pmap.c revision 247360
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 247360 2013-02-26 23:35:27Z attilio $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t ccsrbar_pa;
117vm_paddr_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153    vm_prot_t, boolean_t);
154
155unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES		(tlb0_entries)
183#define TLB0_WAYS		(tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC	200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS		(128 * 16)
250
251struct ptbl_buf {
252	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253	vm_offset_t kva;		/* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
274static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275    vm_size_t, vm_offset_t);
276static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278    vm_prot_t, boolean_t);
279static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280    vm_page_t, vm_prot_t);
281static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282    vm_prot_t);
283static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285    vm_prot_t);
286static void		mmu_booke_init(mmu_t);
287static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
288static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
290static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
291static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292    int);
293static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294    vm_paddr_t *);
295static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296    vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void		mmu_booke_page_init(mmu_t, vm_page_t);
299static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void		mmu_booke_pinit(mmu_t, pmap_t);
301static void		mmu_booke_pinit0(mmu_t, pmap_t);
302static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303    vm_prot_t);
304static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void		mmu_booke_release(mmu_t, pmap_t);
307static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void		mmu_booke_activate(mmu_t, struct thread *);
314static void		mmu_booke_deactivate(mmu_t, struct thread *);
315static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
323    vm_size_t);
324static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
325    vm_size_t, vm_size_t *);
326static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
327    vm_size_t, vm_offset_t);
328static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
329
330static mmu_method_t mmu_booke_methods[] = {
331	/* pmap dispatcher interface */
332	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
333	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
334	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
335	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337	MMUMETHOD(mmu_enter,		mmu_booke_enter),
338	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
339	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
340	MMUMETHOD(mmu_extract,		mmu_booke_extract),
341	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
342	MMUMETHOD(mmu_init,		mmu_booke_init),
343	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
344	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
345	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
346	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
347	MMUMETHOD(mmu_map,		mmu_booke_map),
348	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
349	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
350	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
352	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
354	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
355	MMUMETHOD(mmu_protect,		mmu_booke_protect),
356	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
357	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
358	MMUMETHOD(mmu_release,		mmu_booke_release),
359	MMUMETHOD(mmu_remove,		mmu_booke_remove),
360	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
361	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
362	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
363	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
366	MMUMETHOD(mmu_activate,		mmu_booke_activate),
367	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
368
369	/* Internal interfaces */
370	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
371	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
372	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
373	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
374	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
375/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
376	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
377
378	/* dumpsys() support */
379	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
380	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
381	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
382
383	{ 0, 0 }
384};
385
386MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
387
388static inline void
389tlb_miss_lock(void)
390{
391#ifdef SMP
392	struct pcpu *pc;
393
394	if (!smp_started)
395		return;
396
397	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
398		if (pc != pcpup) {
399
400			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
401			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
402
403			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
404			    ("tlb_miss_lock: tried to lock self"));
405
406			tlb_lock(pc->pc_booke_tlb_lock);
407
408			CTR1(KTR_PMAP, "%s: locked", __func__);
409		}
410	}
411#endif
412}
413
414static inline void
415tlb_miss_unlock(void)
416{
417#ifdef SMP
418	struct pcpu *pc;
419
420	if (!smp_started)
421		return;
422
423	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
424		if (pc != pcpup) {
425			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
426			    __func__, pc->pc_cpuid);
427
428			tlb_unlock(pc->pc_booke_tlb_lock);
429
430			CTR1(KTR_PMAP, "%s: unlocked", __func__);
431		}
432	}
433#endif
434}
435
436/* Return number of entries in TLB0. */
437static __inline void
438tlb0_get_tlbconf(void)
439{
440	uint32_t tlb0_cfg;
441
442	tlb0_cfg = mfspr(SPR_TLB0CFG);
443	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
444	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
445	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
446}
447
448/* Initialize pool of kva ptbl buffers. */
449static void
450ptbl_init(void)
451{
452	int i;
453
454	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
455	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
456	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
457	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
458
459	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
460	TAILQ_INIT(&ptbl_buf_freelist);
461
462	for (i = 0; i < PTBL_BUFS; i++) {
463		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
464		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
465	}
466}
467
468/* Get a ptbl_buf from the freelist. */
469static struct ptbl_buf *
470ptbl_buf_alloc(void)
471{
472	struct ptbl_buf *buf;
473
474	mtx_lock(&ptbl_buf_freelist_lock);
475	buf = TAILQ_FIRST(&ptbl_buf_freelist);
476	if (buf != NULL)
477		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
478	mtx_unlock(&ptbl_buf_freelist_lock);
479
480	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
481
482	return (buf);
483}
484
485/* Return ptbl buff to free pool. */
486static void
487ptbl_buf_free(struct ptbl_buf *buf)
488{
489
490	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
491
492	mtx_lock(&ptbl_buf_freelist_lock);
493	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
494	mtx_unlock(&ptbl_buf_freelist_lock);
495}
496
497/*
498 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
499 */
500static void
501ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
502{
503	struct ptbl_buf *pbuf;
504
505	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
506
507	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
508
509	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
510		if (pbuf->kva == (vm_offset_t)ptbl) {
511			/* Remove from pmap ptbl buf list. */
512			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
513
514			/* Free corresponding ptbl buf. */
515			ptbl_buf_free(pbuf);
516			break;
517		}
518}
519
520/* Allocate page table. */
521static pte_t *
522ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
523{
524	vm_page_t mtbl[PTBL_PAGES];
525	vm_page_t m;
526	struct ptbl_buf *pbuf;
527	unsigned int pidx;
528	pte_t *ptbl;
529	int i;
530
531	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
532	    (pmap == kernel_pmap), pdir_idx);
533
534	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
535	    ("ptbl_alloc: invalid pdir_idx"));
536	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
537	    ("pte_alloc: valid ptbl entry exists!"));
538
539	pbuf = ptbl_buf_alloc();
540	if (pbuf == NULL)
541		panic("pte_alloc: couldn't alloc kernel virtual memory");
542
543	ptbl = (pte_t *)pbuf->kva;
544
545	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
546
547	/* Allocate ptbl pages, this will sleep! */
548	for (i = 0; i < PTBL_PAGES; i++) {
549		pidx = (PTBL_PAGES * pdir_idx) + i;
550		while ((m = vm_page_alloc(NULL, pidx,
551		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
552
553			PMAP_UNLOCK(pmap);
554			rw_wunlock(&pvh_global_lock);
555			VM_WAIT;
556			rw_wlock(&pvh_global_lock);
557			PMAP_LOCK(pmap);
558		}
559		mtbl[i] = m;
560	}
561
562	/* Map allocated pages into kernel_pmap. */
563	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
564
565	/* Zero whole ptbl. */
566	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
567
568	/* Add pbuf to the pmap ptbl bufs list. */
569	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
570
571	return (ptbl);
572}
573
574/* Free ptbl pages and invalidate pdir entry. */
575static void
576ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
577{
578	pte_t *ptbl;
579	vm_paddr_t pa;
580	vm_offset_t va;
581	vm_page_t m;
582	int i;
583
584	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
585	    (pmap == kernel_pmap), pdir_idx);
586
587	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
588	    ("ptbl_free: invalid pdir_idx"));
589
590	ptbl = pmap->pm_pdir[pdir_idx];
591
592	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
593
594	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
595
596	/*
597	 * Invalidate the pdir entry as soon as possible, so that other CPUs
598	 * don't attempt to look up the page tables we are releasing.
599	 */
600	mtx_lock_spin(&tlbivax_mutex);
601	tlb_miss_lock();
602
603	pmap->pm_pdir[pdir_idx] = NULL;
604
605	tlb_miss_unlock();
606	mtx_unlock_spin(&tlbivax_mutex);
607
608	for (i = 0; i < PTBL_PAGES; i++) {
609		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
610		pa = pte_vatopa(mmu, kernel_pmap, va);
611		m = PHYS_TO_VM_PAGE(pa);
612		vm_page_free_zero(m);
613		atomic_subtract_int(&cnt.v_wire_count, 1);
614		mmu_booke_kremove(mmu, va);
615	}
616
617	ptbl_free_pmap_ptbl(pmap, ptbl);
618}
619
620/*
621 * Decrement ptbl pages hold count and attempt to free ptbl pages.
622 * Called when removing pte entry from ptbl.
623 *
624 * Return 1 if ptbl pages were freed.
625 */
626static int
627ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
628{
629	pte_t *ptbl;
630	vm_paddr_t pa;
631	vm_page_t m;
632	int i;
633
634	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
635	    (pmap == kernel_pmap), pdir_idx);
636
637	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
638	    ("ptbl_unhold: invalid pdir_idx"));
639	KASSERT((pmap != kernel_pmap),
640	    ("ptbl_unhold: unholding kernel ptbl!"));
641
642	ptbl = pmap->pm_pdir[pdir_idx];
643
644	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
645	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
646	    ("ptbl_unhold: non kva ptbl"));
647
648	/* decrement hold count */
649	for (i = 0; i < PTBL_PAGES; i++) {
650		pa = pte_vatopa(mmu, kernel_pmap,
651		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
652		m = PHYS_TO_VM_PAGE(pa);
653		m->wire_count--;
654	}
655
656	/*
657	 * Free ptbl pages if there are no pte etries in this ptbl.
658	 * wire_count has the same value for all ptbl pages, so check the last
659	 * page.
660	 */
661	if (m->wire_count == 0) {
662		ptbl_free(mmu, pmap, pdir_idx);
663
664		//debugf("ptbl_unhold: e (freed ptbl)\n");
665		return (1);
666	}
667
668	return (0);
669}
670
671/*
672 * Increment hold count for ptbl pages. This routine is used when a new pte
673 * entry is being inserted into the ptbl.
