pmap.c revision 254138
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 254138 2013-08-09 11:11:11Z attilio $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t ccsrbar_pa;
117vm_paddr_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153    vm_prot_t, boolean_t);
154
155unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES		(tlb0_entries)
183#define TLB0_WAYS		(tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC	200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS		(128 * 16)
250
251struct ptbl_buf {
252	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253	vm_offset_t kva;		/* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
274static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275    vm_size_t, vm_offset_t);
276static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
278    vm_offset_t, vm_page_t *, vm_offset_t, int);
279static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280    vm_prot_t, boolean_t);
281static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282    vm_page_t, vm_prot_t);
283static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287    vm_prot_t);
288static void		mmu_booke_init(mmu_t);
289static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
292static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
293static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
294    int);
295static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
296    vm_paddr_t *);
297static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298    vm_object_t, vm_pindex_t, vm_size_t);
299static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300static void		mmu_booke_page_init(mmu_t, vm_page_t);
301static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302static void		mmu_booke_pinit(mmu_t, pmap_t);
303static void		mmu_booke_pinit0(mmu_t, pmap_t);
304static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305    vm_prot_t);
306static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
308static void		mmu_booke_release(mmu_t, pmap_t);
309static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310static void		mmu_booke_remove_all(mmu_t, vm_page_t);
311static void		mmu_booke_remove_write(mmu_t, vm_page_t);
312static void		mmu_booke_zero_page(mmu_t, vm_page_t);
313static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
314static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
315static void		mmu_booke_activate(mmu_t, struct thread *);
316static void		mmu_booke_deactivate(mmu_t, struct thread *);
317static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
319static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
321static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
322static void		mmu_booke_kremove(mmu_t, vm_offset_t);
323static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
324static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
325    vm_size_t);
326static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
327    vm_size_t, vm_size_t *);
328static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
329    vm_size_t, vm_offset_t);
330static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
331
332static mmu_method_t mmu_booke_methods[] = {
333	/* pmap dispatcher interface */
334	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
335	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
336	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
337	MMUMETHOD(mmu_copy,		mmu_booke_copy),
338	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
339	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
340	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345	MMUMETHOD(mmu_init,		mmu_booke_init),
346	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350	MMUMETHOD(mmu_map,		mmu_booke_map),
351	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361	MMUMETHOD(mmu_release,		mmu_booke_release),
362	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
367	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
368	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
369	MMUMETHOD(mmu_activate,		mmu_booke_activate),
370	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
371
372	/* Internal interfaces */
373	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
377	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380
381	/* dumpsys() support */
382	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385
386	{ 0, 0 }
387};
388
389MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390
391static inline void
392tlb_miss_lock(void)
393{
394#ifdef SMP
395	struct pcpu *pc;
396
397	if (!smp_started)
398		return;
399
400	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
401		if (pc != pcpup) {
402
403			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405
406			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407			    ("tlb_miss_lock: tried to lock self"));
408
409			tlb_lock(pc->pc_booke_tlb_lock);
410
411			CTR1(KTR_PMAP, "%s: locked", __func__);
412		}
413	}
414#endif
415}
416
417static inline void
418tlb_miss_unlock(void)
419{
420#ifdef SMP
421	struct pcpu *pc;
422
423	if (!smp_started)
424		return;
425
426	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
427		if (pc != pcpup) {
428			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429			    __func__, pc->pc_cpuid);
430
431			tlb_unlock(pc->pc_booke_tlb_lock);
432
433			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434		}
435	}
436#endif
437}
438
439/* Return number of entries in TLB0. */
440static __inline void
441tlb0_get_tlbconf(void)
442{
443	uint32_t tlb0_cfg;
444
445	tlb0_cfg = mfspr(SPR_TLB0CFG);
446	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449}
450
451/* Initialize pool of kva ptbl buffers. */
452static void
453ptbl_init(void)
454{
455	int i;
456
457	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461
462	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463	TAILQ_INIT(&ptbl_buf_freelist);
464
465	for (i = 0; i < PTBL_BUFS; i++) {
466		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468	}
469}
470
471/* Get a ptbl_buf from the freelist. */
472static struct ptbl_buf *
473ptbl_buf_alloc(void)
474{
475	struct ptbl_buf *buf;
476
477	mtx_lock(&ptbl_buf_freelist_lock);
478	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479	if (buf != NULL)
480		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481	mtx_unlock(&ptbl_buf_freelist_lock);
482
483	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484
485	return (buf);
486}
487
488/* Return ptbl buff to free pool. */
489static void
490ptbl_buf_free(struct ptbl_buf *buf)
491{
492
493	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494
495	mtx_lock(&ptbl_buf_freelist_lock);
496	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497	mtx_unlock(&ptbl_buf_freelist_lock);
498}
499
500/*
501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502 */
503static void
504ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505{
506	struct ptbl_buf *pbuf;
507
508	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509
510	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511
512	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513		if (pbuf->kva == (vm_offset_t)ptbl) {
514			/* Remove from pmap ptbl buf list. */
515			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516
517			/* Free corresponding ptbl buf. */
518			ptbl_buf_free(pbuf);
519			break;
520		}
521}
522
523/* Allocate page table. */
524static pte_t *
525ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526{
527	vm_page_t mtbl[PTBL_PAGES];
528	vm_page_t m;
529	struct ptbl_buf *pbuf;
530	unsigned int pidx;
531	pte_t *ptbl;
532	int i;
533
534	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535	    (pmap == kernel_pmap), pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_alloc: invalid pdir_idx"));
539	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540	    ("pte_alloc: valid ptbl entry exists!"));
541
542	pbuf = ptbl_buf_alloc();
543	if (pbuf == NULL)
544		panic("pte_alloc: couldn't alloc kernel virtual memory");
545
546	ptbl = (pte_t *)pbuf->kva;
547
548	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549
550	/* Allocate ptbl pages, this will sleep! */
551	for (i = 0; i < PTBL_PAGES; i++) {
552		pidx = (PTBL_PAGES * pdir_idx) + i;
553		while ((m = vm_page_alloc(NULL, pidx,
554		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555
556			PMAP_UNLOCK(pmap);
557			rw_wunlock(&pvh_global_lock);
558			VM_WAIT;
559			rw_wlock(&pvh_global_lock);
560			PMAP_LOCK(pmap);
561		}
562		mtbl[i] = m;
563	}
564
565	/* Map allocated pages into kernel_pmap. */
566	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567
568	/* Zero whole ptbl. */
569	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570
571	/* Add pbuf to the pmap ptbl bufs list. */
572	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573
574	return (ptbl);
575}
576
577/* Free ptbl pages and invalidate pdir entry. */
578static void
579ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_offset_t va;
584	vm_page_t m;
585	int i;
586
587	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588	    (pmap == kernel_pmap), pdir_idx);
589
590	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591	    ("ptbl_free: invalid pdir_idx"));
592
593	ptbl = pmap->pm_pdir[pdir_idx];
594
595	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596
597	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598
599	/*
600	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601	 * don't attempt to look up the page tables we are releasing.
602	 */
603	mtx_lock_spin(&tlbivax_mutex);
604	tlb_miss_lock();
605
606	pmap->pm_pdir[pdir_idx] = NULL;
607
608	tlb_miss_unlock();
609	mtx_unlock_spin(&tlbivax_mutex);
610
611	for (i = 0; i < PTBL_PAGES; i++) {
612		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613		pa = pte_vatopa(mmu, kernel_pmap, va);
614		m = PHYS_TO_VM_PAGE(pa);
615		vm_page_free_zero(m);
616		atomic_subtract_int(&cnt.v_wire_count, 1);
617		mmu_booke_kremove(mmu, va);
618	}
619
620	ptbl_free_pmap_ptbl(pmap, ptbl);
621}
622
623/*
624 * Decrement ptbl pages hold count and attempt to free ptbl pages.
625 * Called when removing pte entry from ptbl.
626 *
627 * Return 1 if ptbl pages were freed.
628 */
629static int
630ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631{
632	pte_t *ptbl;
633	vm_paddr_t pa;
634	vm_page_t m;
635	int i;
636
637	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638	    (pmap == kernel_pmap), pdir_idx);
639
640	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641	    ("ptbl_unhold: invalid pdir_idx"));
642	KASSERT((pmap != kernel_pmap),
643	    ("ptbl_unhold: unholding kernel ptbl!"));
644
645	ptbl = pmap->pm_pdir[pdir_idx];
646
647	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649	    ("ptbl_unhold: non kva ptbl"));
650
651	/* decrement hold count */
652	for (i = 0; i < PTBL_PAGES; i++) {
653		pa = pte_vatopa(mmu, kernel_pmap,
654		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655		m = PHYS_TO_VM_PAGE(pa);
656		m->wire_count--;
657	}
658
659	/*
660	 * Free ptbl pages if there are no pte etries in this ptbl.
661	 * wire_count has the same value for all ptbl pages, so check the last
662	 * page.
663	 */
664	if (m->wire_count == 0) {
665		ptbl_free(mmu, pmap, pdir_idx);
666
667		//debugf("ptbl_unhold: e (freed ptbl)\n");
668		return (1);
669	}
670
671	return (0);
672}
673
674/*
675 * Increment hold count for ptbl pages. This routine is used when a new pte
676 * entry is being inserted into the ptbl.
