vm_glue.c revision 118771
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 118771 2003-08-11 07:14:08Z bms $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
148	return (rv == TRUE);
149}
150
151/*
152 * MPSAFE
153 *
154 * WARNING!  This code calls vm_map_check_protection() which only checks
155 * the associated vm_map_entry range.  It does not determine whether the
156 * contents of the memory is actually readable or writable.  vmapbuf(),
157 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
158 * used in conjuction with this call.
159 */
160int
161useracc(addr, len, rw)
162	void *addr;
163	int len, rw;
164{
165	boolean_t rv;
166	vm_prot_t prot;
167	vm_map_t map;
168
169	KASSERT((rw & ~VM_PROT_ALL) == 0,
170	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
171	prot = rw;
172	map = &curproc->p_vmspace->vm_map;
173	if ((vm_offset_t)addr + len > vm_map_max(map) ||
174	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
175		return (FALSE);
176	}
177	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178	    round_page((vm_offset_t)addr + len), prot);
179	return (rv == TRUE);
180}
181
182/*
183 * MPSAFE
184 */
185void
186vslock(addr, len)
187	void *addr;
188	u_int len;
189{
190
191	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
192	    round_page((vm_offset_t)addr + len),
193	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
194}
195
196/*
197 * MPSAFE
198 */
199void
200vsunlock(addr, len)
201	void *addr;
202	u_int len;
203{
204
205	vm_map_unwire(&curproc->p_vmspace->vm_map,
206	    trunc_page((vm_offset_t)addr),
207	    round_page((vm_offset_t)addr + len),
208	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
209}
210
211/*
212 * Create the U area for a new process.
213 * This routine directly affects the fork perf for a process.
214 */
215void
216vm_proc_new(struct proc *p)
217{
218	vm_page_t ma[UAREA_PAGES];
219	vm_object_t upobj;
220	vm_offset_t up;
221	vm_page_t m;
222	u_int i;
223
224	/*
225	 * Allocate object for the upage.
226	 */
227	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
228	p->p_upages_obj = upobj;
229
230	/*
231	 * Get a kernel virtual address for the U area for this process.
232	 */
233	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
234	if (up == 0)
235		panic("vm_proc_new: upage allocation failed");
236	p->p_uarea = (struct user *)up;
237
238	for (i = 0; i < UAREA_PAGES; i++) {
239		/*
240		 * Get a uarea page.
241		 */
242		m = vm_page_grab(upobj, i,
243		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
244		ma[i] = m;
245
246		vm_page_lock_queues();
247		vm_page_wakeup(m);
248		vm_page_flag_clear(m, PG_ZERO);
249		m->valid = VM_PAGE_BITS_ALL;
250		vm_page_unlock_queues();
251	}
252
253	/*
254	 * Enter the pages into the kernel address space.
255	 */
256	pmap_qenter(up, ma, UAREA_PAGES);
257}
258
259/*
260 * Dispose the U area for a process that has exited.
261 * This routine directly impacts the exit perf of a process.
262 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
263 */
264void
265vm_proc_dispose(struct proc *p)
266{
267	vm_object_t upobj;
268	vm_offset_t up;
269	vm_page_t m;
270
271	upobj = p->p_upages_obj;
272	VM_OBJECT_LOCK(upobj);
273	if (upobj->resident_page_count != UAREA_PAGES)
274		panic("vm_proc_dispose: incorrect number of pages in upobj");
275	vm_page_lock_queues();
276	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
277		vm_page_busy(m);
278		vm_page_unwire(m, 0);
279		vm_page_free(m);
280	}
281	vm_page_unlock_queues();
282	VM_OBJECT_UNLOCK(upobj);
283	up = (vm_offset_t)p->p_uarea;
284	pmap_qremove(up, UAREA_PAGES);
285	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
286	vm_object_deallocate(upobj);
287}
288
289#ifndef NO_SWAPPING
290/*
291 * Allow the U area for a process to be prejudicially paged out.