674 */
675static void
676ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
677{
678	vm_paddr_t pa;
679	pte_t *ptbl;
680	vm_page_t m;
681	int i;
682
683	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
684	    pdir_idx);
685
686	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
687	    ("ptbl_hold: invalid pdir_idx"));
688	KASSERT((pmap != kernel_pmap),
689	    ("ptbl_hold: holding kernel ptbl!"));
690
691	ptbl = pmap->pm_pdir[pdir_idx];
692
693	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
694
695	for (i = 0; i < PTBL_PAGES; i++) {
696		pa = pte_vatopa(mmu, kernel_pmap,
697		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
698		m = PHYS_TO_VM_PAGE(pa);
699		m->wire_count++;
700	}
701}
702
703/* Allocate pv_entry structure. */
704pv_entry_t
705pv_alloc(void)
706{
707	pv_entry_t pv;
708
709	pv_entry_count++;
710	if (pv_entry_count > pv_entry_high_water)
711		pagedaemon_wakeup();
712	pv = uma_zalloc(pvzone, M_NOWAIT);
713
714	return (pv);
715}
716
717/* Free pv_entry structure. */
718static __inline void
719pv_free(pv_entry_t pve)
720{
721
722	pv_entry_count--;
723	uma_zfree(pvzone, pve);
724}
725
726
727/* Allocate and initialize pv_entry structure. */
728static void
729pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
730{
731	pv_entry_t pve;
732
733	//int su = (pmap == kernel_pmap);
734	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
735	//	(u_int32_t)pmap, va, (u_int32_t)m);
736
737	pve = pv_alloc();
738	if (pve == NULL)
739		panic("pv_insert: no pv entries!");
740
741	pve->pv_pmap = pmap;
742	pve->pv_va = va;
743
744	/* add to pv_list */
745	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
746	rw_assert(&pvh_global_lock, RA_WLOCKED);
747
748	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
749
750	//debugf("pv_insert: e\n");
751}
752
753/* Destroy pv entry. */
754static void
755pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
756{
757	pv_entry_t pve;
758
759	//int su = (pmap == kernel_pmap);
760	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
761
762	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
763	rw_assert(&pvh_global_lock, RA_WLOCKED);
764
765	/* find pv entry */
766	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
767		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
768			/* remove from pv_list */
769			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
770			if (TAILQ_EMPTY(&m->md.pv_list))
771				vm_page_aflag_clear(m, PGA_WRITEABLE);
772
773			/* free pv entry struct */
774			pv_free(pve);
775			break;
776		}
777	}
778
779	//debugf("pv_remove: e\n");
780}
781
782/*
783 * Clean pte entry, try to free page table page if requested.
784 *
785 * Return 1 if ptbl pages were freed, otherwise return 0.
786 */
787static int
788pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
789{
790	unsigned int pdir_idx = PDIR_IDX(va);
791	unsigned int ptbl_idx = PTBL_IDX(va);
792	vm_page_t m;
793	pte_t *ptbl;
794	pte_t *pte;
795
796	//int su = (pmap == kernel_pmap);
797	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
798	//		su, (u_int32_t)pmap, va, flags);
799
800	ptbl = pmap->pm_pdir[pdir_idx];
801	KASSERT(ptbl, ("pte_remove: null ptbl"));
802
803	pte = &ptbl[ptbl_idx];
804
805	if (pte == NULL || !PTE_ISVALID(pte))
806		return (0);
807
808	if (PTE_ISWIRED(pte))
809		pmap->pm_stats.wired_count--;
810
811	/* Handle managed entry. */
812	if (PTE_ISMANAGED(pte)) {
813		/* Get vm_page_t for mapped pte. */
814		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
815
816		if (PTE_ISMODIFIED(pte))
817			vm_page_dirty(m);
818
819		if (PTE_ISREFERENCED(pte))
820			vm_page_aflag_set(m, PGA_REFERENCED);
821
822		pv_remove(pmap, va, m);
823	}
824
825	mtx_lock_spin(&tlbivax_mutex);
826	tlb_miss_lock();
827
828	tlb0_flush_entry(va);
829	pte->flags = 0;
830	pte->rpn = 0;
831
832	tlb_miss_unlock();
833	mtx_unlock_spin(&tlbivax_mutex);
834
835	pmap->pm_stats.resident_count--;
836
837	if (flags & PTBL_UNHOLD) {
838		//debugf("pte_remove: e (unhold)\n");
839		return (ptbl_unhold(mmu, pmap, pdir_idx));
840	}
841
842	//debugf("pte_remove: e\n");
843	return (0);
844}
845
846/*
847 * Insert PTE for a given page and virtual address.
848 */
849static void
850pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
851{
852	unsigned int pdir_idx = PDIR_IDX(va);
853	unsigned int ptbl_idx = PTBL_IDX(va);
854	pte_t *ptbl, *pte;
855
856	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
857	    pmap == kernel_pmap, pmap, va);
858
859	/* Get the page table pointer. */
860	ptbl = pmap->pm_pdir[pdir_idx];
861
862	if (ptbl == NULL) {
863		/* Allocate page table pages. */
864		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
865	} else {
866		/*
867		 * Check if there is valid mapping for requested
868		 * va, if there is, remove it.
869		 */
870		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
871		if (PTE_ISVALID(pte)) {
872			pte_remove(mmu, pmap, va, PTBL_HOLD);
873		} else {
874			/*
875			 * pte is not used, increment hold count
876			 * for ptbl pages.
877			 */
878			if (pmap != kernel_pmap)
879				ptbl_hold(mmu, pmap, pdir_idx);
880		}
881	}
882
883	/*
884	 * Insert pv_entry into pv_list for mapped page if part of managed
885	 * memory.
886	 */
887	if ((m->oflags & VPO_UNMANAGED) == 0) {
888		flags |= PTE_MANAGED;
889
890		/* Create and insert pv entry. */
891		pv_insert(pmap, va, m);
892	}
893
894	pmap->pm_stats.resident_count++;
895
896	mtx_lock_spin(&tlbivax_mutex);
897	tlb_miss_lock();
898
899	tlb0_flush_entry(va);
900	if (pmap->pm_pdir[pdir_idx] == NULL) {
901		/*
902		 * If we just allocated a new page table, hook it in
903		 * the pdir.
904		 */
905		pmap->pm_pdir[pdir_idx] = ptbl;
906	}
907	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
908	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
909	pte->flags |= (PTE_VALID | flags);
910
911	tlb_miss_unlock();
912	mtx_unlock_spin(&tlbivax_mutex);
913}
914
915/* Return the pa for the given pmap/va. */
916static vm_paddr_t
917pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
918{
919	vm_paddr_t pa = 0;
920	pte_t *pte;
921
922	pte = pte_find(mmu, pmap, va);
923	if ((pte != NULL) && PTE_ISVALID(pte))
924		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
925	return (pa);
926}
927
928/* Get a pointer to a PTE in a page table. */
929static pte_t *
930pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
931{
932	unsigned int pdir_idx = PDIR_IDX(va);
933	unsigned int ptbl_idx = PTBL_IDX(va);
934
935	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
936
937	if (pmap->pm_pdir[pdir_idx])
938		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
939
940	return (NULL);
941}
942
943/**************************************************************************/
944/* PMAP related */
945/**************************************************************************/
946
947/*
948 * This is called during booke_init, before the system is really initialized.
949 */
950static void
951mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
952{
953	vm_offset_t phys_kernelend;
954	struct mem_region *mp, *mp1;
955	int cnt, i, j;
956	u_int s, e, sz;
957	u_int phys_avail_count;
958	vm_size_t physsz, hwphyssz, kstack0_sz;
959	vm_offset_t kernel_pdir, kstack0, va;
960	vm_paddr_t kstack0_phys;
961	void *dpcpu;
962	pte_t *pte;
963
964	debugf("mmu_booke_bootstrap: entered\n");
965
966	/* Initialize invalidation mutex */
967	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
968
969	/* Read TLB0 size and associativity. */
970	tlb0_get_tlbconf();
971
972	/*
973	 * Align kernel start and end address (kernel image).
974	 * Note that kernel end does not necessarily relate to kernsize.
975	 * kernsize is the size of the kernel that is actually mapped.
976	 * Also note that "start - 1" is deliberate. With SMP, the
977	 * entry point is exactly a page from the actual load address.
978	 * As such, trunc_page() has no effect and we're off by a page.
979	 * Since we always have the ELF header between the load address
980	 * and the entry point, we can safely subtract 1 to compensate.
981	 */
982	kernstart = trunc_page(start - 1);
983	data_start = round_page(kernelend);
984	data_end = data_start;
985
986	/*
987	 * Addresses of preloaded modules (like file systems) use
988	 * physical addresses. Make sure we relocate those into
989	 * virtual addresses.
990	 */
991	preload_addr_relocate = kernstart - kernload;
992
993	/* Allocate the dynamic per-cpu area. */
994	dpcpu = (void *)data_end;
995	data_end += DPCPU_SIZE;
996
997	/* Allocate space for the message buffer. */
998	msgbufp = (struct msgbuf *)data_end;
999	data_end += msgbufsize;
1000	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1001	    data_end);
1002
1003	data_end = round_page(data_end);
1004
1005	/* Allocate space for ptbl_bufs. */
1006	ptbl_bufs = (struct ptbl_buf *)data_end;
1007	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1008	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1009	    data_end);
1010
1011	data_end = round_page(data_end);
1012
1013	/* Allocate PTE tables for kernel KVA. */
1014	kernel_pdir = data_end;
1015	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1016	    PDIR_SIZE - 1) / PDIR_SIZE;
1017	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1018	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1019	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1020
1021	debugf(" data_end: 0x%08x\n", data_end);
1022	if (data_end - kernstart > kernsize) {
1023		kernsize += tlb1_mapin_region(kernstart + kernsize,
1024		    kernload + kernsize, (data_end - kernstart) - kernsize);
1025	}
1026	data_end = kernstart + kernsize;
1027	debugf(" updated data_end: 0x%08x\n", data_end);
1028
1029	/*
1030	 * Clear the structures - note we can only do it safely after the
1031	 * possible additional TLB1 translations are in place (above) so that
1032	 * all range up to the currently calculated 'data_end' is covered.