677 */
678static void
679ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680{
681	vm_paddr_t pa;
682	pte_t *ptbl;
683	vm_page_t m;
684	int i;
685
686	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687	    pdir_idx);
688
689	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690	    ("ptbl_hold: invalid pdir_idx"));
691	KASSERT((pmap != kernel_pmap),
692	    ("ptbl_hold: holding kernel ptbl!"));
693
694	ptbl = pmap->pm_pdir[pdir_idx];
695
696	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697
698	for (i = 0; i < PTBL_PAGES; i++) {
699		pa = pte_vatopa(mmu, kernel_pmap,
700		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701		m = PHYS_TO_VM_PAGE(pa);
702		m->wire_count++;
703	}
704}
705
706/* Allocate pv_entry structure. */
707pv_entry_t
708pv_alloc(void)
709{
710	pv_entry_t pv;
711
712	pv_entry_count++;
713	if (pv_entry_count > pv_entry_high_water)
714		pagedaemon_wakeup();
715	pv = uma_zalloc(pvzone, M_NOWAIT);
716
717	return (pv);
718}
719
720/* Free pv_entry structure. */
721static __inline void
722pv_free(pv_entry_t pve)
723{
724
725	pv_entry_count--;
726	uma_zfree(pvzone, pve);
727}
728
729
730/* Allocate and initialize pv_entry structure. */
731static void
732pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733{
734	pv_entry_t pve;
735
736	//int su = (pmap == kernel_pmap);
737	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738	//	(u_int32_t)pmap, va, (u_int32_t)m);
739
740	pve = pv_alloc();
741	if (pve == NULL)
742		panic("pv_insert: no pv entries!");
743
744	pve->pv_pmap = pmap;
745	pve->pv_va = va;
746
747	/* add to pv_list */
748	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749	rw_assert(&pvh_global_lock, RA_WLOCKED);
750
751	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752
753	//debugf("pv_insert: e\n");
754}
755
756/* Destroy pv entry. */
757static void
758pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759{
760	pv_entry_t pve;
761
762	//int su = (pmap == kernel_pmap);
763	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764
765	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766	rw_assert(&pvh_global_lock, RA_WLOCKED);
767
768	/* find pv entry */
769	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771			/* remove from pv_list */
772			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773			if (TAILQ_EMPTY(&m->md.pv_list))
774				vm_page_aflag_clear(m, PGA_WRITEABLE);
775
776			/* free pv entry struct */
777			pv_free(pve);
778			break;
779		}
780	}
781
782	//debugf("pv_remove: e\n");
783}
784
785/*
786 * Clean pte entry, try to free page table page if requested.
787 *
788 * Return 1 if ptbl pages were freed, otherwise return 0.
789 */
790static int
791pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792{
793	unsigned int pdir_idx = PDIR_IDX(va);
794	unsigned int ptbl_idx = PTBL_IDX(va);
795	vm_page_t m;
796	pte_t *ptbl;
797	pte_t *pte;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801	//		su, (u_int32_t)pmap, va, flags);
802
803	ptbl = pmap->pm_pdir[pdir_idx];
804	KASSERT(ptbl, ("pte_remove: null ptbl"));
805
806	pte = &ptbl[ptbl_idx];
807
808	if (pte == NULL || !PTE_ISVALID(pte))
809		return (0);
810
811	if (PTE_ISWIRED(pte))
812		pmap->pm_stats.wired_count--;
813
814	/* Handle managed entry. */
815	if (PTE_ISMANAGED(pte)) {
816		/* Get vm_page_t for mapped pte. */
817		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818
819		if (PTE_ISMODIFIED(pte))
820			vm_page_dirty(m);
821
822		if (PTE_ISREFERENCED(pte))
823			vm_page_aflag_set(m, PGA_REFERENCED);
824
825		pv_remove(pmap, va, m);
826	}
827
828	mtx_lock_spin(&tlbivax_mutex);
829	tlb_miss_lock();
830
831	tlb0_flush_entry(va);
832	pte->flags = 0;
833	pte->rpn = 0;
834
835	tlb_miss_unlock();
836	mtx_unlock_spin(&tlbivax_mutex);
837
838	pmap->pm_stats.resident_count--;
839
840	if (flags & PTBL_UNHOLD) {
841		//debugf("pte_remove: e (unhold)\n");
842		return (ptbl_unhold(mmu, pmap, pdir_idx));
843	}
844
845	//debugf("pte_remove: e\n");
846	return (0);
847}
848
849/*
850 * Insert PTE for a given page and virtual address.
851 */
852static void
853pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854{
855	unsigned int pdir_idx = PDIR_IDX(va);
856	unsigned int ptbl_idx = PTBL_IDX(va);
857	pte_t *ptbl, *pte;
858
859	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860	    pmap == kernel_pmap, pmap, va);
861
862	/* Get the page table pointer. */
863	ptbl = pmap->pm_pdir[pdir_idx];
864
865	if (ptbl == NULL) {
866		/* Allocate page table pages. */
867		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868	} else {
869		/*
870		 * Check if there is valid mapping for requested
871		 * va, if there is, remove it.
872		 */
873		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874		if (PTE_ISVALID(pte)) {
875			pte_remove(mmu, pmap, va, PTBL_HOLD);
876		} else {
877			/*
878			 * pte is not used, increment hold count
879			 * for ptbl pages.
880			 */
881			if (pmap != kernel_pmap)
882				ptbl_hold(mmu, pmap, pdir_idx);
883		}
884	}
885
886	/*
887	 * Insert pv_entry into pv_list for mapped page if part of managed
888	 * memory.
889	 */
890	if ((m->oflags & VPO_UNMANAGED) == 0) {
891		flags |= PTE_MANAGED;
892
893		/* Create and insert pv entry. */
894		pv_insert(pmap, va, m);
895	}
896
897	pmap->pm_stats.resident_count++;
898
899	mtx_lock_spin(&tlbivax_mutex);
900	tlb_miss_lock();
901
902	tlb0_flush_entry(va);
903	if (pmap->pm_pdir[pdir_idx] == NULL) {
904		/*
905		 * If we just allocated a new page table, hook it in
906		 * the pdir.
907		 */
908		pmap->pm_pdir[pdir_idx] = ptbl;
909	}
910	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
911	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
912	pte->flags |= (PTE_VALID | flags);
913
914	tlb_miss_unlock();
915	mtx_unlock_spin(&tlbivax_mutex);
916}
917
918/* Return the pa for the given pmap/va. */
919static vm_paddr_t
920pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
921{
922	vm_paddr_t pa = 0;
923	pte_t *pte;
924
925	pte = pte_find(mmu, pmap, va);
926	if ((pte != NULL) && PTE_ISVALID(pte))
927		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
928	return (pa);
929}
930
931/* Get a pointer to a PTE in a page table. */
932static pte_t *
933pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
934{
935	unsigned int pdir_idx = PDIR_IDX(va);
936	unsigned int ptbl_idx = PTBL_IDX(va);
937
938	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
939
940	if (pmap->pm_pdir[pdir_idx])
941		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
942
943	return (NULL);
944}
945
946/**************************************************************************/
947/* PMAP related */
948/**************************************************************************/
949
950/*
951 * This is called during booke_init, before the system is really initialized.
952 */
953static void
954mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
955{
956	vm_offset_t phys_kernelend;
957	struct mem_region *mp, *mp1;
958	int cnt, i, j;
959	u_int s, e, sz;
960	u_int phys_avail_count;
961	vm_size_t physsz, hwphyssz, kstack0_sz;
962	vm_offset_t kernel_pdir, kstack0, va;
963	vm_paddr_t kstack0_phys;
964	void *dpcpu;
965	pte_t *pte;
966
967	debugf("mmu_booke_bootstrap: entered\n");
968
969	/* Initialize invalidation mutex */
970	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
971
972	/* Read TLB0 size and associativity. */
973	tlb0_get_tlbconf();
974
975	/*
976	 * Align kernel start and end address (kernel image).
977	 * Note that kernel end does not necessarily relate to kernsize.
978	 * kernsize is the size of the kernel that is actually mapped.
979	 * Also note that "start - 1" is deliberate. With SMP, the
980	 * entry point is exactly a page from the actual load address.
981	 * As such, trunc_page() has no effect and we're off by a page.
982	 * Since we always have the ELF header between the load address
983	 * and the entry point, we can safely subtract 1 to compensate.
984	 */
985	kernstart = trunc_page(start - 1);
986	data_start = round_page(kernelend);
987	data_end = data_start;
988
989	/*
990	 * Addresses of preloaded modules (like file systems) use
991	 * physical addresses. Make sure we relocate those into
992	 * virtual addresses.
993	 */
994	preload_addr_relocate = kernstart - kernload;
995
996	/* Allocate the dynamic per-cpu area. */
997	dpcpu = (void *)data_end;
998	data_end += DPCPU_SIZE;
999
1000	/* Allocate space for the message buffer. */
1001	msgbufp = (struct msgbuf *)data_end;
1002	data_end += msgbufsize;
1003	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1004	    data_end);
1005
1006	data_end = round_page(data_end);
1007
1008	/* Allocate space for ptbl_bufs. */
1009	ptbl_bufs = (struct ptbl_buf *)data_end;
1010	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1011	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1012	    data_end);
1013
1014	data_end = round_page(data_end);
1015
1016	/* Allocate PTE tables for kernel KVA. */
1017	kernel_pdir = data_end;
1018	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1019	    PDIR_SIZE - 1) / PDIR_SIZE;
1020	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1021	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1022	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1023
1024	debugf(" data_end: 0x%08x\n", data_end);
1025	if (data_end - kernstart > kernsize) {
1026		kernsize += tlb1_mapin_region(kernstart + kernsize,
1027		    kernload + kernsize, (data_end - kernstart) - kernsize);
1028	}
1029	data_end = kernstart + kernsize;
1030	debugf(" updated data_end: 0x%08x\n", data_end);
1031
1032	/*
1033	 * Clear the structures - note we can only do it safely after the
1034	 * possible additional TLB1 translations are in place (above) so that
1035	 * all range up to the currently calculated 'data_end' is covered.
1036	 */
1037	dpcpu_init(dpcpu, 0);
1038	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1039	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1040
1041	/*******************************************************/
1042	/* Set the start and end of kva. */
1043	/*******************************************************/
1044	virtual_avail = round_page(data_end);
1045	virtual_end = VM_MAX_KERNEL_ADDRESS;
1046
1047	/* Allocate KVA space for page zero/copy operations. */
1048	zero_page_va = virtual_avail;
1049	virtual_avail += PAGE_SIZE;
1050	zero_page_idle_va = virtual_avail;
1051	virtual_avail += PAGE_SIZE;
1052	copy_page_src_va = virtual_avail;
1053	virtual_avail += PAGE_SIZE;
1054	copy_page_dst_va = virtual_avail;
1055	virtual_avail += PAGE_SIZE;
1056	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1057	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1058	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1059	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1060
1061	/* Initialize page zero/copy mutexes. */
1062	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1063	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1064
1065	/* Allocate KVA space for ptbl bufs. */
1066	ptbl_buf_pool_vabase = virtual_avail;
1067	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1068	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1069	    ptbl_buf_pool_vabase, virtual_avail);
1070
1071	/* Calculate corresponding physical addresses for the kernel region. */
1072	phys_kernelend = kernload + kernsize;
1073	debugf("kernel image and allocated data:\n");
1074	debugf(" kernload    = 0x%08x\n", kernload);
1075	debugf(" kernstart   = 0x%08x\n", kernstart);
1076	debugf(" kernsize    = 0x%08x\n", kernsize);
1077
1078	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1079		panic("mmu_booke_bootstrap: phys_avail too small");
1080
1081	/*
1082	 * Remove kernel physical address range from avail regions list. Page
1083	 * align all regions.  Non-page aligned memory isn't very interesting
1084	 * to us.  Also, sort the entries for ascending addresses.
