fs.h revision 1541
1/*
2 * Copyright (c) 1982, 1986, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)fs.h	8.7 (Berkeley) 4/19/94
34 */
35
36/*
37 * Each disk drive contains some number of file systems.
38 * A file system consists of a number of cylinder groups.
39 * Each cylinder group has inodes and data.
40 *
41 * A file system is described by its super-block, which in turn
42 * describes the cylinder groups.  The super-block is critical
43 * data and is replicated in each cylinder group to protect against
44 * catastrophic loss.  This is done at `newfs' time and the critical
45 * super-block data does not change, so the copies need not be
46 * referenced further unless disaster strikes.
47 *
48 * For file system fs, the offsets of the various blocks of interest
49 * are given in the super block as:
50 *	[fs->fs_sblkno]		Super-block
51 *	[fs->fs_cblkno]		Cylinder group block
52 *	[fs->fs_iblkno]		Inode blocks
53 *	[fs->fs_dblkno]		Data blocks
54 * The beginning of cylinder group cg in fs, is given by
55 * the ``cgbase(fs, cg)'' macro.
56 *
57 * The first boot and super blocks are given in absolute disk addresses.
58 * The byte-offset forms are preferred, as they don't imply a sector size.
59 */
60#define BBSIZE		8192
61#define SBSIZE		8192
62#define	BBOFF		((off_t)(0))
63#define	SBOFF		((off_t)(BBOFF + BBSIZE))
64#define	BBLOCK		((daddr_t)(0))
65#define	SBLOCK		((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
66
67/*
68 * Addresses stored in inodes are capable of addressing fragments
69 * of `blocks'. File system blocks of at most size MAXBSIZE can
70 * be optionally broken into 2, 4, or 8 pieces, each of which is
71 * addressible; these pieces may be DEV_BSIZE, or some multiple of
72 * a DEV_BSIZE unit.
73 *
74 * Large files consist of exclusively large data blocks.  To avoid
75 * undue wasted disk space, the last data block of a small file may be
76 * allocated as only as many fragments of a large block as are
77 * necessary.  The file system format retains only a single pointer
78 * to such a fragment, which is a piece of a single large block that
79 * has been divided.  The size of such a fragment is determinable from
80 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
81 *
82 * The file system records space availability at the fragment level;
83 * to determine block availability, aligned fragments are examined.
84 */
85
86/*
87 * MINBSIZE is the smallest allowable block size.
88 * In order to insure that it is possible to create files of size
89 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
90 * MINBSIZE must be big enough to hold a cylinder group block,
91 * thus changes to (struct cg) must keep its size within MINBSIZE.
92 * Note that super blocks are always of size SBSIZE,
93 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE.
94 */
95#define MINBSIZE	4096
96
97/*
98 * The path name on which the file system is mounted is maintained
99 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
100 * the super block for this name.
101 * The limit on the amount of summary information per file system
102 * is defined by MAXCSBUFS. It is currently parameterized for a
103 * maximum of two million cylinders.
104 */
105#define MAXMNTLEN 512
106#define MAXCSBUFS 32
107
108/*
109 * A summary of contiguous blocks of various sizes is maintained
110 * in each cylinder group. Normally this is set by the initial
111 * value of fs_maxcontig. To conserve space, a maximum summary size
112 * is set by FS_MAXCONTIG.
113 */
114#define FS_MAXCONTIG	16
115
116/*
117 * MINFREE gives the minimum acceptable percentage of file system
118 * blocks which may be free. If the freelist drops below this level
119 * only the superuser may continue to allocate blocks. This may
120 * be set to 0 if no reserve of free blocks is deemed necessary,
121 * however throughput drops by fifty percent if the file system
122 * is run at between 95% and 100% full; thus the minimum default
123 * value of fs_minfree is 5%. However, to get good clustering
124 * performance, 10% is a better choice. hence we use 10% as our
125 * default value. With 10% free space, fragmentation is not a
126 * problem, so we choose to optimize for time.
127 */
128#define MINFREE		5
129#define DEFAULTOPT	FS_OPTTIME
130
131/*
132 * Per cylinder group information; summarized in blocks allocated
133 * from first cylinder group data blocks.  These blocks have to be
134 * read in from fs_csaddr (size fs_cssize) in addition to the
135 * super block.