1033	 */
1034	dpcpu_init(dpcpu, 0);
1035	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1036	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1037
1038	/*******************************************************/
1039	/* Set the start and end of kva. */
1040	/*******************************************************/
1041	virtual_avail = round_page(data_end);
1042	virtual_end = VM_MAX_KERNEL_ADDRESS;
1043
1044	/* Allocate KVA space for page zero/copy operations. */
1045	zero_page_va = virtual_avail;
1046	virtual_avail += PAGE_SIZE;
1047	zero_page_idle_va = virtual_avail;
1048	virtual_avail += PAGE_SIZE;
1049	copy_page_src_va = virtual_avail;
1050	virtual_avail += PAGE_SIZE;
1051	copy_page_dst_va = virtual_avail;
1052	virtual_avail += PAGE_SIZE;
1053	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1054	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1055	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1056	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1057
1058	/* Initialize page zero/copy mutexes. */
1059	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1060	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1061
1062	/* Allocate KVA space for ptbl bufs. */
1063	ptbl_buf_pool_vabase = virtual_avail;
1064	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1065	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1066	    ptbl_buf_pool_vabase, virtual_avail);
1067
1068	/* Calculate corresponding physical addresses for the kernel region. */
1069	phys_kernelend = kernload + kernsize;
1070	debugf("kernel image and allocated data:\n");
1071	debugf(" kernload    = 0x%08x\n", kernload);
1072	debugf(" kernstart   = 0x%08x\n", kernstart);
1073	debugf(" kernsize    = 0x%08x\n", kernsize);
1074
1075	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1076		panic("mmu_booke_bootstrap: phys_avail too small");
1077
1078	/*
1079	 * Remove kernel physical address range from avail regions list. Page
1080	 * align all regions.  Non-page aligned memory isn't very interesting
1081	 * to us.  Also, sort the entries for ascending addresses.
1082	 */
1083
1084	/* Retrieve phys/avail mem regions */
1085	mem_regions(&physmem_regions, &physmem_regions_sz,
1086	    &availmem_regions, &availmem_regions_sz);
1087	sz = 0;
1088	cnt = availmem_regions_sz;
1089	debugf("processing avail regions:\n");
1090	for (mp = availmem_regions; mp->mr_size; mp++) {
1091		s = mp->mr_start;
1092		e = mp->mr_start + mp->mr_size;
1093		debugf(" %08x-%08x -> ", s, e);
1094		/* Check whether this region holds all of the kernel. */
1095		if (s < kernload && e > phys_kernelend) {
1096			availmem_regions[cnt].mr_start = phys_kernelend;
1097			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1098			e = kernload;
1099		}
1100		/* Look whether this regions starts within the kernel. */
1101		if (s >= kernload && s < phys_kernelend) {
1102			if (e <= phys_kernelend)
1103				goto empty;
1104			s = phys_kernelend;
1105		}
1106		/* Now look whether this region ends within the kernel. */
1107		if (e > kernload && e <= phys_kernelend) {
1108			if (s >= kernload)
1109				goto empty;
1110			e = kernload;
1111		}
1112		/* Now page align the start and size of the region. */
1113		s = round_page(s);
1114		e = trunc_page(e);
1115		if (e < s)
1116			e = s;
1117		sz = e - s;
1118		debugf("%08x-%08x = %x\n", s, e, sz);
1119
1120		/* Check whether some memory is left here. */
1121		if (sz == 0) {
1122		empty:
1123			memmove(mp, mp + 1,
1124			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1125			cnt--;
1126			mp--;
1127			continue;
1128		}
1129
1130		/* Do an insertion sort. */
1131		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1132			if (s < mp1->mr_start)
1133				break;
1134		if (mp1 < mp) {
1135			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1136			mp1->mr_start = s;
1137			mp1->mr_size = sz;
1138		} else {
1139			mp->mr_start = s;
1140			mp->mr_size = sz;
1141		}
1142	}
1143	availmem_regions_sz = cnt;
1144
1145	/*******************************************************/
1146	/* Steal physical memory for kernel stack from the end */
1147	/* of the first avail region                           */
1148	/*******************************************************/
1149	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1150	kstack0_phys = availmem_regions[0].mr_start +
1151	    availmem_regions[0].mr_size;
1152	kstack0_phys -= kstack0_sz;
1153	availmem_regions[0].mr_size -= kstack0_sz;
1154
1155	/*******************************************************/
1156	/* Fill in phys_avail table, based on availmem_regions */
1157	/*******************************************************/
1158	phys_avail_count = 0;
1159	physsz = 0;
1160	hwphyssz = 0;
1161	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1162
1163	debugf("fill in phys_avail:\n");
1164	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1165
1166		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1167		    availmem_regions[i].mr_start,
1168		    availmem_regions[i].mr_start +
1169		        availmem_regions[i].mr_size,
1170		    availmem_regions[i].mr_size);
1171
1172		if (hwphyssz != 0 &&
1173		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1174			debugf(" hw.physmem adjust\n");
1175			if (physsz < hwphyssz) {
1176				phys_avail[j] = availmem_regions[i].mr_start;
1177				phys_avail[j + 1] =
1178				    availmem_regions[i].mr_start +
1179				    hwphyssz - physsz;
1180				physsz = hwphyssz;
1181				phys_avail_count++;
1182			}
1183			break;
1184		}
1185
1186		phys_avail[j] = availmem_regions[i].mr_start;
1187		phys_avail[j + 1] = availmem_regions[i].mr_start +
1188		    availmem_regions[i].mr_size;
1189		phys_avail_count++;
1190		physsz += availmem_regions[i].mr_size;
1191	}
1192	physmem = btoc(physsz);
1193
1194	/* Calculate the last available physical address. */
1195	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1196		;
1197	Maxmem = powerpc_btop(phys_avail[i + 1]);
1198
1199	debugf("Maxmem = 0x%08lx\n", Maxmem);
1200	debugf("phys_avail_count = %d\n", phys_avail_count);
1201	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1202	    physmem);
1203
1204	/*******************************************************/
1205	/* Initialize (statically allocated) kernel pmap. */
1206	/*******************************************************/
1207	PMAP_LOCK_INIT(kernel_pmap);
1208	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1209
1210	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1211	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1212	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1213	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1214
1215	/* Initialize kernel pdir */
1216	for (i = 0; i < kernel_ptbls; i++)
1217		kernel_pmap->pm_pdir[kptbl_min + i] =
1218		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1219
1220	for (i = 0; i < MAXCPU; i++) {
1221		kernel_pmap->pm_tid[i] = TID_KERNEL;
1222
1223		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1224		tidbusy[i][0] = kernel_pmap;
1225	}
1226
1227	/*
1228	 * Fill in PTEs covering kernel code and data. They are not required
1229	 * for address translation, as this area is covered by static TLB1
1230	 * entries, but for pte_vatopa() to work correctly with kernel area
1231	 * addresses.
1232	 */
1233	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1234		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1235		pte->rpn = kernload + (va - kernstart);
1236		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1237		    PTE_VALID;
1238	}
1239	/* Mark kernel_pmap active on all CPUs */
1240	CPU_FILL(&kernel_pmap->pm_active);
1241
1242 	/*
1243	 * Initialize the global pv list lock.
1244	 */
1245	rw_init(&pvh_global_lock, "pmap pv global");
1246
1247	/*******************************************************/
1248	/* Final setup */
1249	/*******************************************************/
1250
1251	/* Enter kstack0 into kernel map, provide guard page */
1252	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1253	thread0.td_kstack = kstack0;
1254	thread0.td_kstack_pages = KSTACK_PAGES;
1255
1256	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1257	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1258	    kstack0_phys, kstack0_phys + kstack0_sz);
1259	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1260
1261	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1262	for (i = 0; i < KSTACK_PAGES; i++) {
1263		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1264		kstack0 += PAGE_SIZE;
1265		kstack0_phys += PAGE_SIZE;
1266	}
1267
1268	debugf("virtual_avail = %08x\n", virtual_avail);
1269	debugf("virtual_end   = %08x\n", virtual_end);
1270
1271	debugf("mmu_booke_bootstrap: exit\n");
1272}
1273
1274void
1275pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1276{
1277	int i;
1278
1279	/*
1280	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1281	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1282	 * these values directly to (re)program AP's TLB1 hardware.
1283	 */
1284	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1285		/* Skip invalid entries */
1286		if (!(tlb1[i].mas1 & MAS1_VALID))
1287			continue;
1288
1289		tlb1_write_entry(i);
1290	}
1291
1292	set_mas4_defaults();
1293}
1294
1295/*
1296 * Get the physical page address for the given pmap/virtual address.
1297 */
1298static vm_paddr_t
1299mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1300{
1301	vm_paddr_t pa;
1302
1303	PMAP_LOCK(pmap);
1304	pa = pte_vatopa(mmu, pmap, va);
1305	PMAP_UNLOCK(pmap);
1306
1307	return (pa);
1308}
1309
1310/*
1311 * Extract the physical page address associated with the given
1312 * kernel virtual address.
1313 */
1314static vm_paddr_t
1315mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1316{
1317
1318	return (pte_vatopa(mmu, kernel_pmap, va));
1319}
1320
1321/*
1322 * Initialize the pmap module.
1323 * Called by vm_init, to initialize any structures that the pmap
1324 * system needs to map virtual memory.
1325 */
1326static void
1327mmu_booke_init(mmu_t mmu)
1328{
1329	int shpgperproc = PMAP_SHPGPERPROC;
1330
1331	/*
1332	 * Initialize the address space (zone) for the pv entries.  Set a
1333	 * high water mark so that the system can recover from excessive
1334	 * numbers of pv entries.
1335	 */
1336	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1337	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1338
1339	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1340	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1341
1342	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1343	pv_entry_high_water = 9 * (pv_entry_max / 10);
1344
1345	uma_zone_reserve_kva(pvzone, pv_entry_max);
1346
1347	/* Pre-fill pvzone with initial number of pv entries. */
1348	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1349
1350	/* Initialize ptbl allocation. */
1351	ptbl_init();
1352}
1353
1354/*
1355 * Map a list of wired pages into kernel virtual address space.  This is
1356 * intended for temporary mappings which do not need page modification or
1357 * references recorded.  Existing mappings in the region are overwritten.
1358 */
1359static void
1360mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1361{
1362	vm_offset_t va;
1363
1364	va = sva;
1365	while (count-- > 0) {
1366		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1367		va += PAGE_SIZE;
1368		m++;
1369	}
1370}
1371
1372/*
1373 * Remove page mappings from kernel virtual address space.  Intended for
1374 * temporary mappings entered by mmu_booke_qenter.
