pmap.c revision 236142
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 236142 2012-05-27 10:32:10Z raj $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/msgbuf.h>
65#include <sys/lock.h>
66#include <sys/mutex.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/vmparam.h>
89#include <machine/md_var.h>
90#include <machine/mmuvar.h>
91#include <machine/pmap.h>
92#include <machine/pte.h>
93
94#include "mmu_if.h"
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103
104extern struct mtx sched_lock;
105
106extern int dumpsys_minidump;
107
108extern unsigned char _etext[];
109extern unsigned char _end[];
110
111extern uint32_t *bootinfo;
112
113#ifdef SMP
114extern uint32_t bp_kernload;
115#endif
116
117vm_paddr_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153    vm_prot_t, boolean_t);
154
155unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES		(tlb0_entries)
183#define TLB0_WAYS		(tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216/* Data for the pv entry allocation mechanism */
217static uma_zone_t pvzone;
218static struct vm_object pvzone_obj;
219static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220
221#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
222
223#ifndef PMAP_SHPGPERPROC
224#define PMAP_SHPGPERPROC	200
225#endif
226
227static void ptbl_init(void);
228static struct ptbl_buf *ptbl_buf_alloc(void);
229static void ptbl_buf_free(struct ptbl_buf *);
230static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231
232static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
233static void ptbl_free(mmu_t, pmap_t, unsigned int);
234static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236
237static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
240static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241
242static pv_entry_t pv_alloc(void);
243static void pv_free(pv_entry_t);
244static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246
247/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248#define PTBL_BUFS		(128 * 16)
249
250struct ptbl_buf {
251	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252	vm_offset_t kva;		/* va of mapping */
253};
254
255/* ptbl free list and a lock used for access synchronization. */
256static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257static struct mtx ptbl_buf_freelist_lock;
258
259/* Base address of kva space allocated fot ptbl bufs. */
260static vm_offset_t ptbl_buf_pool_vabase;
261
262/* Pointer to ptbl_buf structures. */
263static struct ptbl_buf *ptbl_bufs;
264
265void pmap_bootstrap_ap(volatile uint32_t *);
266
267/*
268 * Kernel MMU interface
269 */
270static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
271static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
272static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
273static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274    vm_size_t, vm_offset_t);
275static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
277    vm_prot_t, boolean_t);
278static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
279    vm_page_t, vm_prot_t);
280static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t);
282static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
283static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
284    vm_prot_t);
285static void		mmu_booke_init(mmu_t);
286static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
287static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
289static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
290static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
291    int);
292static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
293    vm_paddr_t *);
294static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295    vm_object_t, vm_pindex_t, vm_size_t);
296static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297static void		mmu_booke_page_init(mmu_t, vm_page_t);
298static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299static void		mmu_booke_pinit(mmu_t, pmap_t);
300static void		mmu_booke_pinit0(mmu_t, pmap_t);
301static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302    vm_prot_t);
303static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305static void		mmu_booke_release(mmu_t, pmap_t);
306static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307static void		mmu_booke_remove_all(mmu_t, vm_page_t);
308static void		mmu_booke_remove_write(mmu_t, vm_page_t);
309static void		mmu_booke_zero_page(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312static void		mmu_booke_activate(mmu_t, struct thread *);
313static void		mmu_booke_deactivate(mmu_t, struct thread *);
314static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
316static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
318static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
319static void		mmu_booke_kremove(mmu_t, vm_offset_t);
320static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
321static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