292 */
293static void
294vm_proc_swapout(struct proc *p)
295{
296	vm_object_t upobj;
297	vm_offset_t up;
298	vm_page_t m;
299
300	upobj = p->p_upages_obj;
301	VM_OBJECT_LOCK(upobj);
302	if (upobj->resident_page_count != UAREA_PAGES)
303		panic("vm_proc_dispose: incorrect number of pages in upobj");
304	vm_page_lock_queues();
305	TAILQ_FOREACH(m, &upobj->memq, listq) {
306		vm_page_dirty(m);
307		vm_page_unwire(m, 0);
308	}
309	vm_page_unlock_queues();
310	VM_OBJECT_UNLOCK(upobj);
311	up = (vm_offset_t)p->p_uarea;
312	pmap_qremove(up, UAREA_PAGES);
313}
314
315/*
316 * Bring the U area for a specified process back in.
317 */
318static void
319vm_proc_swapin(struct proc *p)
320{
321	vm_page_t ma[UAREA_PAGES];
322	vm_object_t upobj;
323	vm_offset_t up;
324	vm_page_t m;
325	int rv;
326	int i;
327
328	upobj = p->p_upages_obj;
329	VM_OBJECT_LOCK(upobj);
330	for (i = 0; i < UAREA_PAGES; i++) {
331		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
332		if (m->valid != VM_PAGE_BITS_ALL) {
333			rv = vm_pager_get_pages(upobj, &m, 1, 0);
334			if (rv != VM_PAGER_OK)
335				panic("vm_proc_swapin: cannot get upage");
336		}
337		ma[i] = m;
338	}
339	if (upobj->resident_page_count != UAREA_PAGES)
340		panic("vm_proc_swapin: lost pages from upobj");
341	vm_page_lock_queues();
342	TAILQ_FOREACH(m, &upobj->memq, listq) {
343		m->valid = VM_PAGE_BITS_ALL;
344		vm_page_wire(m);
345		vm_page_wakeup(m);
346	}
347	vm_page_unlock_queues();
348	VM_OBJECT_UNLOCK(upobj);
349	up = (vm_offset_t)p->p_uarea;
350	pmap_qenter(up, ma, UAREA_PAGES);
351}
352
353/*
354 * Swap in the UAREAs of all processes swapped out to the given device.
355 * The pages in the UAREA are marked dirty and their swap metadata is freed.
356 */
357void
358vm_proc_swapin_all(struct swdevt *devidx)
359{
360	struct proc *p;
361	vm_object_t object;
362	vm_page_t m;
363
364retry:
365	sx_slock(&allproc_lock);
366	FOREACH_PROC_IN_SYSTEM(p) {
367		PROC_LOCK(p);
368		object = p->p_upages_obj;
369		if (object != NULL) {
370			VM_OBJECT_LOCK(object);
371			if (swap_pager_isswapped(object, devidx)) {
372				VM_OBJECT_UNLOCK(object);
373				sx_sunlock(&allproc_lock);
374				faultin(p);
375				PROC_UNLOCK(p);
376				VM_OBJECT_LOCK(object);
377				vm_page_lock_queues();
378				TAILQ_FOREACH(m, &object->memq, listq)
379					vm_page_dirty(m);
380				vm_page_unlock_queues();
381				swap_pager_freespace(object, 0,
382				    object->un_pager.swp.swp_bcount);
383				VM_OBJECT_UNLOCK(object);
384				goto retry;
385			}
386			VM_OBJECT_UNLOCK(object);
387		}
388		PROC_UNLOCK(p);
389	}
390	sx_sunlock(&allproc_lock);
391}
392#endif
393
394#ifndef KSTACK_MAX_PAGES
395#define KSTACK_MAX_PAGES 32
396#endif
397
398/*
399 * Create the kernel stack (including pcb for i386) for a new thread.
400 * This routine directly affects the fork perf for a process and
401 * create performance for a thread.
402 */
403void
404vm_thread_new(struct thread *td, int pages)
405{
406	vm_object_t ksobj;
407	vm_offset_t ks;
408	vm_page_t m, ma[KSTACK_MAX_PAGES];
409	int i;
410
411	/* Bounds check */
412	if (pages <= 1)
413		pages = KSTACK_PAGES;
414	else if (pages > KSTACK_MAX_PAGES)
415		pages = KSTACK_MAX_PAGES;
416	/*
417	 * Allocate an object for the kstack.
418	 */
419	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
420	td->td_kstack_obj = ksobj;
421	/*
422	 * Get a kernel virtual address for this thread's kstack.