1085	 */
1086
1087	/* Retrieve phys/avail mem regions */
1088	mem_regions(&physmem_regions, &physmem_regions_sz,
1089	    &availmem_regions, &availmem_regions_sz);
1090	sz = 0;
1091	cnt = availmem_regions_sz;
1092	debugf("processing avail regions:\n");
1093	for (mp = availmem_regions; mp->mr_size; mp++) {
1094		s = mp->mr_start;
1095		e = mp->mr_start + mp->mr_size;
1096		debugf(" %08x-%08x -> ", s, e);
1097		/* Check whether this region holds all of the kernel. */
1098		if (s < kernload && e > phys_kernelend) {
1099			availmem_regions[cnt].mr_start = phys_kernelend;
1100			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1101			e = kernload;
1102		}
1103		/* Look whether this regions starts within the kernel. */
1104		if (s >= kernload && s < phys_kernelend) {
1105			if (e <= phys_kernelend)
1106				goto empty;
1107			s = phys_kernelend;
1108		}
1109		/* Now look whether this region ends within the kernel. */
1110		if (e > kernload && e <= phys_kernelend) {
1111			if (s >= kernload)
1112				goto empty;
1113			e = kernload;
1114		}
1115		/* Now page align the start and size of the region. */
1116		s = round_page(s);
1117		e = trunc_page(e);
1118		if (e < s)
1119			e = s;
1120		sz = e - s;
1121		debugf("%08x-%08x = %x\n", s, e, sz);
1122
1123		/* Check whether some memory is left here. */
1124		if (sz == 0) {
1125		empty:
1126			memmove(mp, mp + 1,
1127			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1128			cnt--;
1129			mp--;
1130			continue;
1131		}
1132
1133		/* Do an insertion sort. */
1134		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1135			if (s < mp1->mr_start)
1136				break;
1137		if (mp1 < mp) {
1138			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1139			mp1->mr_start = s;
1140			mp1->mr_size = sz;
1141		} else {
1142			mp->mr_start = s;
1143			mp->mr_size = sz;
1144		}
1145	}
1146	availmem_regions_sz = cnt;
1147
1148	/*******************************************************/
1149	/* Steal physical memory for kernel stack from the end */
1150	/* of the first avail region                           */
1151	/*******************************************************/
1152	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1153	kstack0_phys = availmem_regions[0].mr_start +
1154	    availmem_regions[0].mr_size;
1155	kstack0_phys -= kstack0_sz;
1156	availmem_regions[0].mr_size -= kstack0_sz;
1157
1158	/*******************************************************/
1159	/* Fill in phys_avail table, based on availmem_regions */
1160	/*******************************************************/
1161	phys_avail_count = 0;
1162	physsz = 0;
1163	hwphyssz = 0;
1164	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1165
1166	debugf("fill in phys_avail:\n");
1167	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1168
1169		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1170		    availmem_regions[i].mr_start,
1171		    availmem_regions[i].mr_start +
1172		        availmem_regions[i].mr_size,
1173		    availmem_regions[i].mr_size);
1174
1175		if (hwphyssz != 0 &&
1176		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1177			debugf(" hw.physmem adjust\n");
1178			if (physsz < hwphyssz) {
1179				phys_avail[j] = availmem_regions[i].mr_start;
1180				phys_avail[j + 1] =
1181				    availmem_regions[i].mr_start +
1182				    hwphyssz - physsz;
1183				physsz = hwphyssz;
1184				phys_avail_count++;
1185			}
1186			break;
1187		}
1188
1189		phys_avail[j] = availmem_regions[i].mr_start;
1190		phys_avail[j + 1] = availmem_regions[i].mr_start +
1191		    availmem_regions[i].mr_size;
1192		phys_avail_count++;
1193		physsz += availmem_regions[i].mr_size;
1194	}
1195	physmem = btoc(physsz);
1196
1197	/* Calculate the last available physical address. */
1198	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1199		;
1200	Maxmem = powerpc_btop(phys_avail[i + 1]);
1201
1202	debugf("Maxmem = 0x%08lx\n", Maxmem);
1203	debugf("phys_avail_count = %d\n", phys_avail_count);
1204	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1205	    physmem);
1206
1207	/*******************************************************/
1208	/* Initialize (statically allocated) kernel pmap. */
1209	/*******************************************************/
1210	PMAP_LOCK_INIT(kernel_pmap);
1211	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1212
1213	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1214	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1215	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1216	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1217
1218	/* Initialize kernel pdir */
1219	for (i = 0; i < kernel_ptbls; i++)
1220		kernel_pmap->pm_pdir[kptbl_min + i] =
1221		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1222
1223	for (i = 0; i < MAXCPU; i++) {
1224		kernel_pmap->pm_tid[i] = TID_KERNEL;
1225
1226		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1227		tidbusy[i][0] = kernel_pmap;
1228	}
1229
1230	/*
1231	 * Fill in PTEs covering kernel code and data. They are not required
1232	 * for address translation, as this area is covered by static TLB1
1233	 * entries, but for pte_vatopa() to work correctly with kernel area
1234	 * addresses.
1235	 */
1236	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1237		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1238		pte->rpn = kernload + (va - kernstart);
1239		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1240		    PTE_VALID;
1241	}
1242	/* Mark kernel_pmap active on all CPUs */
1243	CPU_FILL(&kernel_pmap->pm_active);
1244
1245 	/*
1246	 * Initialize the global pv list lock.
1247	 */
1248	rw_init(&pvh_global_lock, "pmap pv global");
1249
1250	/*******************************************************/
1251	/* Final setup */
1252	/*******************************************************/
1253
1254	/* Enter kstack0 into kernel map, provide guard page */
1255	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1256	thread0.td_kstack = kstack0;
1257	thread0.td_kstack_pages = KSTACK_PAGES;
1258
1259	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1260	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1261	    kstack0_phys, kstack0_phys + kstack0_sz);
1262	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1263
1264	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1265	for (i = 0; i < KSTACK_PAGES; i++) {
1266		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1267		kstack0 += PAGE_SIZE;
1268		kstack0_phys += PAGE_SIZE;
1269	}
1270
1271	debugf("virtual_avail = %08x\n", virtual_avail);
1272	debugf("virtual_end   = %08x\n", virtual_end);
1273
1274	debugf("mmu_booke_bootstrap: exit\n");
1275}
1276
1277void
1278pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1279{
1280	int i;
1281
1282	/*
1283	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1284	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1285	 * these values directly to (re)program AP's TLB1 hardware.
1286	 */
1287	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1288		/* Skip invalid entries */
1289		if (!(tlb1[i].mas1 & MAS1_VALID))
1290			continue;
1291
1292		tlb1_write_entry(i);
1293	}
1294
1295	set_mas4_defaults();
1296}
1297
1298/*
1299 * Get the physical page address for the given pmap/virtual address.
1300 */
1301static vm_paddr_t
1302mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1303{
1304	vm_paddr_t pa;
1305
1306	PMAP_LOCK(pmap);
1307	pa = pte_vatopa(mmu, pmap, va);
1308	PMAP_UNLOCK(pmap);
1309
1310	return (pa);
1311}
1312
1313/*
1314 * Extract the physical page address associated with the given
1315 * kernel virtual address.
1316 */
1317static vm_paddr_t
1318mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1319{
1320
1321	return (pte_vatopa(mmu, kernel_pmap, va));
1322}
1323
1324/*
1325 * Initialize the pmap module.
1326 * Called by vm_init, to initialize any structures that the pmap
1327 * system needs to map virtual memory.
1328 */
1329static void
1330mmu_booke_init(mmu_t mmu)
1331{
1332	int shpgperproc = PMAP_SHPGPERPROC;
1333
1334	/*
1335	 * Initialize the address space (zone) for the pv entries.  Set a
1336	 * high water mark so that the system can recover from excessive
1337	 * numbers of pv entries.
1338	 */
1339	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1340	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1341
1342	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1343	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1344
1345	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1346	pv_entry_high_water = 9 * (pv_entry_max / 10);
1347
1348	uma_zone_reserve_kva(pvzone, pv_entry_max);
1349
1350	/* Pre-fill pvzone with initial number of pv entries. */
1351	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1352
1353	/* Initialize ptbl allocation. */
1354	ptbl_init();
1355}
1356
1357/*
1358 * Map a list of wired pages into kernel virtual address space.  This is
1359 * intended for temporary mappings which do not need page modification or
1360 * references recorded.  Existing mappings in the region are overwritten.
1361 */
1362static void
1363mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1364{
1365	vm_offset_t va;
1366
1367	va = sva;
1368	while (count-- > 0) {
1369		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1370		va += PAGE_SIZE;
1371		m++;
1372	}
1373}
1374
1375/*
1376 * Remove page mappings from kernel virtual address space.  Intended for
1377 * temporary mappings entered by mmu_booke_qenter.
1378 */
1379static void
1380mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1381{
1382	vm_offset_t va;
1383
1384	va = sva;
1385	while (count-- > 0) {
1386		mmu_booke_kremove(mmu, va);
1387		va += PAGE_SIZE;
1388	}
1389}
1390
1391/*
1392 * Map a wired page into kernel virtual address space.