322    vm_size_t);
323static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324    vm_size_t, vm_size_t *);
325static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326    vm_size_t, vm_offset_t);
327static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328
329static mmu_method_t mmu_booke_methods[] = {
330	/* pmap dispatcher interface */
331	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341	MMUMETHOD(mmu_init,		mmu_booke_init),
342	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
345	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
346	MMUMETHOD(mmu_map,		mmu_booke_map),
347	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
348	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
349	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
350	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
351	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
353	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
354	MMUMETHOD(mmu_protect,		mmu_booke_protect),
355	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
356	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
357	MMUMETHOD(mmu_release,		mmu_booke_release),
358	MMUMETHOD(mmu_remove,		mmu_booke_remove),
359	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
360	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
361	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
362	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
363	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
364	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
365	MMUMETHOD(mmu_activate,		mmu_booke_activate),
366	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
367
368	/* Internal interfaces */
369	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
370	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
371	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
372	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
373	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
374/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
375	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
376
377	/* dumpsys() support */
378	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
379	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
380	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
381
382	{ 0, 0 }
383};
384
385MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
386
387static inline void
388tlb_miss_lock(void)
389{
390#ifdef SMP
391	struct pcpu *pc;
392
393	if (!smp_started)
394		return;
395
396	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
397		if (pc != pcpup) {
398
399			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
400			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
401
402			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
403			    ("tlb_miss_lock: tried to lock self"));
404
405			tlb_lock(pc->pc_booke_tlb_lock);
406
407			CTR1(KTR_PMAP, "%s: locked", __func__);
408		}
409	}
410#endif
411}
412
413static inline void
414tlb_miss_unlock(void)
415{
416#ifdef SMP
417	struct pcpu *pc;
418
419	if (!smp_started)
420		return;
421
422	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
423		if (pc != pcpup) {
424			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
425			    __func__, pc->pc_cpuid);
426
427			tlb_unlock(pc->pc_booke_tlb_lock);
428
429			CTR1(KTR_PMAP, "%s: unlocked", __func__);
430		}
431	}
432#endif
433}
434
435/* Return number of entries in TLB0. */
436static __inline void
437tlb0_get_tlbconf(void)
438{
439	uint32_t tlb0_cfg;
440
441	tlb0_cfg = mfspr(SPR_TLB0CFG);
442	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
443	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
444	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
445}
446
447/* Initialize pool of kva ptbl buffers. */
448static void
449ptbl_init(void)
450{
451	int i;
452
453	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
454	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
455	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
456	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
457
458	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
459	TAILQ_INIT(&ptbl_buf_freelist);
460
461	for (i = 0; i < PTBL_BUFS; i++) {
462		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
463		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
464	}
465}
466
467/* Get a ptbl_buf from the freelist. */
468static struct ptbl_buf *
469ptbl_buf_alloc(void)
470{
471	struct ptbl_buf *buf;
472
473	mtx_lock(&ptbl_buf_freelist_lock);
474	buf = TAILQ_FIRST(&ptbl_buf_freelist);
475	if (buf != NULL)
476		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
477	mtx_unlock(&ptbl_buf_freelist_lock);
478
479	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
480
481	return (buf);
482}
483
484/* Return ptbl buff to free pool. */
485static void
486ptbl_buf_free(struct ptbl_buf *buf)
487{
488
489	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
490
