ffs_alloc.c revision 38408
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34 * $Id: ffs_alloc.c,v 1.50 1998/07/11 07:46:04 bde Exp $
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/buf.h>
42#include <sys/proc.h>
43#include <sys/vnode.h>
44#include <sys/mount.h>
45#ifdef notyet
46#include <sys/sysctl.h>
47#endif
48#include <sys/syslog.h>
49
50#include <ufs/ufs/quota.h>
51#include <ufs/ufs/inode.h>
52#include <ufs/ufs/ufsmount.h>
53
54#include <ufs/ffs/fs.h>
55#include <ufs/ffs/ffs_extern.h>
56
57typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
58				  int size));
59
60static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
61static ufs_daddr_t
62	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
63#ifdef DIAGNOSTIC
64static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
65#endif
66static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
67				     int));
68#ifdef notyet
69static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
70	    int));
71#endif
72static ino_t	ffs_dirpref __P((struct fs *));
73static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
74static void	ffs_fserr __P((struct fs *, u_int, char *));
75static u_long	ffs_hashalloc
76		    __P((struct inode *, int, long, int, allocfcn_t *));
77static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
78static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
79	    int));
80
81/*
82 * Allocate a block in the file system.
83 *
84 * The size of the requested block is given, which must be some
85 * multiple of fs_fsize and <= fs_bsize.
86 * A preference may be optionally specified. If a preference is given
87 * the following hierarchy is used to allocate a block:
88 *   1) allocate the requested block.
89 *   2) allocate a rotationally optimal block in the same cylinder.
90 *   3) allocate a block in the same cylinder group.
91 *   4) quadradically rehash into other cylinder groups, until an
92 *      available block is located.
93 * If no block preference is given the following heirarchy is used
94 * to allocate a block:
95 *   1) allocate a block in the cylinder group that contains the
96 *      inode for the file.
97 *   2) quadradically rehash into other cylinder groups, until an
98 *      available block is located.
99 */
100int
101ffs_alloc(ip, lbn, bpref, size, cred, bnp)
102	register struct inode *ip;
103	ufs_daddr_t lbn, bpref;
104	int size;
105	struct ucred *cred;
106	ufs_daddr_t *bnp;
107{
108	register struct fs *fs;
109	ufs_daddr_t bno;
110	int cg;
111#ifdef QUOTA
112	int error;
113#endif
114
115	*bnp = 0;
116	fs = ip->i_fs;
117#ifdef DIAGNOSTIC
118	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
119		printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n",
120		    (u_long)ip->i_dev, (long)fs->fs_bsize, size, fs->fs_fsmnt);
121		panic("ffs_alloc: bad size");
122	}
123	if (cred == NOCRED)
124		panic("ffs_alloc: missing credential");
125#endif /* DIAGNOSTIC */
126	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
127		goto nospace;
128	if (cred->cr_uid != 0 &&
129	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
130		goto nospace;
131#ifdef QUOTA
132	error = chkdq(ip, (long)btodb(size), cred, 0);
133	if (error)
134		return (error);
135#endif
136	if (bpref >= fs->fs_size)
137		bpref = 0;
138	if (bpref == 0)
139		cg = ino_to_cg(fs, ip->i_number);
140	else
141		cg = dtog(fs, bpref);
142	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
143					 ffs_alloccg);
144	if (bno > 0) {
145		ip->i_blocks += btodb(size);
146		ip->i_flag |= IN_CHANGE | IN_UPDATE;
147		*bnp = bno;
148		return (0);
149	}
150#ifdef QUOTA
151	/*
152	 * Restore user's disk quota because allocation failed.
153	 */
154	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
155#endif
156nospace:
157	ffs_fserr(fs, cred->cr_uid, "file system full");
158	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
159	return (ENOSPC);
160}
161
162/*
163 * Reallocate a fragment to a bigger size
164 *
165 * The number and size of the old block is given, and a preference
166 * and new size is also specified. The allocator attempts to extend
167 * the original block. Failing that, the regular block allocator is
168 * invoked to get an appropriate block.
169 */
170int
171ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
172	register struct inode *ip;
173	ufs_daddr_t lbprev;
174	ufs_daddr_t bpref;
175	int osize, nsize;
176	struct ucred *cred;
177	struct buf **bpp;
178{
179	register struct fs *fs;
180	struct buf *bp;
181	int cg, request, error;
182	ufs_daddr_t bprev, bno;
183
184	*bpp = 0;
185	fs = ip->i_fs;
186#ifdef DIAGNOSTIC
187	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
188	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
189		printf(
190		"dev = 0x%lx, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
191		    (u_long)ip->i_dev, (long)fs->fs_bsize, osize,
192		    nsize, fs->fs_fsmnt);
193		panic("ffs_realloccg: bad size");
194	}
195	if (cred == NOCRED)
196		panic("ffs_realloccg: missing credential");
197#endif /* DIAGNOSTIC */
198	if (cred->cr_uid != 0 &&
199	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
200		goto nospace;
201	if ((bprev = ip->i_db[lbprev]) == 0) {
202		printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n",
203		    (u_long)ip->i_dev, (long)fs->fs_bsize, (long)bprev,
204		    fs->fs_fsmnt);
205		panic("ffs_realloccg: bad bprev");
206	}
207	/*
208	 * Allocate the extra space in the buffer.
209	 */
210	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
211	if (error) {
212		brelse(bp);
213		return (error);
214	}
215
216	if( bp->b_blkno == bp->b_lblkno) {
217		if( lbprev >= NDADDR)
218			panic("ffs_realloccg: lbprev out of range");
219		bp->b_blkno = fsbtodb(fs, bprev);
220	}
221
222#ifdef QUOTA
223	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
224	if (error) {
225		brelse(bp);
226		return (error);
227	}
228#endif
229	/*
230	 * Check for extension in the existing location.
231	 */
232	cg = dtog(fs, bprev);
233	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
234	if (bno) {
235		if (bp->b_blkno != fsbtodb(fs, bno))
236			panic("ffs_realloccg: bad blockno");
237		ip->i_blocks += btodb(nsize - osize);
238		ip->i_flag |= IN_CHANGE | IN_UPDATE;
239		allocbuf(bp, nsize);
240		bp->b_flags |= B_DONE;
241		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
242		*bpp = bp;
243		return (0);
244	}
245	/*
246	 * Allocate a new disk location.
247	 */
248	if (bpref >= fs->fs_size)
249		bpref = 0;
250	switch ((int)fs->fs_optim) {
251	case FS_OPTSPACE:
252		/*
253		 * Allocate an exact sized fragment. Although this makes
254		 * best use of space, we will waste time relocating it if
255		 * the file continues to grow. If the fragmentation is
256		 * less than half of the minimum free reserve, we choose
257		 * to begin optimizing for time.