136 *
137 * N.B. sizeof(struct csum) must be a power of two in order for
138 * the ``fs_cs'' macro to work (see below).
139 */
140struct csum {
141	long	cs_ndir;	/* number of directories */
142	long	cs_nbfree;	/* number of free blocks */
143	long	cs_nifree;	/* number of free inodes */
144	long	cs_nffree;	/* number of free frags */
145};
146
147/*
148 * Super block for a file system.
149 */
150struct fs {
151	struct	fs *fs_link;		/* linked list of file systems */
152	struct	fs *fs_rlink;		/*     used for incore super blocks */
153	daddr_t	fs_sblkno;		/* addr of super-block in filesys */
154	daddr_t	fs_cblkno;		/* offset of cyl-block in filesys */
155	daddr_t	fs_iblkno;		/* offset of inode-blocks in filesys */
156	daddr_t	fs_dblkno;		/* offset of first data after cg */
157	long	fs_cgoffset;		/* cylinder group offset in cylinder */
158	long	fs_cgmask;		/* used to calc mod fs_ntrak */
159	time_t 	fs_time;    		/* last time written */
160	long	fs_size;		/* number of blocks in fs */
161	long	fs_dsize;		/* number of data blocks in fs */
162	long	fs_ncg;			/* number of cylinder groups */
163	long	fs_bsize;		/* size of basic blocks in fs */
164	long	fs_fsize;		/* size of frag blocks in fs */
165	long	fs_frag;		/* number of frags in a block in fs */
166/* these are configuration parameters */
167	long	fs_minfree;		/* minimum percentage of free blocks */
168	long	fs_rotdelay;		/* num of ms for optimal next block */
169	long	fs_rps;			/* disk revolutions per second */
170/* these fields can be computed from the others */
171	long	fs_bmask;		/* ``blkoff'' calc of blk offsets */
172	long	fs_fmask;		/* ``fragoff'' calc of frag offsets */
173	long	fs_bshift;		/* ``lblkno'' calc of logical blkno */
174	long	fs_fshift;		/* ``numfrags'' calc number of frags */
175/* these are configuration parameters */
176	long	fs_maxcontig;		/* max number of contiguous blks */
177	long	fs_maxbpg;		/* max number of blks per cyl group */
178/* these fields can be computed from the others */
179	long	fs_fragshift;		/* block to frag shift */
180	long	fs_fsbtodb;		/* fsbtodb and dbtofsb shift constant */
181	long	fs_sbsize;		/* actual size of super block */
182	long	fs_csmask;		/* csum block offset */
183	long	fs_csshift;		/* csum block number */
184	long	fs_nindir;		/* value of NINDIR */
185	long	fs_inopb;		/* value of INOPB */
186	long	fs_nspf;		/* value of NSPF */
187/* yet another configuration parameter */
188	long	fs_optim;		/* optimization preference, see below */
189/* these fields are derived from the hardware */
190	long	fs_npsect;		/* # sectors/track including spares */
191	long	fs_interleave;		/* hardware sector interleave */
192	long	fs_trackskew;		/* sector 0 skew, per track */
193	long	fs_headswitch;		/* head switch time, usec */
194	long	fs_trkseek;		/* track-to-track seek, usec */
195/* sizes determined by number of cylinder groups and their sizes */
196	daddr_t fs_csaddr;		/* blk addr of cyl grp summary area */
197	long	fs_cssize;		/* size of cyl grp summary area */
198	long	fs_cgsize;		/* cylinder group size */
199/* these fields are derived from the hardware */
200	long	fs_ntrak;		/* tracks per cylinder */
201	long	fs_nsect;		/* sectors per track */
202	long  	fs_spc;   		/* sectors per cylinder */
203/* this comes from the disk driver partitioning */
204	long	fs_ncyl;   		/* cylinders in file system */
205/* these fields can be computed from the others */
206	long	fs_cpg;			/* cylinders per group */
207	long	fs_ipg;			/* inodes per group */
208	long	fs_fpg;			/* blocks per group * fs_frag */
209/* this data must be re-computed after crashes */
210	struct	csum fs_cstotal;	/* cylinder summary information */
211/* these fields are cleared at mount time */