491	mtx_lock(&ptbl_buf_freelist_lock);
492	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
493	mtx_unlock(&ptbl_buf_freelist_lock);
494}
495
496/*
497 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
498 */
499static void
500ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
501{
502	struct ptbl_buf *pbuf;
503
504	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
505
506	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
507
508	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
509		if (pbuf->kva == (vm_offset_t)ptbl) {
510			/* Remove from pmap ptbl buf list. */
511			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
512
513			/* Free corresponding ptbl buf. */
514			ptbl_buf_free(pbuf);
515			break;
516		}
517}
518
519/* Allocate page table. */
520static pte_t *
521ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
522{
523	vm_page_t mtbl[PTBL_PAGES];
524	vm_page_t m;
525	struct ptbl_buf *pbuf;
526	unsigned int pidx;
527	pte_t *ptbl;
528	int i;
529
530	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
531	    (pmap == kernel_pmap), pdir_idx);
532
533	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
534	    ("ptbl_alloc: invalid pdir_idx"));
535	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
536	    ("pte_alloc: valid ptbl entry exists!"));
537
538	pbuf = ptbl_buf_alloc();
539	if (pbuf == NULL)
540		panic("pte_alloc: couldn't alloc kernel virtual memory");
541
542	ptbl = (pte_t *)pbuf->kva;
543
544	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
545
546	/* Allocate ptbl pages, this will sleep! */
547	for (i = 0; i < PTBL_PAGES; i++) {
548		pidx = (PTBL_PAGES * pdir_idx) + i;
549		while ((m = vm_page_alloc(NULL, pidx,
550		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
551
552			PMAP_UNLOCK(pmap);
553			vm_page_unlock_queues();
554			VM_WAIT;
555			vm_page_lock_queues();
556			PMAP_LOCK(pmap);
557		}
558		mtbl[i] = m;
559	}
560
561	/* Map allocated pages into kernel_pmap. */
562	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
563
564	/* Zero whole ptbl. */
565	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
566
567	/* Add pbuf to the pmap ptbl bufs list. */
568	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
569
570	return (ptbl);
571}
572
573/* Free ptbl pages and invalidate pdir entry. */
574static void
575ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
576{
577	pte_t *ptbl;
578	vm_paddr_t pa;
579	vm_offset_t va;
580	vm_page_t m;
581	int i;
582
583	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
584	    (pmap == kernel_pmap), pdir_idx);
585
586	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
587	    ("ptbl_free: invalid pdir_idx"));
588
589	ptbl = pmap->pm_pdir[pdir_idx];
590
591	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
592
593	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
594
595	/*
596	 * Invalidate the pdir entry as soon as possible, so that other CPUs
597	 * don't attempt to look up the page tables we are releasing.
598	 */
599	mtx_lock_spin(&tlbivax_mutex);
600	tlb_miss_lock();
601
602	pmap->pm_pdir[pdir_idx] = NULL;
603
604	tlb_miss_unlock();
605	mtx_unlock_spin(&tlbivax_mutex);
606
607	for (i = 0; i < PTBL_PAGES; i++) {
608		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
609		pa = pte_vatopa(mmu, kernel_pmap, va);
610		m = PHYS_TO_VM_PAGE(pa);
611		vm_page_free_zero(m);
612		atomic_subtract_int(&cnt.v_wire_count, 1);
613		mmu_booke_kremove(mmu, va);
614	}
615
616	ptbl_free_pmap_ptbl(pmap, ptbl);
617}
618
619/*
620 * Decrement ptbl pages hold count and attempt to free ptbl pages.
621 * Called when removing pte entry from ptbl.
622 *
623 * Return 1 if ptbl pages were freed.
624 */
625static int
626ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
627{
628	pte_t *ptbl;
629	vm_paddr_t pa;
630	vm_page_t m;
631	int i;
632
633	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
634	    (pmap == kernel_pmap), pdir_idx);
635
636	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
637	    ("ptbl_unhold: invalid pdir_idx"));
638	KASSERT((pmap != kernel_pmap),
639	    ("ptbl_unhold: unholding kernel ptbl!"));
640
641	ptbl = pmap->pm_pdir[pdir_idx];
642
643	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
644	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
645	    ("ptbl_unhold: non kva ptbl"));
646
647	/* decrement hold count */
648	for (i = 0; i < PTBL_PAGES; i++) {
649		pa = pte_vatopa(mmu, kernel_pmap,
650		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
651		m = PHYS_TO_VM_PAGE(pa);
652		m->wire_count--;
653	}
654
655	/*
656	 * Free ptbl pages if there are no pte etries in this ptbl.
657	 * wire_count has the same value for all ptbl pages, so check the last
658	 * page.
659	 */
660	if (m->wire_count == 0) {
661		ptbl_free(mmu, pmap, pdir_idx);
662
663		//debugf("ptbl_unhold: e (freed ptbl)\n");
664		return (1);
665	}
666
667	return (0);
668}
669
670/*
671 * Increment hold count for ptbl pages. This routine is used when a new pte
672 * entry is being inserted into the ptbl.