258		 */
259		request = nsize;
260		if (fs->fs_minfree <= 5 ||
261		    fs->fs_cstotal.cs_nffree >
262		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
263			break;
264		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
265			fs->fs_fsmnt);
266		fs->fs_optim = FS_OPTTIME;
267		break;
268	case FS_OPTTIME:
269		/*
270		 * At this point we have discovered a file that is trying to
271		 * grow a small fragment to a larger fragment. To save time,
272		 * we allocate a full sized block, then free the unused portion.
273		 * If the file continues to grow, the `ffs_fragextend' call
274		 * above will be able to grow it in place without further
275		 * copying. If aberrant programs cause disk fragmentation to
276		 * grow within 2% of the free reserve, we choose to begin
277		 * optimizing for space.
278		 */
279		request = fs->fs_bsize;
280		if (fs->fs_cstotal.cs_nffree <
281		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
282			break;
283		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
284			fs->fs_fsmnt);
285		fs->fs_optim = FS_OPTSPACE;
286		break;
287	default:
288		printf("dev = 0x%lx, optim = %ld, fs = %s\n",
289		    (u_long)ip->i_dev, (long)fs->fs_optim, fs->fs_fsmnt);
290		panic("ffs_realloccg: bad optim");
291		/* NOTREACHED */
292	}
293	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
294					 ffs_alloccg);
295	if (bno > 0) {
296		bp->b_blkno = fsbtodb(fs, bno);
297		if (!DOINGSOFTDEP(ITOV(ip)))
298			ffs_blkfree(ip, bprev, (long)osize);
299		if (nsize < request)
300			ffs_blkfree(ip, bno + numfrags(fs, nsize),
301			    (long)(request - nsize));
302		ip->i_blocks += btodb(nsize - osize);
303		ip->i_flag |= IN_CHANGE | IN_UPDATE;
304		allocbuf(bp, nsize);
305		bp->b_flags |= B_DONE;
306		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
307		*bpp = bp;
308		return (0);
309	}
310#ifdef QUOTA
311	/*
312	 * Restore user's disk quota because allocation failed.
313	 */
314	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
315#endif
316	brelse(bp);
317nospace:
318	/*
319	 * no space available
320	 */
321	ffs_fserr(fs, cred->cr_uid, "file system full");
322	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
323	return (ENOSPC);
324}
325
326#ifdef notyet
327/*
328 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
329 *
330 * The vnode and an array of buffer pointers for a range of sequential
331 * logical blocks to be made contiguous is given. The allocator attempts
332 * to find a range of sequential blocks starting as close as possible to
333 * an fs_rotdelay offset from the end of the allocation for the logical
334 * block immediately preceeding the current range. If successful, the
335 * physical block numbers in the buffer pointers and in the inode are
336 * changed to reflect the new allocation. If unsuccessful, the allocation
337 * is left unchanged. The success in doing the reallocation is returned.
338 * Note that the error return is not reflected back to the user. Rather
339 * the previous block allocation will be used.
340 */
341static int doasyncfree = 1;
342SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
343
344static int doreallocblks = 1;
345SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
346
347static int prtrealloc = 0;
348#endif
349
350int
351ffs_reallocblks(ap)
352	struct vop_reallocblks_args /* {
353		struct vnode *a_vp;
354		struct cluster_save *a_buflist;
355	} */ *ap;
356{
357#if !defined (not_yes)
358	return (ENOSPC);
359#else
360	struct fs *fs;
361	struct inode *ip;
362	struct vnode *vp;
363	struct buf *sbp, *ebp;
364	ufs_daddr_t *bap, *sbap, *ebap = 0;
365	struct cluster_save *buflist;
366	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
367	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
368	int i, len, start_lvl, end_lvl, pref, ssize;
369	struct timeval tv;
370
371	if (doreallocblks == 0)
372		return (ENOSPC);
373	vp = ap->a_vp;
374	ip = VTOI(vp);
375	fs = ip->i_fs;
376	if (fs->fs_contigsumsize <= 0)
377		return (ENOSPC);
378	buflist = ap->a_buflist;
379	len = buflist->bs_nchildren;
380	start_lbn = buflist->bs_children[0]->b_lblkno;
381	end_lbn = start_lbn + len - 1;
382#ifdef DIAGNOSTIC
383	for (i = 0; i < len; i++)
384		if (!ffs_checkblk(ip,
385		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
386			panic("ffs_reallocblks: unallocated block 1");
387	for (i = 1; i < len; i++)
388		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
389			panic("ffs_reallocblks: non-logical cluster");
390	blkno = buflist->bs_children[0]->b_blkno;
391	ssize = fsbtodb(fs, fs->fs_frag);
392	for (i = 1; i < len - 1; i++)
393		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
394			panic("ffs_reallocblks: non-physical cluster %d", i);
395#endif
396	/*
397	 * If the latest allocation is in a new cylinder group, assume that
398	 * the filesystem has decided to move and do not force it back to
399	 * the previous cylinder group.
400	 */
401	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
402	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
403		return (ENOSPC);
404	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
405	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
406		return (ENOSPC);
407	/*
408	 * Get the starting offset and block map for the first block.
409	 */
410	if (start_lvl == 0) {
411		sbap = &ip->i_db[0];
412		soff = start_lbn;
413	} else {
414		idp = &start_ap[start_lvl - 1];
415		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
416			brelse(sbp);
417			return (ENOSPC);
418		}
419		sbap = (ufs_daddr_t *)sbp->b_data;
420		soff = idp->in_off;
421	}
422	/*
423	 * Find the preferred location for the cluster.
424	 */
425	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
426	/*
427	 * If the block range spans two block maps, get the second map.
428	 */
429	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
430		ssize = len;
431	} else {
432#ifdef DIAGNOSTIC
433		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
434			panic("ffs_reallocblk: start == end");
435#endif
436		ssize = len - (idp->in_off + 1);
437		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
438			goto fail;
439		ebap = (ufs_daddr_t *)ebp->b_data;
440	}
441	/*
442	 * Search the block map looking for an allocation of the desired size.
443	 */
444	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
445	    len, ffs_clusteralloc)) == 0)
446		goto fail;
447	/*
448	 * We have found a new contiguous block.
449	 *
450	 * First we have to replace the old block pointers with the new
451	 * block pointers in the inode and indirect blocks associated
452	 * with the file.