212	char   	fs_fmod;    		/* super block modified flag */
213	char   	fs_clean;    		/* file system is clean flag */
214	char   	fs_ronly;   		/* mounted read-only flag */
215	char   	fs_flags;   		/* currently unused flag */
216	char	fs_fsmnt[MAXMNTLEN];	/* name mounted on */
217/* these fields retain the current block allocation info */
218	long	fs_cgrotor;		/* last cg searched */
219	struct	csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
220	long	fs_cpc;			/* cyl per cycle in postbl */
221	short	fs_opostbl[16][8];	/* old rotation block list head */
222	long	fs_sparecon[50];	/* reserved for future constants */
223	long	fs_contigsumsize;	/* size of cluster summary array */
224	long	fs_maxsymlinklen;	/* max length of an internal symlink */
225	long	fs_inodefmt;		/* format of on-disk inodes */
226	u_quad_t fs_maxfilesize;	/* maximum representable file size */
227	quad_t	fs_qbmask;		/* ~fs_bmask - for use with quad size */
228	quad_t	fs_qfmask;		/* ~fs_fmask - for use with quad size */
229	long	fs_state;		/* validate fs_clean field */
230	long	fs_postblformat;	/* format of positional layout tables */
231	long	fs_nrpos;		/* number of rotational positions */
232	long	fs_postbloff;		/* (short) rotation block list head */
233	long	fs_rotbloff;		/* (u_char) blocks for each rotation */
234	long	fs_magic;		/* magic number */
235	u_char	fs_space[1];		/* list of blocks for each rotation */
236/* actually longer */
237};
238/*
239 * Filesystem idetification
240 */
241#define	FS_MAGIC	0x011954	/* the fast filesystem magic number */
242#define	FS_OKAY		0x7c269d38	/* superblock checksum */
243#define FS_42INODEFMT	-1		/* 4.2BSD inode format */
244#define FS_44INODEFMT	2		/* 4.4BSD inode format */
245/*
246 * Preference for optimization.
247 */
248#define FS_OPTTIME	0	/* minimize allocation time */
249#define FS_OPTSPACE	1	/* minimize disk fragmentation */
250
251/*
252 * Rotational layout table format types
253 */
254#define FS_42POSTBLFMT		-1	/* 4.2BSD rotational table format */
255#define FS_DYNAMICPOSTBLFMT	1	/* dynamic rotational table format */
256/*
257 * Macros for access to superblock array structures
258 */
259#define fs_postbl(fs, cylno) \
260    (((fs)->fs_postblformat == FS_42POSTBLFMT) \
261    ? ((fs)->fs_opostbl[cylno]) \
262    : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos))
263#define fs_rotbl(fs) \
264    (((fs)->fs_postblformat == FS_42POSTBLFMT) \
265    ? ((fs)->fs_space) \
266    : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff)))
267
268/*
269 * The size of a cylinder group is calculated by CGSIZE. The maximum size
270 * is limited by the fact that cylinder groups are at most one block.
271 * Its size is derived from the size of the maps maintained in the
272 * cylinder group and the (struct cg) size.
273 */
274#define CGSIZE(fs) \
275    /* base cg */	(sizeof(struct cg) + sizeof(long) + \
276    /* blktot size */	(fs)->fs_cpg * sizeof(long) + \
277    /* blks size */	(fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
278    /* inode map */	howmany((fs)->fs_ipg, NBBY) + \
279    /* block map */	howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\
280    /* if present */	((fs)->fs_contigsumsize <= 0 ? 0 : \
281    /* cluster sum */	(fs)->fs_contigsumsize * sizeof(long) + \
282    /* cluster map */	howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY)))
283
284/*
285 * Convert cylinder group to base address of its global summary info.
286 *
287 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
288 */
289#define fs_cs(fs, indx) \
290	fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask]
291
292/*
293 * Cylinder group block for a file system.