673 */
674static void
675ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
676{
677	vm_paddr_t pa;
678	pte_t *ptbl;
679	vm_page_t m;
680	int i;
681
682	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
683	    pdir_idx);
684
685	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
686	    ("ptbl_hold: invalid pdir_idx"));
687	KASSERT((pmap != kernel_pmap),
688	    ("ptbl_hold: holding kernel ptbl!"));
689
690	ptbl = pmap->pm_pdir[pdir_idx];
691
692	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
693
694	for (i = 0; i < PTBL_PAGES; i++) {
695		pa = pte_vatopa(mmu, kernel_pmap,
696		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
697		m = PHYS_TO_VM_PAGE(pa);
698		m->wire_count++;
699	}
700}
701
702/* Allocate pv_entry structure. */
703pv_entry_t
704pv_alloc(void)
705{
706	pv_entry_t pv;
707
708	pv_entry_count++;
709	if (pv_entry_count > pv_entry_high_water)
710		pagedaemon_wakeup();
711	pv = uma_zalloc(pvzone, M_NOWAIT);
712
713	return (pv);
714}
715
716/* Free pv_entry structure. */
717static __inline void
718pv_free(pv_entry_t pve)
719{
720
721	pv_entry_count--;
722	uma_zfree(pvzone, pve);
723}
724
725
726/* Allocate and initialize pv_entry structure. */
727static void
728pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
729{
730	pv_entry_t pve;
731
732	//int su = (pmap == kernel_pmap);
733	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
734	//	(u_int32_t)pmap, va, (u_int32_t)m);
735
736	pve = pv_alloc();
737	if (pve == NULL)
738		panic("pv_insert: no pv entries!");
739
740	pve->pv_pmap = pmap;
741	pve->pv_va = va;
742
743	/* add to pv_list */
744	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
745	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
746
747	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
748
749	//debugf("pv_insert: e\n");
750}
751
752/* Destroy pv entry. */
753static void
754pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
755{
756	pv_entry_t pve;
757
758	//int su = (pmap == kernel_pmap);
759	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
760
761	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
762	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
763
764	/* find pv entry */
765	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
766		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
767			/* remove from pv_list */
768			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
769			if (TAILQ_EMPTY(&m->md.pv_list))
770				vm_page_aflag_clear(m, PGA_WRITEABLE);
771
772			/* free pv entry struct */
773			pv_free(pve);
774			break;
775		}
776	}
777
778	//debugf("pv_remove: e\n");
779}
780
781/*
782 * Clean pte entry, try to free page table page if requested.
783 *
784 * Return 1 if ptbl pages were freed, otherwise return 0.
785 */
786static int
787pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
788{
789	unsigned int pdir_idx = PDIR_IDX(va);
790	unsigned int ptbl_idx = PTBL_IDX(va);
791	vm_page_t m;
792	pte_t *ptbl;
793	pte_t *pte;
794
795	//int su = (pmap == kernel_pmap);
796	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
797	//		su, (u_int32_t)pmap, va, flags);
798
799	ptbl = pmap->pm_pdir[pdir_idx];
800	KASSERT(ptbl, ("pte_remove: null ptbl"));
801
802	pte = &ptbl[ptbl_idx];
803
804	if (pte == NULL || !PTE_ISVALID(pte))
805		return (0);
806
807	if (PTE_ISWIRED(pte))
808		pmap->pm_stats.wired_count--;
809
810	/* Handle managed entry. */
811	if (PTE_ISMANAGED(pte)) {
812		/* Get vm_page_t for mapped pte. */
813		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
814
815		if (PTE_ISMODIFIED(pte))
816			vm_page_dirty(m);
817
818		if (PTE_ISREFERENCED(pte))
819			vm_page_aflag_set(m, PGA_REFERENCED);
820
821		pv_remove(pmap, va, m);
822	}
823
824	mtx_lock_spin(&tlbivax_mutex);
825	tlb_miss_lock();
826
827	tlb0_flush_entry(va);
828	pte->flags = 0;
829	pte->rpn = 0;
830
831	tlb_miss_unlock();
832	mtx_unlock_spin(&tlbivax_mutex);
833
834	pmap->pm_stats.resident_count--;
835
836	if (flags & PTBL_UNHOLD) {
837		//debugf("pte_remove: e (unhold)\n");
838		return (ptbl_unhold(mmu, pmap, pdir_idx));
839	}
840
841	//debugf("pte_remove: e\n");
842	return (0);
843}
844
845/*
846 * Insert PTE for a given page and virtual address.