1393 */
1394static void
1395mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1396{
1397	unsigned int pdir_idx = PDIR_IDX(va);
1398	unsigned int ptbl_idx = PTBL_IDX(va);
1399	uint32_t flags;
1400	pte_t *pte;
1401
1402	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1403	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1404
1405	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1406
1407	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1408
1409	mtx_lock_spin(&tlbivax_mutex);
1410	tlb_miss_lock();
1411
1412	if (PTE_ISVALID(pte)) {
1413
1414		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1415
1416		/* Flush entry from TLB0 */
1417		tlb0_flush_entry(va);
1418	}
1419
1420	pte->rpn = pa & ~PTE_PA_MASK;
1421	pte->flags = flags;
1422
1423	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1424	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1425	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1426
1427	/* Flush the real memory from the instruction cache. */
1428	if ((flags & (PTE_I | PTE_G)) == 0) {
1429		__syncicache((void *)va, PAGE_SIZE);
1430	}
1431
1432	tlb_miss_unlock();
1433	mtx_unlock_spin(&tlbivax_mutex);
1434}
1435
1436/*
1437 * Remove a page from kernel page table.
1438 */
1439static void
1440mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1441{
1442	unsigned int pdir_idx = PDIR_IDX(va);
1443	unsigned int ptbl_idx = PTBL_IDX(va);
1444	pte_t *pte;
1445
1446//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1447
1448	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1449	    (va <= VM_MAX_KERNEL_ADDRESS)),
1450	    ("mmu_booke_kremove: invalid va"));
1451
1452	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1453
1454	if (!PTE_ISVALID(pte)) {
1455
1456		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1457
1458		return;
1459	}
1460
1461	mtx_lock_spin(&tlbivax_mutex);
1462	tlb_miss_lock();
1463
1464	/* Invalidate entry in TLB0, update PTE. */
1465	tlb0_flush_entry(va);
1466	pte->flags = 0;
1467	pte->rpn = 0;
1468
1469	tlb_miss_unlock();
1470	mtx_unlock_spin(&tlbivax_mutex);
1471}
1472
1473/*
1474 * Initialize pmap associated with process 0.
1475 */
1476static void
1477mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1478{
1479
1480	mmu_booke_pinit(mmu, pmap);
1481	PCPU_SET(curpmap, pmap);
1482}
1483
1484/*
1485 * Initialize a preallocated and zeroed pmap structure,
1486 * such as one in a vmspace structure.
1487 */
1488static void
1489mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1490{
1491	int i;
1492
1493	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1494	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1495
1496	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1497
1498	PMAP_LOCK_INIT(pmap);
1499	for (i = 0; i < MAXCPU; i++)
1500		pmap->pm_tid[i] = TID_NONE;
1501	CPU_ZERO(&kernel_pmap->pm_active);
1502	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1503	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1504	TAILQ_INIT(&pmap->pm_ptbl_list);
1505}
1506
1507/*
1508 * Release any resources held by the given physical map.
1509 * Called when a pmap initialized by mmu_booke_pinit is being released.
1510 * Should only be called if the map contains no valid mappings.
1511 */
1512static void
1513mmu_booke_release(mmu_t mmu, pmap_t pmap)
1514{
1515
1516	KASSERT(pmap->pm_stats.resident_count == 0,
1517	    ("pmap_release: pmap resident count %ld != 0",
1518	    pmap->pm_stats.resident_count));
1519
1520	PMAP_LOCK_DESTROY(pmap);
1521}
1522
1523/*
1524 * Insert the given physical page at the specified virtual address in the
1525 * target physical map with the protection requested. If specified the page
1526 * will be wired down.
1527 */
1528static void
1529mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1530    vm_prot_t prot, boolean_t wired)
1531{
1532
1533	rw_wlock(&pvh_global_lock);
1534	PMAP_LOCK(pmap);
1535	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1536	rw_wunlock(&pvh_global_lock);
1537	PMAP_UNLOCK(pmap);
1538}
1539
1540static void
1541mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1542    vm_prot_t prot, boolean_t wired)
1543{
1544	pte_t *pte;
1545	vm_paddr_t pa;
1546	uint32_t flags;
1547	int su, sync;
1548
1549	pa = VM_PAGE_TO_PHYS(m);
1550	su = (pmap == kernel_pmap);
1551	sync = 0;
1552
1553	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1554	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1555	//		(u_int32_t)pmap, su, pmap->pm_tid,
1556	//		(u_int32_t)m, va, pa, prot, wired);
1557
1558	if (su) {
1559		KASSERT(((va >= virtual_avail) &&
1560		    (va <= VM_MAX_KERNEL_ADDRESS)),
1561		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1562	} else {
1563		KASSERT((va <= VM_MAXUSER_ADDRESS),
1564		    ("mmu_booke_enter_locked: user pmap, non user va"));
1565	}
1566	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1567		VM_OBJECT_ASSERT_LOCKED(m->object);
1568
1569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570
1571	/*
1572	 * If there is an existing mapping, and the physical address has not
1573	 * changed, must be protection or wiring change.
1574	 */
1575	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1576	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1577
1578		/*
1579		 * Before actually updating pte->flags we calculate and
1580		 * prepare its new value in a helper var.
1581		 */
1582		flags = pte->flags;
1583		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1584
1585		/* Wiring change, just update stats. */
1586		if (wired) {
1587			if (!PTE_ISWIRED(pte)) {
1588				flags |= PTE_WIRED;
1589				pmap->pm_stats.wired_count++;
1590			}
1591		} else {
1592			if (PTE_ISWIRED(pte)) {
1593				flags &= ~PTE_WIRED;
1594				pmap->pm_stats.wired_count--;
1595			}
1596		}
1597
1598		if (prot & VM_PROT_WRITE) {
1599			/* Add write permissions. */
1600			flags |= PTE_SW;
1601			if (!su)
1602				flags |= PTE_UW;
1603
1604			if ((flags & PTE_MANAGED) != 0)
1605				vm_page_aflag_set(m, PGA_WRITEABLE);
1606		} else {
1607			/* Handle modified pages, sense modify status. */
1608
1609			/*
1610			 * The PTE_MODIFIED flag could be set by underlying
1611			 * TLB misses since we last read it (above), possibly
1612			 * other CPUs could update it so we check in the PTE
1613			 * directly rather than rely on that saved local flags
1614			 * copy.
1615			 */
1616			if (PTE_ISMODIFIED(pte))
1617				vm_page_dirty(m);
1618		}
1619
1620		if (prot & VM_PROT_EXECUTE) {
1621			flags |= PTE_SX;
1622			if (!su)
1623				flags |= PTE_UX;
1624
1625			/*
1626			 * Check existing flags for execute permissions: if we
1627			 * are turning execute permissions on, icache should
1628			 * be flushed.
1629			 */
1630			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1631				sync++;
1632		}
1633
1634		flags &= ~PTE_REFERENCED;
1635
1636		/*
1637		 * The new flags value is all calculated -- only now actually
1638		 * update the PTE.
1639		 */
1640		mtx_lock_spin(&tlbivax_mutex);
1641		tlb_miss_lock();
1642
1643		tlb0_flush_entry(va);
1644		pte->flags = flags;
1645
1646		tlb_miss_unlock();
1647		mtx_unlock_spin(&tlbivax_mutex);
1648
1649	} else {
1650		/*
1651		 * If there is an existing mapping, but it's for a different
1652		 * physical address, pte_enter() will delete the old mapping.
1653		 */
1654		//if ((pte != NULL) && PTE_ISVALID(pte))
1655		//	debugf("mmu_booke_enter_locked: replace\n");
1656		//else
1657		//	debugf("mmu_booke_enter_locked: new\n");
1658
1659		/* Now set up the flags and install the new mapping. */
1660		flags = (PTE_SR | PTE_VALID);
1661		flags |= PTE_M;
1662
1663		if (!su)
1664			flags |= PTE_UR;
1665
1666		if (prot & VM_PROT_WRITE) {
1667			flags |= PTE_SW;
1668			if (!su)
1669				flags |= PTE_UW;
1670
1671			if ((m->oflags & VPO_UNMANAGED) == 0)
1672				vm_page_aflag_set(m, PGA_WRITEABLE);
1673		}
1674
1675		if (prot & VM_PROT_EXECUTE) {
1676			flags |= PTE_SX;
1677			if (!su)
1678				flags |= PTE_UX;
1679		}
1680
1681		/* If its wired update stats. */
1682		if (wired) {
1683			pmap->pm_stats.wired_count++;
1684			flags |= PTE_WIRED;
1685		}
1686
1687		pte_enter(mmu, pmap, m, va, flags);
1688
1689		/* Flush the real memory from the instruction cache. */
1690		if (prot & VM_PROT_EXECUTE)
1691			sync++;
1692	}
1693
1694	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1695		__syncicache((void *)va, PAGE_SIZE);
1696		sync = 0;
1697	}
1698}
1699
1700/*
1701 * Maps a sequence of resident pages belonging to the same object.
1702 * The sequence begins with the given page m_start.  This page is
1703 * mapped at the given virtual address start.  Each subsequent page is
1704 * mapped at a virtual address that is offset from start by the same
1705 * amount as the page is offset from m_start within the object.  The
1706 * last page in the sequence is the page with the largest offset from
1707 * m_start that can be mapped at a virtual address less than the given
1708 * virtual address end.  Not every virtual page between start and end
1709 * is mapped; only those for which a resident page exists with the
1710 * corresponding offset from m_start are mapped.
1711 */
1712static void
1713mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1714    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1715{
1716	vm_page_t m;
1717	vm_pindex_t diff, psize;
1718
1719	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1720
1721	psize = atop(end - start);
1722	m = m_start;
1723	rw_wlock(&pvh_global_lock);
1724	PMAP_LOCK(pmap);
1725	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1726		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1727		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1728		m = TAILQ_NEXT(m, listq);
1729	}
1730	rw_wunlock(&pvh_global_lock);
1731	PMAP_UNLOCK(pmap);
1732}
1733
1734static void
1735mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1736    vm_prot_t prot)
1737{
1738
1739	rw_wlock(&pvh_global_lock);
1740	PMAP_LOCK(pmap);
1741	mmu_booke_enter_locked(mmu, pmap, va, m,
1742	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1743	rw_wunlock(&pvh_global_lock);
1744	PMAP_UNLOCK(pmap);
1745}
1746
1747/*
1748 * Remove the given range of addresses from the specified map.
1749 *
1750 * It is assumed that the start and end are properly rounded to the page size.
