pmap.c revision 242526
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 242526 2012-11-03 22:02:12Z marcel $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/msgbuf.h>
65#include <sys/lock.h>
66#include <sys/mutex.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/vmparam.h>
89#include <machine/md_var.h>
90#include <machine/mmuvar.h>
91#include <machine/pmap.h>
92#include <machine/pte.h>
93
94#include "mmu_if.h"
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103
104extern struct mtx sched_lock;
105
106extern int dumpsys_minidump;
107
108extern unsigned char _etext[];
109extern unsigned char _end[];
110
111extern uint32_t *bootinfo;
112
113#ifdef SMP
114extern uint32_t bp_ntlb1s;
115#endif
116
117vm_paddr_t ccsrbar_pa;
118vm_paddr_t kernload;
119vm_offset_t kernstart;
120vm_size_t kernsize;
121
122/* Message buffer and tables. */
123static vm_offset_t data_start;
124static vm_size_t data_end;
125
126/* Phys/avail memory regions. */
127static struct mem_region *availmem_regions;
128static int availmem_regions_sz;
129static struct mem_region *physmem_regions;
130static int physmem_regions_sz;
131
132/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133static vm_offset_t zero_page_va;
134static struct mtx zero_page_mutex;
135
136static struct mtx tlbivax_mutex;
137
138/*
139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140 * by idle thred only, no lock required.
141 */
142static vm_offset_t zero_page_idle_va;
143
144/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145static vm_offset_t copy_page_src_va;
146static vm_offset_t copy_page_dst_va;
147static struct mtx copy_page_mutex;
148
149/**************************************************************************/
150/* PMAP */
151/**************************************************************************/
152
153static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154    vm_prot_t, boolean_t);
155
156unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158
159/*
160 * If user pmap is processed with mmu_booke_remove and the resident count
161 * drops to 0, there are no more pages to remove, so we need not continue.
162 */
163#define PMAP_REMOVE_DONE(pmap) \
164	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165
166extern void tid_flush(tlbtid_t);
167
168/**************************************************************************/
169/* TLB and TID handling */
170/**************************************************************************/
171
172/* Translation ID busy table */
173static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
174
175/*
176 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
177 * core revisions and should be read from h/w registers during early config.
178 */
179uint32_t tlb0_entries;
180uint32_t tlb0_ways;
181uint32_t tlb0_entries_per_way;
182
183#define TLB0_ENTRIES		(tlb0_entries)
184#define TLB0_WAYS		(tlb0_ways)
185#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
186
187#define TLB1_ENTRIES 16
188
189/* In-ram copy of the TLB1 */
190static tlb_entry_t tlb1[TLB1_ENTRIES];
191
192/* Next free entry in the TLB1 */
193static unsigned int tlb1_idx;
194
195static tlbtid_t tid_alloc(struct pmap *);
196
197static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
198
199static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
200static void tlb1_write_entry(unsigned int);
201static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
202static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
203
204static vm_size_t tsize2size(unsigned int);
205static unsigned int size2tsize(vm_size_t);
206static unsigned int ilog2(unsigned int);
207
208static void set_mas4_defaults(void);
209
210static inline void tlb0_flush_entry(vm_offset_t);
211static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
212
213/**************************************************************************/
214/* Page table management */
215/**************************************************************************/
216
217/* Data for the pv entry allocation mechanism */
218static uma_zone_t pvzone;
219static struct vm_object pvzone_obj;
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC	200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS		(128 * 16)
250
251struct ptbl_buf {
252	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253	vm_offset_t kva;		/* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
274static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275    vm_size_t, vm_offset_t);
276static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278    vm_prot_t, boolean_t);
279static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280    vm_page_t, vm_prot_t);
281static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282    vm_prot_t);
283static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285    vm_prot_t);
286static void		mmu_booke_init(mmu_t);
287static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
288static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
290static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
291static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292    int);
293static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294    vm_paddr_t *);
295static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296    vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void		mmu_booke_page_init(mmu_t, vm_page_t);
299static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void		mmu_booke_pinit(mmu_t, pmap_t);
301static void		mmu_booke_pinit0(mmu_t, pmap_t);
302static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303    vm_prot_t);
304static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void		mmu_booke_release(mmu_t, pmap_t);
307static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void		mmu_booke_activate(mmu_t, struct thread *);
314static void		mmu_booke_deactivate(mmu_t, struct thread *);
315static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
323    vm_size_t);
324static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
325    vm_size_t, vm_size_t *);
326static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
327    vm_size_t, vm_offset_t);
328static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
329
330static mmu_method_t mmu_booke_methods[] = {
331	/* pmap dispatcher interface */
332	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
333	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
334	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
335	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337	MMUMETHOD(mmu_enter,		mmu_booke_enter),
338	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
339	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
340	MMUMETHOD(mmu_extract,		mmu_booke_extract),
341	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
342	MMUMETHOD(mmu_init,		mmu_booke_init),
343	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
344	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
345	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
346	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
347	MMUMETHOD(mmu_map,		mmu_booke_map),
348	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
349	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
350	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
352	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
354	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
355	MMUMETHOD(mmu_protect,		mmu_booke_protect),
356	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
357	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
358	MMUMETHOD(mmu_release,		mmu_booke_release),
359	MMUMETHOD(mmu_remove,		mmu_booke_remove),
360	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
361	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
362	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
363	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
366	MMUMETHOD(mmu_activate,		mmu_booke_activate),
367	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
368
369	/* Internal interfaces */
370	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
371	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
372	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
373	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
374	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
375/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
376	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
377
378	/* dumpsys() support */
379	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
380	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
381	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
382
383	{ 0, 0 }
384};
385
386MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
387
388static inline void
389tlb_miss_lock(void)
390{
391#ifdef SMP
392	struct pcpu *pc;
393
394	if (!smp_started)
395		return;
396
397	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
398		if (pc != pcpup) {
399
400			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
401			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
402
403			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
404			    ("tlb_miss_lock: tried to lock self"));
405
406			tlb_lock(pc->pc_booke_tlb_lock);
407
408			CTR1(KTR_PMAP, "%s: locked", __func__);
409		}
410	}
411#endif
412}
413
414static inline void
415tlb_miss_unlock(void)
416{
417#ifdef SMP
418	struct pcpu *pc;
419
420	if (!smp_started)
421		return;
422
423	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
424		if (pc != pcpup) {
425			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
426			    __func__, pc->pc_cpuid);
427
428			tlb_unlock(pc->pc_booke_tlb_lock);
429
430			CTR1(KTR_PMAP, "%s: unlocked", __func__);
431		}
432	}
433#endif
434}
435
436/* Return number of entries in TLB0. */
437static __inline void
438tlb0_get_tlbconf(void)
439{
440	uint32_t tlb0_cfg;
441
442	tlb0_cfg = mfspr(SPR_TLB0CFG);
443	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
444	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
445	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
446}
447
448/* Initialize pool of kva ptbl buffers. */
449static void
450ptbl_init(void)
451{
452	int i;
453
454	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
455	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
456	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
457	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
458
459	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
460	TAILQ_INIT(&ptbl_buf_freelist);
461
462	for (i = 0; i < PTBL_BUFS; i++) {
463		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
464		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
465	}
466}
467
468/* Get a ptbl_buf from the freelist. */
469static struct ptbl_buf *
470ptbl_buf_alloc(void)
471{
472	struct ptbl_buf *buf;
473
474	mtx_lock(&ptbl_buf_freelist_lock);
475	buf = TAILQ_FIRST(&ptbl_buf_freelist);
476	if (buf != NULL)
477		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
478	mtx_unlock(&ptbl_buf_freelist_lock);
479
480	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
481
482	return (buf);
483}
484
485/* Return ptbl buff to free pool. */
486static void
487ptbl_buf_free(struct ptbl_buf *buf)
488{
489
490	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
491
492	mtx_lock(&ptbl_buf_freelist_lock);
493	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
494	mtx_unlock(&ptbl_buf_freelist_lock);
495}
496
497/*
498 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
499 */
500static void
501ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
502{
503	struct ptbl_buf *pbuf;
504
505	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
506
507	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
508
509	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
510		if (pbuf->kva == (vm_offset_t)ptbl) {
511			/* Remove from pmap ptbl buf list. */
512			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
513
514			/* Free corresponding ptbl buf. */
515			ptbl_buf_free(pbuf);
516			break;
517		}
518}
519
520/* Allocate page table. */
521static pte_t *
522ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
523{
524	vm_page_t mtbl[PTBL_PAGES];
525	vm_page_t m;
526	struct ptbl_buf *pbuf;
527	unsigned int pidx;
528	pte_t *ptbl;
529	int i;
530
531	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
532	    (pmap == kernel_pmap), pdir_idx);
533
534	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
535	    ("ptbl_alloc: invalid pdir_idx"));
536	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
537	    ("pte_alloc: valid ptbl entry exists!"));
538
539	pbuf = ptbl_buf_alloc();
540	if (pbuf == NULL)
541		panic("pte_alloc: couldn't alloc kernel virtual memory");
542
543	ptbl = (pte_t *)pbuf->kva;
544
545	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
546
547	/* Allocate ptbl pages, this will sleep! */
548	for (i = 0; i < PTBL_PAGES; i++) {
549		pidx = (PTBL_PAGES * pdir_idx) + i;
550		while ((m = vm_page_alloc(NULL, pidx,
551		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
552
553			PMAP_UNLOCK(pmap);
554			vm_page_unlock_queues();
555			VM_WAIT;
556			vm_page_lock_queues();
557			PMAP_LOCK(pmap);
558		}
559		mtbl[i] = m;
560	}
561
562	/* Map allocated pages into kernel_pmap. */
563	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
564
565	/* Zero whole ptbl. */
566	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
567
568	/* Add pbuf to the pmap ptbl bufs list. */
569	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
570
571	return (ptbl);
572}
573
574/* Free ptbl pages and invalidate pdir entry. */
575static void
576ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
577{
578	pte_t *ptbl;
579	vm_paddr_t pa;
580	vm_offset_t va;
581	vm_page_t m;
582	int i;
583
584	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
585	    (pmap == kernel_pmap), pdir_idx);
586
587	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
588	    ("ptbl_free: invalid pdir_idx"));
589
590	ptbl = pmap->pm_pdir[pdir_idx];
591
592	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
593
594	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
595
596	/*
597	 * Invalidate the pdir entry as soon as possible, so that other CPUs
598	 * don't attempt to look up the page tables we are releasing.