453	 */
454#ifdef DEBUG
455	if (prtrealloc)
456		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
457		    start_lbn, end_lbn);
458#endif
459	blkno = newblk;
460	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
461		if (i == ssize) {
462			bap = ebap;
463			soff = -i;
464		}
465#ifdef DIAGNOSTIC
466		if (!ffs_checkblk(ip,
467		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
468			panic("ffs_reallocblks: unallocated block 2");
469		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
470			panic("ffs_reallocblks: alloc mismatch");
471#endif
472#ifdef DEBUG
473		if (prtrealloc)
474			printf(" %d,", *bap);
475#endif
476		if (DOINGSOFTDEP(vp)) {
477			if (sbap == &ip->i_db[0] && i < ssize)
478				softdep_setup_allocdirect(ip, start_lbn + i,
479				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
480				    buflist->bs_children[i]);
481			else
482				softdep_setup_allocindir_page(ip, start_lbn + i,
483				    i < ssize ? sbp : ebp, soff + i, blkno,
484				    *bap, buflist->bs_children[i]);
485		}
486		*bap++ = blkno;
487	}
488	/*
489	 * Next we must write out the modified inode and indirect blocks.
490	 * For strict correctness, the writes should be synchronous since
491	 * the old block values may have been written to disk. In practise
492	 * they are almost never written, but if we are concerned about
493	 * strict correctness, the `doasyncfree' flag should be set to zero.
494	 *
495	 * The test on `doasyncfree' should be changed to test a flag
496	 * that shows whether the associated buffers and inodes have
497	 * been written. The flag should be set when the cluster is
498	 * started and cleared whenever the buffer or inode is flushed.
499	 * We can then check below to see if it is set, and do the
500	 * synchronous write only when it has been cleared.
501	 */
502	if (sbap != &ip->i_db[0]) {
503		if (doasyncfree)
504			bdwrite(sbp);
505		else
506			bwrite(sbp);
507	} else {
508		ip->i_flag |= IN_CHANGE | IN_UPDATE;
509		if (!doasyncfree) {
510			gettime(&tv);
511			UFS_UPDATE(vp, &tv, &tv, 1);
512		}
513	}
514	if (ssize < len)
515		if (doasyncfree)
516			bdwrite(ebp);
517		else
518			bwrite(ebp);
519	/*
520	 * Last, free the old blocks and assign the new blocks to the buffers.
521	 */
522#ifdef DEBUG
523	if (prtrealloc)
524		printf("\n\tnew:");
525#endif
526	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
527		if (!DOINGSOFTDEP(vp))
528			ffs_blkfree(ip,
529			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
530			    fs->fs_bsize);
531		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
532#ifdef DEBUG
533		if (!ffs_checkblk(ip,
534		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
535			panic("ffs_reallocblks: unallocated block 3");
536		if (prtrealloc)
537			printf(" %d,", blkno);
538#endif
539	}
540#ifdef DEBUG
541	if (prtrealloc) {
542		prtrealloc--;
543		printf("\n");
544	}
545#endif
546	return (0);
547
548fail:
549	if (ssize < len)
550		brelse(ebp);
551	if (sbap != &ip->i_db[0])
552		brelse(sbp);
553	return (ENOSPC);
554#endif
555}
556
557/*
558 * Allocate an inode in the file system.
559 *
560 * If allocating a directory, use ffs_dirpref to select the inode.
561 * If allocating in a directory, the following hierarchy is followed:
562 *   1) allocate the preferred inode.
563 *   2) allocate an inode in the same cylinder group.
564 *   3) quadradically rehash into other cylinder groups, until an
565 *      available inode is located.
566 * If no inode preference is given the following heirarchy is used
567 * to allocate an inode:
568 *   1) allocate an inode in cylinder group 0.
569 *   2) quadradically rehash into other cylinder groups, until an
570 *      available inode is located.
571 */
572int
573ffs_valloc(pvp, mode, cred, vpp)
574	struct vnode *pvp;
575	int mode;
576	struct ucred *cred;
577	struct vnode **vpp;
578{
579	register struct inode *pip;
580	register struct fs *fs;
581	register struct inode *ip;
582	ino_t ino, ipref;
583	int cg, error;
584
585	*vpp = NULL;
586	pip = VTOI(pvp);
587	fs = pip->i_fs;
588	if (fs->fs_cstotal.cs_nifree == 0)
589		goto noinodes;
590
591	if ((mode & IFMT) == IFDIR)
592		ipref = ffs_dirpref(fs);
593	else
594		ipref = pip->i_number;
595	if (ipref >= fs->fs_ncg * fs->fs_ipg)
596		ipref = 0;
597	cg = ino_to_cg(fs, ipref);
598	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
599					(allocfcn_t *)ffs_nodealloccg);
600	if (ino == 0)
601		goto noinodes;
602	error = VFS_VGET(pvp->v_mount, ino, vpp);
603	if (error) {
604		UFS_VFREE(pvp, ino, mode);
605		return (error);
606	}
607	ip = VTOI(*vpp);
608	if (ip->i_mode) {
609		printf("mode = 0%o, inum = %lu, fs = %s\n",
610		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
611		panic("ffs_valloc: dup alloc");
612	}
613	if (ip->i_blocks) {				/* XXX */
614		printf("free inode %s/%lu had %ld blocks\n",
615		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
616		ip->i_blocks = 0;
617	}
618	ip->i_flags = 0;
619	/*
620	 * Set up a new generation number for this inode.
621	 */
622	if (ip->i_gen == 0 || ++ip->i_gen == 0)
623		ip->i_gen = random() / 2 + 1;
624	return (0);
625noinodes:
626	ffs_fserr(fs, cred->cr_uid, "out of inodes");
627	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
628	return (ENOSPC);
629}
630
631/*
632 * Find a cylinder to place a directory.
633 *
634 * The policy implemented by this algorithm is to select from
635 * among those cylinder groups with above the average number of
636 * free inodes, the one with the smallest number of directories.
637 */
638static ino_t
639ffs_dirpref(fs)
640	register struct fs *fs;
641{
642	int cg, minndir, mincg, avgifree;
643
644	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
645	minndir = fs->fs_ipg;
646	mincg = 0;
647	for (cg = 0; cg < fs->fs_ncg; cg++)
648		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
649		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
650			mincg = cg;
651			minndir = fs->fs_cs(fs, cg).cs_ndir;
652		}
653	return ((ino_t)(fs->fs_ipg * mincg));
654}
655
656/*
657 * Select the desired position for the next block in a file.  The file is
658 * logically divided into sections. The first section is composed of the
659 * direct blocks. Each additional section contains fs_maxbpg blocks.
660 *
661 * If no blocks have been allocated in the first section, the policy is to
662 * request a block in the same cylinder group as the inode that describes
663 * the file. If no blocks have been allocated in any other section, the
664 * policy is to place the section in a cylinder group with a greater than
665 * average number of free blocks.  An appropriate cylinder group is found
666 * by using a rotor that sweeps the cylinder groups. When a new group of
667 * blocks is needed, the sweep begins in the cylinder group following the
668 * cylinder group from which the previous allocation was made. The sweep
669 * continues until a cylinder group with greater than the average number
670 * of free blocks is found. If the allocation is for the first block in an
671 * indirect block, the information on the previous allocation is unavailable;
672 * here a best guess is made based upon the logical block number being
673 * allocated.