1375 */
1376static void
1377mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1378{
1379	vm_offset_t va;
1380
1381	va = sva;
1382	while (count-- > 0) {
1383		mmu_booke_kremove(mmu, va);
1384		va += PAGE_SIZE;
1385	}
1386}
1387
1388/*
1389 * Map a wired page into kernel virtual address space.
1390 */
1391static void
1392mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1393{
1394	unsigned int pdir_idx = PDIR_IDX(va);
1395	unsigned int ptbl_idx = PTBL_IDX(va);
1396	uint32_t flags;
1397	pte_t *pte;
1398
1399	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1400	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1401
1402	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1403
1404	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1405
1406	mtx_lock_spin(&tlbivax_mutex);
1407	tlb_miss_lock();
1408
1409	if (PTE_ISVALID(pte)) {
1410
1411		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1412
1413		/* Flush entry from TLB0 */
1414		tlb0_flush_entry(va);
1415	}
1416
1417	pte->rpn = pa & ~PTE_PA_MASK;
1418	pte->flags = flags;
1419
1420	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1421	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1422	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1423
1424	/* Flush the real memory from the instruction cache. */
1425	if ((flags & (PTE_I | PTE_G)) == 0) {
1426		__syncicache((void *)va, PAGE_SIZE);
1427	}
1428
1429	tlb_miss_unlock();
1430	mtx_unlock_spin(&tlbivax_mutex);
1431}
1432
1433/*
1434 * Remove a page from kernel page table.
1435 */
1436static void
1437mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1438{
1439	unsigned int pdir_idx = PDIR_IDX(va);
1440	unsigned int ptbl_idx = PTBL_IDX(va);
1441	pte_t *pte;
1442
1443//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1444
1445	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1446	    (va <= VM_MAX_KERNEL_ADDRESS)),
1447	    ("mmu_booke_kremove: invalid va"));
1448
1449	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1450
1451	if (!PTE_ISVALID(pte)) {
1452
1453		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1454
1455		return;
1456	}
1457
1458	mtx_lock_spin(&tlbivax_mutex);
1459	tlb_miss_lock();
1460
1461	/* Invalidate entry in TLB0, update PTE. */
1462	tlb0_flush_entry(va);
1463	pte->flags = 0;
1464	pte->rpn = 0;
1465
1466	tlb_miss_unlock();
1467	mtx_unlock_spin(&tlbivax_mutex);
1468}
1469
1470/*
1471 * Initialize pmap associated with process 0.
1472 */
1473static void
1474mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1475{
1476
1477	mmu_booke_pinit(mmu, pmap);
1478	PCPU_SET(curpmap, pmap);
1479}
1480
1481/*
1482 * Initialize a preallocated and zeroed pmap structure,
1483 * such as one in a vmspace structure.
1484 */
1485static void
1486mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1487{
1488	int i;
1489
1490	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1491	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1492
1493	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1494
1495	PMAP_LOCK_INIT(pmap);
1496	for (i = 0; i < MAXCPU; i++)
1497		pmap->pm_tid[i] = TID_NONE;
1498	CPU_ZERO(&kernel_pmap->pm_active);
1499	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1500	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1501	TAILQ_INIT(&pmap->pm_ptbl_list);
1502}
1503
1504/*
1505 * Release any resources held by the given physical map.
1506 * Called when a pmap initialized by mmu_booke_pinit is being released.
1507 * Should only be called if the map contains no valid mappings.
1508 */
1509static void
1510mmu_booke_release(mmu_t mmu, pmap_t pmap)
1511{
1512
1513	KASSERT(pmap->pm_stats.resident_count == 0,
1514	    ("pmap_release: pmap resident count %ld != 0",
1515	    pmap->pm_stats.resident_count));
1516
1517	PMAP_LOCK_DESTROY(pmap);
1518}
1519
1520/*
1521 * Insert the given physical page at the specified virtual address in the
1522 * target physical map with the protection requested. If specified the page
1523 * will be wired down.
1524 */
1525static void
1526mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527    vm_prot_t prot, boolean_t wired)
1528{
1529
1530	rw_wlock(&pvh_global_lock);
1531	PMAP_LOCK(pmap);
1532	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1533	rw_wunlock(&pvh_global_lock);
1534	PMAP_UNLOCK(pmap);
1535}
1536
1537static void
1538mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1539    vm_prot_t prot, boolean_t wired)
1540{
1541	pte_t *pte;
1542	vm_paddr_t pa;
1543	uint32_t flags;
1544	int su, sync;
1545
1546	pa = VM_PAGE_TO_PHYS(m);
1547	su = (pmap == kernel_pmap);
1548	sync = 0;
1549
1550	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1551	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1552	//		(u_int32_t)pmap, su, pmap->pm_tid,
1553	//		(u_int32_t)m, va, pa, prot, wired);
1554
1555	if (su) {
1556		KASSERT(((va >= virtual_avail) &&
1557		    (va <= VM_MAX_KERNEL_ADDRESS)),
1558		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1559	} else {
1560		KASSERT((va <= VM_MAXUSER_ADDRESS),
1561		    ("mmu_booke_enter_locked: user pmap, non user va"));
1562	}
1563	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1564	    VM_OBJECT_LOCKED(m->object),
1565	    ("mmu_booke_enter_locked: page %p is not busy", m));
1566
1567	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1568
1569	/*
1570	 * If there is an existing mapping, and the physical address has not
1571	 * changed, must be protection or wiring change.
1572	 */
1573	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1574	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1575
1576		/*
1577		 * Before actually updating pte->flags we calculate and
1578		 * prepare its new value in a helper var.
1579		 */
1580		flags = pte->flags;
1581		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1582
1583		/* Wiring change, just update stats. */
1584		if (wired) {
1585			if (!PTE_ISWIRED(pte)) {
1586				flags |= PTE_WIRED;
1587				pmap->pm_stats.wired_count++;
1588			}
1589		} else {
1590			if (PTE_ISWIRED(pte)) {
1591				flags &= ~PTE_WIRED;
1592				pmap->pm_stats.wired_count--;
1593			}
1594		}
1595
1596		if (prot & VM_PROT_WRITE) {
1597			/* Add write permissions. */
1598			flags |= PTE_SW;
1599			if (!su)
1600				flags |= PTE_UW;
1601
1602			if ((flags & PTE_MANAGED) != 0)
1603				vm_page_aflag_set(m, PGA_WRITEABLE);
1604		} else {
1605			/* Handle modified pages, sense modify status. */
1606
1607			/*
1608			 * The PTE_MODIFIED flag could be set by underlying
1609			 * TLB misses since we last read it (above), possibly
1610			 * other CPUs could update it so we check in the PTE
1611			 * directly rather than rely on that saved local flags
1612			 * copy.
1613			 */
1614			if (PTE_ISMODIFIED(pte))
1615				vm_page_dirty(m);
1616		}
1617
1618		if (prot & VM_PROT_EXECUTE) {
1619			flags |= PTE_SX;
1620			if (!su)
1621				flags |= PTE_UX;
1622
1623			/*
1624			 * Check existing flags for execute permissions: if we
1625			 * are turning execute permissions on, icache should
1626			 * be flushed.
1627			 */
1628			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1629				sync++;
1630		}
1631
1632		flags &= ~PTE_REFERENCED;
1633
1634		/*
1635		 * The new flags value is all calculated -- only now actually
1636		 * update the PTE.
1637		 */
1638		mtx_lock_spin(&tlbivax_mutex);
1639		tlb_miss_lock();
1640
1641		tlb0_flush_entry(va);
1642		pte->flags = flags;
1643
1644		tlb_miss_unlock();
1645		mtx_unlock_spin(&tlbivax_mutex);
1646
1647	} else {
1648		/*
1649		 * If there is an existing mapping, but it's for a different
1650		 * physical address, pte_enter() will delete the old mapping.
1651		 */
1652		//if ((pte != NULL) && PTE_ISVALID(pte))
1653		//	debugf("mmu_booke_enter_locked: replace\n");
1654		//else
1655		//	debugf("mmu_booke_enter_locked: new\n");
1656
1657		/* Now set up the flags and install the new mapping. */
1658		flags = (PTE_SR | PTE_VALID);
1659		flags |= PTE_M;
1660
1661		if (!su)
1662			flags |= PTE_UR;
1663
1664		if (prot & VM_PROT_WRITE) {
1665			flags |= PTE_SW;
1666			if (!su)
1667				flags |= PTE_UW;
1668
1669			if ((m->oflags & VPO_UNMANAGED) == 0)
1670				vm_page_aflag_set(m, PGA_WRITEABLE);
1671		}
1672
1673		if (prot & VM_PROT_EXECUTE) {
1674			flags |= PTE_SX;
1675			if (!su)
1676				flags |= PTE_UX;
1677		}
1678
1679		/* If its wired update stats. */
1680		if (wired) {
1681			pmap->pm_stats.wired_count++;
1682			flags |= PTE_WIRED;
1683		}
1684
1685		pte_enter(mmu, pmap, m, va, flags);
1686
1687		/* Flush the real memory from the instruction cache. */
1688		if (prot & VM_PROT_EXECUTE)
1689			sync++;
1690	}
1691
1692	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1693		__syncicache((void *)va, PAGE_SIZE);
1694		sync = 0;
1695	}
1696}
1697
1698/*
1699 * Maps a sequence of resident pages belonging to the same object.
1700 * The sequence begins with the given page m_start.  This page is
1701 * mapped at the given virtual address start.  Each subsequent page is
1702 * mapped at a virtual address that is offset from start by the same
1703 * amount as the page is offset from m_start within the object.  The
1704 * last page in the sequence is the page with the largest offset from
1705 * m_start that can be mapped at a virtual address less than the given
1706 * virtual address end.  Not every virtual page between start and end
1707 * is mapped; only those for which a resident page exists with the
1708 * corresponding offset from m_start are mapped.