847 */
848static void
849pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
850{
851	unsigned int pdir_idx = PDIR_IDX(va);
852	unsigned int ptbl_idx = PTBL_IDX(va);
853	pte_t *ptbl, *pte;
854
855	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
856	    pmap == kernel_pmap, pmap, va);
857
858	/* Get the page table pointer. */
859	ptbl = pmap->pm_pdir[pdir_idx];
860
861	if (ptbl == NULL) {
862		/* Allocate page table pages. */
863		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
864	} else {
865		/*
866		 * Check if there is valid mapping for requested
867		 * va, if there is, remove it.
868		 */
869		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
870		if (PTE_ISVALID(pte)) {
871			pte_remove(mmu, pmap, va, PTBL_HOLD);
872		} else {
873			/*
874			 * pte is not used, increment hold count
875			 * for ptbl pages.
876			 */
877			if (pmap != kernel_pmap)
878				ptbl_hold(mmu, pmap, pdir_idx);
879		}
880	}
881
882	/*
883	 * Insert pv_entry into pv_list for mapped page if part of managed
884	 * memory.
885	 */
886	if ((m->oflags & VPO_UNMANAGED) == 0) {
887		flags |= PTE_MANAGED;
888
889		/* Create and insert pv entry. */
890		pv_insert(pmap, va, m);
891	}
892
893	pmap->pm_stats.resident_count++;
894
895	mtx_lock_spin(&tlbivax_mutex);
896	tlb_miss_lock();
897
898	tlb0_flush_entry(va);
899	if (pmap->pm_pdir[pdir_idx] == NULL) {
900		/*
901		 * If we just allocated a new page table, hook it in
902		 * the pdir.
903		 */
904		pmap->pm_pdir[pdir_idx] = ptbl;
905	}
906	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
907	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
908	pte->flags |= (PTE_VALID | flags);
909
910	tlb_miss_unlock();
911	mtx_unlock_spin(&tlbivax_mutex);
912}
913
914/* Return the pa for the given pmap/va. */
915static vm_paddr_t
916pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
917{
918	vm_paddr_t pa = 0;
919	pte_t *pte;
920
921	pte = pte_find(mmu, pmap, va);
922	if ((pte != NULL) && PTE_ISVALID(pte))
923		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
924	return (pa);
925}
926
927/* Get a pointer to a PTE in a page table. */
928static pte_t *
929pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
930{
931	unsigned int pdir_idx = PDIR_IDX(va);
932	unsigned int ptbl_idx = PTBL_IDX(va);
933
934	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
935
936	if (pmap->pm_pdir[pdir_idx])
937		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
938
939	return (NULL);
940}
941
942/**************************************************************************/
943/* PMAP related */
944/**************************************************************************/
945
946/*
947 * This is called during booke_init, before the system is really initialized.
948 */
949static void
950mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
951{
952	vm_offset_t phys_kernelend;
953	struct mem_region *mp, *mp1;
954	int cnt, i, j;
955	u_int s, e, sz;
956	u_int phys_avail_count;
957	vm_size_t physsz, hwphyssz, kstack0_sz;
958	vm_offset_t kernel_pdir, kstack0, va;
959	vm_paddr_t kstack0_phys;
960	void *dpcpu;
961	pte_t *pte;
962
963	debugf("mmu_booke_bootstrap: entered\n");
964
965#ifdef SMP
966	bp_kernload = kernload;
967#endif
968
969	/* Initialize invalidation mutex */
970	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
971
972	/* Read TLB0 size and associativity. */
973	tlb0_get_tlbconf();
974
975	/*
976	 * Align kernel start and end address (kernel image).