674 *
675 * If a section is already partially allocated, the policy is to
676 * contiguously allocate fs_maxcontig blocks.  The end of one of these
677 * contiguous blocks and the beginning of the next is physically separated
678 * so that the disk head will be in transit between them for at least
679 * fs_rotdelay milliseconds.  This is to allow time for the processor to
680 * schedule another I/O transfer.
681 */
682ufs_daddr_t
683ffs_blkpref(ip, lbn, indx, bap)
684	struct inode *ip;
685	ufs_daddr_t lbn;
686	int indx;
687	ufs_daddr_t *bap;
688{
689	register struct fs *fs;
690	register int cg;
691	int avgbfree, startcg;
692	ufs_daddr_t nextblk;
693
694	fs = ip->i_fs;
695	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
696		if (lbn < NDADDR) {
697			cg = ino_to_cg(fs, ip->i_number);
698			return (fs->fs_fpg * cg + fs->fs_frag);
699		}
700		/*
701		 * Find a cylinder with greater than average number of
702		 * unused data blocks.
703		 */
704		if (indx == 0 || bap[indx - 1] == 0)
705			startcg =
706			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
707		else
708			startcg = dtog(fs, bap[indx - 1]) + 1;
709		startcg %= fs->fs_ncg;
710		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
711		for (cg = startcg; cg < fs->fs_ncg; cg++)
712			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
713				fs->fs_cgrotor = cg;
714				return (fs->fs_fpg * cg + fs->fs_frag);
715			}
716		for (cg = 0; cg <= startcg; cg++)
717			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
718				fs->fs_cgrotor = cg;
719				return (fs->fs_fpg * cg + fs->fs_frag);
720			}
721		return (0);
722	}
723	/*
724	 * One or more previous blocks have been laid out. If less
725	 * than fs_maxcontig previous blocks are contiguous, the
726	 * next block is requested contiguously, otherwise it is
727	 * requested rotationally delayed by fs_rotdelay milliseconds.
728	 */
729	nextblk = bap[indx - 1] + fs->fs_frag;
730	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
731	    bap[indx - fs->fs_maxcontig] +
732	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
733		return (nextblk);
734	/*
735	 * Here we convert ms of delay to frags as:
736	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
737	 *	((sect/frag) * (ms/sec))
738	 * then round up to the next block.
739	 */
740	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
741	    (NSPF(fs) * 1000), fs->fs_frag);
742	return (nextblk);
743}
744
745/*
746 * Implement the cylinder overflow algorithm.
747 *
748 * The policy implemented by this algorithm is:
749 *   1) allocate the block in its requested cylinder group.
750 *   2) quadradically rehash on the cylinder group number.
751 *   3) brute force search for a free block.
752 */
753/*VARARGS5*/
754static u_long
755ffs_hashalloc(ip, cg, pref, size, allocator)
756	struct inode *ip;
757	int cg;
758	long pref;
759	int size;	/* size for data blocks, mode for inodes */
760	allocfcn_t *allocator;
761{
762	register struct fs *fs;
763	long result;	/* XXX why not same type as we return? */
764	int i, icg = cg;
765
766	fs = ip->i_fs;
767	/*
768	 * 1: preferred cylinder group
769	 */
770	result = (*allocator)(ip, cg, pref, size);
771	if (result)
772		return (result);
773	/*
774	 * 2: quadratic rehash
775	 */
776	for (i = 1; i < fs->fs_ncg; i *= 2) {
777		cg += i;
778		if (cg >= fs->fs_ncg)
779			cg -= fs->fs_ncg;
780		result = (*allocator)(ip, cg, 0, size);
781		if (result)
782			return (result);
783	}
784	/*
785	 * 3: brute force search
786	 * Note that we start at i == 2, since 0 was checked initially,
787	 * and 1 is always checked in the quadratic rehash.
788	 */
789	cg = (icg + 2) % fs->fs_ncg;
790	for (i = 2; i < fs->fs_ncg; i++) {
791		result = (*allocator)(ip, cg, 0, size);
792		if (result)
793			return (result);
794		cg++;
795		if (cg == fs->fs_ncg)
796			cg = 0;
797	}
798	return (0);
799}
800
801/*
802 * Determine whether a fragment can be extended.
803 *
804 * Check to see if the necessary fragments are available, and
805 * if they are, allocate them.
806 */
807static ufs_daddr_t
808ffs_fragextend(ip, cg, bprev, osize, nsize)
809	struct inode *ip;
810	int cg;
811	long bprev;
812	int osize, nsize;
813{
814	register struct fs *fs;
815	register struct cg *cgp;
816	struct buf *bp;
817	long bno;
818	int frags, bbase;
819	int i, error;
820
821	fs = ip->i_fs;
822	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
823		return (0);
824	frags = numfrags(fs, nsize);
825	bbase = fragnum(fs, bprev);
826	if (bbase > fragnum(fs, (bprev + frags - 1))) {
827		/* cannot extend across a block boundary */
828		return (0);
829	}
830	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
831		(int)fs->fs_cgsize, NOCRED, &bp);
832	if (error) {
833		brelse(bp);
834		return (0);
835	}
836	cgp = (struct cg *)bp->b_data;
837	if (!cg_chkmagic(cgp)) {
838		brelse(bp);
839		return (0);
840	}
841	cgp->cg_time = time_second;
842	bno = dtogd(fs, bprev);
843	for (i = numfrags(fs, osize); i < frags; i++)
844		if (isclr(cg_blksfree(cgp), bno + i)) {
845			brelse(bp);
846			return (0);
847		}
848	/*
849	 * the current fragment can be extended
850	 * deduct the count on fragment being extended into
851	 * increase the count on the remaining fragment (if any)
852	 * allocate the extended piece
853	 */
854	for (i = frags; i < fs->fs_frag - bbase; i++)
855		if (isclr(cg_blksfree(cgp), bno + i))
856			break;
857	cgp->cg_frsum[i - numfrags(fs, osize)]--;
858	if (i != frags)
859		cgp->cg_frsum[i - frags]++;
860	for (i = numfrags(fs, osize); i < frags; i++) {
861		clrbit(cg_blksfree(cgp), bno + i);
862		cgp->cg_cs.cs_nffree--;
863		fs->fs_cstotal.cs_nffree--;
864		fs->fs_cs(fs, cg).cs_nffree--;
865	}
866	fs->fs_fmod = 1;
867	if (DOINGSOFTDEP(ITOV(ip)))
868		softdep_setup_blkmapdep(bp, fs, bprev);
869	bdwrite(bp);
870	return (bprev);
871}
872
873/*
874 * Determine whether a block can be allocated.
875 *
876 * Check to see if a block of the appropriate size is available,
877 * and if it is, allocate it.
