		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
803		goto loop;
804	}
805	PROC_LOCK(p);
806
807	/*
808	 * Another process may be bringing or may have already
809	 * brought this process in while we traverse all threads.
810	 * Or, this process may even be being swapped out again.
811	 */
812	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
813		PROC_UNLOCK(p);
814		goto loop;
815	}
816
817	mtx_lock_spin(&sched_lock);
818	p->p_sflag &= ~PS_SWAPINREQ;
819	mtx_unlock_spin(&sched_lock);
820
821	/*
822	 * We would like to bring someone in. (only if there is space).
823	 * [What checks the space? ]
824	 */
825	faultin(p);
826	PROC_UNLOCK(p);
827	mtx_lock_spin(&sched_lock);
828	p->p_swtime = 0;
829	mtx_unlock_spin(&sched_lock);
830	goto loop;
831}
832
833#ifndef NO_SWAPPING
834
835/*
836 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
837 */
838static int swap_idle_threshold1 = 2;
839SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
840    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
841
842/*
843 * Swap_idle_threshold2 is the time that a process can be idle before
844 * it will be swapped out, if idle swapping is enabled.
845 */
846static int swap_idle_threshold2 = 10;
847SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
848    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
849
850/*
851 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
852 * procs and unwire their u-areas.  We try to always "swap" at least one
853 * process in case we need the room for a swapin.
854 * If any procs have been sleeping/stopped for at least maxslp seconds,
855 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
856 * if any, otherwise the longest-resident process.
857 */
858void
859swapout_procs(action)
860int action;
861{
862	struct proc *p;
863	struct thread *td;
864	struct ksegrp *kg;
865	int didswap = 0;
866
867	GIANT_REQUIRED;
868
869retry:
870	sx_slock(&allproc_lock);
871	FOREACH_PROC_IN_SYSTEM(p) {
872		struct vmspace *vm;
873		int minslptime = 100000;
874
875		/*
876		 * Watch out for a process in
877		 * creation.  It may have no
878		 * address space or lock yet.
879		 */
880		mtx_lock_spin(&sched_lock);
881		if (p->p_state == PRS_NEW) {
882			mtx_unlock_spin(&sched_lock);
883			continue;
884		}
885		mtx_unlock_spin(&sched_lock);
886
887		/*
888		 * An aio daemon switches its
889		 * address space while running.
890		 * Perform a quick check whether
891		 * a process has P_SYSTEM.
892		 */
893		if ((p->p_flag & P_SYSTEM) != 0)
894			continue;
895
896		/*
897		 * Do not swapout a process that
898		 * is waiting for VM data
899		 * structures as there is a possible
900		 * deadlock.  Test this first as
901		 * this may block.
902		 *
903		 * Lock the map until swapout
904		 * finishes, or a thread of this
905		 * process may attempt to alter
906		 * the map.
907		 */
908		PROC_LOCK(p);
909		vm = p->p_vmspace;
910		KASSERT(vm != NULL,
911			("swapout_procs: a process has no address space"));
912		++vm->vm_refcnt;
913		PROC_UNLOCK(p);
914		if (!vm_map_trylock(&vm->vm_map))
915			goto nextproc1;
916
917		PROC_LOCK(p);
918		if (p->p_lock != 0 ||
919		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
920		    ) != 0) {
921			goto nextproc2;
922		}
923		/*
924		 * only aiod changes vmspace, however it will be
925		 * skipped because of the if statement above checking
926		 * for P_SYSTEM
927		 */
928		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
929			goto nextproc2;
930
931		switch (p->p_state) {
932		default:
933			/* Don't swap out processes in any sort
934			 * of 'special' state. */
935			break;
936
937		case PRS_NORMAL:
938			mtx_lock_spin(&sched_lock);
939			/*
940			 * do not swapout a realtime process
941			 * Check all the thread groups..
942			 */
943			FOREACH_KSEGRP_IN_PROC(p, kg) {
944				if (PRI_IS_REALTIME(kg->kg_pri_class))
945					goto nextproc;
946
947				/*
948				 * Guarantee swap_idle_threshold1
949				 * time in memory.