1751 */
1752static void
1753mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1754{
1755	pte_t *pte;
1756	uint8_t hold_flag;
1757
1758	int su = (pmap == kernel_pmap);
1759
1760	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1761	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1762
1763	if (su) {
1764		KASSERT(((va >= virtual_avail) &&
1765		    (va <= VM_MAX_KERNEL_ADDRESS)),
1766		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1767	} else {
1768		KASSERT((va <= VM_MAXUSER_ADDRESS),
1769		    ("mmu_booke_remove: user pmap, non user va"));
1770	}
1771
1772	if (PMAP_REMOVE_DONE(pmap)) {
1773		//debugf("mmu_booke_remove: e (empty)\n");
1774		return;
1775	}
1776
1777	hold_flag = PTBL_HOLD_FLAG(pmap);
1778	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1779
1780	rw_wlock(&pvh_global_lock);
1781	PMAP_LOCK(pmap);
1782	for (; va < endva; va += PAGE_SIZE) {
1783		pte = pte_find(mmu, pmap, va);
1784		if ((pte != NULL) && PTE_ISVALID(pte))
1785			pte_remove(mmu, pmap, va, hold_flag);
1786	}
1787	PMAP_UNLOCK(pmap);
1788	rw_wunlock(&pvh_global_lock);
1789
1790	//debugf("mmu_booke_remove: e\n");
1791}
1792
1793/*
1794 * Remove physical page from all pmaps in which it resides.
1795 */
1796static void
1797mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1798{
1799	pv_entry_t pv, pvn;
1800	uint8_t hold_flag;
1801
1802	rw_wlock(&pvh_global_lock);
1803	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1804		pvn = TAILQ_NEXT(pv, pv_link);
1805
1806		PMAP_LOCK(pv->pv_pmap);
1807		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1808		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1809		PMAP_UNLOCK(pv->pv_pmap);
1810	}
1811	vm_page_aflag_clear(m, PGA_WRITEABLE);
1812	rw_wunlock(&pvh_global_lock);
1813}
1814
1815/*
1816 * Map a range of physical addresses into kernel virtual address space.
1817 */
1818static vm_offset_t
1819mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1820    vm_paddr_t pa_end, int prot)
1821{
1822	vm_offset_t sva = *virt;
1823	vm_offset_t va = sva;
1824
1825	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1826	//		sva, pa_start, pa_end);
1827
1828	while (pa_start < pa_end) {
1829		mmu_booke_kenter(mmu, va, pa_start);
1830		va += PAGE_SIZE;
1831		pa_start += PAGE_SIZE;
1832	}
1833	*virt = va;
1834
1835	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1836	return (sva);
1837}
1838
1839/*
1840 * The pmap must be activated before it's address space can be accessed in any
1841 * way.
1842 */
1843static void
1844mmu_booke_activate(mmu_t mmu, struct thread *td)
1845{
1846	pmap_t pmap;
1847	u_int cpuid;
1848
1849	pmap = &td->td_proc->p_vmspace->vm_pmap;
1850
1851	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1852	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1853
1854	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1855
1856	mtx_lock_spin(&sched_lock);
1857
1858	cpuid = PCPU_GET(cpuid);
1859	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1860	PCPU_SET(curpmap, pmap);
1861
1862	if (pmap->pm_tid[cpuid] == TID_NONE)
1863		tid_alloc(pmap);
1864
1865	/* Load PID0 register with pmap tid value. */
1866	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1867	__asm __volatile("isync");
1868
1869	mtx_unlock_spin(&sched_lock);
1870
1871	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1872	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1873}
1874
1875/*
1876 * Deactivate the specified process's address space.
1877 */
1878static void
1879mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1880{
1881	pmap_t pmap;
1882
1883	pmap = &td->td_proc->p_vmspace->vm_pmap;
1884
1885	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1886	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1887
1888	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1889	PCPU_SET(curpmap, NULL);
1890}
1891
1892/*
1893 * Copy the range specified by src_addr/len
1894 * from the source map to the range dst_addr/len
1895 * in the destination map.
1896 *
1897 * This routine is only advisory and need not do anything.
1898 */
1899static void
1900mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1901    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1902{
1903
1904}
1905
1906/*
1907 * Set the physical protection on the specified range of this map as requested.
1908 */
1909static void
1910mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1911    vm_prot_t prot)
1912{
1913	vm_offset_t va;
1914	vm_page_t m;
1915	pte_t *pte;
1916
1917	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1918		mmu_booke_remove(mmu, pmap, sva, eva);
1919		return;
1920	}
1921
1922	if (prot & VM_PROT_WRITE)
1923		return;
1924
1925	PMAP_LOCK(pmap);
1926	for (va = sva; va < eva; va += PAGE_SIZE) {
1927		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1928			if (PTE_ISVALID(pte)) {
1929				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1930
1931				mtx_lock_spin(&tlbivax_mutex);
1932				tlb_miss_lock();
1933
1934				/* Handle modified pages. */
1935				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1936					vm_page_dirty(m);
1937
1938				tlb0_flush_entry(va);
1939				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1940
1941				tlb_miss_unlock();
1942				mtx_unlock_spin(&tlbivax_mutex);
1943			}
1944		}
1945	}
1946	PMAP_UNLOCK(pmap);
1947}
1948
1949/*
1950 * Clear the write and modified bits in each of the given page's mappings.
1951 */
1952static void
1953mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1954{
1955	pv_entry_t pv;
1956	pte_t *pte;
1957
1958	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1959	    ("mmu_booke_remove_write: page %p is not managed", m));
1960
1961	/*
1962	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1963	 * set by another thread while the object is locked.  Thus,
1964	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1965	 */
1966	VM_OBJECT_ASSERT_WLOCKED(m->object);
1967	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1968		return;
1969	rw_wlock(&pvh_global_lock);
1970	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1971		PMAP_LOCK(pv->pv_pmap);
1972		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1973			if (PTE_ISVALID(pte)) {
1974				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1975
1976				mtx_lock_spin(&tlbivax_mutex);
1977				tlb_miss_lock();
1978
1979				/* Handle modified pages. */
1980				if (PTE_ISMODIFIED(pte))
1981					vm_page_dirty(m);
1982
1983				/* Flush mapping from TLB0. */
1984				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1985
1986				tlb_miss_unlock();
1987				mtx_unlock_spin(&tlbivax_mutex);
1988			}
1989		}
1990		PMAP_UNLOCK(pv->pv_pmap);
1991	}
1992	vm_page_aflag_clear(m, PGA_WRITEABLE);
1993	rw_wunlock(&pvh_global_lock);
1994}
1995
1996static void
1997mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1998{
1999	pte_t *pte;
2000	pmap_t pmap;
2001	vm_page_t m;
2002	vm_offset_t addr;
2003	vm_paddr_t pa;
2004	int active, valid;
2005
2006	va = trunc_page(va);
2007	sz = round_page(sz);
2008
2009	rw_wlock(&pvh_global_lock);
2010	pmap = PCPU_GET(curpmap);
2011	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2012	while (sz > 0) {
2013		PMAP_LOCK(pm);
2014		pte = pte_find(mmu, pm, va);
2015		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2016		if (valid)
2017			pa = PTE_PA(pte);
2018		PMAP_UNLOCK(pm);
2019		if (valid) {
2020			if (!active) {
2021				/* Create a mapping in the active pmap. */
2022				addr = 0;
2023				m = PHYS_TO_VM_PAGE(pa);
2024				PMAP_LOCK(pmap);
2025				pte_enter(mmu, pmap, m, addr,
2026				    PTE_SR | PTE_VALID | PTE_UR);
2027				__syncicache((void *)addr, PAGE_SIZE);
2028				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2029				PMAP_UNLOCK(pmap);
2030			} else
2031				__syncicache((void *)va, PAGE_SIZE);
2032		}
2033		va += PAGE_SIZE;
2034		sz -= PAGE_SIZE;
2035	}
2036	rw_wunlock(&pvh_global_lock);
2037}
2038
2039/*
2040 * Atomically extract and hold the physical page with the given
2041 * pmap and virtual address pair if that mapping permits the given
2042 * protection.
2043 */
2044static vm_page_t
2045mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2046    vm_prot_t prot)
2047{
2048	pte_t *pte;
2049	vm_page_t m;
2050	uint32_t pte_wbit;
2051	vm_paddr_t pa;
2052
2053	m = NULL;
2054	pa = 0;
2055	PMAP_LOCK(pmap);
2056retry:
2057	pte = pte_find(mmu, pmap, va);
2058	if ((pte != NULL) && PTE_ISVALID(pte)) {
2059		if (pmap == kernel_pmap)
2060			pte_wbit = PTE_SW;
2061		else
2062			pte_wbit = PTE_UW;
2063
2064		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2065			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2066				goto retry;
2067			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2068			vm_page_hold(m);
2069		}
2070	}
2071
2072	PA_UNLOCK_COND(pa);
2073	PMAP_UNLOCK(pmap);
2074	return (m);
2075}
2076
2077/*
2078 * Initialize a vm_page's machine-dependent fields.
2079 */
2080static void
2081mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2082{
2083
2084	TAILQ_INIT(&m->md.pv_list);
2085}
2086
2087/*
2088 * mmu_booke_zero_page_area zeros the specified hardware page by
2089 * mapping it into virtual memory and using bzero to clear
2090 * its contents.
2091 *
2092 * off and size must reside within a single page.
2093 */
2094static void
2095mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2096{
2097	vm_offset_t va;
2098
2099	/* XXX KASSERT off and size are within a single page? */
2100
2101	mtx_lock(&zero_page_mutex);
2102	va = zero_page_va;
2103
2104	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2105	bzero((caddr_t)va + off, size);
2106	mmu_booke_kremove(mmu, va);
2107
2108	mtx_unlock(&zero_page_mutex);
2109}
2110
2111/*
2112 * mmu_booke_zero_page zeros the specified hardware page.
2113 */
2114static void
2115mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2116{
2117
2118	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2119}
2120
2121/*
2122 * mmu_booke_copy_page copies the specified (machine independent) page by
2123 * mapping the page into virtual memory and using memcopy to copy the page,
2124 * one machine dependent page at a time.