423	 */
424	ks = kmem_alloc_nofault(kernel_map,
425	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
426	if (ks == 0)
427		panic("vm_thread_new: kstack allocation failed");
428	if (KSTACK_GUARD_PAGES != 0) {
429		pmap_qremove(ks, KSTACK_GUARD_PAGES);
430		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
431	}
432	td->td_kstack = ks;
433	/*
434	 * Knowing the number of pages allocated is useful when you
435	 * want to deallocate them.
436	 */
437	td->td_kstack_pages = pages;
438	/*
439	 * For the length of the stack, link in a real page of ram for each
440	 * page of stack.
441	 */
442	VM_OBJECT_LOCK(ksobj);
443	for (i = 0; i < pages; i++) {
444		/*
445		 * Get a kernel stack page.
446		 */
447		m = vm_page_grab(ksobj, i,
448		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
449		ma[i] = m;
450		vm_page_lock_queues();
451		vm_page_wakeup(m);
452		m->valid = VM_PAGE_BITS_ALL;
453		vm_page_unlock_queues();
454	}
455	VM_OBJECT_UNLOCK(ksobj);
456	pmap_qenter(ks, ma, pages);
457}
458
459/*
460 * Dispose of a thread's kernel stack.
461 */
462void
463vm_thread_dispose(struct thread *td)
464{
465	vm_object_t ksobj;
466	vm_offset_t ks;
467	vm_page_t m;
468	int i, pages;
469
470	pages = td->td_kstack_pages;
471	ksobj = td->td_kstack_obj;
472	ks = td->td_kstack;
473	pmap_qremove(ks, pages);
474	VM_OBJECT_LOCK(ksobj);
475	for (i = 0; i < pages; i++) {
476		m = vm_page_lookup(ksobj, i);
477		if (m == NULL)
478			panic("vm_thread_dispose: kstack already missing?");
479		vm_page_lock_queues();
480		vm_page_busy(m);
481		vm_page_unwire(m, 0);
482		vm_page_free(m);
483		vm_page_unlock_queues();
484	}
485	VM_OBJECT_UNLOCK(ksobj);
486	vm_object_deallocate(ksobj);
487	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
488	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
489}
490
491/*
492 * Allow a thread's kernel stack to be paged out.
493 */
494void
495vm_thread_swapout(struct thread *td)
496{
497	vm_object_t ksobj;
498	vm_page_t m;
499	int i, pages;
500
501#ifdef	__alpha__
502	/*
503	 * Make sure we aren't fpcurthread.
504	 */
505	alpha_fpstate_save(td, 1);
506#endif
507	pages = td->td_kstack_pages;
508	ksobj = td->td_kstack_obj;
509	pmap_qremove(td->td_kstack, pages);
510	VM_OBJECT_LOCK(ksobj);
511	for (i = 0; i < pages; i++) {
512		m = vm_page_lookup(ksobj, i);
513		if (m == NULL)
514			panic("vm_thread_swapout: kstack already missing?");
515		vm_page_lock_queues();
516		vm_page_dirty(m);
517		vm_page_unwire(m, 0);
518		vm_page_unlock_queues();
519	}
520	VM_OBJECT_UNLOCK(ksobj);
521}
522
523/*
524 * Bring the kernel stack for a specified thread back in.
525 */
526void
527vm_thread_swapin(struct thread *td)
528{
529	vm_object_t ksobj;
530	vm_page_t m, ma[KSTACK_MAX_PAGES];
531	int i, pages, rv;
532
533	pages = td->td_kstack_pages;
534	ksobj = td->td_kstack_obj;
535	VM_OBJECT_LOCK(ksobj);
536	for (i = 0; i < pages; i++) {
537		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
538		if (m->valid != VM_PAGE_BITS_ALL) {
539			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
540			if (rv != VM_PAGER_OK)
541				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
542			m = vm_page_lookup(ksobj, i);
543			m->valid = VM_PAGE_BITS_ALL;
544		}
545		ma[i] = m;
546		vm_page_lock_queues();
547		vm_page_wire(m);
548		vm_page_wakeup(m);
549		vm_page_unlock_queues();
550	}
551	VM_OBJECT_UNLOCK(ksobj);
552	pmap_qenter(td->td_kstack, ma, pages);
553#ifdef	__alpha__
554	/*
555	 * The pcb may be at a different physical address now so cache the
556	 * new address.