599	 */
600	mtx_lock_spin(&tlbivax_mutex);
601	tlb_miss_lock();
602
603	pmap->pm_pdir[pdir_idx] = NULL;
604
605	tlb_miss_unlock();
606	mtx_unlock_spin(&tlbivax_mutex);
607
608	for (i = 0; i < PTBL_PAGES; i++) {
609		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
610		pa = pte_vatopa(mmu, kernel_pmap, va);
611		m = PHYS_TO_VM_PAGE(pa);
612		vm_page_free_zero(m);
613		atomic_subtract_int(&cnt.v_wire_count, 1);
614		mmu_booke_kremove(mmu, va);
615	}
616
617	ptbl_free_pmap_ptbl(pmap, ptbl);
618}
619
620/*
621 * Decrement ptbl pages hold count and attempt to free ptbl pages.
622 * Called when removing pte entry from ptbl.
623 *
624 * Return 1 if ptbl pages were freed.
625 */
626static int
627ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
628{
629	pte_t *ptbl;
630	vm_paddr_t pa;
631	vm_page_t m;
632	int i;
633
634	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
635	    (pmap == kernel_pmap), pdir_idx);
636
637	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
638	    ("ptbl_unhold: invalid pdir_idx"));
639	KASSERT((pmap != kernel_pmap),
640	    ("ptbl_unhold: unholding kernel ptbl!"));
641
642	ptbl = pmap->pm_pdir[pdir_idx];
643
644	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
645	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
646	    ("ptbl_unhold: non kva ptbl"));
647
648	/* decrement hold count */
649	for (i = 0; i < PTBL_PAGES; i++) {
650		pa = pte_vatopa(mmu, kernel_pmap,
651		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
652		m = PHYS_TO_VM_PAGE(pa);
653		m->wire_count--;
654	}
655
656	/*
657	 * Free ptbl pages if there are no pte etries in this ptbl.
658	 * wire_count has the same value for all ptbl pages, so check the last
659	 * page.
660	 */
661	if (m->wire_count == 0) {
662		ptbl_free(mmu, pmap, pdir_idx);
663
664		//debugf("ptbl_unhold: e (freed ptbl)\n");
665		return (1);
666	}
667
668	return (0);
669}
670
671/*
672 * Increment hold count for ptbl pages. This routine is used when a new pte
673 * entry is being inserted into the ptbl.
674 */
675static void
676ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
677{
678	vm_paddr_t pa;
679	pte_t *ptbl;
680	vm_page_t m;
681	int i;
682
683	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
684	    pdir_idx);
685
686	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
687	    ("ptbl_hold: invalid pdir_idx"));
688	KASSERT((pmap != kernel_pmap),
689	    ("ptbl_hold: holding kernel ptbl!"));
690
691	ptbl = pmap->pm_pdir[pdir_idx];
692
693	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
694
695	for (i = 0; i < PTBL_PAGES; i++) {
696		pa = pte_vatopa(mmu, kernel_pmap,
697		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
698		m = PHYS_TO_VM_PAGE(pa);
699		m->wire_count++;
700	}
701}
702
703/* Allocate pv_entry structure. */
704pv_entry_t
705pv_alloc(void)
706{
707	pv_entry_t pv;
708
709	pv_entry_count++;
710	if (pv_entry_count > pv_entry_high_water)
711		pagedaemon_wakeup();
712	pv = uma_zalloc(pvzone, M_NOWAIT);
713
714	return (pv);
715}
716
717/* Free pv_entry structure. */
718static __inline void
719pv_free(pv_entry_t pve)
720{
721
722	pv_entry_count--;
723	uma_zfree(pvzone, pve);
724}
725
726
727/* Allocate and initialize pv_entry structure. */
728static void
729pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
730{
731	pv_entry_t pve;
732
733	//int su = (pmap == kernel_pmap);
734	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
735	//	(u_int32_t)pmap, va, (u_int32_t)m);
736
737	pve = pv_alloc();
738	if (pve == NULL)
739		panic("pv_insert: no pv entries!");
740
741	pve->pv_pmap = pmap;
742	pve->pv_va = va;
743
744	/* add to pv_list */
745	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
746	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
747
748	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
749
750	//debugf("pv_insert: e\n");
751}
752
753/* Destroy pv entry. */
754static void
755pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
756{
757	pv_entry_t pve;
758
759	//int su = (pmap == kernel_pmap);
760	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
761
762	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
763	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
764
765	/* find pv entry */
766	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
767		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
768			/* remove from pv_list */
769			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
770			if (TAILQ_EMPTY(&m->md.pv_list))
771				vm_page_aflag_clear(m, PGA_WRITEABLE);
772
773			/* free pv entry struct */
774			pv_free(pve);
775			break;
776		}
777	}
778
779	//debugf("pv_remove: e\n");
780}
781
782/*
783 * Clean pte entry, try to free page table page if requested.
784 *
785 * Return 1 if ptbl pages were freed, otherwise return 0.
786 */
787static int
788pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
789{
790	unsigned int pdir_idx = PDIR_IDX(va);
791	unsigned int ptbl_idx = PTBL_IDX(va);
792	vm_page_t m;
793	pte_t *ptbl;
794	pte_t *pte;
795
796	//int su = (pmap == kernel_pmap);
797	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
798	//		su, (u_int32_t)pmap, va, flags);
799
800	ptbl = pmap->pm_pdir[pdir_idx];
801	KASSERT(ptbl, ("pte_remove: null ptbl"));
802
803	pte = &ptbl[ptbl_idx];
804
805	if (pte == NULL || !PTE_ISVALID(pte))
806		return (0);
807
808	if (PTE_ISWIRED(pte))
809		pmap->pm_stats.wired_count--;
810
811	/* Handle managed entry. */
812	if (PTE_ISMANAGED(pte)) {
813		/* Get vm_page_t for mapped pte. */
814		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
815
816		if (PTE_ISMODIFIED(pte))
817			vm_page_dirty(m);
818
819		if (PTE_ISREFERENCED(pte))
820			vm_page_aflag_set(m, PGA_REFERENCED);
821
822		pv_remove(pmap, va, m);
823	}
824
825	mtx_lock_spin(&tlbivax_mutex);
826	tlb_miss_lock();
827
828	tlb0_flush_entry(va);
829	pte->flags = 0;
830	pte->rpn = 0;
831
832	tlb_miss_unlock();
833	mtx_unlock_spin(&tlbivax_mutex);
834
835	pmap->pm_stats.resident_count--;
836
837	if (flags & PTBL_UNHOLD) {
838		//debugf("pte_remove: e (unhold)\n");
839		return (ptbl_unhold(mmu, pmap, pdir_idx));
840	}
841
842	//debugf("pte_remove: e\n");
843	return (0);
844}
845
846/*
847 * Insert PTE for a given page and virtual address.
848 */
849static void
850pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
851{
852	unsigned int pdir_idx = PDIR_IDX(va);
853	unsigned int ptbl_idx = PTBL_IDX(va);
854	pte_t *ptbl, *pte;
855
856	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
857	    pmap == kernel_pmap, pmap, va);
858
859	/* Get the page table pointer. */
860	ptbl = pmap->pm_pdir[pdir_idx];
861
862	if (ptbl == NULL) {
863		/* Allocate page table pages. */
864		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
865	} else {
866		/*
867		 * Check if there is valid mapping for requested
868		 * va, if there is, remove it.
869		 */
870		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
871		if (PTE_ISVALID(pte)) {
872			pte_remove(mmu, pmap, va, PTBL_HOLD);
873		} else {
874			/*
875			 * pte is not used, increment hold count
876			 * for ptbl pages.
877			 */
878			if (pmap != kernel_pmap)
879				ptbl_hold(mmu, pmap, pdir_idx);
880		}
881	}
882
883	/*
884	 * Insert pv_entry into pv_list for mapped page if part of managed
885	 * memory.
886	 */
887	if ((m->oflags & VPO_UNMANAGED) == 0) {
888		flags |= PTE_MANAGED;
889
890		/* Create and insert pv entry. */
891		pv_insert(pmap, va, m);
892	}
893
894	pmap->pm_stats.resident_count++;
895
896	mtx_lock_spin(&tlbivax_mutex);
897	tlb_miss_lock();
898
899	tlb0_flush_entry(va);
900	if (pmap->pm_pdir[pdir_idx] == NULL) {
901		/*
902		 * If we just allocated a new page table, hook it in
903		 * the pdir.
904		 */
905		pmap->pm_pdir[pdir_idx] = ptbl;
906	}
907	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
908	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
909	pte->flags |= (PTE_VALID | flags);
910
911	tlb_miss_unlock();
912	mtx_unlock_spin(&tlbivax_mutex);
913}
914
915/* Return the pa for the given pmap/va. */
916static vm_paddr_t
917pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
918{
919	vm_paddr_t pa = 0;
920	pte_t *pte;
921
922	pte = pte_find(mmu, pmap, va);
923	if ((pte != NULL) && PTE_ISVALID(pte))
924		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
925	return (pa);
926}
927
928/* Get a pointer to a PTE in a page table. */
929static pte_t *
930pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
931{
932	unsigned int pdir_idx = PDIR_IDX(va);
933	unsigned int ptbl_idx = PTBL_IDX(va);
934
935	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
936
937	if (pmap->pm_pdir[pdir_idx])
938		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
939
940	return (NULL);
941}
942
943/**************************************************************************/
944/* PMAP related */
945/**************************************************************************/
946
947/*
948 * This is called during booke_init, before the system is really initialized.
949 */
950static void
951mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
952{
953	vm_offset_t phys_kernelend;
954	struct mem_region *mp, *mp1;
955	int cnt, i, j;
956	u_int s, e, sz;
957	u_int phys_avail_count;
958	vm_size_t physsz, hwphyssz, kstack0_sz;
959	vm_offset_t kernel_pdir, kstack0, va;
960	vm_paddr_t kstack0_phys;
961	void *dpcpu;
962	pte_t *pte;
963
964	debugf("mmu_booke_bootstrap: entered\n");
965
966	/* Initialize invalidation mutex */
967	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
968
969	/* Read TLB0 size and associativity. */
970	tlb0_get_tlbconf();
971
972	/*
973	 * Align kernel start and end address (kernel image).
974	 * Note that kernel end does not necessarily relate to kernsize.
975	 * kernsize is the size of the kernel that is actually mapped.
976	 * Also note that "start - 1" is deliberate. With SMP, the
977	 * entry point is exactly a page from the actual load address.