878 */
879static ufs_daddr_t
880ffs_alloccg(ip, cg, bpref, size)
881	struct inode *ip;
882	int cg;
883	ufs_daddr_t bpref;
884	int size;
885{
886	register struct fs *fs;
887	register struct cg *cgp;
888	struct buf *bp;
889	register int i;
890	ufs_daddr_t bno, blkno;
891	int allocsiz, error, frags;
892
893	fs = ip->i_fs;
894	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
895		return (0);
896	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
897		(int)fs->fs_cgsize, NOCRED, &bp);
898	if (error) {
899		brelse(bp);
900		return (0);
901	}
902	cgp = (struct cg *)bp->b_data;
903	if (!cg_chkmagic(cgp) ||
904	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
905		brelse(bp);
906		return (0);
907	}
908	cgp->cg_time = time_second;
909	if (size == fs->fs_bsize) {
910		bno = ffs_alloccgblk(ip, bp, bpref);
911		bdwrite(bp);
912		return (bno);
913	}
914	/*
915	 * check to see if any fragments are already available
916	 * allocsiz is the size which will be allocated, hacking
917	 * it down to a smaller size if necessary
918	 */
919	frags = numfrags(fs, size);
920	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
921		if (cgp->cg_frsum[allocsiz] != 0)
922			break;
923	if (allocsiz == fs->fs_frag) {
924		/*
925		 * no fragments were available, so a block will be
926		 * allocated, and hacked up
927		 */
928		if (cgp->cg_cs.cs_nbfree == 0) {
929			brelse(bp);
930			return (0);
931		}
932		bno = ffs_alloccgblk(ip, bp, bpref);
933		bpref = dtogd(fs, bno);
934		for (i = frags; i < fs->fs_frag; i++)
935			setbit(cg_blksfree(cgp), bpref + i);
936		i = fs->fs_frag - frags;
937		cgp->cg_cs.cs_nffree += i;
938		fs->fs_cstotal.cs_nffree += i;
939		fs->fs_cs(fs, cg).cs_nffree += i;
940		fs->fs_fmod = 1;
941		cgp->cg_frsum[i]++;
942		bdwrite(bp);
943		return (bno);
944	}
945	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
946	if (bno < 0) {
947		brelse(bp);
948		return (0);
949	}
950	for (i = 0; i < frags; i++)
951		clrbit(cg_blksfree(cgp), bno + i);
952	cgp->cg_cs.cs_nffree -= frags;
953	fs->fs_cstotal.cs_nffree -= frags;
954	fs->fs_cs(fs, cg).cs_nffree -= frags;
955	fs->fs_fmod = 1;
956	cgp->cg_frsum[allocsiz]--;
957	if (frags != allocsiz)
958		cgp->cg_frsum[allocsiz - frags]++;
959	blkno = cg * fs->fs_fpg + bno;
960	if (DOINGSOFTDEP(ITOV(ip)))
961		softdep_setup_blkmapdep(bp, fs, blkno);
962	bdwrite(bp);
963	return ((u_long)blkno);
964}
965
966/*
967 * Allocate a block in a cylinder group.
968 *
969 * This algorithm implements the following policy:
970 *   1) allocate the requested block.
971 *   2) allocate a rotationally optimal block in the same cylinder.
972 *   3) allocate the next available block on the block rotor for the
973 *      specified cylinder group.
974 * Note that this routine only allocates fs_bsize blocks; these
975 * blocks may be fragmented by the routine that allocates them.
976 */
977static ufs_daddr_t
978ffs_alloccgblk(ip, bp, bpref)
979	struct inode *ip;
980	struct buf *bp;
981	ufs_daddr_t bpref;
982{
983	struct fs *fs;
984	struct cg *cgp;
985	ufs_daddr_t bno, blkno;
986	int cylno, pos, delta;
987	short *cylbp;
988	register int i;
989
990	fs = ip->i_fs;
991	cgp = (struct cg *)bp->b_data;
992	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
993		bpref = cgp->cg_rotor;
994		goto norot;
995	}
996	bpref = blknum(fs, bpref);
997	bpref = dtogd(fs, bpref);
998	/*
999	 * if the requested block is available, use it
1000	 */
1001	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
1002		bno = bpref;
1003		goto gotit;
1004	}
1005	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1006		/*
1007		 * Block layout information is not available.
1008		 * Leaving bpref unchanged means we take the
1009		 * next available free block following the one
1010		 * we just allocated. Hopefully this will at
1011		 * least hit a track cache on drives of unknown
1012		 * geometry (e.g. SCSI).
1013		 */
1014		goto norot;
1015	}
1016	/*
1017	 * check for a block available on the same cylinder
1018	 */
1019	cylno = cbtocylno(fs, bpref);
1020	if (cg_blktot(cgp)[cylno] == 0)
1021		goto norot;
1022	/*
1023	 * check the summary information to see if a block is
1024	 * available in the requested cylinder starting at the
1025	 * requested rotational position and proceeding around.
1026	 */
1027	cylbp = cg_blks(fs, cgp, cylno);
1028	pos = cbtorpos(fs, bpref);
1029	for (i = pos; i < fs->fs_nrpos; i++)
1030		if (cylbp[i] > 0)
1031			break;
1032	if (i == fs->fs_nrpos)
1033		for (i = 0; i < pos; i++)
1034			if (cylbp[i] > 0)
1035				break;
1036	if (cylbp[i] > 0) {
1037		/*
1038		 * found a rotational position, now find the actual
1039		 * block. A panic if none is actually there.
1040		 */
1041		pos = cylno % fs->fs_cpc;
1042		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1043		if (fs_postbl(fs, pos)[i] == -1) {
1044			printf("pos = %d, i = %d, fs = %s\n",
1045			    pos, i, fs->fs_fsmnt);
1046			panic("ffs_alloccgblk: cyl groups corrupted");
1047		}
1048		for (i = fs_postbl(fs, pos)[i];; ) {
1049			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1050				bno = blkstofrags(fs, (bno + i));
1051				goto gotit;
1052			}
1053			delta = fs_rotbl(fs)[i];
1054			if (delta <= 0 ||
1055			    delta + i > fragstoblks(fs, fs->fs_fpg))
1056				break;
1057			i += delta;
1058		}
1059		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1060		panic("ffs_alloccgblk: can't find blk in cyl");
1061	}
1062norot:
1063	/*
1064	 * no blocks in the requested cylinder, so take next
1065	 * available one in this cylinder group.
1066	 */
1067	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1068	if (bno < 0)
1069		return (0);
1070	cgp->cg_rotor = bno;
1071gotit:
1072	blkno = fragstoblks(fs, bno);
1073	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1074	ffs_clusteracct(fs, cgp, blkno, -1);
1075	cgp->cg_cs.cs_nbfree--;
1076	fs->fs_cstotal.cs_nbfree--;
1077	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1078	cylno = cbtocylno(fs, bno);
1079	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1080	cg_blktot(cgp)[cylno]--;
1081	fs->fs_fmod = 1;
1082	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1083	if (DOINGSOFTDEP(ITOV(ip)))
1084		softdep_setup_blkmapdep(bp, fs, blkno);
1085	return (blkno);
1086}
1087
1088#ifdef notyet
1089/*
1090 * Determine whether a cluster can be allocated.