950				 */
951				if (kg->kg_slptime < swap_idle_threshold1)
952					goto nextproc;
953
954				/*
955				 * Do not swapout a process if it is
956				 * waiting on a critical event of some
957				 * kind or there is a thread whose
958				 * pageable memory may be accessed.
959				 *
960				 * This could be refined to support
961				 * swapping out a thread.
962				 */
963				FOREACH_THREAD_IN_GROUP(kg, td) {
964					if ((td->td_priority) < PSOCK ||
965					    !thread_safetoswapout(td))
966						goto nextproc;
967				}
968				/*
969				 * If the system is under memory stress,
970				 * or if we are swapping
971				 * idle processes >= swap_idle_threshold2,
972				 * then swap the process out.
973				 */
974				if (((action & VM_SWAP_NORMAL) == 0) &&
975				    (((action & VM_SWAP_IDLE) == 0) ||
976				    (kg->kg_slptime < swap_idle_threshold2)))
977					goto nextproc;
978
979				if (minslptime > kg->kg_slptime)
980					minslptime = kg->kg_slptime;
981			}
982
983			/*
984			 * If the process has been asleep for awhile and had
985			 * most of its pages taken away already, swap it out.
986			 */
987			if ((action & VM_SWAP_NORMAL) ||
988				((action & VM_SWAP_IDLE) &&
989				 (minslptime > swap_idle_threshold2))) {
990				swapout(p);
991				didswap++;
992				mtx_unlock_spin(&sched_lock);
993				PROC_UNLOCK(p);
994				vm_map_unlock(&vm->vm_map);
995				vmspace_free(vm);
996				sx_sunlock(&allproc_lock);
997				goto retry;
998			}
999nextproc:
1000			mtx_unlock_spin(&sched_lock);
1001		}
1002nextproc2:
1003		PROC_UNLOCK(p);
1004		vm_map_unlock(&vm->vm_map);
1005nextproc1:
1006		vmspace_free(vm);
1007		continue;
1008	}
1009	sx_sunlock(&allproc_lock);
1010	/*
1011	 * If we swapped something out, and another process needed memory,
1012	 * then wakeup the sched process.
1013	 */
1014	if (didswap)
1015		wakeup(&proc0);
1016}
1017
1018static void
1019swapout(p)
1020	struct proc *p;
1021{
1022	struct thread *td;
1023
1024	PROC_LOCK_ASSERT(p, MA_OWNED);
1025	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1026#if defined(SWAP_DEBUG)
1027	printf("swapping out %d\n", p->p_pid);
1028#endif
1029
1030	/*
1031	 * The states of this process and its threads may have changed
1032	 * by now.  Assuming that there is only one pageout daemon thread,
1033	 * this process should still be in memory.
1034	 */
1035	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1036		("swapout: lost a swapout race?"));
1037
1038#if defined(INVARIANTS)
1039	/*
1040	 * Make sure that all threads are safe to be swapped out.
1041	 *
1042	 * Alternatively, we could swap out only safe threads.
1043	 */
1044	FOREACH_THREAD_IN_PROC(p, td) {
1045		KASSERT(thread_safetoswapout(td),
1046			("swapout: there is a thread not safe for swapout"));
1047	}
1048#endif /* INVARIANTS */
1049
1050	++p->p_stats->p_ru.ru_nswap;
1051	/*
1052	 * remember the process resident count
1053	 */
1054	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1055
1056	p->p_sflag &= ~PS_INMEM;
1057	p->p_sflag |= PS_SWAPPINGOUT;
1058	PROC_UNLOCK(p);
1059	FOREACH_THREAD_IN_PROC(p, td)
1060		TD_SET_SWAPPED(td);
1061	mtx_unlock_spin(&sched_lock);
1062
1063	vm_proc_swapout(p);
1064	FOREACH_THREAD_IN_PROC(p, td)
1065		vm_thread_swapout(td);
1066
1067	PROC_LOCK(p);
1068	mtx_lock_spin(&sched_lock);
1069	p->p_sflag &= ~PS_SWAPPINGOUT;
1070	p->p_swtime = 0;
1071}
1072#endif /* !NO_SWAPPING */
1073