978	 * As such, trunc_page() has no effect and we're off by a page.
979	 * Since we always have the ELF header between the load address
980	 * and the entry point, we can safely subtract 1 to compensate.
981	 */
982	kernstart = trunc_page(start - 1);
983	data_start = round_page(kernelend);
984	data_end = data_start;
985
986	/*
987	 * Addresses of preloaded modules (like file systems) use
988	 * physical addresses. Make sure we relocate those into
989	 * virtual addresses.
990	 */
991	preload_addr_relocate = kernstart - kernload;
992
993	/* Allocate the dynamic per-cpu area. */
994	dpcpu = (void *)data_end;
995	data_end += DPCPU_SIZE;
996
997	/* Allocate space for the message buffer. */
998	msgbufp = (struct msgbuf *)data_end;
999	data_end += msgbufsize;
1000	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1001	    data_end);
1002
1003	data_end = round_page(data_end);
1004
1005	/* Allocate space for ptbl_bufs. */
1006	ptbl_bufs = (struct ptbl_buf *)data_end;
1007	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1008	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1009	    data_end);
1010
1011	data_end = round_page(data_end);
1012
1013	/* Allocate PTE tables for kernel KVA. */
1014	kernel_pdir = data_end;
1015	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1016	    PDIR_SIZE - 1) / PDIR_SIZE;
1017	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1018	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1019	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1020
1021	debugf(" data_end: 0x%08x\n", data_end);
1022	if (data_end - kernstart > kernsize) {
1023		kernsize += tlb1_mapin_region(kernstart + kernsize,
1024		    kernload + kernsize, (data_end - kernstart) - kernsize);
1025	}
1026	data_end = kernstart + kernsize;
1027	debugf(" updated data_end: 0x%08x\n", data_end);
1028
1029	/*
1030	 * Clear the structures - note we can only do it safely after the
1031	 * possible additional TLB1 translations are in place (above) so that
1032	 * all range up to the currently calculated 'data_end' is covered.
1033	 */
1034	dpcpu_init(dpcpu, 0);
1035	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1036	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1037
1038	/*******************************************************/
1039	/* Set the start and end of kva. */
1040	/*******************************************************/
1041	virtual_avail = round_page(data_end);
1042	virtual_end = VM_MAX_KERNEL_ADDRESS;
1043
1044	/* Allocate KVA space for page zero/copy operations. */
1045	zero_page_va = virtual_avail;
1046	virtual_avail += PAGE_SIZE;
1047	zero_page_idle_va = virtual_avail;
1048	virtual_avail += PAGE_SIZE;
1049	copy_page_src_va = virtual_avail;
1050	virtual_avail += PAGE_SIZE;
1051	copy_page_dst_va = virtual_avail;
1052	virtual_avail += PAGE_SIZE;
1053	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1054	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1055	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1056	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1057
1058	/* Initialize page zero/copy mutexes. */
1059	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1060	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1061
1062	/* Allocate KVA space for ptbl bufs. */
1063	ptbl_buf_pool_vabase = virtual_avail;
1064	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1065	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1066	    ptbl_buf_pool_vabase, virtual_avail);
1067
1068	/* Calculate corresponding physical addresses for the kernel region. */
1069	phys_kernelend = kernload + kernsize;
1070	debugf("kernel image and allocated data:\n");
1071	debugf(" kernload    = 0x%08x\n", kernload);
1072	debugf(" kernstart   = 0x%08x\n", kernstart);
1073	debugf(" kernsize    = 0x%08x\n", kernsize);
1074
1075	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1076		panic("mmu_booke_bootstrap: phys_avail too small");
1077
1078	/*
1079	 * Remove kernel physical address range from avail regions list. Page
1080	 * align all regions.  Non-page aligned memory isn't very interesting
1081	 * to us.  Also, sort the entries for ascending addresses.
1082	 */
1083
1084	/* Retrieve phys/avail mem regions */
1085	mem_regions(&physmem_regions, &physmem_regions_sz,
1086	    &availmem_regions, &availmem_regions_sz);
1087	sz = 0;
1088	cnt = availmem_regions_sz;
1089	debugf("processing avail regions:\n");
1090	for (mp = availmem_regions; mp->mr_size; mp++) {
1091		s = mp->mr_start;
1092		e = mp->mr_start + mp->mr_size;
1093		debugf(" %08x-%08x -> ", s, e);
1094		/* Check whether this region holds all of the kernel. */
1095		if (s < kernload && e > phys_kernelend) {
1096			availmem_regions[cnt].mr_start = phys_kernelend;
1097			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1098			e = kernload;
1099		}
1100		/* Look whether this regions starts within the kernel. */
1101		if (s >= kernload && s < phys_kernelend) {
1102			if (e <= phys_kernelend)
1103				goto empty;
1104			s = phys_kernelend;
1105		}
1106		/* Now look whether this region ends within the kernel. */
1107		if (e > kernload && e <= phys_kernelend) {
1108			if (s >= kernload)
1109				goto empty;
1110			e = kernload;
1111		}
1112		/* Now page align the start and size of the region. */
1113		s = round_page(s);
1114		e = trunc_page(e);
1115		if (e < s)
1116			e = s;
1117		sz = e - s;
1118		debugf("%08x-%08x = %x\n", s, e, sz);
1119
1120		/* Check whether some memory is left here. */
1121		if (sz == 0) {
1122		empty:
1123			memmove(mp, mp + 1,
1124			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1125			cnt--;
1126			mp--;
1127			continue;
1128		}
1129
1130		/* Do an insertion sort. */
1131		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1132			if (s < mp1->mr_start)
1133				break;
1134		if (mp1 < mp) {
1135			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1136			mp1->mr_start = s;
1137			mp1->mr_size = sz;
1138		} else {
1139			mp->mr_start = s;
1140			mp->mr_size = sz;
1141		}
1142	}
1143	availmem_regions_sz = cnt;
1144
1145	/*******************************************************/
1146	/* Steal physical memory for kernel stack from the end */
1147	/* of the first avail region                           */
1148	/*******************************************************/
1149	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1150	kstack0_phys = availmem_regions[0].mr_start +
1151	    availmem_regions[0].mr_size;
1152	kstack0_phys -= kstack0_sz;
1153	availmem_regions[0].mr_size -= kstack0_sz;
1154
1155	/*******************************************************/
1156	/* Fill in phys_avail table, based on availmem_regions */
1157	/*******************************************************/
1158	phys_avail_count = 0;
1159	physsz = 0;
1160	hwphyssz = 0;
1161	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1162
1163	debugf("fill in phys_avail:\n");
1164	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1165
1166		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1167		    availmem_regions[i].mr_start,
1168		    availmem_regions[i].mr_start +
1169		        availmem_regions[i].mr_size,
1170		    availmem_regions[i].mr_size);
1171
1172		if (hwphyssz != 0 &&
1173		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1174			debugf(" hw.physmem adjust\n");
1175			if (physsz < hwphyssz) {
1176				phys_avail[j] = availmem_regions[i].mr_start;
1177				phys_avail[j + 1] =
1178				    availmem_regions[i].mr_start +
1179				    hwphyssz - physsz;
1180				physsz = hwphyssz;
1181				phys_avail_count++;
1182			}
1183			break;
1184		}
1185
1186		phys_avail[j] = availmem_regions[i].mr_start;
1187		phys_avail[j + 1] = availmem_regions[i].mr_start +
1188		    availmem_regions[i].mr_size;
1189		phys_avail_count++;
1190		physsz += availmem_regions[i].mr_size;
1191	}
1192	physmem = btoc(physsz);
1193
1194	/* Calculate the last available physical address. */
1195	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1196		;
1197	Maxmem = powerpc_btop(phys_avail[i + 1]);
1198
1199	debugf("Maxmem = 0x%08lx\n", Maxmem);
1200	debugf("phys_avail_count = %d\n", phys_avail_count);
1201	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1202	    physmem);
1203
1204	/*******************************************************/
1205	/* Initialize (statically allocated) kernel pmap. */
1206	/*******************************************************/
1207	PMAP_LOCK_INIT(kernel_pmap);
1208	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1209
1210	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1211	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1212	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1213	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1214
1215	/* Initialize kernel pdir */
1216	for (i = 0; i < kernel_ptbls; i++)
1217		kernel_pmap->pm_pdir[kptbl_min + i] =
1218		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1219
1220	for (i = 0; i < MAXCPU; i++) {
1221		kernel_pmap->pm_tid[i] = TID_KERNEL;
1222
1223		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1224		tidbusy[i][0] = kernel_pmap;
1225	}
1226
1227	/*
1228	 * Fill in PTEs covering kernel code and data. They are not required
1229	 * for address translation, as this area is covered by static TLB1
1230	 * entries, but for pte_vatopa() to work correctly with kernel area
1231	 * addresses.
1232	 */
1233	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1234		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1235		pte->rpn = kernload + (va - kernstart);
1236		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1237		    PTE_VALID;
1238	}
1239	/* Mark kernel_pmap active on all CPUs */
1240	CPU_FILL(&kernel_pmap->pm_active);
1241
1242	/*******************************************************/
1243	/* Final setup */
1244	/*******************************************************/
1245
1246	/* Enter kstack0 into kernel map, provide guard page */
1247	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1248	thread0.td_kstack = kstack0;
1249	thread0.td_kstack_pages = KSTACK_PAGES;
1250
1251	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1252	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1253	    kstack0_phys, kstack0_phys + kstack0_sz);
1254	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1255
1256	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1257	for (i = 0; i < KSTACK_PAGES; i++) {
1258		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1259		kstack0 += PAGE_SIZE;
1260		kstack0_phys += PAGE_SIZE;
1261	}
1262
1263	debugf("virtual_avail = %08x\n", virtual_avail);
1264	debugf("virtual_end   = %08x\n", virtual_end);
1265
1266	debugf("mmu_booke_bootstrap: exit\n");
1267}
1268
1269void
1270pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1271{
1272	int i;
1273
1274	/*
1275	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1276	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1277	 * these values directly to (re)program AP's TLB1 hardware.
1278	 */
1279	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1280		/* Skip invalid entries */
1281		if (!(tlb1[i].mas1 & MAS1_VALID))
1282			continue;
1283
1284		tlb1_write_entry(i);
1285	}
1286
1287	set_mas4_defaults();
1288}
1289
1290/*
1291 * Get the physical page address for the given pmap/virtual address.