1709 */
1710static void
1711mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1712    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1713{
1714	vm_page_t m;
1715	vm_pindex_t diff, psize;
1716
1717	psize = atop(end - start);
1718	m = m_start;
1719	rw_wlock(&pvh_global_lock);
1720	PMAP_LOCK(pmap);
1721	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1722		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1723		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1724		m = TAILQ_NEXT(m, listq);
1725	}
1726	rw_wunlock(&pvh_global_lock);
1727	PMAP_UNLOCK(pmap);
1728}
1729
1730static void
1731mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1732    vm_prot_t prot)
1733{
1734
1735	rw_wlock(&pvh_global_lock);
1736	PMAP_LOCK(pmap);
1737	mmu_booke_enter_locked(mmu, pmap, va, m,
1738	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1739	rw_wunlock(&pvh_global_lock);
1740	PMAP_UNLOCK(pmap);
1741}
1742
1743/*
1744 * Remove the given range of addresses from the specified map.
1745 *
1746 * It is assumed that the start and end are properly rounded to the page size.
1747 */
1748static void
1749mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1750{
1751	pte_t *pte;
1752	uint8_t hold_flag;
1753
1754	int su = (pmap == kernel_pmap);
1755
1756	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1757	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1758
1759	if (su) {
1760		KASSERT(((va >= virtual_avail) &&
1761		    (va <= VM_MAX_KERNEL_ADDRESS)),
1762		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1763	} else {
1764		KASSERT((va <= VM_MAXUSER_ADDRESS),
1765		    ("mmu_booke_remove: user pmap, non user va"));
1766	}
1767
1768	if (PMAP_REMOVE_DONE(pmap)) {
1769		//debugf("mmu_booke_remove: e (empty)\n");
1770		return;
1771	}
1772
1773	hold_flag = PTBL_HOLD_FLAG(pmap);
1774	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1775
1776	rw_wlock(&pvh_global_lock);
1777	PMAP_LOCK(pmap);
1778	for (; va < endva; va += PAGE_SIZE) {
1779		pte = pte_find(mmu, pmap, va);
1780		if ((pte != NULL) && PTE_ISVALID(pte))
1781			pte_remove(mmu, pmap, va, hold_flag);
1782	}
1783	PMAP_UNLOCK(pmap);
1784	rw_wunlock(&pvh_global_lock);
1785
1786	//debugf("mmu_booke_remove: e\n");
1787}
1788
1789/*
1790 * Remove physical page from all pmaps in which it resides.
1791 */
1792static void
1793mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1794{
1795	pv_entry_t pv, pvn;
1796	uint8_t hold_flag;
1797
1798	rw_wlock(&pvh_global_lock);
1799	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1800		pvn = TAILQ_NEXT(pv, pv_link);
1801
1802		PMAP_LOCK(pv->pv_pmap);
1803		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1804		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1805		PMAP_UNLOCK(pv->pv_pmap);
1806	}
1807	vm_page_aflag_clear(m, PGA_WRITEABLE);
1808	rw_wunlock(&pvh_global_lock);
1809}
1810
1811/*
1812 * Map a range of physical addresses into kernel virtual address space.
1813 */
1814static vm_offset_t
1815mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1816    vm_paddr_t pa_end, int prot)
1817{
1818	vm_offset_t sva = *virt;
1819	vm_offset_t va = sva;
1820
1821	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1822	//		sva, pa_start, pa_end);
1823
1824	while (pa_start < pa_end) {
1825		mmu_booke_kenter(mmu, va, pa_start);
1826		va += PAGE_SIZE;
1827		pa_start += PAGE_SIZE;
1828	}
1829	*virt = va;
1830
1831	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1832	return (sva);
1833}
1834
1835/*
1836 * The pmap must be activated before it's address space can be accessed in any
1837 * way.
1838 */
1839static void
1840mmu_booke_activate(mmu_t mmu, struct thread *td)
1841{
1842	pmap_t pmap;
1843	u_int cpuid;
1844
1845	pmap = &td->td_proc->p_vmspace->vm_pmap;
1846
1847	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1848	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1849
1850	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1851
1852	mtx_lock_spin(&sched_lock);
1853
1854	cpuid = PCPU_GET(cpuid);
1855	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1856	PCPU_SET(curpmap, pmap);
1857
1858	if (pmap->pm_tid[cpuid] == TID_NONE)
1859		tid_alloc(pmap);
1860
1861	/* Load PID0 register with pmap tid value. */
1862	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1863	__asm __volatile("isync");
1864
1865	mtx_unlock_spin(&sched_lock);
1866
1867	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1868	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1869}
1870
1871/*
1872 * Deactivate the specified process's address space.
1873 */
1874static void
1875mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1876{
1877	pmap_t pmap;
1878
1879	pmap = &td->td_proc->p_vmspace->vm_pmap;
1880
1881	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1882	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1883
1884	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1885	PCPU_SET(curpmap, NULL);
1886}
1887
1888/*
1889 * Copy the range specified by src_addr/len
1890 * from the source map to the range dst_addr/len
1891 * in the destination map.
1892 *
1893 * This routine is only advisory and need not do anything.
1894 */
1895static void
1896mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1897    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1898{
1899
1900}
1901
1902/*
1903 * Set the physical protection on the specified range of this map as requested.
1904 */
1905static void
1906mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1907    vm_prot_t prot)
1908{
1909	vm_offset_t va;
1910	vm_page_t m;
1911	pte_t *pte;
1912
1913	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1914		mmu_booke_remove(mmu, pmap, sva, eva);
1915		return;
1916	}
1917
1918	if (prot & VM_PROT_WRITE)
1919		return;
1920
1921	PMAP_LOCK(pmap);
1922	for (va = sva; va < eva; va += PAGE_SIZE) {
1923		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1924			if (PTE_ISVALID(pte)) {
1925				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1926
1927				mtx_lock_spin(&tlbivax_mutex);
1928				tlb_miss_lock();
1929
1930				/* Handle modified pages. */
1931				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1932					vm_page_dirty(m);
1933
1934				tlb0_flush_entry(va);
1935				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1936
1937				tlb_miss_unlock();
1938				mtx_unlock_spin(&tlbivax_mutex);
1939			}
1940		}
1941	}
1942	PMAP_UNLOCK(pmap);
1943}
1944
1945/*
1946 * Clear the write and modified bits in each of the given page's mappings.
1947 */
1948static void
1949mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1950{
1951	pv_entry_t pv;
1952	pte_t *pte;
1953
1954	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1955	    ("mmu_booke_remove_write: page %p is not managed", m));
1956
1957	/*
1958	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1959	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1960	 * is clear, no page table entries need updating.
1961	 */
1962	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1963	if ((m->oflags & VPO_BUSY) == 0 &&
1964	    (m->aflags & PGA_WRITEABLE) == 0)
1965		return;
1966	rw_wlock(&pvh_global_lock);
1967	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1968		PMAP_LOCK(pv->pv_pmap);
1969		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1970			if (PTE_ISVALID(pte)) {
1971				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1972
1973				mtx_lock_spin(&tlbivax_mutex);
1974				tlb_miss_lock();
1975
1976				/* Handle modified pages. */
1977				if (PTE_ISMODIFIED(pte))
1978					vm_page_dirty(m);
1979
1980				/* Flush mapping from TLB0. */
1981				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1982
1983				tlb_miss_unlock();
1984				mtx_unlock_spin(&tlbivax_mutex);
1985			}
1986		}
1987		PMAP_UNLOCK(pv->pv_pmap);
1988	}
1989	vm_page_aflag_clear(m, PGA_WRITEABLE);
1990	rw_wunlock(&pvh_global_lock);
1991}
1992
1993static void
1994mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1995{
1996	pte_t *pte;
1997	pmap_t pmap;
1998	vm_page_t m;
1999	vm_offset_t addr;
2000	vm_paddr_t pa;
2001	int active, valid;
2002
2003	va = trunc_page(va);
2004	sz = round_page(sz);
2005
2006	rw_wlock(&pvh_global_lock);
2007	pmap = PCPU_GET(curpmap);
2008	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2009	while (sz > 0) {
2010		PMAP_LOCK(pm);
2011		pte = pte_find(mmu, pm, va);
2012		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2013		if (valid)
2014			pa = PTE_PA(pte);
2015		PMAP_UNLOCK(pm);
2016		if (valid) {
2017			if (!active) {
2018				/* Create a mapping in the active pmap. */
2019				addr = 0;
2020				m = PHYS_TO_VM_PAGE(pa);
2021				PMAP_LOCK(pmap);
2022				pte_enter(mmu, pmap, m, addr,
2023				    PTE_SR | PTE_VALID | PTE_UR);
2024				__syncicache((void *)addr, PAGE_SIZE);
2025				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2026				PMAP_UNLOCK(pmap);
2027			} else
2028				__syncicache((void *)va, PAGE_SIZE);
2029		}
2030		va += PAGE_SIZE;
2031		sz -= PAGE_SIZE;
2032	}
2033	rw_wunlock(&pvh_global_lock);
2034}
2035
2036/*
2037 * Atomically extract and hold the physical page with the given
2038 * pmap and virtual address pair if that mapping permits the given
2039 * protection.
2040 */
2041static vm_page_t
2042mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2043    vm_prot_t prot)
2044{
2045	pte_t *pte;
2046	vm_page_t m;
2047	uint32_t pte_wbit;
2048	vm_paddr_t pa;
2049
2050	m = NULL;
2051	pa = 0;
2052	PMAP_LOCK(pmap);
2053retry:
2054	pte = pte_find(mmu, pmap, va);
2055	if ((pte != NULL) && PTE_ISVALID(pte)) {
2056		if (pmap == kernel_pmap)
2057			pte_wbit = PTE_SW;
2058		else
2059			pte_wbit = PTE_UW;
2060
2061		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2062			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2063				goto retry;
2064			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2065			vm_page_hold(m);
2066		}
2067	}
2068
2069	PA_UNLOCK_COND(pa);
2070	PMAP_UNLOCK(pmap);
2071	return (m);
2072}
2073
2074/*
2075 * Initialize a vm_page's machine-dependent fields.
2076 */
2077static void
2078mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2079{
2080
2081	TAILQ_INIT(&m->md.pv_list);
2082}
2083
2084/*
2085 * mmu_booke_zero_page_area zeros the specified hardware page by
2086 * mapping it into virtual memory and using bzero to clear
2087 * its contents.