1091 *
1092 * We do not currently check for optimal rotational layout if there
1093 * are multiple choices in the same cylinder group. Instead we just
1094 * take the first one that we find following bpref.
1095 */
1096static ufs_daddr_t
1097ffs_clusteralloc(ip, cg, bpref, len)
1098	struct inode *ip;
1099	int cg;
1100	ufs_daddr_t bpref;
1101	int len;
1102{
1103	register struct fs *fs;
1104	register struct cg *cgp;
1105	struct buf *bp;
1106	int i, got, run, bno, bit, map;
1107	u_char *mapp;
1108	int32_t *lp;
1109
1110	fs = ip->i_fs;
1111	if (fs->fs_maxcluster[cg] < len)
1112		return (NULL);
1113	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1114	    NOCRED, &bp))
1115		goto fail;
1116	cgp = (struct cg *)bp->b_data;
1117	if (!cg_chkmagic(cgp))
1118		goto fail;
1119	/*
1120	 * Check to see if a cluster of the needed size (or bigger) is
1121	 * available in this cylinder group.
1122	 */
1123	lp = &cg_clustersum(cgp)[len];
1124	for (i = len; i <= fs->fs_contigsumsize; i++)
1125		if (*lp++ > 0)
1126			break;
1127	if (i > fs->fs_contigsumsize) {
1128		/*
1129		 * This is the first time looking for a cluster in this
1130		 * cylinder group. Update the cluster summary information
1131		 * to reflect the true maximum sized cluster so that
1132		 * future cluster allocation requests can avoid reading
1133		 * the cylinder group map only to find no clusters.
1134		 */
1135		lp = &cg_clustersum(cgp)[len - 1];
1136		for (i = len - 1; i > 0; i--)
1137			if (*lp-- > 0)
1138				break;
1139		fs->fs_maxcluster[cg] = i;
1140		goto fail;
1141	}
1142	/*
1143	 * Search the cluster map to find a big enough cluster.
1144	 * We take the first one that we find, even if it is larger
1145	 * than we need as we prefer to get one close to the previous
1146	 * block allocation. We do not search before the current
1147	 * preference point as we do not want to allocate a block
1148	 * that is allocated before the previous one (as we will
1149	 * then have to wait for another pass of the elevator
1150	 * algorithm before it will be read). We prefer to fail and
1151	 * be recalled to try an allocation in the next cylinder group.
1152	 */
1153	if (dtog(fs, bpref) != cg)
1154		bpref = 0;
1155	else
1156		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1157	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1158	map = *mapp++;
1159	bit = 1 << (bpref % NBBY);
1160	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1161		if ((map & bit) == 0) {
1162			run = 0;
1163		} else {
1164			run++;
1165			if (run == len)
1166				break;
1167		}
1168		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1169			bit <<= 1;
1170		} else {
1171			map = *mapp++;
1172			bit = 1;
1173		}
1174	}
1175	if (got >= cgp->cg_nclusterblks)
1176		goto fail;
1177	/*
1178	 * Allocate the cluster that we have found.
1179	 */
1180	for (i = 1; i <= len; i++)
1181		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1182			panic("ffs_clusteralloc: map mismatch");
1183	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1184	if (dtog(fs, bno) != cg)
1185		panic("ffs_clusteralloc: allocated out of group");
1186	len = blkstofrags(fs, len);
1187	for (i = 0; i < len; i += fs->fs_frag)
1188		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1189			panic("ffs_clusteralloc: lost block");
1190	bdwrite(bp);
1191	return (bno);
1192
1193fail:
1194	brelse(bp);
1195	return (0);
1196}
1197#endif
1198
1199/*
1200 * Determine whether an inode can be allocated.
1201 *
1202 * Check to see if an inode is available, and if it is,
1203 * allocate it using the following policy:
1204 *   1) allocate the requested inode.
1205 *   2) allocate the next available inode after the requested
1206 *      inode in the specified cylinder group.
1207 */
1208static ino_t
1209ffs_nodealloccg(ip, cg, ipref, mode)
1210	struct inode *ip;
1211	int cg;
1212	ufs_daddr_t ipref;
1213	int mode;
1214{
1215	register struct fs *fs;
1216	register struct cg *cgp;
1217	struct buf *bp;
1218	int error, start, len, loc, map, i;
1219
1220	fs = ip->i_fs;
1221	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1222		return (0);
1223	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1224		(int)fs->fs_cgsize, NOCRED, &bp);
1225	if (error) {
1226		brelse(bp);
1227		return (0);
1228	}
1229	cgp = (struct cg *)bp->b_data;
1230	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1231		brelse(bp);
1232		return (0);
1233	}
1234	cgp->cg_time = time_second;
1235	if (ipref) {
1236		ipref %= fs->fs_ipg;
1237		if (isclr(cg_inosused(cgp), ipref))
1238			goto gotit;
1239	}
1240	start = cgp->cg_irotor / NBBY;
1241	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1242	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1243	if (loc == 0) {
1244		len = start + 1;
1245		start = 0;
1246		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1247		if (loc == 0) {
1248			printf("cg = %d, irotor = %ld, fs = %s\n",
1249			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1250			panic("ffs_nodealloccg: map corrupted");
1251			/* NOTREACHED */
1252		}
1253	}
1254	i = start + len - loc;
1255	map = cg_inosused(cgp)[i];
1256	ipref = i * NBBY;
1257	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1258		if ((map & i) == 0) {
1259			cgp->cg_irotor = ipref;
1260			goto gotit;
1261		}
1262	}
1263	printf("fs = %s\n", fs->fs_fsmnt);
1264	panic("ffs_nodealloccg: block not in map");
1265	/* NOTREACHED */
1266gotit:
1267	if (DOINGSOFTDEP(ITOV(ip)))
1268		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1269	setbit(cg_inosused(cgp), ipref);
1270	cgp->cg_cs.cs_nifree--;
1271	fs->fs_cstotal.cs_nifree--;
1272	fs->fs_cs(fs, cg).cs_nifree--;
1273	fs->fs_fmod = 1;
1274	if ((mode & IFMT) == IFDIR) {
1275		cgp->cg_cs.cs_ndir++;
1276		fs->fs_cstotal.cs_ndir++;
1277		fs->fs_cs(fs, cg).cs_ndir++;
1278	}
1279	bdwrite(bp);
1280	return (cg * fs->fs_ipg + ipref);
1281}
1282
1283/*
1284 * Free a block or fragment.