1292 */
1293static vm_paddr_t
1294mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1295{
1296	vm_paddr_t pa;
1297
1298	PMAP_LOCK(pmap);
1299	pa = pte_vatopa(mmu, pmap, va);
1300	PMAP_UNLOCK(pmap);
1301
1302	return (pa);
1303}
1304
1305/*
1306 * Extract the physical page address associated with the given
1307 * kernel virtual address.
1308 */
1309static vm_paddr_t
1310mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1311{
1312
1313	return (pte_vatopa(mmu, kernel_pmap, va));
1314}
1315
1316/*
1317 * Initialize the pmap module.
1318 * Called by vm_init, to initialize any structures that the pmap
1319 * system needs to map virtual memory.
1320 */
1321static void
1322mmu_booke_init(mmu_t mmu)
1323{
1324	int shpgperproc = PMAP_SHPGPERPROC;
1325
1326	/*
1327	 * Initialize the address space (zone) for the pv entries.  Set a
1328	 * high water mark so that the system can recover from excessive
1329	 * numbers of pv entries.
1330	 */
1331	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1332	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1333
1334	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1335	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1336
1337	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1338	pv_entry_high_water = 9 * (pv_entry_max / 10);
1339
1340	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1341
1342	/* Pre-fill pvzone with initial number of pv entries. */
1343	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1344
1345	/* Initialize ptbl allocation. */
1346	ptbl_init();
1347}
1348
1349/*
1350 * Map a list of wired pages into kernel virtual address space.  This is
1351 * intended for temporary mappings which do not need page modification or
1352 * references recorded.  Existing mappings in the region are overwritten.
1353 */
1354static void
1355mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1356{
1357	vm_offset_t va;
1358
1359	va = sva;
1360	while (count-- > 0) {
1361		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1362		va += PAGE_SIZE;
1363		m++;
1364	}
1365}
1366
1367/*
1368 * Remove page mappings from kernel virtual address space.  Intended for
1369 * temporary mappings entered by mmu_booke_qenter.
1370 */
1371static void
1372mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1373{
1374	vm_offset_t va;
1375
1376	va = sva;
1377	while (count-- > 0) {
1378		mmu_booke_kremove(mmu, va);
1379		va += PAGE_SIZE;
1380	}
1381}
1382
1383/*
1384 * Map a wired page into kernel virtual address space.
1385 */
1386static void
1387mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1388{
1389	unsigned int pdir_idx = PDIR_IDX(va);
1390	unsigned int ptbl_idx = PTBL_IDX(va);
1391	uint32_t flags;
1392	pte_t *pte;
1393
1394	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1395	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1396
1397	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1398
1399	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1400
1401	mtx_lock_spin(&tlbivax_mutex);
1402	tlb_miss_lock();
1403
1404	if (PTE_ISVALID(pte)) {
1405
1406		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1407
1408		/* Flush entry from TLB0 */
1409		tlb0_flush_entry(va);
1410	}
1411
1412	pte->rpn = pa & ~PTE_PA_MASK;
1413	pte->flags = flags;
1414
1415	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1416	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1417	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1418
1419	/* Flush the real memory from the instruction cache. */
1420	if ((flags & (PTE_I | PTE_G)) == 0) {
1421		__syncicache((void *)va, PAGE_SIZE);
1422	}
1423
1424	tlb_miss_unlock();
1425	mtx_unlock_spin(&tlbivax_mutex);
1426}
1427
1428/*
1429 * Remove a page from kernel page table.
1430 */
1431static void
1432mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1433{
1434	unsigned int pdir_idx = PDIR_IDX(va);
1435	unsigned int ptbl_idx = PTBL_IDX(va);
1436	pte_t *pte;
1437
1438//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1439
1440	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1441	    (va <= VM_MAX_KERNEL_ADDRESS)),
1442	    ("mmu_booke_kremove: invalid va"));
1443
1444	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1445
1446	if (!PTE_ISVALID(pte)) {
1447
1448		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1449
1450		return;
1451	}
1452
1453	mtx_lock_spin(&tlbivax_mutex);
1454	tlb_miss_lock();
1455
1456	/* Invalidate entry in TLB0, update PTE. */
1457	tlb0_flush_entry(va);
1458	pte->flags = 0;
1459	pte->rpn = 0;
1460
1461	tlb_miss_unlock();
1462	mtx_unlock_spin(&tlbivax_mutex);
1463}
1464
1465/*
1466 * Initialize pmap associated with process 0.
1467 */
1468static void
1469mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1470{
1471
1472	mmu_booke_pinit(mmu, pmap);
1473	PCPU_SET(curpmap, pmap);
1474}
1475
1476/*
1477 * Initialize a preallocated and zeroed pmap structure,
1478 * such as one in a vmspace structure.
1479 */
1480static void
1481mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1482{
1483	int i;
1484
1485	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1486	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1487
1488	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1489
1490	PMAP_LOCK_INIT(pmap);
1491	for (i = 0; i < MAXCPU; i++)
1492		pmap->pm_tid[i] = TID_NONE;
1493	CPU_ZERO(&kernel_pmap->pm_active);
1494	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1495	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1496	TAILQ_INIT(&pmap->pm_ptbl_list);
1497}
1498
1499/*
1500 * Release any resources held by the given physical map.
1501 * Called when a pmap initialized by mmu_booke_pinit is being released.
1502 * Should only be called if the map contains no valid mappings.
1503 */
1504static void
1505mmu_booke_release(mmu_t mmu, pmap_t pmap)
1506{
1507
1508	KASSERT(pmap->pm_stats.resident_count == 0,
1509	    ("pmap_release: pmap resident count %ld != 0",
1510	    pmap->pm_stats.resident_count));
1511
1512	PMAP_LOCK_DESTROY(pmap);
1513}
1514
1515/*
1516 * Insert the given physical page at the specified virtual address in the
1517 * target physical map with the protection requested. If specified the page
1518 * will be wired down.
1519 */
1520static void
1521mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1522    vm_prot_t prot, boolean_t wired)
1523{
1524
1525	vm_page_lock_queues();
1526	PMAP_LOCK(pmap);
1527	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1528	vm_page_unlock_queues();
1529	PMAP_UNLOCK(pmap);
1530}
1531
1532static void
1533mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1534    vm_prot_t prot, boolean_t wired)
1535{
1536	pte_t *pte;
1537	vm_paddr_t pa;
1538	uint32_t flags;
1539	int su, sync;
1540
1541	pa = VM_PAGE_TO_PHYS(m);
1542	su = (pmap == kernel_pmap);
1543	sync = 0;
1544
1545	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1546	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1547	//		(u_int32_t)pmap, su, pmap->pm_tid,
1548	//		(u_int32_t)m, va, pa, prot, wired);
1549
1550	if (su) {
1551		KASSERT(((va >= virtual_avail) &&
1552		    (va <= VM_MAX_KERNEL_ADDRESS)),
1553		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1554	} else {
1555		KASSERT((va <= VM_MAXUSER_ADDRESS),
1556		    ("mmu_booke_enter_locked: user pmap, non user va"));
1557	}
1558	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1559	    VM_OBJECT_LOCKED(m->object),
1560	    ("mmu_booke_enter_locked: page %p is not busy", m));
1561
1562	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1563
1564	/*
1565	 * If there is an existing mapping, and the physical address has not
1566	 * changed, must be protection or wiring change.
1567	 */
1568	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1569	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1570
1571		/*
1572		 * Before actually updating pte->flags we calculate and
1573		 * prepare its new value in a helper var.
1574		 */
1575		flags = pte->flags;
1576		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1577
1578		/* Wiring change, just update stats. */
1579		if (wired) {
1580			if (!PTE_ISWIRED(pte)) {
1581				flags |= PTE_WIRED;
1582				pmap->pm_stats.wired_count++;
1583			}
1584		} else {
1585			if (PTE_ISWIRED(pte)) {
1586				flags &= ~PTE_WIRED;
1587				pmap->pm_stats.wired_count--;
1588			}
1589		}
1590
1591		if (prot & VM_PROT_WRITE) {
1592			/* Add write permissions. */
1593			flags |= PTE_SW;
1594			if (!su)
1595				flags |= PTE_UW;
1596
1597			if ((flags & PTE_MANAGED) != 0)
1598				vm_page_aflag_set(m, PGA_WRITEABLE);
1599		} else {
1600			/* Handle modified pages, sense modify status. */
1601
1602			/*
1603			 * The PTE_MODIFIED flag could be set by underlying
1604			 * TLB misses since we last read it (above), possibly
1605			 * other CPUs could update it so we check in the PTE
1606			 * directly rather than rely on that saved local flags
1607			 * copy.
1608			 */
1609			if (PTE_ISMODIFIED(pte))
1610				vm_page_dirty(m);
1611		}
1612
1613		if (prot & VM_PROT_EXECUTE) {
1614			flags |= PTE_SX;
1615			if (!su)
1616				flags |= PTE_UX;
1617
1618			/*
1619			 * Check existing flags for execute permissions: if we
1620			 * are turning execute permissions on, icache should
1621			 * be flushed.
1622			 */
1623			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1624				sync++;
1625		}
1626
1627		flags &= ~PTE_REFERENCED;
1628
1629		/*
1630		 * The new flags value is all calculated -- only now actually
1631		 * update the PTE.
1632		 */
1633		mtx_lock_spin(&tlbivax_mutex);
1634		tlb_miss_lock();
1635
1636		tlb0_flush_entry(va);
1637		pte->flags = flags;
1638
1639		tlb_miss_unlock();
1640		mtx_unlock_spin(&tlbivax_mutex);
1641
1642	} else {
1643		/*
1644		 * If there is an existing mapping, but it's for a different
1645		 * physical address, pte_enter() will delete the old mapping.