2125 */
2126static void
2127mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2128{
2129	vm_offset_t sva, dva;
2130
2131	sva = copy_page_src_va;
2132	dva = copy_page_dst_va;
2133
2134	mtx_lock(&copy_page_mutex);
2135	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2136	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2137	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2138	mmu_booke_kremove(mmu, dva);
2139	mmu_booke_kremove(mmu, sva);
2140	mtx_unlock(&copy_page_mutex);
2141}
2142
2143static inline void
2144mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2145    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2146{
2147	void *a_cp, *b_cp;
2148	vm_offset_t a_pg_offset, b_pg_offset;
2149	int cnt;
2150
2151	mtx_lock(&copy_page_mutex);
2152	while (xfersize > 0) {
2153		a_pg_offset = a_offset & PAGE_MASK;
2154		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2155		mmu_booke_kenter(mmu, copy_page_src_va,
2156		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2157		a_cp = (char *)copy_page_src_va + a_pg_offset;
2158		b_pg_offset = b_offset & PAGE_MASK;
2159		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2160		mmu_booke_kenter(mmu, copy_page_dst_va,
2161		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2162		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2163		bcopy(a_cp, b_cp, cnt);
2164		mmu_booke_kremove(mmu, copy_page_dst_va);
2165		mmu_booke_kremove(mmu, copy_page_src_va);
2166		a_offset += cnt;
2167		b_offset += cnt;
2168		xfersize -= cnt;
2169	}
2170	mtx_unlock(&copy_page_mutex);
2171}
2172
2173/*
2174 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2175 * into virtual memory and using bzero to clear its contents. This is intended
2176 * to be called from the vm_pagezero process only and outside of Giant. No
2177 * lock is required.
2178 */
2179static void
2180mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2181{
2182	vm_offset_t va;
2183
2184	va = zero_page_idle_va;
2185	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2186	bzero((caddr_t)va, PAGE_SIZE);
2187	mmu_booke_kremove(mmu, va);
2188}
2189
2190/*
2191 * Return whether or not the specified physical page was modified
2192 * in any of physical maps.
2193 */
2194static boolean_t
2195mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2196{
2197	pte_t *pte;
2198	pv_entry_t pv;
2199	boolean_t rv;
2200
2201	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2202	    ("mmu_booke_is_modified: page %p is not managed", m));
2203	rv = FALSE;
2204
2205	/*
2206	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2207	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2208	 * is clear, no PTEs can be modified.
2209	 */
2210	VM_OBJECT_ASSERT_WLOCKED(m->object);
2211	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2212		return (rv);
2213	rw_wlock(&pvh_global_lock);
2214	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2215		PMAP_LOCK(pv->pv_pmap);
2216		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2217		    PTE_ISVALID(pte)) {
2218			if (PTE_ISMODIFIED(pte))
2219				rv = TRUE;
2220		}
2221		PMAP_UNLOCK(pv->pv_pmap);
2222		if (rv)
2223			break;
2224	}
2225	rw_wunlock(&pvh_global_lock);
2226	return (rv);
2227}
2228
2229/*
2230 * Return whether or not the specified virtual address is eligible
2231 * for prefault.
2232 */
2233static boolean_t
2234mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2235{
2236
2237	return (FALSE);
2238}
2239
2240/*
2241 * Return whether or not the specified physical page was referenced
2242 * in any physical maps.
2243 */
2244static boolean_t
2245mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2246{
2247	pte_t *pte;
2248	pv_entry_t pv;
2249	boolean_t rv;
2250
2251	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2252	    ("mmu_booke_is_referenced: page %p is not managed", m));
2253	rv = FALSE;
2254	rw_wlock(&pvh_global_lock);
2255	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2256		PMAP_LOCK(pv->pv_pmap);
2257		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2258		    PTE_ISVALID(pte)) {
2259			if (PTE_ISREFERENCED(pte))
2260				rv = TRUE;
2261		}
2262		PMAP_UNLOCK(pv->pv_pmap);
2263		if (rv)
2264			break;
2265	}
2266	rw_wunlock(&pvh_global_lock);
2267	return (rv);
2268}
2269
2270/*
2271 * Clear the modify bits on the specified physical page.
2272 */
2273static void
2274mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2275{
2276	pte_t *pte;
2277	pv_entry_t pv;
2278
2279	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2280	    ("mmu_booke_clear_modify: page %p is not managed", m));
2281	VM_OBJECT_ASSERT_WLOCKED(m->object);
2282	KASSERT(!vm_page_xbusied(m),
2283	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2284
2285	/*
2286	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2287	 * If the object containing the page is locked and the page is not
2288	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2289	 */
2290	if ((m->aflags & PGA_WRITEABLE) == 0)
2291		return;
2292	rw_wlock(&pvh_global_lock);
2293	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2294		PMAP_LOCK(pv->pv_pmap);
2295		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2296		    PTE_ISVALID(pte)) {
2297			mtx_lock_spin(&tlbivax_mutex);
2298			tlb_miss_lock();
2299
2300			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2301				tlb0_flush_entry(pv->pv_va);
2302				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2303				    PTE_REFERENCED);
2304			}
2305
2306			tlb_miss_unlock();
2307			mtx_unlock_spin(&tlbivax_mutex);
2308		}
2309		PMAP_UNLOCK(pv->pv_pmap);
2310	}
2311	rw_wunlock(&pvh_global_lock);
2312}
2313
2314/*
2315 * Return a count of reference bits for a page, clearing those bits.
2316 * It is not necessary for every reference bit to be cleared, but it
2317 * is necessary that 0 only be returned when there are truly no
2318 * reference bits set.
2319 *
2320 * XXX: The exact number of bits to check and clear is a matter that
2321 * should be tested and standardized at some point in the future for
2322 * optimal aging of shared pages.
2323 */
2324static int
2325mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2326{
2327	pte_t *pte;
2328	pv_entry_t pv;
2329	int count;
2330
2331	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2332	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2333	count = 0;
2334	rw_wlock(&pvh_global_lock);
2335	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2336		PMAP_LOCK(pv->pv_pmap);
2337		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2338		    PTE_ISVALID(pte)) {
2339			if (PTE_ISREFERENCED(pte)) {
2340				mtx_lock_spin(&tlbivax_mutex);
2341				tlb_miss_lock();
2342
2343				tlb0_flush_entry(pv->pv_va);
2344				pte->flags &= ~PTE_REFERENCED;
2345
2346				tlb_miss_unlock();
2347				mtx_unlock_spin(&tlbivax_mutex);
2348
2349				if (++count > 4) {
2350					PMAP_UNLOCK(pv->pv_pmap);
2351					break;
2352				}
2353			}
2354		}
2355		PMAP_UNLOCK(pv->pv_pmap);
2356	}
2357	rw_wunlock(&pvh_global_lock);
2358	return (count);
2359}
2360
2361/*
2362 * Clear the reference bit on the specified physical page.
2363 */
2364static void
2365mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2366{
2367	pte_t *pte;
2368	pv_entry_t pv;
2369
2370	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2371	    ("mmu_booke_clear_reference: page %p is not managed", m));
2372	rw_wlock(&pvh_global_lock);
2373	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2374		PMAP_LOCK(pv->pv_pmap);
2375		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2376		    PTE_ISVALID(pte)) {
2377			if (PTE_ISREFERENCED(pte)) {
2378				mtx_lock_spin(&tlbivax_mutex);
2379				tlb_miss_lock();
2380
2381				tlb0_flush_entry(pv->pv_va);
2382				pte->flags &= ~PTE_REFERENCED;
2383
2384				tlb_miss_unlock();
2385				mtx_unlock_spin(&tlbivax_mutex);
2386			}
2387		}
2388		PMAP_UNLOCK(pv->pv_pmap);
2389	}
2390	rw_wunlock(&pvh_global_lock);
2391}
2392
2393/*
2394 * Change wiring attribute for a map/virtual-address pair.
2395 */
2396static void
2397mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2398{
2399	pte_t *pte;
2400
2401	PMAP_LOCK(pmap);
2402	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2403		if (wired) {
2404			if (!PTE_ISWIRED(pte)) {
2405				pte->flags |= PTE_WIRED;
2406				pmap->pm_stats.wired_count++;
2407			}
2408		} else {
2409			if (PTE_ISWIRED(pte)) {
2410				pte->flags &= ~PTE_WIRED;
2411				pmap->pm_stats.wired_count--;
2412			}
2413		}
2414	}
2415	PMAP_UNLOCK(pmap);
2416}
2417
2418/*
2419 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2420 * page.  This count may be changed upwards or downwards in the future; it is
2421 * only necessary that true be returned for a small subset of pmaps for proper
2422 * page aging.
2423 */
2424static boolean_t
2425mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2426{
2427	pv_entry_t pv;
2428	int loops;
2429	boolean_t rv;
2430
2431	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2432	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2433	loops = 0;
2434	rv = FALSE;
2435	rw_wlock(&pvh_global_lock);
2436	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2437		if (pv->pv_pmap == pmap) {
2438			rv = TRUE;
2439			break;
2440		}
2441		if (++loops >= 16)
2442			break;
2443	}
2444	rw_wunlock(&pvh_global_lock);
2445	return (rv);
2446}
2447
2448/*
2449 * Return the number of managed mappings to the given physical page that are
2450 * wired.
2451 */
2452static int
2453mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2454{
2455	pv_entry_t pv;
2456	pte_t *pte;
2457	int count = 0;
2458
2459	if ((m->oflags & VPO_UNMANAGED) != 0)
2460		return (count);
2461	rw_wlock(&pvh_global_lock);
2462	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2463		PMAP_LOCK(pv->pv_pmap);
2464		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2465			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2466				count++;
2467		PMAP_UNLOCK(pv->pv_pmap);
2468	}
2469	rw_wunlock(&pvh_global_lock);
2470	return (count);
2471}
2472
2473static int
2474mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2475{
2476	int i;
2477	vm_offset_t va;
2478
2479	/*
2480	 * This currently does not work for entries that
2481	 * overlap TLB1 entries.