557	 */
558	td->td_md.md_pcbpaddr = (void *)vtophys((vm_offset_t)td->td_pcb);
559#endif
560}
561
562/*
563 * Set up a variable-sized alternate kstack.
564 */
565void
566vm_thread_new_altkstack(struct thread *td, int pages)
567{
568
569	td->td_altkstack = td->td_kstack;
570	td->td_altkstack_obj = td->td_kstack_obj;
571	td->td_altkstack_pages = td->td_kstack_pages;
572
573	vm_thread_new(td, pages);
574}
575
576/*
577 * Restore the original kstack.
578 */
579void
580vm_thread_dispose_altkstack(struct thread *td)
581{
582
583	vm_thread_dispose(td);
584
585	td->td_kstack = td->td_altkstack;
586	td->td_kstack_obj = td->td_altkstack_obj;
587	td->td_kstack_pages = td->td_altkstack_pages;
588	td->td_altkstack = 0;
589	td->td_altkstack_obj = NULL;
590	td->td_altkstack_pages = 0;
591}
592
593/*
594 * Implement fork's actions on an address space.
595 * Here we arrange for the address space to be copied or referenced,
596 * allocate a user struct (pcb and kernel stack), then call the
597 * machine-dependent layer to fill those in and make the new process
598 * ready to run.  The new process is set up so that it returns directly
599 * to user mode to avoid stack copying and relocation problems.
600 */
601void
602vm_forkproc(td, p2, td2, flags)
603	struct thread *td;
604	struct proc *p2;
605	struct thread *td2;
606	int flags;
607{
608	struct proc *p1 = td->td_proc;
609	struct user *up;
610
611	GIANT_REQUIRED;
612
613	if ((flags & RFPROC) == 0) {
614		/*
615		 * Divorce the memory, if it is shared, essentially
616		 * this changes shared memory amongst threads, into
617		 * COW locally.
618		 */
619		if ((flags & RFMEM) == 0) {
620			if (p1->p_vmspace->vm_refcnt > 1) {
621				vmspace_unshare(p1);
622			}
623		}
624		cpu_fork(td, p2, td2, flags);
625		return;
626	}
627
628	if (flags & RFMEM) {
629		p2->p_vmspace = p1->p_vmspace;
630		p1->p_vmspace->vm_refcnt++;
631	}
632
633	while (vm_page_count_severe()) {
634		VM_WAIT;
635	}
636
637	if ((flags & RFMEM) == 0) {
638		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
639
640		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
641
642		if (p1->p_vmspace->vm_shm)
643			shmfork(p1, p2);
644	}
645
646	/* XXXKSE this is unsatisfactory but should be adequate */
647	up = p2->p_uarea;
648	MPASS(p2->p_sigacts != NULL);
649
650	/*
651	 * p_stats currently points at fields in the user struct
652	 * but not at &u, instead at p_addr. Copy parts of
653	 * p_stats; zero the rest of p_stats (statistics).
654	 */
655	p2->p_stats = &up->u_stats;
656	bzero(&up->u_stats.pstat_startzero,
657	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
658		(caddr_t) &up->u_stats.pstat_startzero));
659	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
660	    ((caddr_t) &up->u_stats.pstat_endcopy -
661		(caddr_t) &up->u_stats.pstat_startcopy));
662
663	/*
664	 * cpu_fork will copy and update the pcb, set up the kernel stack,
665	 * and make the child ready to run.
666	 */
667	cpu_fork(td, p2, td2, flags);
668}
669
670/*
671 * Called after process has been wait(2)'ed apon and is being reaped.
672 * The idea is to reclaim resources that we could not reclaim while
673 * the process was still executing.
674 */
675void
676vm_waitproc(p)
677	struct proc *p;
678{
679
680	GIANT_REQUIRED;
681	vmspace_exitfree(p);		/* and clean-out the vmspace */
682}
683
684/*
685 * Set default limits for VM system.
686 * Called for proc 0, and then inherited by all others.
687 *
688 * XXX should probably act directly on proc0.