1646		 */
1647		//if ((pte != NULL) && PTE_ISVALID(pte))
1648		//	debugf("mmu_booke_enter_locked: replace\n");
1649		//else
1650		//	debugf("mmu_booke_enter_locked: new\n");
1651
1652		/* Now set up the flags and install the new mapping. */
1653		flags = (PTE_SR | PTE_VALID);
1654		flags |= PTE_M;
1655
1656		if (!su)
1657			flags |= PTE_UR;
1658
1659		if (prot & VM_PROT_WRITE) {
1660			flags |= PTE_SW;
1661			if (!su)
1662				flags |= PTE_UW;
1663
1664			if ((m->oflags & VPO_UNMANAGED) == 0)
1665				vm_page_aflag_set(m, PGA_WRITEABLE);
1666		}
1667
1668		if (prot & VM_PROT_EXECUTE) {
1669			flags |= PTE_SX;
1670			if (!su)
1671				flags |= PTE_UX;
1672		}
1673
1674		/* If its wired update stats. */
1675		if (wired) {
1676			pmap->pm_stats.wired_count++;
1677			flags |= PTE_WIRED;
1678		}
1679
1680		pte_enter(mmu, pmap, m, va, flags);
1681
1682		/* Flush the real memory from the instruction cache. */
1683		if (prot & VM_PROT_EXECUTE)
1684			sync++;
1685	}
1686
1687	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1688		__syncicache((void *)va, PAGE_SIZE);
1689		sync = 0;
1690	}
1691}
1692
1693/*
1694 * Maps a sequence of resident pages belonging to the same object.
1695 * The sequence begins with the given page m_start.  This page is
1696 * mapped at the given virtual address start.  Each subsequent page is
1697 * mapped at a virtual address that is offset from start by the same
1698 * amount as the page is offset from m_start within the object.  The
1699 * last page in the sequence is the page with the largest offset from
1700 * m_start that can be mapped at a virtual address less than the given
1701 * virtual address end.  Not every virtual page between start and end
1702 * is mapped; only those for which a resident page exists with the
1703 * corresponding offset from m_start are mapped.
1704 */
1705static void
1706mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1707    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1708{
1709	vm_page_t m;
1710	vm_pindex_t diff, psize;
1711
1712	psize = atop(end - start);
1713	m = m_start;
1714	vm_page_lock_queues();
1715	PMAP_LOCK(pmap);
1716	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1717		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1718		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1719		m = TAILQ_NEXT(m, listq);
1720	}
1721	vm_page_unlock_queues();
1722	PMAP_UNLOCK(pmap);
1723}
1724
1725static void
1726mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1727    vm_prot_t prot)
1728{
1729
1730	vm_page_lock_queues();
1731	PMAP_LOCK(pmap);
1732	mmu_booke_enter_locked(mmu, pmap, va, m,
1733	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1734	vm_page_unlock_queues();
1735	PMAP_UNLOCK(pmap);
1736}
1737
1738/*
1739 * Remove the given range of addresses from the specified map.
1740 *
1741 * It is assumed that the start and end are properly rounded to the page size.
1742 */
1743static void
1744mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1745{
1746	pte_t *pte;
1747	uint8_t hold_flag;
1748
1749	int su = (pmap == kernel_pmap);
1750
1751	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1752	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1753
1754	if (su) {
1755		KASSERT(((va >= virtual_avail) &&
1756		    (va <= VM_MAX_KERNEL_ADDRESS)),
1757		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1758	} else {
1759		KASSERT((va <= VM_MAXUSER_ADDRESS),
1760		    ("mmu_booke_remove: user pmap, non user va"));
1761	}
1762
1763	if (PMAP_REMOVE_DONE(pmap)) {
1764		//debugf("mmu_booke_remove: e (empty)\n");
1765		return;
1766	}
1767
1768	hold_flag = PTBL_HOLD_FLAG(pmap);
1769	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1770
1771	vm_page_lock_queues();
1772	PMAP_LOCK(pmap);
1773	for (; va < endva; va += PAGE_SIZE) {
1774		pte = pte_find(mmu, pmap, va);
1775		if ((pte != NULL) && PTE_ISVALID(pte))
1776			pte_remove(mmu, pmap, va, hold_flag);
1777	}
1778	PMAP_UNLOCK(pmap);
1779	vm_page_unlock_queues();
1780
1781	//debugf("mmu_booke_remove: e\n");
1782}
1783
1784/*
1785 * Remove physical page from all pmaps in which it resides.
1786 */
1787static void
1788mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1789{
1790	pv_entry_t pv, pvn;
1791	uint8_t hold_flag;
1792
1793	vm_page_lock_queues();
1794	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1795		pvn = TAILQ_NEXT(pv, pv_link);
1796
1797		PMAP_LOCK(pv->pv_pmap);
1798		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1799		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1800		PMAP_UNLOCK(pv->pv_pmap);
1801	}
1802	vm_page_aflag_clear(m, PGA_WRITEABLE);
1803	vm_page_unlock_queues();
1804}
1805
1806/*
1807 * Map a range of physical addresses into kernel virtual address space.
1808 */
1809static vm_offset_t
1810mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1811    vm_paddr_t pa_end, int prot)
1812{
1813	vm_offset_t sva = *virt;
1814	vm_offset_t va = sva;
1815
1816	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1817	//		sva, pa_start, pa_end);
1818
1819	while (pa_start < pa_end) {
1820		mmu_booke_kenter(mmu, va, pa_start);
1821		va += PAGE_SIZE;
1822		pa_start += PAGE_SIZE;
1823	}
1824	*virt = va;
1825
1826	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1827	return (sva);
1828}
1829
1830/*
1831 * The pmap must be activated before it's address space can be accessed in any
1832 * way.
1833 */
1834static void
1835mmu_booke_activate(mmu_t mmu, struct thread *td)
1836{
1837	pmap_t pmap;
1838	u_int cpuid;
1839
1840	pmap = &td->td_proc->p_vmspace->vm_pmap;
1841
1842	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1843	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1844
1845	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1846
1847	mtx_lock_spin(&sched_lock);
1848
1849	cpuid = PCPU_GET(cpuid);
1850	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1851	PCPU_SET(curpmap, pmap);
1852
1853	if (pmap->pm_tid[cpuid] == TID_NONE)
1854		tid_alloc(pmap);
1855
1856	/* Load PID0 register with pmap tid value. */
1857	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1858	__asm __volatile("isync");
1859
1860	mtx_unlock_spin(&sched_lock);
1861
1862	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1863	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1864}
1865
1866/*
1867 * Deactivate the specified process's address space.
1868 */
1869static void
1870mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1871{
1872	pmap_t pmap;
1873
1874	pmap = &td->td_proc->p_vmspace->vm_pmap;
1875
1876	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1877	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1878
1879	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1880	PCPU_SET(curpmap, NULL);
1881}
1882
1883/*
1884 * Copy the range specified by src_addr/len
1885 * from the source map to the range dst_addr/len
1886 * in the destination map.
1887 *
1888 * This routine is only advisory and need not do anything.
1889 */
1890static void
1891mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1892    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1893{
1894
1895}
1896
1897/*
1898 * Set the physical protection on the specified range of this map as requested.
1899 */
1900static void
1901mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1902    vm_prot_t prot)
1903{
1904	vm_offset_t va;
1905	vm_page_t m;
1906	pte_t *pte;
1907
1908	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1909		mmu_booke_remove(mmu, pmap, sva, eva);
1910		return;
1911	}
1912
1913	if (prot & VM_PROT_WRITE)
1914		return;
1915
1916	PMAP_LOCK(pmap);
1917	for (va = sva; va < eva; va += PAGE_SIZE) {
1918		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1919			if (PTE_ISVALID(pte)) {
1920				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1921
1922				mtx_lock_spin(&tlbivax_mutex);
1923				tlb_miss_lock();
1924
1925				/* Handle modified pages. */
1926				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1927					vm_page_dirty(m);
1928
1929				tlb0_flush_entry(va);
1930				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1931
1932				tlb_miss_unlock();
1933				mtx_unlock_spin(&tlbivax_mutex);
1934			}
1935		}
1936	}
1937	PMAP_UNLOCK(pmap);
1938}
1939
1940/*
1941 * Clear the write and modified bits in each of the given page's mappings.
1942 */
1943static void
1944mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1945{
1946	pv_entry_t pv;
1947	pte_t *pte;
1948
1949	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1950	    ("mmu_booke_remove_write: page %p is not managed", m));
1951
1952	/*
1953	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1954	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1955	 * is clear, no page table entries need updating.
1956	 */
1957	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1958	if ((m->oflags & VPO_BUSY) == 0 &&
1959	    (m->aflags & PGA_WRITEABLE) == 0)
1960		return;
1961	vm_page_lock_queues();
1962	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1963		PMAP_LOCK(pv->pv_pmap);
1964		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1965			if (PTE_ISVALID(pte)) {
1966				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1967
1968				mtx_lock_spin(&tlbivax_mutex);
1969				tlb_miss_lock();
1970
1971				/* Handle modified pages. */
1972				if (PTE_ISMODIFIED(pte))
1973					vm_page_dirty(m);
1974
1975				/* Flush mapping from TLB0. */
1976				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1977
1978				tlb_miss_unlock();
1979				mtx_unlock_spin(&tlbivax_mutex);
1980			}
1981		}
1982		PMAP_UNLOCK(pv->pv_pmap);
1983	}
1984	vm_page_aflag_clear(m, PGA_WRITEABLE);
1985	vm_page_unlock_queues();
1986}
1987
1988static void
1989mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1990{
1991	pte_t *pte;
1992	pmap_t pmap;
1993	vm_page_t m;
1994	vm_offset_t addr;
1995	vm_paddr_t pa;
1996	int active, valid;
1997
1998	va = trunc_page(va);
1999	sz = round_page(sz);
2000
2001	vm_page_lock_queues();
2002	pmap = PCPU_GET(curpmap);
2003	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2004	while (sz > 0) {
2005		PMAP_LOCK(pm);
2006		pte = pte_find(mmu, pm, va);
2007		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2008		if (valid)
2009			pa = PTE_PA(pte);
2010		PMAP_UNLOCK(pm);
2011		if (valid) {
2012			if (!active) {
2013				/* Create a mapping in the active pmap. */
2014				addr = 0;
2015				m = PHYS_TO_VM_PAGE(pa);
2016				PMAP_LOCK(pmap);
2017				pte_enter(mmu, pmap, m, addr,
2018				    PTE_SR | PTE_VALID | PTE_UR);
2019				__syncicache((void *)addr, PAGE_SIZE);
2020				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2021				PMAP_UNLOCK(pmap);
2022			} else
2023				__syncicache((void *)va, PAGE_SIZE);
2024		}
2025		va += PAGE_SIZE;
2026		sz -= PAGE_SIZE;
2027	}
2028	vm_page_unlock_queues();
2029}
2030
2031/*
2032 * Atomically extract and hold the physical page with the given
2033 * pmap and virtual address pair if that mapping permits the given
2034 * protection.