977	 * Note that kernel end does not necessarily relate to kernsize.
978	 * kernsize is the size of the kernel that is actually mapped.
979	 * Also note that "start - 1" is deliberate. With SMP, the
980	 * entry point is exactly a page from the actual load address.
981	 * As such, trunc_page() has no effect and we're off by a page.
982	 * Since we always have the ELF header between the load address
983	 * and the entry point, we can safely subtract 1 to compensate.
984	 */
985	kernstart = trunc_page(start - 1);
986	data_start = round_page(kernelend);
987	data_end = data_start;
988
989	/*
990	 * Addresses of preloaded modules (like file systems) use
991	 * physical addresses. Make sure we relocate those into
992	 * virtual addresses.
993	 */
994	preload_addr_relocate = kernstart - kernload;
995
996	/* Allocate the dynamic per-cpu area. */
997	dpcpu = (void *)data_end;
998	data_end += DPCPU_SIZE;
999
1000	/* Allocate space for the message buffer. */
1001	msgbufp = (struct msgbuf *)data_end;
1002	data_end += msgbufsize;
1003	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1004	    data_end);
1005
1006	data_end = round_page(data_end);
1007
1008	/* Allocate space for ptbl_bufs. */
1009	ptbl_bufs = (struct ptbl_buf *)data_end;
1010	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1011	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1012	    data_end);
1013
1014	data_end = round_page(data_end);
1015
1016	/* Allocate PTE tables for kernel KVA. */
1017	kernel_pdir = data_end;
1018	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1019	    PDIR_SIZE - 1) / PDIR_SIZE;
1020	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1021	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1022	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1023
1024	debugf(" data_end: 0x%08x\n", data_end);
1025	if (data_end - kernstart > kernsize) {
1026		kernsize += tlb1_mapin_region(kernstart + kernsize,
1027		    kernload + kernsize, (data_end - kernstart) - kernsize);
1028	}
1029	data_end = kernstart + kernsize;
1030	debugf(" updated data_end: 0x%08x\n", data_end);
1031
1032	/*
1033	 * Clear the structures - note we can only do it safely after the
1034	 * possible additional TLB1 translations are in place (above) so that
1035	 * all range up to the currently calculated 'data_end' is covered.
1036	 */
1037	dpcpu_init(dpcpu, 0);
1038	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1039	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1040
1041	/*******************************************************/
1042	/* Set the start and end of kva. */
1043	/*******************************************************/
1044	virtual_avail = round_page(data_end);
1045	virtual_end = VM_MAX_KERNEL_ADDRESS;
1046
1047	/* Allocate KVA space for page zero/copy operations. */
1048	zero_page_va = virtual_avail;
1049	virtual_avail += PAGE_SIZE;
1050	zero_page_idle_va = virtual_avail;
1051	virtual_avail += PAGE_SIZE;
1052	copy_page_src_va = virtual_avail;
1053	virtual_avail += PAGE_SIZE;
1054	copy_page_dst_va = virtual_avail;
1055	virtual_avail += PAGE_SIZE;
1056	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1057	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1058	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1059	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1060
1061	/* Initialize page zero/copy mutexes. */
1062	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1063	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1064
1065	/* Allocate KVA space for ptbl bufs. */
1066	ptbl_buf_pool_vabase = virtual_avail;
1067	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1068	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1069	    ptbl_buf_pool_vabase, virtual_avail);
1070
1071	/* Calculate corresponding physical addresses for the kernel region. */
1072	phys_kernelend = kernload + kernsize;
1073	debugf("kernel image and allocated data:\n");
1074	debugf(" kernload    = 0x%08x\n", kernload);
1075	debugf(" kernstart   = 0x%08x\n", kernstart);
1076	debugf(" kernsize    = 0x%08x\n", kernsize);
1077
1078	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1079		panic("mmu_booke_bootstrap: phys_avail too small");
1080
1081	/*
1082	 * Remove kernel physical address range from avail regions list. Page
1083	 * align all regions.  Non-page aligned memory isn't very interesting
1084	 * to us.  Also, sort the entries for ascending addresses.