689 */
690static void
691vm_init_limits(udata)
692	void *udata;
693{
694	struct proc *p = udata;
695	int rss_limit;
696
697	/*
698	 * Set up the initial limits on process VM. Set the maximum resident
699	 * set size to be half of (reasonably) available memory.  Since this
700	 * is a soft limit, it comes into effect only when the system is out
701	 * of memory - half of main memory helps to favor smaller processes,
702	 * and reduces thrashing of the object cache.
703	 */
704	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
705	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
706	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
707	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
708	/* limit the limit to no less than 2MB */
709	rss_limit = max(cnt.v_free_count, 512);
710	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
711	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
712}
713
714void
715faultin(p)
716	struct proc *p;
717{
718#ifdef NO_SWAPPING
719
720	PROC_LOCK_ASSERT(p, MA_OWNED);
721	if ((p->p_sflag & PS_INMEM) == 0)
722		panic("faultin: proc swapped out with NO_SWAPPING!");
723#else /* !NO_SWAPPING */
724	struct thread *td;
725
726	GIANT_REQUIRED;
727	PROC_LOCK_ASSERT(p, MA_OWNED);
728	/*
729	 * If another process is swapping in this process,
730	 * just wait until it finishes.
731	 */
732	if (p->p_sflag & PS_SWAPPINGIN)
733		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
734	else if ((p->p_sflag & PS_INMEM) == 0) {
735		/*
736		 * Don't let another thread swap process p out while we are
737		 * busy swapping it in.
738		 */
739		++p->p_lock;
740		mtx_lock_spin(&sched_lock);
741		p->p_sflag |= PS_SWAPPINGIN;
742		mtx_unlock_spin(&sched_lock);
743		PROC_UNLOCK(p);
744
745		vm_proc_swapin(p);
746		FOREACH_THREAD_IN_PROC(p, td)
747			vm_thread_swapin(td);
748
749		PROC_LOCK(p);
750		mtx_lock_spin(&sched_lock);
751		p->p_sflag &= ~PS_SWAPPINGIN;
752		p->p_sflag |= PS_INMEM;
753		FOREACH_THREAD_IN_PROC(p, td) {
754			TD_CLR_SWAPPED(td);
755			if (TD_CAN_RUN(td))
756				setrunnable(td);
757		}
758		mtx_unlock_spin(&sched_lock);
759
760		wakeup(&p->p_sflag);
761
762		/* Allow other threads to swap p out now. */
763		--p->p_lock;
764	}
765#endif /* NO_SWAPPING */
766}
767
768/*
769 * This swapin algorithm attempts to swap-in processes only if there
770 * is enough space for them.  Of course, if a process waits for a long
771 * time, it will be swapped in anyway.
772 *
773 *  XXXKSE - process with the thread with highest priority counts..
774 *
775 * Giant is still held at this point, to be released in tsleep.
776 */
777/* ARGSUSED*/
778static void
779scheduler(dummy)
780	void *dummy;
781{
782	struct proc *p;
783	struct thread *td;
784	int pri;
785	struct proc *pp;
786	int ppri;
787
788	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
789	/* GIANT_REQUIRED */
790
791loop:
792	if (vm_page_count_min()) {
793		VM_WAIT;
794		goto loop;
795	}
796
797	pp = NULL;
798	ppri = INT_MIN;
799	sx_slock(&allproc_lock);
800	FOREACH_PROC_IN_SYSTEM(p) {
801		struct ksegrp *kg;
802		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
803			continue;
804		}
805		mtx_lock_spin(&sched_lock);
806		FOREACH_THREAD_IN_PROC(p, td) {
807			/*
808			 * An otherwise runnable thread of a process
809			 * swapped out has only the TDI_SWAPPED bit set.
810			 *
811			 */
812			if (td->td_inhibitors == TDI_SWAPPED) {
813				kg = td->td_ksegrp;
814				pri = p->p_swtime + kg->kg_slptime;
815				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
816					pri -= kg->kg_nice * 8;
817				}
818
819				/*
820				 * if this ksegrp is higher priority
821				 * and there is enough space, then select
822				 * this process instead of the previous
823				 * selection.
824				 */
825				if (pri > ppri) {
826					pp = p;
827					ppri = pri;
828				}
829			}
830		}
831		mtx_unlock_spin(&sched_lock);
832	}
833	sx_sunlock(&allproc_lock);
834
835	/*
836	 * Nothing to do, back to sleep.