2035 */
2036static vm_page_t
2037mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2038    vm_prot_t prot)
2039{
2040	pte_t *pte;
2041	vm_page_t m;
2042	uint32_t pte_wbit;
2043	vm_paddr_t pa;
2044
2045	m = NULL;
2046	pa = 0;
2047	PMAP_LOCK(pmap);
2048retry:
2049	pte = pte_find(mmu, pmap, va);
2050	if ((pte != NULL) && PTE_ISVALID(pte)) {
2051		if (pmap == kernel_pmap)
2052			pte_wbit = PTE_SW;
2053		else
2054			pte_wbit = PTE_UW;
2055
2056		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2057			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2058				goto retry;
2059			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2060			vm_page_hold(m);
2061		}
2062	}
2063
2064	PA_UNLOCK_COND(pa);
2065	PMAP_UNLOCK(pmap);
2066	return (m);
2067}
2068
2069/*
2070 * Initialize a vm_page's machine-dependent fields.
2071 */
2072static void
2073mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2074{
2075
2076	TAILQ_INIT(&m->md.pv_list);
2077}
2078
2079/*
2080 * mmu_booke_zero_page_area zeros the specified hardware page by
2081 * mapping it into virtual memory and using bzero to clear
2082 * its contents.
2083 *
2084 * off and size must reside within a single page.
2085 */
2086static void
2087mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2088{
2089	vm_offset_t va;
2090
2091	/* XXX KASSERT off and size are within a single page? */
2092
2093	mtx_lock(&zero_page_mutex);
2094	va = zero_page_va;
2095
2096	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2097	bzero((caddr_t)va + off, size);
2098	mmu_booke_kremove(mmu, va);
2099
2100	mtx_unlock(&zero_page_mutex);
2101}
2102
2103/*
2104 * mmu_booke_zero_page zeros the specified hardware page.
2105 */
2106static void
2107mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2108{
2109
2110	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2111}
2112
2113/*
2114 * mmu_booke_copy_page copies the specified (machine independent) page by
2115 * mapping the page into virtual memory and using memcopy to copy the page,
2116 * one machine dependent page at a time.
2117 */
2118static void
2119mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2120{
2121	vm_offset_t sva, dva;
2122
2123	sva = copy_page_src_va;
2124	dva = copy_page_dst_va;
2125
2126	mtx_lock(&copy_page_mutex);
2127	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2128	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2129	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2130	mmu_booke_kremove(mmu, dva);
2131	mmu_booke_kremove(mmu, sva);
2132	mtx_unlock(&copy_page_mutex);
2133}
2134
2135/*
2136 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2137 * into virtual memory and using bzero to clear its contents. This is intended
2138 * to be called from the vm_pagezero process only and outside of Giant. No
2139 * lock is required.
2140 */
2141static void
2142mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2143{
2144	vm_offset_t va;
2145
2146	va = zero_page_idle_va;
2147	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2148	bzero((caddr_t)va, PAGE_SIZE);
2149	mmu_booke_kremove(mmu, va);
2150}
2151
2152/*
2153 * Return whether or not the specified physical page was modified
2154 * in any of physical maps.
2155 */
2156static boolean_t
2157mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2158{
2159	pte_t *pte;
2160	pv_entry_t pv;
2161	boolean_t rv;
2162
2163	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2164	    ("mmu_booke_is_modified: page %p is not managed", m));
2165	rv = FALSE;
2166
2167	/*
2168	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2169	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2170	 * is clear, no PTEs can be modified.
2171	 */
2172	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2173	if ((m->oflags & VPO_BUSY) == 0 &&
2174	    (m->aflags & PGA_WRITEABLE) == 0)
2175		return (rv);
2176	vm_page_lock_queues();
2177	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2178		PMAP_LOCK(pv->pv_pmap);
2179		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2180		    PTE_ISVALID(pte)) {
2181			if (PTE_ISMODIFIED(pte))
2182				rv = TRUE;
2183		}
2184		PMAP_UNLOCK(pv->pv_pmap);
2185		if (rv)
2186			break;
2187	}
2188	vm_page_unlock_queues();
2189	return (rv);
2190}
2191
2192/*
2193 * Return whether or not the specified virtual address is eligible
2194 * for prefault.
2195 */
2196static boolean_t
2197mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2198{
2199
2200	return (FALSE);
2201}
2202
2203/*
2204 * Return whether or not the specified physical page was referenced
2205 * in any physical maps.
2206 */
2207static boolean_t
2208mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2209{
2210	pte_t *pte;
2211	pv_entry_t pv;
2212	boolean_t rv;
2213
2214	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2215	    ("mmu_booke_is_referenced: page %p is not managed", m));
2216	rv = FALSE;
2217	vm_page_lock_queues();
2218	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2219		PMAP_LOCK(pv->pv_pmap);
2220		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2221		    PTE_ISVALID(pte)) {
2222			if (PTE_ISREFERENCED(pte))
2223				rv = TRUE;
2224		}
2225		PMAP_UNLOCK(pv->pv_pmap);
2226		if (rv)
2227			break;
2228	}
2229	vm_page_unlock_queues();
2230	return (rv);
2231}
2232
2233/*
2234 * Clear the modify bits on the specified physical page.
2235 */
2236static void
2237mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2238{
2239	pte_t *pte;
2240	pv_entry_t pv;
2241
2242	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2243	    ("mmu_booke_clear_modify: page %p is not managed", m));
2244	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2245	KASSERT((m->oflags & VPO_BUSY) == 0,
2246	    ("mmu_booke_clear_modify: page %p is busy", m));
2247
2248	/*
2249	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2250	 * If the object containing the page is locked and the page is not
2251	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2252	 */
2253	if ((m->aflags & PGA_WRITEABLE) == 0)
2254		return;
2255	vm_page_lock_queues();
2256	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2257		PMAP_LOCK(pv->pv_pmap);
2258		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2259		    PTE_ISVALID(pte)) {
2260			mtx_lock_spin(&tlbivax_mutex);
2261			tlb_miss_lock();
2262
2263			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2264				tlb0_flush_entry(pv->pv_va);
2265				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2266				    PTE_REFERENCED);
2267			}
2268
2269			tlb_miss_unlock();
2270			mtx_unlock_spin(&tlbivax_mutex);
2271		}
2272		PMAP_UNLOCK(pv->pv_pmap);
2273	}
2274	vm_page_unlock_queues();
2275}
2276
2277/*
2278 * Return a count of reference bits for a page, clearing those bits.
2279 * It is not necessary for every reference bit to be cleared, but it
2280 * is necessary that 0 only be returned when there are truly no
2281 * reference bits set.
2282 *
2283 * XXX: The exact number of bits to check and clear is a matter that
2284 * should be tested and standardized at some point in the future for
2285 * optimal aging of shared pages.
2286 */
2287static int
2288mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2289{
2290	pte_t *pte;
2291	pv_entry_t pv;
2292	int count;
2293
2294	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2295	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2296	count = 0;
2297	vm_page_lock_queues();
2298	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2299		PMAP_LOCK(pv->pv_pmap);
2300		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2301		    PTE_ISVALID(pte)) {
2302			if (PTE_ISREFERENCED(pte)) {
2303				mtx_lock_spin(&tlbivax_mutex);
2304				tlb_miss_lock();
2305
2306				tlb0_flush_entry(pv->pv_va);
2307				pte->flags &= ~PTE_REFERENCED;
2308
2309				tlb_miss_unlock();
2310				mtx_unlock_spin(&tlbivax_mutex);
2311
2312				if (++count > 4) {
2313					PMAP_UNLOCK(pv->pv_pmap);
2314					break;
2315				}
2316			}
2317		}
2318		PMAP_UNLOCK(pv->pv_pmap);
2319	}
2320	vm_page_unlock_queues();
2321	return (count);
2322}
2323
2324/*
2325 * Clear the reference bit on the specified physical page.
2326 */
2327static void
2328mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2329{
2330	pte_t *pte;
2331	pv_entry_t pv;
2332
2333	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2334	    ("mmu_booke_clear_reference: page %p is not managed", m));
2335	vm_page_lock_queues();
2336	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2337		PMAP_LOCK(pv->pv_pmap);
2338		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2339		    PTE_ISVALID(pte)) {
2340			if (PTE_ISREFERENCED(pte)) {
2341				mtx_lock_spin(&tlbivax_mutex);
2342				tlb_miss_lock();
2343
2344				tlb0_flush_entry(pv->pv_va);
2345				pte->flags &= ~PTE_REFERENCED;
2346
2347				tlb_miss_unlock();
2348				mtx_unlock_spin(&tlbivax_mutex);
2349			}
2350		}
2351		PMAP_UNLOCK(pv->pv_pmap);
2352	}
2353	vm_page_unlock_queues();
2354}
2355
2356/*
2357 * Change wiring attribute for a map/virtual-address pair.
2358 */
2359static void
2360mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2361{
2362	pte_t *pte;
2363
2364	PMAP_LOCK(pmap);
2365	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2366		if (wired) {
2367			if (!PTE_ISWIRED(pte)) {
2368				pte->flags |= PTE_WIRED;
2369				pmap->pm_stats.wired_count++;
2370			}
2371		} else {
2372			if (PTE_ISWIRED(pte)) {
2373				pte->flags &= ~PTE_WIRED;
2374				pmap->pm_stats.wired_count--;
2375			}
2376		}
2377	}
2378	PMAP_UNLOCK(pmap);
2379}
2380
2381/*
2382 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2383 * page.  This count may be changed upwards or downwards in the future; it is
2384 * only necessary that true be returned for a small subset of pmaps for proper
2385 * page aging.
2386 */
2387static boolean_t
2388mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2389{
2390	pv_entry_t pv;
2391	int loops;
2392	boolean_t rv;
2393
2394	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2395	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2396	loops = 0;
2397	rv = FALSE;
2398	vm_page_lock_queues();
2399	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2400		if (pv->pv_pmap == pmap) {
2401			rv = TRUE;
2402			break;
2403		}
2404		if (++loops >= 16)
2405			break;
2406	}
2407	vm_page_unlock_queues();
2408	return (rv);
2409}
2410
2411/*
2412 * Return the number of managed mappings to the given physical page that are
2413 * wired.
2414 */
2415static int
2416mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2417{
2418	pv_entry_t pv;
2419	pte_t *pte;
2420	int count = 0;
2421
2422	if ((m->oflags & VPO_UNMANAGED) != 0)
2423		return (count);
2424	vm_page_lock_queues();
2425	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2426		PMAP_LOCK(pv->pv_pmap);
2427		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2428			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2429				count++;
2430		PMAP_UNLOCK(pv->pv_pmap);
2431	}
2432	vm_page_unlock_queues();
2433	return (count);
2434}
2435
2436static int
2437mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2438{
2439	int i;
2440	vm_offset_t va;
2441
2442	/*
2443	 * This currently does not work for entries that
2444	 * overlap TLB1 entries.