2088 *
2089 * off and size must reside within a single page.
2090 */
2091static void
2092mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2093{
2094	vm_offset_t va;
2095
2096	/* XXX KASSERT off and size are within a single page? */
2097
2098	mtx_lock(&zero_page_mutex);
2099	va = zero_page_va;
2100
2101	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2102	bzero((caddr_t)va + off, size);
2103	mmu_booke_kremove(mmu, va);
2104
2105	mtx_unlock(&zero_page_mutex);
2106}
2107
2108/*
2109 * mmu_booke_zero_page zeros the specified hardware page.
2110 */
2111static void
2112mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2113{
2114
2115	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2116}
2117
2118/*
2119 * mmu_booke_copy_page copies the specified (machine independent) page by
2120 * mapping the page into virtual memory and using memcopy to copy the page,
2121 * one machine dependent page at a time.
2122 */
2123static void
2124mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2125{
2126	vm_offset_t sva, dva;
2127
2128	sva = copy_page_src_va;
2129	dva = copy_page_dst_va;
2130
2131	mtx_lock(&copy_page_mutex);
2132	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2133	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2134	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2135	mmu_booke_kremove(mmu, dva);
2136	mmu_booke_kremove(mmu, sva);
2137	mtx_unlock(&copy_page_mutex);
2138}
2139
2140/*
2141 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2142 * into virtual memory and using bzero to clear its contents. This is intended
2143 * to be called from the vm_pagezero process only and outside of Giant. No
2144 * lock is required.
2145 */
2146static void
2147mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2148{
2149	vm_offset_t va;
2150
2151	va = zero_page_idle_va;
2152	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2153	bzero((caddr_t)va, PAGE_SIZE);
2154	mmu_booke_kremove(mmu, va);
2155}
2156
2157/*
2158 * Return whether or not the specified physical page was modified
2159 * in any of physical maps.
2160 */
2161static boolean_t
2162mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2163{
2164	pte_t *pte;
2165	pv_entry_t pv;
2166	boolean_t rv;
2167
2168	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2169	    ("mmu_booke_is_modified: page %p is not managed", m));
2170	rv = FALSE;
2171
2172	/*
2173	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2174	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2175	 * is clear, no PTEs can be modified.
2176	 */
2177	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2178	if ((m->oflags & VPO_BUSY) == 0 &&
2179	    (m->aflags & PGA_WRITEABLE) == 0)
2180		return (rv);
2181	rw_wlock(&pvh_global_lock);
2182	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2183		PMAP_LOCK(pv->pv_pmap);
2184		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2185		    PTE_ISVALID(pte)) {
2186			if (PTE_ISMODIFIED(pte))
2187				rv = TRUE;
2188		}
2189		PMAP_UNLOCK(pv->pv_pmap);
2190		if (rv)
2191			break;
2192	}
2193	rw_wunlock(&pvh_global_lock);
2194	return (rv);
2195}
2196
2197/*
2198 * Return whether or not the specified virtual address is eligible
2199 * for prefault.
2200 */
2201static boolean_t
2202mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2203{
2204
2205	return (FALSE);
2206}
2207
2208/*
2209 * Return whether or not the specified physical page was referenced
2210 * in any physical maps.
2211 */
2212static boolean_t
2213mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2214{
2215	pte_t *pte;
2216	pv_entry_t pv;
2217	boolean_t rv;
2218
2219	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2220	    ("mmu_booke_is_referenced: page %p is not managed", m));
2221	rv = FALSE;
2222	rw_wlock(&pvh_global_lock);
2223	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2224		PMAP_LOCK(pv->pv_pmap);
2225		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2226		    PTE_ISVALID(pte)) {
2227			if (PTE_ISREFERENCED(pte))
2228				rv = TRUE;
2229		}
2230		PMAP_UNLOCK(pv->pv_pmap);
2231		if (rv)
2232			break;
2233	}
2234	rw_wunlock(&pvh_global_lock);
2235	return (rv);
2236}
2237
2238/*
2239 * Clear the modify bits on the specified physical page.
2240 */
2241static void
2242mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2243{
2244	pte_t *pte;
2245	pv_entry_t pv;
2246
2247	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2248	    ("mmu_booke_clear_modify: page %p is not managed", m));
2249	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2250	KASSERT((m->oflags & VPO_BUSY) == 0,
2251	    ("mmu_booke_clear_modify: page %p is busy", m));
2252
2253	/*
2254	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2255	 * If the object containing the page is locked and the page is not
2256	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2257	 */
2258	if ((m->aflags & PGA_WRITEABLE) == 0)
2259		return;
2260	rw_wlock(&pvh_global_lock);
2261	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2262		PMAP_LOCK(pv->pv_pmap);
2263		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2264		    PTE_ISVALID(pte)) {
2265			mtx_lock_spin(&tlbivax_mutex);
2266			tlb_miss_lock();
2267
2268			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2269				tlb0_flush_entry(pv->pv_va);
2270				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2271				    PTE_REFERENCED);
2272			}
2273
2274			tlb_miss_unlock();
2275			mtx_unlock_spin(&tlbivax_mutex);
2276		}
2277		PMAP_UNLOCK(pv->pv_pmap);
2278	}
2279	rw_wunlock(&pvh_global_lock);
2280}
2281
2282/*
2283 * Return a count of reference bits for a page, clearing those bits.
2284 * It is not necessary for every reference bit to be cleared, but it
2285 * is necessary that 0 only be returned when there are truly no
2286 * reference bits set.
2287 *
2288 * XXX: The exact number of bits to check and clear is a matter that
2289 * should be tested and standardized at some point in the future for
2290 * optimal aging of shared pages.
2291 */
2292static int
2293mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2294{
2295	pte_t *pte;
2296	pv_entry_t pv;
2297	int count;
2298
2299	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2300	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2301	count = 0;
2302	rw_wlock(&pvh_global_lock);
2303	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2304		PMAP_LOCK(pv->pv_pmap);
2305		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2306		    PTE_ISVALID(pte)) {
2307			if (PTE_ISREFERENCED(pte)) {
2308				mtx_lock_spin(&tlbivax_mutex);
2309				tlb_miss_lock();
2310
2311				tlb0_flush_entry(pv->pv_va);
2312				pte->flags &= ~PTE_REFERENCED;
2313
2314				tlb_miss_unlock();
2315				mtx_unlock_spin(&tlbivax_mutex);
2316
2317				if (++count > 4) {
2318					PMAP_UNLOCK(pv->pv_pmap);
2319					break;
2320				}
2321			}
2322		}
2323		PMAP_UNLOCK(pv->pv_pmap);
2324	}
2325	rw_wunlock(&pvh_global_lock);
2326	return (count);
2327}
2328
2329/*
2330 * Clear the reference bit on the specified physical page.
2331 */
2332static void
2333mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2334{
2335	pte_t *pte;
2336	pv_entry_t pv;
2337
2338	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2339	    ("mmu_booke_clear_reference: page %p is not managed", m));
2340	rw_wlock(&pvh_global_lock);
2341	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2342		PMAP_LOCK(pv->pv_pmap);
2343		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2344		    PTE_ISVALID(pte)) {
2345			if (PTE_ISREFERENCED(pte)) {
2346				mtx_lock_spin(&tlbivax_mutex);
2347				tlb_miss_lock();
2348
2349				tlb0_flush_entry(pv->pv_va);
2350				pte->flags &= ~PTE_REFERENCED;
2351
2352				tlb_miss_unlock();
2353				mtx_unlock_spin(&tlbivax_mutex);
2354			}
2355		}
2356		PMAP_UNLOCK(pv->pv_pmap);
2357	}
2358	rw_wunlock(&pvh_global_lock);
2359}
2360
2361/*
2362 * Change wiring attribute for a map/virtual-address pair.
2363 */
2364static void
2365mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2366{
2367	pte_t *pte;
2368
2369	PMAP_LOCK(pmap);
2370	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2371		if (wired) {
2372			if (!PTE_ISWIRED(pte)) {
2373				pte->flags |= PTE_WIRED;
2374				pmap->pm_stats.wired_count++;
2375			}
2376		} else {
2377			if (PTE_ISWIRED(pte)) {
2378				pte->flags &= ~PTE_WIRED;
2379				pmap->pm_stats.wired_count--;
2380			}
2381		}
2382	}
2383	PMAP_UNLOCK(pmap);
2384}
2385
2386/*
2387 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2388 * page.  This count may be changed upwards or downwards in the future; it is
2389 * only necessary that true be returned for a small subset of pmaps for proper
2390 * page aging.
2391 */
2392static boolean_t
2393mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2394{
2395	pv_entry_t pv;
2396	int loops;
2397	boolean_t rv;
2398
2399	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2400	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2401	loops = 0;
2402	rv = FALSE;
2403	rw_wlock(&pvh_global_lock);
2404	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2405		if (pv->pv_pmap == pmap) {
2406			rv = TRUE;
2407			break;
2408		}
2409		if (++loops >= 16)
2410			break;
2411	}
2412	rw_wunlock(&pvh_global_lock);
2413	return (rv);
2414}
2415
2416/*
2417 * Return the number of managed mappings to the given physical page that are
2418 * wired.
2419 */
2420static int
2421mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2422{
2423	pv_entry_t pv;
2424	pte_t *pte;
2425	int count = 0;
2426
2427	if ((m->oflags & VPO_UNMANAGED) != 0)
2428		return (count);
2429	rw_wlock(&pvh_global_lock);
2430	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2431		PMAP_LOCK(pv->pv_pmap);
2432		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2433			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2434				count++;
2435		PMAP_UNLOCK(pv->pv_pmap);
2436	}
2437	rw_wunlock(&pvh_global_lock);
2438	return (count);
2439}
2440
2441static int
2442mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2443{
2444	int i;
2445	vm_offset_t va;
2446
2447	/*
2448	 * This currently does not work for entries that
2449	 * overlap TLB1 entries.