1285 *
1286 * The specified block or fragment is placed back in the
1287 * free map. If a fragment is deallocated, a possible
1288 * block reassembly is checked.
1289 */
1290void
1291ffs_blkfree(ip, bno, size)
1292	register struct inode *ip;
1293	ufs_daddr_t bno;
1294	long size;
1295{
1296	register struct fs *fs;
1297	register struct cg *cgp;
1298	struct buf *bp;
1299	ufs_daddr_t blkno;
1300	int i, error, cg, blk, frags, bbase;
1301
1302	fs = ip->i_fs;
1303	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1304	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1305		printf("dev=0x%lx, bno = %d, bsize = %d, size = %ld, fs = %s\n",
1306		    (u_long)ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1307		panic("ffs_blkfree: bad size");
1308	}
1309	cg = dtog(fs, bno);
1310	if ((u_int)bno >= fs->fs_size) {
1311		printf("bad block %ld, ino %lu\n",
1312		    (long)bno, (u_long)ip->i_number);
1313		ffs_fserr(fs, ip->i_uid, "bad block");
1314		return;
1315	}
1316	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1317		(int)fs->fs_cgsize, NOCRED, &bp);
1318	if (error) {
1319		brelse(bp);
1320		return;
1321	}
1322	cgp = (struct cg *)bp->b_data;
1323	if (!cg_chkmagic(cgp)) {
1324		brelse(bp);
1325		return;
1326	}
1327	cgp->cg_time = time_second;
1328	bno = dtogd(fs, bno);
1329	if (size == fs->fs_bsize) {
1330		blkno = fragstoblks(fs, bno);
1331		if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
1332			printf("dev = 0x%lx, block = %ld, fs = %s\n",
1333			    (u_long)ip->i_dev, (long)bno, fs->fs_fsmnt);
1334			panic("ffs_blkfree: freeing free block");
1335		}
1336		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1337		ffs_clusteracct(fs, cgp, blkno, 1);
1338		cgp->cg_cs.cs_nbfree++;
1339		fs->fs_cstotal.cs_nbfree++;
1340		fs->fs_cs(fs, cg).cs_nbfree++;
1341		i = cbtocylno(fs, bno);
1342		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1343		cg_blktot(cgp)[i]++;
1344	} else {
1345		bbase = bno - fragnum(fs, bno);
1346		/*
1347		 * decrement the counts associated with the old frags
1348		 */
1349		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1350		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1351		/*
1352		 * deallocate the fragment
1353		 */
1354		frags = numfrags(fs, size);
1355		for (i = 0; i < frags; i++) {
1356			if (isset(cg_blksfree(cgp), bno + i)) {
1357				printf("dev = 0x%lx, block = %ld, fs = %s\n",
1358				    (u_long)ip->i_dev, (long)(bno + i),
1359				    fs->fs_fsmnt);
1360				panic("ffs_blkfree: freeing free frag");
1361			}
1362			setbit(cg_blksfree(cgp), bno + i);
1363		}
1364		cgp->cg_cs.cs_nffree += i;
1365		fs->fs_cstotal.cs_nffree += i;
1366		fs->fs_cs(fs, cg).cs_nffree += i;
1367		/*
1368		 * add back in counts associated with the new frags
1369		 */
1370		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1371		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1372		/*
1373		 * if a complete block has been reassembled, account for it
1374		 */
1375		blkno = fragstoblks(fs, bbase);
1376		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1377			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1378			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1379			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1380			ffs_clusteracct(fs, cgp, blkno, 1);
1381			cgp->cg_cs.cs_nbfree++;
1382			fs->fs_cstotal.cs_nbfree++;
1383			fs->fs_cs(fs, cg).cs_nbfree++;
1384			i = cbtocylno(fs, bbase);
1385			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1386			cg_blktot(cgp)[i]++;
1387		}
1388	}
1389	fs->fs_fmod = 1;
1390	bdwrite(bp);
1391}
1392
1393#ifdef DIAGNOSTIC
1394/*
1395 * Verify allocation of a block or fragment. Returns true if block or
1396 * fragment is allocated, false if it is free.
1397 */
1398static int
1399ffs_checkblk(ip, bno, size)
1400	struct inode *ip;
1401	ufs_daddr_t bno;
1402	long size;
1403{
1404	struct fs *fs;
1405	struct cg *cgp;
1406	struct buf *bp;
1407	int i, error, frags, free;
1408
1409	fs = ip->i_fs;
1410	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1411		printf("bsize = %ld, size = %ld, fs = %s\n",
1412		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1413		panic("ffs_checkblk: bad size");
1414	}
1415	if ((u_int)bno >= fs->fs_size)
1416		panic("ffs_checkblk: bad block %d", bno);
1417	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1418		(int)fs->fs_cgsize, NOCRED, &bp);
1419	if (error)
1420		panic("ffs_checkblk: cg bread failed");
1421	cgp = (struct cg *)bp->b_data;
1422	if (!cg_chkmagic(cgp))
1423		panic("ffs_checkblk: cg magic mismatch");
1424	bno = dtogd(fs, bno);
1425	if (size == fs->fs_bsize) {
1426		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1427	} else {
1428		frags = numfrags(fs, size);
1429		for (free = 0, i = 0; i < frags; i++)
1430			if (isset(cg_blksfree(cgp), bno + i))
1431				free++;
1432		if (free != 0 && free != frags)
1433			panic("ffs_checkblk: partially free fragment");
1434	}
1435	brelse(bp);
1436	return (!free);
1437}
1438#endif /* DIAGNOSTIC */
1439
1440/*
1441 * Free an inode.
1442 */
1443int
1444ffs_vfree( pvp, ino, mode)
1445	struct vnode *pvp;
1446	ino_t ino;
1447	int mode;
1448{
1449	if (DOINGSOFTDEP(pvp)) {
1450		softdep_freefile(pvp, ino, mode);
1451		return (0);
1452	}
1453	return (ffs_freefile(pvp, ino, mode));
1454}
1455
1456/*
1457 * Do the actual free operation.
1458 * The specified inode is placed back in the free map.