2445	 */
2446	for (i = 0; i < tlb1_idx; i ++) {
2447		if (tlb1_iomapped(i, pa, size, &va) == 0)
2448			return (0);
2449	}
2450
2451	return (EFAULT);
2452}
2453
2454vm_offset_t
2455mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2456    vm_size_t *sz)
2457{
2458	vm_paddr_t pa, ppa;
2459	vm_offset_t va;
2460	vm_size_t gran;
2461
2462	/* Raw physical memory dumps don't have a virtual address. */
2463	if (md->md_vaddr == ~0UL) {
2464		/* We always map a 256MB page at 256M. */
2465		gran = 256 * 1024 * 1024;
2466		pa = md->md_paddr + ofs;
2467		ppa = pa & ~(gran - 1);
2468		ofs = pa - ppa;
2469		va = gran;
2470		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2471		if (*sz > (gran - ofs))
2472			*sz = gran - ofs;
2473		return (va + ofs);
2474	}
2475
2476	/* Minidumps are based on virtual memory addresses. */
2477	va = md->md_vaddr + ofs;
2478	if (va >= kernstart + kernsize) {
2479		gran = PAGE_SIZE - (va & PAGE_MASK);
2480		if (*sz > gran)
2481			*sz = gran;
2482	}
2483	return (va);
2484}
2485
2486void
2487mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2488    vm_offset_t va)
2489{
2490
2491	/* Raw physical memory dumps don't have a virtual address. */
2492	if (md->md_vaddr == ~0UL) {
2493		tlb1_idx--;
2494		tlb1[tlb1_idx].mas1 = 0;
2495		tlb1[tlb1_idx].mas2 = 0;
2496		tlb1[tlb1_idx].mas3 = 0;
2497		tlb1_write_entry(tlb1_idx);
2498		return;
2499	}
2500
2501	/* Minidumps are based on virtual memory addresses. */
2502	/* Nothing to do... */
2503}
2504
2505struct pmap_md *
2506mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2507{
2508	static struct pmap_md md;
2509	pte_t *pte;
2510	vm_offset_t va;
2511
2512	if (dumpsys_minidump) {
2513		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2514		if (prev == NULL) {
2515			/* 1st: kernel .data and .bss. */
2516			md.md_index = 1;
2517			md.md_vaddr = trunc_page((uintptr_t)_etext);
2518			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2519			return (&md);
2520		}
2521		switch (prev->md_index) {
2522		case 1:
2523			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2524			md.md_index = 2;
2525			md.md_vaddr = data_start;
2526			md.md_size = data_end - data_start;
2527			break;
2528		case 2:
2529			/* 3rd: kernel VM. */
2530			va = prev->md_vaddr + prev->md_size;
2531			/* Find start of next chunk (from va). */
2532			while (va < virtual_end) {
2533				/* Don't dump the buffer cache. */
2534				if (va >= kmi.buffer_sva &&
2535				    va < kmi.buffer_eva) {
2536					va = kmi.buffer_eva;
2537					continue;
2538				}
2539				pte = pte_find(mmu, kernel_pmap, va);
2540				if (pte != NULL && PTE_ISVALID(pte))
2541					break;
2542				va += PAGE_SIZE;
2543			}
2544			if (va < virtual_end) {
2545				md.md_vaddr = va;
2546				va += PAGE_SIZE;
2547				/* Find last page in chunk. */
2548				while (va < virtual_end) {
2549					/* Don't run into the buffer cache. */
2550					if (va == kmi.buffer_sva)
2551						break;
2552					pte = pte_find(mmu, kernel_pmap, va);
2553					if (pte == NULL || !PTE_ISVALID(pte))
2554						break;
2555					va += PAGE_SIZE;
2556				}
2557				md.md_size = va - md.md_vaddr;
2558				break;
2559			}
2560			md.md_index = 3;
2561			/* FALLTHROUGH */
2562		default:
2563			return (NULL);
2564		}
2565	} else { /* minidumps */
2566		mem_regions(&physmem_regions, &physmem_regions_sz,
2567		    &availmem_regions, &availmem_regions_sz);
2568
2569		if (prev == NULL) {
2570			/* first physical chunk. */
2571			md.md_paddr = physmem_regions[0].mr_start;
2572			md.md_size = physmem_regions[0].mr_size;
2573			md.md_vaddr = ~0UL;
2574			md.md_index = 1;
2575		} else if (md.md_index < physmem_regions_sz) {
2576			md.md_paddr = physmem_regions[md.md_index].mr_start;
2577			md.md_size = physmem_regions[md.md_index].mr_size;
2578			md.md_vaddr = ~0UL;
2579			md.md_index++;
2580		} else {
2581			/* There's no next physical chunk. */
2582			return (NULL);
2583		}
2584	}
2585
2586	return (&md);
2587}
2588
2589/*
2590 * Map a set of physical memory pages into the kernel virtual address space.
2591 * Return a pointer to where it is mapped. This routine is intended to be used
2592 * for mapping device memory, NOT real memory.
2593 */
2594static void *
2595mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2596{
2597	void *res;
2598	uintptr_t va;
2599	vm_size_t sz;
2600
2601	/*
2602	 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2603	 * we don't wrap around. Devices on the local bus typically extend all
2604	 * the way up to and including 0xffffffff. In that case (pa + size)
2605	 * would be 0. This creates a false positive (i.e. we think it's
2606	 * within the CCSR) and not create a mapping.
2607	 */
2608	if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2609		va = CCSRBAR_VA + (pa - ccsrbar_pa);
2610		return ((void *)va);
2611	}
2612
2613	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2614	res = (void *)va;
2615
2616	do {
2617		sz = 1 << (ilog2(size) & ~1);
2618		if (bootverbose)
2619			printf("Wiring VA=%x to PA=%x (size=%x), "
2620			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2621		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2622		size -= sz;
2623		pa += sz;
2624		va += sz;
2625	} while (size > 0);
2626
2627	return (res);
2628}
2629
2630/*
2631 * 'Unmap' a range mapped by mmu_booke_mapdev().
2632 */
2633static void
2634mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2635{
2636	vm_offset_t base, offset;
2637
2638	/*
2639	 * Unmap only if this is inside kernel virtual space.
2640	 */
2641	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2642		base = trunc_page(va);
2643		offset = va & PAGE_MASK;
2644		size = roundup(offset + size, PAGE_SIZE);
2645		kmem_free(kernel_map, base, size);
2646	}
2647}
2648
2649/*
2650 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2651 * specified pmap. This eliminates the blast of soft faults on process startup
2652 * and immediately after an mmap.
2653 */
2654static void
2655mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2656    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2657{
2658
2659	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2660	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2661	    ("mmu_booke_object_init_pt: non-device object"));
2662}
2663
2664/*
2665 * Perform the pmap work for mincore.
2666 */
2667static int
2668mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2669    vm_paddr_t *locked_pa)
2670{
2671
2672	TODO;
2673	return (0);
2674}
2675
2676/**************************************************************************/
2677/* TID handling */
2678/**************************************************************************/
2679
2680/*
2681 * Allocate a TID. If necessary, steal one from someone else.
2682 * The new TID is flushed from the TLB before returning.
2683 */
2684static tlbtid_t
2685tid_alloc(pmap_t pmap)
2686{
2687	tlbtid_t tid;
2688	int thiscpu;
2689
2690	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2691
2692	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2693
2694	thiscpu = PCPU_GET(cpuid);
2695
2696	tid = PCPU_GET(tid_next);
2697	if (tid > TID_MAX)
2698		tid = TID_MIN;
2699	PCPU_SET(tid_next, tid + 1);
2700
2701	/* If we are stealing TID then clear the relevant pmap's field */
2702	if (tidbusy[thiscpu][tid] != NULL) {
2703
2704		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2705
2706		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2707
2708		/* Flush all entries from TLB0 matching this TID. */
2709		tid_flush(tid);
2710	}
2711
2712	tidbusy[thiscpu][tid] = pmap;
2713	pmap->pm_tid[thiscpu] = tid;
2714	__asm __volatile("msync; isync");
2715
2716	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2717	    PCPU_GET(tid_next));
2718
2719	return (tid);
2720}
2721
2722/**************************************************************************/
2723/* TLB0 handling */
2724/**************************************************************************/
2725
2726static void
2727tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2728    uint32_t mas7)
2729{
2730	int as;
2731	char desc[3];
2732	tlbtid_t tid;
2733	vm_size_t size;
2734	unsigned int tsize;
2735
2736	desc[2] = '\0';
2737	if (mas1 & MAS1_VALID)
2738		desc[0] = 'V';
2739	else
2740		desc[0] = ' ';
2741
2742	if (mas1 & MAS1_IPROT)
2743		desc[1] = 'P';
2744	else
2745		desc[1] = ' ';
2746
2747	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2748	tid = MAS1_GETTID(mas1);
2749
2750	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2751	size = 0;
2752	if (tsize)
2753		size = tsize2size(tsize);
2754
2755	debugf("%3d: (%s) [AS=%d] "
2756	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2757	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2758	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2759}
2760
2761/* Convert TLB0 va and way number to tlb0[] table index. */
2762static inline unsigned int
2763tlb0_tableidx(vm_offset_t va, unsigned int way)
2764{
2765	unsigned int idx;
2766
2767	idx = (way * TLB0_ENTRIES_PER_WAY);
2768	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2769	return (idx);
2770}
2771
2772/*
2773 * Invalidate TLB0 entry.