2482	 */
2483	for (i = 0; i < tlb1_idx; i ++) {
2484		if (tlb1_iomapped(i, pa, size, &va) == 0)
2485			return (0);
2486	}
2487
2488	return (EFAULT);
2489}
2490
2491vm_offset_t
2492mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2493    vm_size_t *sz)
2494{
2495	vm_paddr_t pa, ppa;
2496	vm_offset_t va;
2497	vm_size_t gran;
2498
2499	/* Raw physical memory dumps don't have a virtual address. */
2500	if (md->md_vaddr == ~0UL) {
2501		/* We always map a 256MB page at 256M. */
2502		gran = 256 * 1024 * 1024;
2503		pa = md->md_paddr + ofs;
2504		ppa = pa & ~(gran - 1);
2505		ofs = pa - ppa;
2506		va = gran;
2507		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2508		if (*sz > (gran - ofs))
2509			*sz = gran - ofs;
2510		return (va + ofs);
2511	}
2512
2513	/* Minidumps are based on virtual memory addresses. */
2514	va = md->md_vaddr + ofs;
2515	if (va >= kernstart + kernsize) {
2516		gran = PAGE_SIZE - (va & PAGE_MASK);
2517		if (*sz > gran)
2518			*sz = gran;
2519	}
2520	return (va);
2521}
2522
2523void
2524mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2525    vm_offset_t va)
2526{
2527
2528	/* Raw physical memory dumps don't have a virtual address. */
2529	if (md->md_vaddr == ~0UL) {
2530		tlb1_idx--;
2531		tlb1[tlb1_idx].mas1 = 0;
2532		tlb1[tlb1_idx].mas2 = 0;
2533		tlb1[tlb1_idx].mas3 = 0;
2534		tlb1_write_entry(tlb1_idx);
2535		return;
2536	}
2537
2538	/* Minidumps are based on virtual memory addresses. */
2539	/* Nothing to do... */
2540}
2541
2542struct pmap_md *
2543mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2544{
2545	static struct pmap_md md;
2546	pte_t *pte;
2547	vm_offset_t va;
2548
2549	if (dumpsys_minidump) {
2550		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2551		if (prev == NULL) {
2552			/* 1st: kernel .data and .bss. */
2553			md.md_index = 1;
2554			md.md_vaddr = trunc_page((uintptr_t)_etext);
2555			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2556			return (&md);
2557		}
2558		switch (prev->md_index) {
2559		case 1:
2560			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2561			md.md_index = 2;
2562			md.md_vaddr = data_start;
2563			md.md_size = data_end - data_start;
2564			break;
2565		case 2:
2566			/* 3rd: kernel VM. */
2567			va = prev->md_vaddr + prev->md_size;
2568			/* Find start of next chunk (from va). */
2569			while (va < virtual_end) {
2570				/* Don't dump the buffer cache. */
2571				if (va >= kmi.buffer_sva &&
2572				    va < kmi.buffer_eva) {
2573					va = kmi.buffer_eva;
2574					continue;
2575				}
2576				pte = pte_find(mmu, kernel_pmap, va);
2577				if (pte != NULL && PTE_ISVALID(pte))
2578					break;
2579				va += PAGE_SIZE;
2580			}
2581			if (va < virtual_end) {
2582				md.md_vaddr = va;
2583				va += PAGE_SIZE;
2584				/* Find last page in chunk. */
2585				while (va < virtual_end) {
2586					/* Don't run into the buffer cache. */
2587					if (va == kmi.buffer_sva)
2588						break;
2589					pte = pte_find(mmu, kernel_pmap, va);
2590					if (pte == NULL || !PTE_ISVALID(pte))
2591						break;
2592					va += PAGE_SIZE;
2593				}
2594				md.md_size = va - md.md_vaddr;
2595				break;
2596			}
2597			md.md_index = 3;
2598			/* FALLTHROUGH */
2599		default:
2600			return (NULL);
2601		}
2602	} else { /* minidumps */
2603		mem_regions(&physmem_regions, &physmem_regions_sz,
2604		    &availmem_regions, &availmem_regions_sz);
2605
2606		if (prev == NULL) {
2607			/* first physical chunk. */
2608			md.md_paddr = physmem_regions[0].mr_start;
2609			md.md_size = physmem_regions[0].mr_size;
2610			md.md_vaddr = ~0UL;
2611			md.md_index = 1;
2612		} else if (md.md_index < physmem_regions_sz) {
2613			md.md_paddr = physmem_regions[md.md_index].mr_start;
2614			md.md_size = physmem_regions[md.md_index].mr_size;
2615			md.md_vaddr = ~0UL;
2616			md.md_index++;
2617		} else {
2618			/* There's no next physical chunk. */
2619			return (NULL);
2620		}
2621	}
2622
2623	return (&md);
2624}
2625
2626/*
2627 * Map a set of physical memory pages into the kernel virtual address space.
2628 * Return a pointer to where it is mapped. This routine is intended to be used
2629 * for mapping device memory, NOT real memory.
2630 */
2631static void *
2632mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2633{
2634	void *res;
2635	uintptr_t va;
2636	vm_size_t sz;
2637
2638	/*
2639	 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2640	 * we don't wrap around. Devices on the local bus typically extend all
2641	 * the way up to and including 0xffffffff. In that case (pa + size)
2642	 * would be 0. This creates a false positive (i.e. we think it's
2643	 * within the CCSR) and not create a mapping.
2644	 */
2645	if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2646		va = CCSRBAR_VA + (pa - ccsrbar_pa);
2647		return ((void *)va);
2648	}
2649
2650	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2651	res = (void *)va;
2652
2653	do {
2654		sz = 1 << (ilog2(size) & ~1);
2655		if (bootverbose)
2656			printf("Wiring VA=%x to PA=%x (size=%x), "
2657			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2658		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2659		size -= sz;
2660		pa += sz;
2661		va += sz;
2662	} while (size > 0);
2663
2664	return (res);
2665}
2666
2667/*
2668 * 'Unmap' a range mapped by mmu_booke_mapdev().
2669 */
2670static void
2671mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2672{
2673	vm_offset_t base, offset;
2674
2675	/*
2676	 * Unmap only if this is inside kernel virtual space.
2677	 */
2678	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2679		base = trunc_page(va);
2680		offset = va & PAGE_MASK;
2681		size = roundup(offset + size, PAGE_SIZE);
2682		kva_free(base, size);
2683	}
2684}
2685
2686/*
2687 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2688 * specified pmap. This eliminates the blast of soft faults on process startup
2689 * and immediately after an mmap.
2690 */
2691static void
2692mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2693    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2694{
2695
2696	VM_OBJECT_ASSERT_WLOCKED(object);
2697	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2698	    ("mmu_booke_object_init_pt: non-device object"));
2699}
2700
2701/*
2702 * Perform the pmap work for mincore.
2703 */
2704static int
2705mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2706    vm_paddr_t *locked_pa)
2707{
2708
2709	TODO;
2710	return (0);
2711}
2712
2713/**************************************************************************/
2714/* TID handling */
2715/**************************************************************************/
2716
2717/*
2718 * Allocate a TID. If necessary, steal one from someone else.
2719 * The new TID is flushed from the TLB before returning.
2720 */
2721static tlbtid_t
2722tid_alloc(pmap_t pmap)
2723{
2724	tlbtid_t tid;
2725	int thiscpu;
2726
2727	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2728
2729	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2730
2731	thiscpu = PCPU_GET(cpuid);
2732
2733	tid = PCPU_GET(tid_next);
2734	if (tid > TID_MAX)
2735		tid = TID_MIN;
2736	PCPU_SET(tid_next, tid + 1);
2737
2738	/* If we are stealing TID then clear the relevant pmap's field */
2739	if (tidbusy[thiscpu][tid] != NULL) {
2740
2741		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2742
2743		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2744
2745		/* Flush all entries from TLB0 matching this TID. */
2746		tid_flush(tid);
2747	}
2748
2749	tidbusy[thiscpu][tid] = pmap;
2750	pmap->pm_tid[thiscpu] = tid;
2751	__asm __volatile("msync; isync");
2752
2753	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2754	    PCPU_GET(tid_next));
2755
2756	return (tid);
2757}
2758
2759/**************************************************************************/
2760/* TLB0 handling */
2761/**************************************************************************/
2762
2763static void
2764tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2765    uint32_t mas7)
2766{
2767	int as;
2768	char desc[3];
2769	tlbtid_t tid;
2770	vm_size_t size;
2771	unsigned int tsize;
2772
2773	desc[2] = '\0';
2774	if (mas1 & MAS1_VALID)
2775		desc[0] = 'V';
2776	else
2777		desc[0] = ' ';
2778
2779	if (mas1 & MAS1_IPROT)
2780		desc[1] = 'P';
2781	else
2782		desc[1] = ' ';
2783
2784	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2785	tid = MAS1_GETTID(mas1);
2786
2787	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2788	size = 0;
2789	if (tsize)
2790		size = tsize2size(tsize);
2791
2792	debugf("%3d: (%s) [AS=%d] "
2793	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2794	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2795	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2796}
2797
2798/* Convert TLB0 va and way number to tlb0[] table index. */
2799static inline unsigned int
2800tlb0_tableidx(vm_offset_t va, unsigned int way)
2801{
2802	unsigned int idx;
2803
2804	idx = (way * TLB0_ENTRIES_PER_WAY);
2805	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2806	return (idx);
2807}
2808
2809/*
2810 * Invalidate TLB0 entry.
2811 */
2812static inline void
2813tlb0_flush_entry(vm_offset_t va)
2814{
2815
2816	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2817
2818	mtx_assert(&tlbivax_mutex, MA_OWNED);
2819
2820	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2821	__asm __volatile("isync; msync");
2822	__asm __volatile("tlbsync; msync");
2823
2824	CTR1(KTR_PMAP, "%s: e", __func__);
2825}
2826
2827/* Print out contents of the MAS registers for each TLB0 entry */
2828void
2829tlb0_print_tlbentries(void)
2830{
2831	uint32_t mas0, mas1, mas2, mas3, mas7;
2832	int entryidx, way, idx;
2833
2834	debugf("TLB0 entries:\n");
2835	for (way = 0; way < TLB0_WAYS; way ++)
2836		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2837
2838			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2839			mtspr(SPR_MAS0, mas0);
2840			__asm __volatile("isync");
2841
2842			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2843			mtspr(SPR_MAS2, mas2);
2844
2845			__asm __volatile("isync; tlbre");
2846
2847			mas1 = mfspr(SPR_MAS1);
2848			mas2 = mfspr(SPR_MAS2);
2849			mas3 = mfspr(SPR_MAS3);
2850			mas7 = mfspr(SPR_MAS7);
2851
2852			idx = tlb0_tableidx(mas2, way);
2853			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2854		}
2855}
2856
2857/**************************************************************************/
2858/* TLB1 handling */
2859/**************************************************************************/
2860
2861/*
2862 * TLB1 mapping notes:
2863 *
2864 * TLB1[0]	CCSRBAR
2865 * TLB1[1]	Kernel text and data.