2450	 */
2451	for (i = 0; i < tlb1_idx; i ++) {
2452		if (tlb1_iomapped(i, pa, size, &va) == 0)
2453			return (0);
2454	}
2455
2456	return (EFAULT);
2457}
2458
2459vm_offset_t
2460mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2461    vm_size_t *sz)
2462{
2463	vm_paddr_t pa, ppa;
2464	vm_offset_t va;
2465	vm_size_t gran;
2466
2467	/* Raw physical memory dumps don't have a virtual address. */
2468	if (md->md_vaddr == ~0UL) {
2469		/* We always map a 256MB page at 256M. */
2470		gran = 256 * 1024 * 1024;
2471		pa = md->md_paddr + ofs;
2472		ppa = pa & ~(gran - 1);
2473		ofs = pa - ppa;
2474		va = gran;
2475		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2476		if (*sz > (gran - ofs))
2477			*sz = gran - ofs;
2478		return (va + ofs);
2479	}
2480
2481	/* Minidumps are based on virtual memory addresses. */
2482	va = md->md_vaddr + ofs;
2483	if (va >= kernstart + kernsize) {
2484		gran = PAGE_SIZE - (va & PAGE_MASK);
2485		if (*sz > gran)
2486			*sz = gran;
2487	}
2488	return (va);
2489}
2490
2491void
2492mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2493    vm_offset_t va)
2494{
2495
2496	/* Raw physical memory dumps don't have a virtual address. */
2497	if (md->md_vaddr == ~0UL) {
2498		tlb1_idx--;
2499		tlb1[tlb1_idx].mas1 = 0;
2500		tlb1[tlb1_idx].mas2 = 0;
2501		tlb1[tlb1_idx].mas3 = 0;
2502		tlb1_write_entry(tlb1_idx);
2503		return;
2504	}
2505
2506	/* Minidumps are based on virtual memory addresses. */
2507	/* Nothing to do... */
2508}
2509
2510struct pmap_md *
2511mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2512{
2513	static struct pmap_md md;
2514	pte_t *pte;
2515	vm_offset_t va;
2516
2517	if (dumpsys_minidump) {
2518		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2519		if (prev == NULL) {
2520			/* 1st: kernel .data and .bss. */
2521			md.md_index = 1;
2522			md.md_vaddr = trunc_page((uintptr_t)_etext);
2523			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2524			return (&md);
2525		}
2526		switch (prev->md_index) {
2527		case 1:
2528			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2529			md.md_index = 2;
2530			md.md_vaddr = data_start;
2531			md.md_size = data_end - data_start;
2532			break;
2533		case 2:
2534			/* 3rd: kernel VM. */
2535			va = prev->md_vaddr + prev->md_size;
2536			/* Find start of next chunk (from va). */
2537			while (va < virtual_end) {
2538				/* Don't dump the buffer cache. */
2539				if (va >= kmi.buffer_sva &&
2540				    va < kmi.buffer_eva) {
2541					va = kmi.buffer_eva;
2542					continue;
2543				}
2544				pte = pte_find(mmu, kernel_pmap, va);
2545				if (pte != NULL && PTE_ISVALID(pte))
2546					break;
2547				va += PAGE_SIZE;
2548			}
2549			if (va < virtual_end) {
2550				md.md_vaddr = va;
2551				va += PAGE_SIZE;
2552				/* Find last page in chunk. */
2553				while (va < virtual_end) {
2554					/* Don't run into the buffer cache. */
2555					if (va == kmi.buffer_sva)
2556						break;
2557					pte = pte_find(mmu, kernel_pmap, va);
2558					if (pte == NULL || !PTE_ISVALID(pte))
2559						break;
2560					va += PAGE_SIZE;
2561				}
2562				md.md_size = va - md.md_vaddr;
2563				break;
2564			}
2565			md.md_index = 3;
2566			/* FALLTHROUGH */
2567		default:
2568			return (NULL);
2569		}
2570	} else { /* minidumps */
2571		mem_regions(&physmem_regions, &physmem_regions_sz,
2572		    &availmem_regions, &availmem_regions_sz);
2573
2574		if (prev == NULL) {
2575			/* first physical chunk. */
2576			md.md_paddr = physmem_regions[0].mr_start;
2577			md.md_size = physmem_regions[0].mr_size;
2578			md.md_vaddr = ~0UL;
2579			md.md_index = 1;
2580		} else if (md.md_index < physmem_regions_sz) {
2581			md.md_paddr = physmem_regions[md.md_index].mr_start;
2582			md.md_size = physmem_regions[md.md_index].mr_size;
2583			md.md_vaddr = ~0UL;
2584			md.md_index++;
2585		} else {
2586			/* There's no next physical chunk. */
2587			return (NULL);
2588		}
2589	}
2590
2591	return (&md);
2592}
2593
2594/*
2595 * Map a set of physical memory pages into the kernel virtual address space.
2596 * Return a pointer to where it is mapped. This routine is intended to be used
2597 * for mapping device memory, NOT real memory.
2598 */
2599static void *
2600mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2601{
2602	void *res;
2603	uintptr_t va;
2604	vm_size_t sz;
2605
2606	/*
2607	 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2608	 * we don't wrap around. Devices on the local bus typically extend all
2609	 * the way up to and including 0xffffffff. In that case (pa + size)
2610	 * would be 0. This creates a false positive (i.e. we think it's
2611	 * within the CCSR) and not create a mapping.
2612	 */
2613	if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2614		va = CCSRBAR_VA + (pa - ccsrbar_pa);
2615		return ((void *)va);
2616	}
2617
2618	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2619	res = (void *)va;
2620
2621	do {
2622		sz = 1 << (ilog2(size) & ~1);
2623		if (bootverbose)
2624			printf("Wiring VA=%x to PA=%x (size=%x), "
2625			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2626		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2627		size -= sz;
2628		pa += sz;
2629		va += sz;
2630	} while (size > 0);
2631
2632	return (res);
2633}
2634
2635/*
2636 * 'Unmap' a range mapped by mmu_booke_mapdev().
2637 */
2638static void
2639mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2640{
2641	vm_offset_t base, offset;
2642
2643	/*
2644	 * Unmap only if this is inside kernel virtual space.
2645	 */
2646	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2647		base = trunc_page(va);
2648		offset = va & PAGE_MASK;
2649		size = roundup(offset + size, PAGE_SIZE);
2650		kmem_free(kernel_map, base, size);
2651	}
2652}
2653
2654/*
2655 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2656 * specified pmap. This eliminates the blast of soft faults on process startup
2657 * and immediately after an mmap.
2658 */
2659static void
2660mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2661    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2662{
2663
2664	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2665	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2666	    ("mmu_booke_object_init_pt: non-device object"));
2667}
2668
2669/*
2670 * Perform the pmap work for mincore.
2671 */
2672static int
2673mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2674    vm_paddr_t *locked_pa)
2675{
2676
2677	TODO;
2678	return (0);
2679}
2680
2681/**************************************************************************/
2682/* TID handling */
2683/**************************************************************************/
2684
2685/*
2686 * Allocate a TID. If necessary, steal one from someone else.
2687 * The new TID is flushed from the TLB before returning.
2688 */
2689static tlbtid_t
2690tid_alloc(pmap_t pmap)
2691{
2692	tlbtid_t tid;
2693	int thiscpu;
2694
2695	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2696
2697	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2698
2699	thiscpu = PCPU_GET(cpuid);
2700
2701	tid = PCPU_GET(tid_next);
2702	if (tid > TID_MAX)
2703		tid = TID_MIN;
2704	PCPU_SET(tid_next, tid + 1);
2705
2706	/* If we are stealing TID then clear the relevant pmap's field */
2707	if (tidbusy[thiscpu][tid] != NULL) {
2708
2709		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2710
2711		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2712
2713		/* Flush all entries from TLB0 matching this TID. */
2714		tid_flush(tid);
2715	}
2716
2717	tidbusy[thiscpu][tid] = pmap;
2718	pmap->pm_tid[thiscpu] = tid;
2719	__asm __volatile("msync; isync");
2720
2721	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2722	    PCPU_GET(tid_next));
2723
2724	return (tid);
2725}
2726
2727/**************************************************************************/
2728/* TLB0 handling */
2729/**************************************************************************/
2730
2731static void
2732tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2733    uint32_t mas7)
2734{
2735	int as;
2736	char desc[3];
2737	tlbtid_t tid;
2738	vm_size_t size;
2739	unsigned int tsize;
2740
2741	desc[2] = '\0';
2742	if (mas1 & MAS1_VALID)
2743		desc[0] = 'V';
2744	else
2745		desc[0] = ' ';
2746
2747	if (mas1 & MAS1_IPROT)
2748		desc[1] = 'P';
2749	else
2750		desc[1] = ' ';
2751
2752	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2753	tid = MAS1_GETTID(mas1);
2754
2755	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2756	size = 0;
2757	if (tsize)
2758		size = tsize2size(tsize);
2759
2760	debugf("%3d: (%s) [AS=%d] "
2761	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2762	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2763	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2764}
2765
2766/* Convert TLB0 va and way number to tlb0[] table index. */
2767static inline unsigned int
2768tlb0_tableidx(vm_offset_t va, unsigned int way)
2769{
2770	unsigned int idx;
2771
2772	idx = (way * TLB0_ENTRIES_PER_WAY);
2773	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2774	return (idx);
2775}
2776
2777/*
2778 * Invalidate TLB0 entry.
2779 */
2780static inline void
2781tlb0_flush_entry(vm_offset_t va)
2782{
2783
2784	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2785
2786	mtx_assert(&tlbivax_mutex, MA_OWNED);
2787
2788	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2789	__asm __volatile("isync; msync");
2790	__asm __volatile("tlbsync; msync");
2791
2792	CTR1(KTR_PMAP, "%s: e", __func__);
2793}
2794
2795/* Print out contents of the MAS registers for each TLB0 entry */
2796void
2797tlb0_print_tlbentries(void)
2798{
2799	uint32_t mas0, mas1, mas2, mas3, mas7;
2800	int entryidx, way, idx;
2801
2802	debugf("TLB0 entries:\n");
2803	for (way = 0; way < TLB0_WAYS; way ++)
2804		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2805
2806			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2807			mtspr(SPR_MAS0, mas0);
2808			__asm __volatile("isync");
2809
2810			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2811			mtspr(SPR_MAS2, mas2);
2812
2813			__asm __volatile("isync; tlbre");
2814
2815			mas1 = mfspr(SPR_MAS1);
2816			mas2 = mfspr(SPR_MAS2);
2817			mas3 = mfspr(SPR_MAS3);
2818			mas7 = mfspr(SPR_MAS7);
2819
2820			idx = tlb0_tableidx(mas2, way);
2821			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2822		}
2823}
2824
2825/**************************************************************************/
2826/* TLB1 handling */
2827/**************************************************************************/
2828
2829/*
2830 * TLB1 mapping notes:
2831 *
2832 * TLB1[0]	CCSRBAR
2833 * TLB1[1]	Kernel text and data.