294 */
295#define	CG_MAGIC	0x090255
296struct	cg {
297	struct	cg *cg_link;		/* linked list of cyl groups */
298	long	cg_magic;		/* magic number */
299	time_t	cg_time;		/* time last written */
300	long	cg_cgx;			/* we are the cgx'th cylinder group */
301	short	cg_ncyl;		/* number of cyl's this cg */
302	short	cg_niblk;		/* number of inode blocks this cg */
303	long	cg_ndblk;		/* number of data blocks this cg */
304	struct	csum cg_cs;		/* cylinder summary information */
305	long	cg_rotor;		/* position of last used block */
306	long	cg_frotor;		/* position of last used frag */
307	long	cg_irotor;		/* position of last used inode */
308	long	cg_frsum[MAXFRAG];	/* counts of available frags */
309	long	cg_btotoff;		/* (long) block totals per cylinder */
310	long	cg_boff;		/* (short) free block positions */
311	long	cg_iusedoff;		/* (char) used inode map */
312	long	cg_freeoff;		/* (u_char) free block map */
313	long	cg_nextfreeoff;		/* (u_char) next available space */
314	long	cg_clustersumoff;	/* (long) counts of avail clusters */
315	long	cg_clusteroff;		/* (char) free cluster map */
316	long	cg_nclusterblks;	/* number of clusters this cg */
317	long	cg_sparecon[13];	/* reserved for future use */
318	u_char	cg_space[1];		/* space for cylinder group maps */
319/* actually longer */
320};
321/*
322 * Macros for access to cylinder group array structures
323 */
324#define cg_blktot(cgp) \
325    (((cgp)->cg_magic != CG_MAGIC) \
326    ? (((struct ocg *)(cgp))->cg_btot) \
327    : ((long *)((char *)(cgp) + (cgp)->cg_btotoff)))
328#define cg_blks(fs, cgp, cylno) \
329    (((cgp)->cg_magic != CG_MAGIC) \
330    ? (((struct ocg *)(cgp))->cg_b[cylno]) \
331    : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos))
332#define cg_inosused(cgp) \
333    (((cgp)->cg_magic != CG_MAGIC) \
334    ? (((struct ocg *)(cgp))->cg_iused) \
335    : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff)))
336#define cg_blksfree(cgp) \
337    (((cgp)->cg_magic != CG_MAGIC) \
338    ? (((struct ocg *)(cgp))->cg_free) \
339    : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff)))
340#define cg_chkmagic(cgp) \
341    ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC)
342#define cg_clustersfree(cgp) \
343    ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff))
344#define cg_clustersum(cgp) \
345    ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff))
346
347/*
348 * The following structure is defined
349 * for compatibility with old file systems.
350 */
351struct	ocg {
352	struct	ocg *cg_link;		/* linked list of cyl groups */
353	struct	ocg *cg_rlink;		/*     used for incore cyl groups */
354	time_t	cg_time;		/* time last written */
355	long	cg_cgx;			/* we are the cgx'th cylinder group */
356	short	cg_ncyl;		/* number of cyl's this cg */
357	short	cg_niblk;		/* number of inode blocks this cg */
358	long	cg_ndblk;		/* number of data blocks this cg */
359	struct	csum cg_cs;		/* cylinder summary information */
360	long	cg_rotor;		/* position of last used block */
361	long	cg_frotor;		/* position of last used frag */
362	long	cg_irotor;		/* position of last used inode */
363	long	cg_frsum[8];		/* counts of available frags */
364	long	cg_btot[32];		/* block totals per cylinder */
365	short	cg_b[32][8];		/* positions of free blocks */
366	char	cg_iused[256];		/* used inode map */
367	long	cg_magic;		/* magic number */
368	u_char	cg_free[1];		/* free block map */
369/* actually longer */
370};
371
372/*
373 * Turn file system block numbers into disk block addresses.
374 * This maps file system blocks to device size blocks.
375 */
376#define fsbtodb(fs, b)	((b) << (fs)->fs_fsbtodb)
377#define	dbtofsb(fs, b)	((b) >> (fs)->fs_fsbtodb)
378
379/*
380 * Cylinder group macros to locate things in cylinder groups.
381 * They calc file system addresses of cylinder group data structures.
382 */
383#define	cgbase(fs, c)	((daddr_t)((fs)->fs_fpg * (c)))
384#define	cgdmin(fs, c)	(cgstart(fs, c) + (fs)->fs_dblkno)	/* 1st data */
385#define	cgimin(fs, c)	(cgstart(fs, c) + (fs)->fs_iblkno)	/* inode blk */
386#define	cgsblock(fs, c)	(cgstart(fs, c) + (fs)->fs_sblkno)	/* super blk */
387#define	cgtod(fs, c)	(cgstart(fs, c) + (fs)->fs_cblkno)	/* cg block */
388#define cgstart(fs, c)							\
389	(cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
390
391/*
392 * Macros for handling inode numbers:
393 *     inode number to file system block offset.