2866 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2867 *		windows, other devices mappings.
2868 */
2869
2870/*
2871 * Write given entry to TLB1 hardware.
2872 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2873 */
2874static void
2875tlb1_write_entry(unsigned int idx)
2876{
2877	uint32_t mas0, mas7;
2878
2879	//debugf("tlb1_write_entry: s\n");
2880
2881	/* Clear high order RPN bits */
2882	mas7 = 0;
2883
2884	/* Select entry */
2885	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2886	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2887
2888	mtspr(SPR_MAS0, mas0);
2889	__asm __volatile("isync");
2890	mtspr(SPR_MAS1, tlb1[idx].mas1);
2891	__asm __volatile("isync");
2892	mtspr(SPR_MAS2, tlb1[idx].mas2);
2893	__asm __volatile("isync");
2894	mtspr(SPR_MAS3, tlb1[idx].mas3);
2895	__asm __volatile("isync");
2896	mtspr(SPR_MAS7, mas7);
2897	__asm __volatile("isync; tlbwe; isync; msync");
2898
2899	//debugf("tlb1_write_entry: e\n");
2900}
2901
2902/*
2903 * Return the largest uint value log such that 2^log <= num.
2904 */
2905static unsigned int
2906ilog2(unsigned int num)
2907{
2908	int lz;
2909
2910	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2911	return (31 - lz);
2912}
2913
2914/*
2915 * Convert TLB TSIZE value to mapped region size.
2916 */
2917static vm_size_t
2918tsize2size(unsigned int tsize)
2919{
2920
2921	/*
2922	 * size = 4^tsize KB
2923	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2924	 */
2925
2926	return ((1 << (2 * tsize)) * 1024);
2927}
2928
2929/*
2930 * Convert region size (must be power of 4) to TLB TSIZE value.
2931 */
2932static unsigned int
2933size2tsize(vm_size_t size)
2934{
2935
2936	return (ilog2(size) / 2 - 5);
2937}
2938
2939/*
2940 * Register permanent kernel mapping in TLB1.
2941 *
2942 * Entries are created starting from index 0 (current free entry is
2943 * kept in tlb1_idx) and are not supposed to be invalidated.
2944 */
2945static int
2946tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2947    uint32_t flags)
2948{
2949	uint32_t ts, tid;
2950	int tsize;
2951
2952	if (tlb1_idx >= TLB1_ENTRIES) {
2953		printf("tlb1_set_entry: TLB1 full!\n");
2954		return (-1);
2955	}
2956
2957	/* Convert size to TSIZE */
2958	tsize = size2tsize(size);
2959
2960	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2961	/* XXX TS is hard coded to 0 for now as we only use single address space */
2962	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2963
2964	/* XXX LOCK tlb1[] */
2965
2966	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2967	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2968	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2969
2970	/* Set supervisor RWX permission bits */
2971	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2972
2973	tlb1_write_entry(tlb1_idx++);
2974
2975	/* XXX UNLOCK tlb1[] */
2976
2977	/*
2978	 * XXX in general TLB1 updates should be propagated between CPUs,
2979	 * since current design assumes to have the same TLB1 set-up on all
2980	 * cores.
2981	 */
2982	return (0);
2983}
2984
2985/*
2986 * Map in contiguous RAM region into the TLB1 using maximum of
2987 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2988 *
2989 * If necessary round up last entry size and return total size
2990 * used by all allocated entries.
2991 */
2992vm_size_t
2993tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2994{
2995	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2996	vm_size_t mapped, pgsz, base, mask;
2997	int idx, nents;
2998
2999	/* Round up to the next 1M */
3000	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3001
3002	mapped = 0;
3003	idx = 0;
3004	base = va;
3005	pgsz = 64*1024*1024;
3006	while (mapped < size) {
3007		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3008			while (pgsz > (size - mapped))
3009				pgsz >>= 2;
3010			pgs[idx++] = pgsz;
3011			mapped += pgsz;
3012		}
3013
3014		/* We under-map. Correct for this. */
3015		if (mapped < size) {
3016			while (pgs[idx - 1] == pgsz) {
3017				idx--;
3018				mapped -= pgsz;
3019			}
3020			/* XXX We may increase beyond out starting point. */
3021			pgsz <<= 2;
3022			pgs[idx++] = pgsz;
3023			mapped += pgsz;
3024		}
3025	}
3026
3027	nents = idx;
3028	mask = pgs[0] - 1;
3029	/* Align address to the boundary */
3030	if (va & mask) {
3031		va = (va + mask) & ~mask;
3032		pa = (pa + mask) & ~mask;
3033	}
3034
3035	for (idx = 0; idx < nents; idx++) {
3036		pgsz = pgs[idx];
3037		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3038		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3039		pa += pgsz;
3040		va += pgsz;
3041	}
3042
3043	mapped = (va - base);
3044	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3045	    mapped, mapped - size);
3046	return (mapped);
3047}
3048
3049/*
3050 * TLB1 initialization routine, to be called after the very first
3051 * assembler level setup done in locore.S.
3052 */
3053void
3054tlb1_init(vm_offset_t ccsrbar)
3055{
3056	uint32_t mas0, mas1, mas3;
3057	uint32_t tsz;
3058	u_int i;
3059
3060	ccsrbar_pa = ccsrbar;
3061
3062	if (bootinfo != NULL && bootinfo[0] != 1) {
3063		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3064	} else
3065		tlb1_idx = 1;
3066
3067	/* The first entry/entries are used to map the kernel. */
3068	for (i = 0; i < tlb1_idx; i++) {
3069		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3070		mtspr(SPR_MAS0, mas0);
3071		__asm __volatile("isync; tlbre");
3072
3073		mas1 = mfspr(SPR_MAS1);
3074		if ((mas1 & MAS1_VALID) == 0)
3075			continue;
3076
3077		mas3 = mfspr(SPR_MAS3);
3078
3079		tlb1[i].mas1 = mas1;
3080		tlb1[i].mas2 = mfspr(SPR_MAS2);
3081		tlb1[i].mas3 = mas3;
3082
3083		if (i == 0)
3084			kernload = mas3 & MAS3_RPN;
3085
3086		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3087		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3088	}
3089
3090	/* Map in CCSRBAR. */
3091	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3092
3093#ifdef SMP
3094	bp_ntlb1s = tlb1_idx;
3095#endif
3096
3097	/* Purge the remaining entries */
3098	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3099		tlb1_write_entry(i);
3100
3101	/* Setup TLB miss defaults */
3102	set_mas4_defaults();
3103}
3104
3105/*
3106 * Setup MAS4 defaults.
3107 * These values are loaded to MAS0-2 on a TLB miss.
3108 */
3109static void
3110set_mas4_defaults(void)
3111{
3112	uint32_t mas4;
3113
3114	/* Defaults: TLB0, PID0, TSIZED=4K */
3115	mas4 = MAS4_TLBSELD0;
3116	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3117#ifdef SMP
3118	mas4 |= MAS4_MD;
3119#endif
3120	mtspr(SPR_MAS4, mas4);
3121	__asm __volatile("isync");
3122}
3123
3124/*
3125 * Print out contents of the MAS registers for each TLB1 entry
3126 */
3127void
3128tlb1_print_tlbentries(void)
3129{
3130	uint32_t mas0, mas1, mas2, mas3, mas7;
3131	int i;
3132
3133	debugf("TLB1 entries:\n");
3134	for (i = 0; i < TLB1_ENTRIES; i++) {
3135
3136		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3137		mtspr(SPR_MAS0, mas0);
3138
3139		__asm __volatile("isync; tlbre");
3140
3141		mas1 = mfspr(SPR_MAS1);
3142		mas2 = mfspr(SPR_MAS2);
3143		mas3 = mfspr(SPR_MAS3);
3144		mas7 = mfspr(SPR_MAS7);
3145
3146		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3147	}
3148}
3149
3150/*
3151 * Print out contents of the in-ram tlb1 table.
3152 */
3153void
3154tlb1_print_entries(void)
3155{
3156	int i;
3157
3158	debugf("tlb1[] table entries:\n");
3159	for (i = 0; i < TLB1_ENTRIES; i++)
3160		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3161}
3162
3163/*
3164 * Return 0 if the physical IO range is encompassed by one of the
3165 * the TLB1 entries, otherwise return related error code.
3166 */
3167static int
3168tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3169{
3170	uint32_t prot;
3171	vm_paddr_t pa_start;
3172	vm_paddr_t pa_end;
3173	unsigned int entry_tsize;
3174	vm_size_t entry_size;
3175
3176	*va = (vm_offset_t)NULL;
3177
3178	/* Skip invalid entries */
3179	if (!(tlb1[i].mas1 & MAS1_VALID))
3180		return (EINVAL);
3181
3182	/*
3183	 * The entry must be cache-inhibited, guarded, and r/w
3184	 * so it can function as an i/o page
3185	 */
3186	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3187	if (prot != (MAS2_I | MAS2_G))
3188		return (EPERM);
3189
3190	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3191	if (prot != (MAS3_SR | MAS3_SW))
3192		return (EPERM);
3193
3194	/* The address should be within the entry range. */
3195	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3196	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3197
3198	entry_size = tsize2size(entry_tsize);
3199	pa_start = tlb1[i].mas3 & MAS3_RPN;
3200	pa_end = pa_start + entry_size - 1;
3201
3202	if ((pa < pa_start) || ((pa + size) > pa_end))
3203		return (ERANGE);
3204
3205	/* Return virtual address of this mapping. */
3206	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3207	return (0);
3208}
3209