2834 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2835 *		windows, other devices mappings.
2836 */
2837
2838/*
2839 * Write given entry to TLB1 hardware.
2840 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2841 */
2842static void
2843tlb1_write_entry(unsigned int idx)
2844{
2845	uint32_t mas0, mas7;
2846
2847	//debugf("tlb1_write_entry: s\n");
2848
2849	/* Clear high order RPN bits */
2850	mas7 = 0;
2851
2852	/* Select entry */
2853	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2854	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2855
2856	mtspr(SPR_MAS0, mas0);
2857	__asm __volatile("isync");
2858	mtspr(SPR_MAS1, tlb1[idx].mas1);
2859	__asm __volatile("isync");
2860	mtspr(SPR_MAS2, tlb1[idx].mas2);
2861	__asm __volatile("isync");
2862	mtspr(SPR_MAS3, tlb1[idx].mas3);
2863	__asm __volatile("isync");
2864	mtspr(SPR_MAS7, mas7);
2865	__asm __volatile("isync; tlbwe; isync; msync");
2866
2867	//debugf("tlb1_write_entry: e\n");
2868}
2869
2870/*
2871 * Return the largest uint value log such that 2^log <= num.
2872 */
2873static unsigned int
2874ilog2(unsigned int num)
2875{
2876	int lz;
2877
2878	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2879	return (31 - lz);
2880}
2881
2882/*
2883 * Convert TLB TSIZE value to mapped region size.
2884 */
2885static vm_size_t
2886tsize2size(unsigned int tsize)
2887{
2888
2889	/*
2890	 * size = 4^tsize KB
2891	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2892	 */
2893
2894	return ((1 << (2 * tsize)) * 1024);
2895}
2896
2897/*
2898 * Convert region size (must be power of 4) to TLB TSIZE value.
2899 */
2900static unsigned int
2901size2tsize(vm_size_t size)
2902{
2903
2904	return (ilog2(size) / 2 - 5);
2905}
2906
2907/*
2908 * Register permanent kernel mapping in TLB1.
2909 *
2910 * Entries are created starting from index 0 (current free entry is
2911 * kept in tlb1_idx) and are not supposed to be invalidated.
2912 */
2913static int
2914tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2915    uint32_t flags)
2916{
2917	uint32_t ts, tid;
2918	int tsize;
2919
2920	if (tlb1_idx >= TLB1_ENTRIES) {
2921		printf("tlb1_set_entry: TLB1 full!\n");
2922		return (-1);
2923	}
2924
2925	/* Convert size to TSIZE */
2926	tsize = size2tsize(size);
2927
2928	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2929	/* XXX TS is hard coded to 0 for now as we only use single address space */
2930	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2931
2932	/* XXX LOCK tlb1[] */
2933
2934	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2935	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2936	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2937
2938	/* Set supervisor RWX permission bits */
2939	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2940
2941	tlb1_write_entry(tlb1_idx++);
2942
2943	/* XXX UNLOCK tlb1[] */
2944
2945	/*
2946	 * XXX in general TLB1 updates should be propagated between CPUs,
2947	 * since current design assumes to have the same TLB1 set-up on all
2948	 * cores.
2949	 */
2950	return (0);
2951}
2952
2953/*
2954 * Map in contiguous RAM region into the TLB1 using maximum of
2955 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2956 *
2957 * If necessary round up last entry size and return total size
2958 * used by all allocated entries.
2959 */
2960vm_size_t
2961tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2962{
2963	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2964	vm_size_t mapped, pgsz, base, mask;
2965	int idx, nents;
2966
2967	/* Round up to the next 1M */
2968	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2969
2970	mapped = 0;
2971	idx = 0;
2972	base = va;
2973	pgsz = 64*1024*1024;
2974	while (mapped < size) {
2975		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2976			while (pgsz > (size - mapped))
2977				pgsz >>= 2;
2978			pgs[idx++] = pgsz;
2979			mapped += pgsz;
2980		}
2981
2982		/* We under-map. Correct for this. */
2983		if (mapped < size) {
2984			while (pgs[idx - 1] == pgsz) {
2985				idx--;
2986				mapped -= pgsz;
2987			}
2988			/* XXX We may increase beyond out starting point. */
2989			pgsz <<= 2;
2990			pgs[idx++] = pgsz;
2991			mapped += pgsz;
2992		}
2993	}
2994
2995	nents = idx;
2996	mask = pgs[0] - 1;
2997	/* Align address to the boundary */
2998	if (va & mask) {
2999		va = (va + mask) & ~mask;
3000		pa = (pa + mask) & ~mask;
3001	}
3002
3003	for (idx = 0; idx < nents; idx++) {
3004		pgsz = pgs[idx];
3005		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3006		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3007		pa += pgsz;
3008		va += pgsz;
3009	}
3010
3011	mapped = (va - base);
3012	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3013	    mapped, mapped - size);
3014	return (mapped);
3015}
3016
3017/*
3018 * TLB1 initialization routine, to be called after the very first
3019 * assembler level setup done in locore.S.
3020 */
3021void
3022tlb1_init(vm_offset_t ccsrbar)
3023{
3024	uint32_t mas0, mas1, mas3;
3025	uint32_t tsz;
3026	u_int i;
3027
3028	ccsrbar_pa = ccsrbar;
3029
3030	if (bootinfo != NULL && bootinfo[0] != 1) {
3031		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3032	} else
3033		tlb1_idx = 1;
3034
3035	/* The first entry/entries are used to map the kernel. */
3036	for (i = 0; i < tlb1_idx; i++) {
3037		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3038		mtspr(SPR_MAS0, mas0);
3039		__asm __volatile("isync; tlbre");
3040
3041		mas1 = mfspr(SPR_MAS1);
3042		if ((mas1 & MAS1_VALID) == 0)
3043			continue;
3044
3045		mas3 = mfspr(SPR_MAS3);
3046
3047		tlb1[i].mas1 = mas1;
3048		tlb1[i].mas2 = mfspr(SPR_MAS2);
3049		tlb1[i].mas3 = mas3;
3050
3051		if (i == 0)
3052			kernload = mas3 & MAS3_RPN;
3053
3054		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3055		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3056	}
3057
3058	/* Map in CCSRBAR. */
3059	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3060
3061#ifdef SMP
3062	bp_ntlb1s = tlb1_idx;
3063#endif
3064
3065	/* Purge the remaining entries */
3066	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3067		tlb1_write_entry(i);
3068
3069	/* Setup TLB miss defaults */
3070	set_mas4_defaults();
3071}
3072
3073/*
3074 * Setup MAS4 defaults.
3075 * These values are loaded to MAS0-2 on a TLB miss.
3076 */
3077static void
3078set_mas4_defaults(void)
3079{
3080	uint32_t mas4;
3081
3082	/* Defaults: TLB0, PID0, TSIZED=4K */
3083	mas4 = MAS4_TLBSELD0;
3084	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3085#ifdef SMP
3086	mas4 |= MAS4_MD;
3087#endif
3088	mtspr(SPR_MAS4, mas4);
3089	__asm __volatile("isync");
3090}
3091
3092/*
3093 * Print out contents of the MAS registers for each TLB1 entry
3094 */
3095void
3096tlb1_print_tlbentries(void)
3097{
3098	uint32_t mas0, mas1, mas2, mas3, mas7;
3099	int i;
3100
3101	debugf("TLB1 entries:\n");
3102	for (i = 0; i < TLB1_ENTRIES; i++) {
3103
3104		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3105		mtspr(SPR_MAS0, mas0);
3106
3107		__asm __volatile("isync; tlbre");
3108
3109		mas1 = mfspr(SPR_MAS1);
3110		mas2 = mfspr(SPR_MAS2);
3111		mas3 = mfspr(SPR_MAS3);
3112		mas7 = mfspr(SPR_MAS7);
3113
3114		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3115	}
3116}
3117
3118/*
3119 * Print out contents of the in-ram tlb1 table.
3120 */
3121void
3122tlb1_print_entries(void)
3123{
3124	int i;
3125
3126	debugf("tlb1[] table entries:\n");
3127	for (i = 0; i < TLB1_ENTRIES; i++)
3128		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3129}
3130
3131/*
3132 * Return 0 if the physical IO range is encompassed by one of the
3133 * the TLB1 entries, otherwise return related error code.
3134 */
3135static int
3136tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3137{
3138	uint32_t prot;
3139	vm_paddr_t pa_start;
3140	vm_paddr_t pa_end;
3141	unsigned int entry_tsize;
3142	vm_size_t entry_size;
3143
3144	*va = (vm_offset_t)NULL;
3145
3146	/* Skip invalid entries */
3147	if (!(tlb1[i].mas1 & MAS1_VALID))
3148		return (EINVAL);
3149
3150	/*
3151	 * The entry must be cache-inhibited, guarded, and r/w
3152	 * so it can function as an i/o page
3153	 */
3154	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3155	if (prot != (MAS2_I | MAS2_G))
3156		return (EPERM);
3157
3158	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3159	if (prot != (MAS3_SR | MAS3_SW))
3160		return (EPERM);
3161
3162	/* The address should be within the entry range. */
3163	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3164	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3165
3166	entry_size = tsize2size(entry_tsize);
3167	pa_start = tlb1[i].mas3 & MAS3_RPN;
3168	pa_end = pa_start + entry_size - 1;
3169
3170	if ((pa < pa_start) || ((pa + size) > pa_end))
3171		return (ERANGE);
3172
3173	/* Return virtual address of this mapping. */
3174	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3175	return (0);
3176}
3177