2774 */
2775static inline void
2776tlb0_flush_entry(vm_offset_t va)
2777{
2778
2779	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2780
2781	mtx_assert(&tlbivax_mutex, MA_OWNED);
2782
2783	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2784	__asm __volatile("isync; msync");
2785	__asm __volatile("tlbsync; msync");
2786
2787	CTR1(KTR_PMAP, "%s: e", __func__);
2788}
2789
2790/* Print out contents of the MAS registers for each TLB0 entry */
2791void
2792tlb0_print_tlbentries(void)
2793{
2794	uint32_t mas0, mas1, mas2, mas3, mas7;
2795	int entryidx, way, idx;
2796
2797	debugf("TLB0 entries:\n");
2798	for (way = 0; way < TLB0_WAYS; way ++)
2799		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2800
2801			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2802			mtspr(SPR_MAS0, mas0);
2803			__asm __volatile("isync");
2804
2805			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2806			mtspr(SPR_MAS2, mas2);
2807
2808			__asm __volatile("isync; tlbre");
2809
2810			mas1 = mfspr(SPR_MAS1);
2811			mas2 = mfspr(SPR_MAS2);
2812			mas3 = mfspr(SPR_MAS3);
2813			mas7 = mfspr(SPR_MAS7);
2814
2815			idx = tlb0_tableidx(mas2, way);
2816			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2817		}
2818}
2819
2820/**************************************************************************/
2821/* TLB1 handling */
2822/**************************************************************************/
2823
2824/*
2825 * TLB1 mapping notes:
2826 *
2827 * TLB1[0]	CCSRBAR
2828 * TLB1[1]	Kernel text and data.
2829 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2830 *		windows, other devices mappings.
2831 */
2832
2833/*
2834 * Write given entry to TLB1 hardware.
2835 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2836 */
2837static void
2838tlb1_write_entry(unsigned int idx)
2839{
2840	uint32_t mas0, mas7;
2841
2842	//debugf("tlb1_write_entry: s\n");
2843
2844	/* Clear high order RPN bits */
2845	mas7 = 0;
2846
2847	/* Select entry */
2848	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2849	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2850
2851	mtspr(SPR_MAS0, mas0);
2852	__asm __volatile("isync");
2853	mtspr(SPR_MAS1, tlb1[idx].mas1);
2854	__asm __volatile("isync");
2855	mtspr(SPR_MAS2, tlb1[idx].mas2);
2856	__asm __volatile("isync");
2857	mtspr(SPR_MAS3, tlb1[idx].mas3);
2858	__asm __volatile("isync");
2859	mtspr(SPR_MAS7, mas7);
2860	__asm __volatile("isync; tlbwe; isync; msync");
2861
2862	//debugf("tlb1_write_entry: e\n");
2863}
2864
2865/*
2866 * Return the largest uint value log such that 2^log <= num.
2867 */
2868static unsigned int
2869ilog2(unsigned int num)
2870{
2871	int lz;
2872
2873	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2874	return (31 - lz);
2875}
2876
2877/*
2878 * Convert TLB TSIZE value to mapped region size.
2879 */
2880static vm_size_t
2881tsize2size(unsigned int tsize)
2882{
2883
2884	/*
2885	 * size = 4^tsize KB
2886	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2887	 */
2888
2889	return ((1 << (2 * tsize)) * 1024);
2890}
2891
2892/*
2893 * Convert region size (must be power of 4) to TLB TSIZE value.
2894 */
2895static unsigned int
2896size2tsize(vm_size_t size)
2897{
2898
2899	return (ilog2(size) / 2 - 5);
2900}
2901
2902/*
2903 * Register permanent kernel mapping in TLB1.
2904 *
2905 * Entries are created starting from index 0 (current free entry is
2906 * kept in tlb1_idx) and are not supposed to be invalidated.
2907 */
2908static int
2909tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2910    uint32_t flags)
2911{
2912	uint32_t ts, tid;
2913	int tsize;
2914
2915	if (tlb1_idx >= TLB1_ENTRIES) {
2916		printf("tlb1_set_entry: TLB1 full!\n");
2917		return (-1);
2918	}
2919
2920	/* Convert size to TSIZE */
2921	tsize = size2tsize(size);
2922
2923	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2924	/* XXX TS is hard coded to 0 for now as we only use single address space */
2925	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2926
2927	/* XXX LOCK tlb1[] */
2928
2929	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2930	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2931	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2932
2933	/* Set supervisor RWX permission bits */
2934	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2935
2936	tlb1_write_entry(tlb1_idx++);
2937
2938	/* XXX UNLOCK tlb1[] */
2939
2940	/*
2941	 * XXX in general TLB1 updates should be propagated between CPUs,
2942	 * since current design assumes to have the same TLB1 set-up on all
2943	 * cores.
2944	 */
2945	return (0);
2946}
2947
2948/*
2949 * Map in contiguous RAM region into the TLB1 using maximum of
2950 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2951 *
2952 * If necessary round up last entry size and return total size
2953 * used by all allocated entries.
2954 */
2955vm_size_t
2956tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2957{
2958	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2959	vm_size_t mapped, pgsz, base, mask;
2960	int idx, nents;
2961
2962	/* Round up to the next 1M */
2963	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2964
2965	mapped = 0;
2966	idx = 0;
2967	base = va;
2968	pgsz = 64*1024*1024;
2969	while (mapped < size) {
2970		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2971			while (pgsz > (size - mapped))
2972				pgsz >>= 2;
2973			pgs[idx++] = pgsz;
2974			mapped += pgsz;
2975		}
2976
2977		/* We under-map. Correct for this. */
2978		if (mapped < size) {
2979			while (pgs[idx - 1] == pgsz) {
2980				idx--;
2981				mapped -= pgsz;
2982			}
2983			/* XXX We may increase beyond out starting point. */
2984			pgsz <<= 2;
2985			pgs[idx++] = pgsz;
2986			mapped += pgsz;
2987		}
2988	}
2989
2990	nents = idx;
2991	mask = pgs[0] - 1;
2992	/* Align address to the boundary */
2993	if (va & mask) {
2994		va = (va + mask) & ~mask;
2995		pa = (pa + mask) & ~mask;
2996	}
2997
2998	for (idx = 0; idx < nents; idx++) {
2999		pgsz = pgs[idx];
3000		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3001		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3002		pa += pgsz;
3003		va += pgsz;
3004	}
3005
3006	mapped = (va - base);
3007	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3008	    mapped, mapped - size);
3009	return (mapped);
3010}
3011
3012/*
3013 * TLB1 initialization routine, to be called after the very first
3014 * assembler level setup done in locore.S.
3015 */
3016void
3017tlb1_init(vm_offset_t ccsrbar)
3018{
3019	uint32_t mas0, mas1, mas3;
3020	uint32_t tsz;
3021	u_int i;
3022
3023	ccsrbar_pa = ccsrbar;
3024
3025	if (bootinfo != NULL && bootinfo[0] != 1) {
3026		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3027	} else
3028		tlb1_idx = 1;
3029
3030	/* The first entry/entries are used to map the kernel. */
3031	for (i = 0; i < tlb1_idx; i++) {
3032		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3033		mtspr(SPR_MAS0, mas0);
3034		__asm __volatile("isync; tlbre");
3035
3036		mas1 = mfspr(SPR_MAS1);
3037		if ((mas1 & MAS1_VALID) == 0)
3038			continue;
3039
3040		mas3 = mfspr(SPR_MAS3);
3041
3042		tlb1[i].mas1 = mas1;
3043		tlb1[i].mas2 = mfspr(SPR_MAS2);
3044		tlb1[i].mas3 = mas3;
3045
3046		if (i == 0)
3047			kernload = mas3 & MAS3_RPN;
3048
3049		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3050		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3051	}
3052
3053	/* Map in CCSRBAR. */
3054	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3055
3056#ifdef SMP
3057	bp_ntlb1s = tlb1_idx;
3058#endif
3059
3060	/* Purge the remaining entries */
3061	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3062		tlb1_write_entry(i);
3063
3064	/* Setup TLB miss defaults */
3065	set_mas4_defaults();
3066}
3067
3068/*
3069 * Setup MAS4 defaults.
3070 * These values are loaded to MAS0-2 on a TLB miss.
3071 */
3072static void
3073set_mas4_defaults(void)
3074{
3075	uint32_t mas4;
3076
3077	/* Defaults: TLB0, PID0, TSIZED=4K */
3078	mas4 = MAS4_TLBSELD0;
3079	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3080#ifdef SMP
3081	mas4 |= MAS4_MD;
3082#endif
3083	mtspr(SPR_MAS4, mas4);
3084	__asm __volatile("isync");
3085}
3086
3087/*
3088 * Print out contents of the MAS registers for each TLB1 entry
3089 */
3090void
3091tlb1_print_tlbentries(void)
3092{
3093	uint32_t mas0, mas1, mas2, mas3, mas7;
3094	int i;
3095
3096	debugf("TLB1 entries:\n");
3097	for (i = 0; i < TLB1_ENTRIES; i++) {
3098
3099		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3100		mtspr(SPR_MAS0, mas0);
3101
3102		__asm __volatile("isync; tlbre");
3103
3104		mas1 = mfspr(SPR_MAS1);
3105		mas2 = mfspr(SPR_MAS2);
3106		mas3 = mfspr(SPR_MAS3);
3107		mas7 = mfspr(SPR_MAS7);
3108
3109		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3110	}
3111}
3112
3113/*
3114 * Print out contents of the in-ram tlb1 table.
3115 */
3116void
3117tlb1_print_entries(void)
3118{
3119	int i;
3120
3121	debugf("tlb1[] table entries:\n");
3122	for (i = 0; i < TLB1_ENTRIES; i++)
3123		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3124}
3125
3126/*
3127 * Return 0 if the physical IO range is encompassed by one of the
3128 * the TLB1 entries, otherwise return related error code.
3129 */
3130static int
3131tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3132{
3133	uint32_t prot;
3134	vm_paddr_t pa_start;
3135	vm_paddr_t pa_end;
3136	unsigned int entry_tsize;
3137	vm_size_t entry_size;
3138
3139	*va = (vm_offset_t)NULL;
3140
3141	/* Skip invalid entries */
3142	if (!(tlb1[i].mas1 & MAS1_VALID))
3143		return (EINVAL);
3144
3145	/*
3146	 * The entry must be cache-inhibited, guarded, and r/w
3147	 * so it can function as an i/o page
3148	 */
3149	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3150	if (prot != (MAS2_I | MAS2_G))
3151		return (EPERM);
3152
3153	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3154	if (prot != (MAS3_SR | MAS3_SW))
3155		return (EPERM);
3156
3157	/* The address should be within the entry range. */
3158	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3159	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3160
3161	entry_size = tsize2size(entry_tsize);
3162	pa_start = tlb1[i].mas3 & MAS3_RPN;
3163	pa_end = pa_start + entry_size - 1;
3164
3165	if ((pa < pa_start) || ((pa + size) > pa_end))
3166		return (ERANGE);
3167
3168	/* Return virtual address of this mapping. */
3169	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3170	return (0);
3171}
3172