837	 */
838	if ((p = pp) == NULL) {
839		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
840		goto loop;
841	}
842	PROC_LOCK(p);
843
844	/*
845	 * Another process may be bringing or may have already
846	 * brought this process in while we traverse all threads.
847	 * Or, this process may even be being swapped out again.
848	 */
849	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
850		PROC_UNLOCK(p);
851		goto loop;
852	}
853
854	mtx_lock_spin(&sched_lock);
855	p->p_sflag &= ~PS_SWAPINREQ;
856	mtx_unlock_spin(&sched_lock);
857
858	/*
859	 * We would like to bring someone in. (only if there is space).
860	 * [What checks the space? ]
861	 */
862	faultin(p);
863	PROC_UNLOCK(p);
864	mtx_lock_spin(&sched_lock);
865	p->p_swtime = 0;
866	mtx_unlock_spin(&sched_lock);
867	goto loop;
868}
869
870#ifndef NO_SWAPPING
871
872/*
873 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
874 */
875static int swap_idle_threshold1 = 2;
876SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
877    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
878
879/*
880 * Swap_idle_threshold2 is the time that a process can be idle before
881 * it will be swapped out, if idle swapping is enabled.
882 */
883static int swap_idle_threshold2 = 10;
884SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
885    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
886
887/*
888 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
889 * procs and unwire their u-areas.  We try to always "swap" at least one
890 * process in case we need the room for a swapin.
891 * If any procs have been sleeping/stopped for at least maxslp seconds,
892 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
893 * if any, otherwise the longest-resident process.
894 */
895void
896swapout_procs(action)
897int action;
898{
899	struct proc *p;
900	struct thread *td;
901	struct ksegrp *kg;
902	int didswap = 0;
903
904	GIANT_REQUIRED;
905
906retry:
907	sx_slock(&allproc_lock);
908	FOREACH_PROC_IN_SYSTEM(p) {
909		struct vmspace *vm;
910		int minslptime = 100000;
911
912		/*
913		 * Watch out for a process in
914		 * creation.  It may have no
915		 * address space or lock yet.
916		 */
917		mtx_lock_spin(&sched_lock);
918		if (p->p_state == PRS_NEW) {
919			mtx_unlock_spin(&sched_lock);
920			continue;
921		}
922		mtx_unlock_spin(&sched_lock);
923
924		/*
925		 * An aio daemon switches its
926		 * address space while running.
927		 * Perform a quick check whether
928		 * a process has P_SYSTEM.
929		 */
930		if ((p->p_flag & P_SYSTEM) != 0)
931			continue;
932
933		/*
934		 * Do not swapout a process that
935		 * is waiting for VM data
936		 * structures as there is a possible
937		 * deadlock.  Test this first as
938		 * this may block.
939		 *
940		 * Lock the map until swapout
941		 * finishes, or a thread of this
942		 * process may attempt to alter
943		 * the map.
944		 */
945		PROC_LOCK(p);
946		vm = p->p_vmspace;
947		KASSERT(vm != NULL,
948			("swapout_procs: a process has no address space"));
949		++vm->vm_refcnt;
950		PROC_UNLOCK(p);
951		if (!vm_map_trylock(&vm->vm_map))
952			goto nextproc1;
953
954		PROC_LOCK(p);
955		if (p->p_lock != 0 ||
956		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
957		    ) != 0) {
958			goto nextproc2;
959		}
960		/*
961		 * only aiod changes vmspace, however it will be
962		 * skipped because of the if statement above checking
963		 * for P_SYSTEM
964		 */
965		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
966			goto nextproc2;
967
968		switch (p->p_state) {
969		default:
970			/* Don't swap out processes in any sort
971			 * of 'special' state. */
972			break;
973
974		case PRS_NORMAL:
975			mtx_lock_spin(&sched_lock);
976			/*
977			 * do not swapout a realtime process
978			 * Check all the thread groups..
979			 */
980			FOREACH_KSEGRP_IN_PROC(p, kg) {
981				if (PRI_IS_REALTIME(kg->kg_pri_class))
982					goto nextproc;
983
984				/*
985				 * Guarantee swap_idle_threshold1
986				 * time in memory.