1459 */
1460 int
1461 ffs_freefile( pvp, ino, mode)
1462	struct vnode *pvp;
1463	ino_t ino;
1464	int mode;
1465{
1466	register struct fs *fs;
1467	register struct cg *cgp;
1468	register struct inode *pip;
1469	struct buf *bp;
1470	int error, cg;
1471
1472	pip = VTOI(pvp);
1473	fs = pip->i_fs;
1474	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1475		panic("ffs_vfree: range: dev = 0x%x, ino = %d, fs = %s",
1476		    pip->i_dev, ino, fs->fs_fsmnt);
1477	cg = ino_to_cg(fs, ino);
1478	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1479		(int)fs->fs_cgsize, NOCRED, &bp);
1480	if (error) {
1481		brelse(bp);
1482		return (error);
1483	}
1484	cgp = (struct cg *)bp->b_data;
1485	if (!cg_chkmagic(cgp)) {
1486		brelse(bp);
1487		return (0);
1488	}
1489	cgp->cg_time = time_second;
1490	ino %= fs->fs_ipg;
1491	if (isclr(cg_inosused(cgp), ino)) {
1492		printf("dev = 0x%lx, ino = %lu, fs = %s\n",
1493		    (u_long)pip->i_dev, (u_long)ino, fs->fs_fsmnt);
1494		if (fs->fs_ronly == 0)
1495			panic("ffs_vfree: freeing free inode");
1496	}
1497	clrbit(cg_inosused(cgp), ino);
1498	if (ino < cgp->cg_irotor)
1499		cgp->cg_irotor = ino;
1500	cgp->cg_cs.cs_nifree++;
1501	fs->fs_cstotal.cs_nifree++;
1502	fs->fs_cs(fs, cg).cs_nifree++;
1503	if ((mode & IFMT) == IFDIR) {
1504		cgp->cg_cs.cs_ndir--;
1505		fs->fs_cstotal.cs_ndir--;
1506		fs->fs_cs(fs, cg).cs_ndir--;
1507	}
1508	fs->fs_fmod = 1;
1509	bdwrite(bp);
1510	return (0);
1511}
1512
1513/*
1514 * Find a block of the specified size in the specified cylinder group.
1515 *
1516 * It is a panic if a request is made to find a block if none are
1517 * available.
1518 */
1519static ufs_daddr_t
1520ffs_mapsearch(fs, cgp, bpref, allocsiz)
1521	register struct fs *fs;
1522	register struct cg *cgp;
1523	ufs_daddr_t bpref;
1524	int allocsiz;
1525{
1526	ufs_daddr_t bno;
1527	int start, len, loc, i;
1528	int blk, field, subfield, pos;
1529
1530	/*
1531	 * find the fragment by searching through the free block
1532	 * map for an appropriate bit pattern
1533	 */
1534	if (bpref)
1535		start = dtogd(fs, bpref) / NBBY;
1536	else
1537		start = cgp->cg_frotor / NBBY;
1538	len = howmany(fs->fs_fpg, NBBY) - start;
1539	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1540		(u_char *)fragtbl[fs->fs_frag],
1541		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1542	if (loc == 0) {
1543		len = start + 1;
1544		start = 0;
1545		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1546			(u_char *)fragtbl[fs->fs_frag],
1547			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1548		if (loc == 0) {
1549			printf("start = %d, len = %d, fs = %s\n",
1550			    start, len, fs->fs_fsmnt);
1551			panic("ffs_alloccg: map corrupted");
1552			/* NOTREACHED */
1553		}
1554	}
1555	bno = (start + len - loc) * NBBY;
1556	cgp->cg_frotor = bno;
1557	/*
1558	 * found the byte in the map
1559	 * sift through the bits to find the selected frag
1560	 */
1561	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1562		blk = blkmap(fs, cg_blksfree(cgp), bno);
1563		blk <<= 1;
1564		field = around[allocsiz];
1565		subfield = inside[allocsiz];
1566		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1567			if ((blk & field) == subfield)
1568				return (bno + pos);
1569			field <<= 1;
1570			subfield <<= 1;
1571		}
1572	}
1573	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1574	panic("ffs_alloccg: block not in map");
1575	return (-1);
1576}
1577
1578/*
1579 * Update the cluster map because of an allocation or free.
1580 *
1581 * Cnt == 1 means free; cnt == -1 means allocating.
1582 */
1583static void
1584ffs_clusteracct(fs, cgp, blkno, cnt)
1585	struct fs *fs;
1586	struct cg *cgp;
1587	ufs_daddr_t blkno;
1588	int cnt;
1589{
1590	int32_t *sump;
1591	int32_t *lp;
1592	u_char *freemapp, *mapp;
1593	int i, start, end, forw, back, map, bit;
1594
1595	if (fs->fs_contigsumsize <= 0)
1596		return;
1597	freemapp = cg_clustersfree(cgp);
1598	sump = cg_clustersum(cgp);
1599	/*
1600	 * Allocate or clear the actual block.
1601	 */
1602	if (cnt > 0)
1603		setbit(freemapp, blkno);
1604	else
1605		clrbit(freemapp, blkno);
1606	/*
1607	 * Find the size of the cluster going forward.
1608	 */
1609	start = blkno + 1;
1610	end = start + fs->fs_contigsumsize;
1611	if (end >= cgp->cg_nclusterblks)
1612		end = cgp->cg_nclusterblks;
1613	mapp = &freemapp[start / NBBY];
1614	map = *mapp++;
1615	bit = 1 << (start % NBBY);
1616	for (i = start; i < end; i++) {
1617		if ((map & bit) == 0)
1618			break;
1619		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1620			bit <<= 1;
1621		} else {
1622			map = *mapp++;
1623			bit = 1;
1624		}
1625	}
1626	forw = i - start;
1627	/*
1628	 * Find the size of the cluster going backward.
1629	 */
1630	start = blkno - 1;
1631	end = start - fs->fs_contigsumsize;
1632	if (end < 0)
1633		end = -1;
1634	mapp = &freemapp[start / NBBY];
1635	map = *mapp--;
1636	bit = 1 << (start % NBBY);
1637	for (i = start; i > end; i--) {
1638		if ((map & bit) == 0)
1639			break;
1640		if ((i & (NBBY - 1)) != 0) {
1641			bit >>= 1;
1642		} else {
1643			map = *mapp--;
1644			bit = 1 << (NBBY - 1);
1645		}
1646	}
1647	back = start - i;
1648	/*
1649	 * Account for old cluster and the possibly new forward and
1650	 * back clusters.
1651	 */
1652	i = back + forw + 1;
1653	if (i > fs->fs_contigsumsize)
1654		i = fs->fs_contigsumsize;
1655	sump[i] += cnt;
1656	if (back > 0)
1657		sump[back] -= cnt;
1658	if (forw > 0)
1659		sump[forw] -= cnt;
1660	/*
1661	 * Update cluster summary information.
1662	 */
1663	lp = &sump[fs->fs_contigsumsize];
1664	for (i = fs->fs_contigsumsize; i > 0; i--)
1665		if (*lp-- > 0)
1666			break;
1667	fs->fs_maxcluster[cgp->cg_cgx] = i;
1668}
1669
1670/*
1671 * Fserr prints the name of a file system with an error diagnostic.
1672 *
1673 * The form of the error message is:
1674 *	fs: error message
1675 */
1676static void
1677ffs_fserr(fs, uid, cp)
1678	struct fs *fs;
1679	u_int uid;
1680	char *cp;
1681{
1682	struct proc *p = curproc;	/* XXX */
1683
1684	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1685			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1686}
1687