394 *     inode number to cylinder group number.
395 *     inode number to file system block address.
396 */
397#define	ino_to_cg(fs, x)	((x) / (fs)->fs_ipg)
398#define	ino_to_fsba(fs, x)						\
399	((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) +			\
400	    (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs))))))
401#define	ino_to_fsbo(fs, x)	((x) % INOPB(fs))
402
403/*
404 * Give cylinder group number for a file system block.
405 * Give cylinder group block number for a file system block.
406 */
407#define	dtog(fs, d)	((d) / (fs)->fs_fpg)
408#define	dtogd(fs, d)	((d) % (fs)->fs_fpg)
409
410/*
411 * Extract the bits for a block from a map.
412 * Compute the cylinder and rotational position of a cyl block addr.
413 */
414#define blkmap(fs, map, loc) \
415    (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
416#define cbtocylno(fs, bno) \
417    ((bno) * NSPF(fs) / (fs)->fs_spc)
418#define cbtorpos(fs, bno) \
419    (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \
420     (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \
421     (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
422
423/*
424 * The following macros optimize certain frequently calculated
425 * quantities by using shifts and masks in place of divisions
426 * modulos and multiplications.
427 */
428#define blkoff(fs, loc)		/* calculates (loc % fs->fs_bsize) */ \
429	((loc) & (fs)->fs_qbmask)
430#define fragoff(fs, loc)	/* calculates (loc % fs->fs_fsize) */ \
431	((loc) & (fs)->fs_qfmask)
432#define lblktosize(fs, blk)	/* calculates (blk * fs->fs_bsize) */ \
433	((blk) << (fs)->fs_bshift)
434#define lblkno(fs, loc)		/* calculates (loc / fs->fs_bsize) */ \
435	((loc) >> (fs)->fs_bshift)
436#define numfrags(fs, loc)	/* calculates (loc / fs->fs_fsize) */ \
437	((loc) >> (fs)->fs_fshift)
438#define blkroundup(fs, size)	/* calculates roundup(size, fs->fs_bsize) */ \
439	(((size) + (fs)->fs_qbmask) & (fs)->fs_bmask)
440#define fragroundup(fs, size)	/* calculates roundup(size, fs->fs_fsize) */ \
441	(((size) + (fs)->fs_qfmask) & (fs)->fs_fmask)
442#define fragstoblks(fs, frags)	/* calculates (frags / fs->fs_frag) */ \
443	((frags) >> (fs)->fs_fragshift)
444#define blkstofrags(fs, blks)	/* calculates (blks * fs->fs_frag) */ \
445	((blks) << (fs)->fs_fragshift)
446#define fragnum(fs, fsb)	/* calculates (fsb % fs->fs_frag) */ \
447	((fsb) & ((fs)->fs_frag - 1))
448#define blknum(fs, fsb)		/* calculates rounddown(fsb, fs->fs_frag) */ \
449	((fsb) &~ ((fs)->fs_frag - 1))
450
451/*
452 * Determine the number of available frags given a
453 * percentage to hold in reserve
454 */
455#define freespace(fs, percentreserved) \
456	(blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
457	(fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100))
458
459/*
460 * Determining the size of a file block in the file system.
461 */
462#define blksize(fs, ip, lbn) \
463	(((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
464	    ? (fs)->fs_bsize \
465	    : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
466#define dblksize(fs, dip, lbn) \
467	(((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \
468	    ? (fs)->fs_bsize \
469	    : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
470
471/*
472 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
473 */
474#define	NSPB(fs)	((fs)->fs_nspf << (fs)->fs_fragshift)
475#define	NSPF(fs)	((fs)->fs_nspf)
476
477/*
478 * INOPB is the number of inodes in a secondary storage block.
479 */
480#define	INOPB(fs)	((fs)->fs_inopb)
481#define	INOPF(fs)	((fs)->fs_inopb >> (fs)->fs_fragshift)
482
483/*
484 * NINDIR is the number of indirects in a file system block.
485 */
486#define	NINDIR(fs)	((fs)->fs_nindir)
487
488extern int inside[], around[];
489extern u_char *fragtbl[];
490