987				 */
988				if (kg->kg_slptime < swap_idle_threshold1)
989					goto nextproc;
990
991				/*
992				 * Do not swapout a process if it is
993				 * waiting on a critical event of some
994				 * kind or there is a thread whose
995				 * pageable memory may be accessed.
996				 *
997				 * This could be refined to support
998				 * swapping out a thread.
999				 */
1000				FOREACH_THREAD_IN_GROUP(kg, td) {
1001					if ((td->td_priority) < PSOCK ||
1002					    !thread_safetoswapout(td))
1003						goto nextproc;
1004				}
1005				/*
1006				 * If the system is under memory stress,
1007				 * or if we are swapping
1008				 * idle processes >= swap_idle_threshold2,
1009				 * then swap the process out.
1010				 */
1011				if (((action & VM_SWAP_NORMAL) == 0) &&
1012				    (((action & VM_SWAP_IDLE) == 0) ||
1013				    (kg->kg_slptime < swap_idle_threshold2)))
1014					goto nextproc;
1015
1016				if (minslptime > kg->kg_slptime)
1017					minslptime = kg->kg_slptime;
1018			}
1019
1020			/*
1021			 * If the process has been asleep for awhile and had
1022			 * most of its pages taken away already, swap it out.
1023			 */
1024			if ((action & VM_SWAP_NORMAL) ||
1025				((action & VM_SWAP_IDLE) &&
1026				 (minslptime > swap_idle_threshold2))) {
1027				swapout(p);
1028				didswap++;
1029				mtx_unlock_spin(&sched_lock);
1030				PROC_UNLOCK(p);
1031				vm_map_unlock(&vm->vm_map);
1032				vmspace_free(vm);
1033				sx_sunlock(&allproc_lock);
1034				goto retry;
1035			}
1036nextproc:
1037			mtx_unlock_spin(&sched_lock);
1038		}
1039nextproc2:
1040		PROC_UNLOCK(p);
1041		vm_map_unlock(&vm->vm_map);
1042nextproc1:
1043		vmspace_free(vm);
1044		continue;
1045	}
1046	sx_sunlock(&allproc_lock);
1047	/*
1048	 * If we swapped something out, and another process needed memory,
1049	 * then wakeup the sched process.
1050	 */
1051	if (didswap)
1052		wakeup(&proc0);
1053}
1054
1055static void
1056swapout(p)
1057	struct proc *p;
1058{
1059	struct thread *td;
1060
1061	PROC_LOCK_ASSERT(p, MA_OWNED);
1062	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1063#if defined(SWAP_DEBUG)
1064	printf("swapping out %d\n", p->p_pid);
1065#endif
1066
1067	/*
1068	 * The states of this process and its threads may have changed
1069	 * by now.  Assuming that there is only one pageout daemon thread,
1070	 * this process should still be in memory.
1071	 */
1072	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1073		("swapout: lost a swapout race?"));
1074
1075#if defined(INVARIANTS)
1076	/*
1077	 * Make sure that all threads are safe to be swapped out.
1078	 *
1079	 * Alternatively, we could swap out only safe threads.
1080	 */
1081	FOREACH_THREAD_IN_PROC(p, td) {
1082		KASSERT(thread_safetoswapout(td),
1083			("swapout: there is a thread not safe for swapout"));
1084	}
1085#endif /* INVARIANTS */
1086
1087	++p->p_stats->p_ru.ru_nswap;
1088	/*
1089	 * remember the process resident count
1090	 */
1091	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1092
1093	p->p_sflag &= ~PS_INMEM;
1094	p->p_sflag |= PS_SWAPPINGOUT;
1095	PROC_UNLOCK(p);
1096	FOREACH_THREAD_IN_PROC(p, td)
1097		TD_SET_SWAPPED(td);
1098	mtx_unlock_spin(&sched_lock);
1099
1100	vm_proc_swapout(p);
1101	FOREACH_THREAD_IN_PROC(p, td)
1102		vm_thread_swapout(td);
1103
1104	PROC_LOCK(p);
1105	mtx_lock_spin(&sched_lock);
1106	p->p_sflag &= ~PS_SWAPPINGOUT;
1107	p->p_swtime = 0;
1108}
1109#endif /* !NO_SWAPPING */
1110