1085	 */
1086
1087	/* Retrieve phys/avail mem regions */
1088	mem_regions(&physmem_regions, &physmem_regions_sz,
1089	    &availmem_regions, &availmem_regions_sz);
1090	sz = 0;
1091	cnt = availmem_regions_sz;
1092	debugf("processing avail regions:\n");
1093	for (mp = availmem_regions; mp->mr_size; mp++) {
1094		s = mp->mr_start;
1095		e = mp->mr_start + mp->mr_size;
1096		debugf(" %08x-%08x -> ", s, e);
1097		/* Check whether this region holds all of the kernel. */
1098		if (s < kernload && e > phys_kernelend) {
1099			availmem_regions[cnt].mr_start = phys_kernelend;
1100			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1101			e = kernload;
1102		}
1103		/* Look whether this regions starts within the kernel. */
1104		if (s >= kernload && s < phys_kernelend) {
1105			if (e <= phys_kernelend)
1106				goto empty;
1107			s = phys_kernelend;
1108		}
1109		/* Now look whether this region ends within the kernel. */
1110		if (e > kernload && e <= phys_kernelend) {
1111			if (s >= kernload)
1112				goto empty;
1113			e = kernload;
1114		}
1115		/* Now page align the start and size of the region. */
1116		s = round_page(s);
1117		e = trunc_page(e);
1118		if (e < s)
1119			e = s;
1120		sz = e - s;
1121		debugf("%08x-%08x = %x\n", s, e, sz);
1122
1123		/* Check whether some memory is left here. */
1124		if (sz == 0) {
1125		empty:
1126			memmove(mp, mp + 1,
1127			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1128			cnt--;
1129			mp--;
1130			continue;
1131		}
1132
1133		/* Do an insertion sort. */
1134		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1135			if (s < mp1->mr_start)
1136				break;
1137		if (mp1 < mp) {
1138			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1139			mp1->mr_start = s;
1140			mp1->mr_size = sz;
1141		} else {
1142			mp->mr_start = s;
1143			mp->mr_size = sz;
1144		}
1145	}
1146	availmem_regions_sz = cnt;
1147
1148	/*******************************************************/
1149	/* Steal physical memory for kernel stack from the end */
1150	/* of the first avail region                           */
1151	/*******************************************************/
1152	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1153	kstack0_phys = availmem_regions[0].mr_start +
1154	    availmem_regions[0].mr_size;
1155	kstack0_phys -= kstack0_sz;
1156	availmem_regions[0].mr_size -= kstack0_sz;
1157
1158	/*******************************************************/
1159	/* Fill in phys_avail table, based on availmem_regions */
1160	/*******************************************************/
1161	phys_avail_count = 0;
1162	physsz = 0;
1163	hwphyssz = 0;
1164	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1165
1166	debugf("fill in phys_avail:\n");
1167	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1168
1169		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1170		    availmem_regions[i].mr_start,
1171		    availmem_regions[i].mr_start +
1172		        availmem_regions[i].mr_size,
1173		    availmem_regions[i].mr_size);
1174
1175		if (hwphyssz != 0 &&
1176		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1177			debugf(" hw.physmem adjust\n");
1178			if (physsz < hwphyssz) {
1179				phys_avail[j] = availmem_regions[i].mr_start;
1180				phys_avail[j + 1] =
1181				    availmem_regions[i].mr_start +
1182				    hwphyssz - physsz;
1183				physsz = hwphyssz;
1184				phys_avail_count++;
1185			}
1186			break;
1187		}
1188
1189		phys_avail[j] = availmem_regions[i].mr_start;
1190		phys_avail[j + 1] = availmem_regions[i].mr_start +
1191		    availmem_regions[i].mr_size;
1192		phys_avail_count++;
1193		physsz += availmem_regions[i].mr_size;
1194	}
1195	physmem = btoc(physsz);
1196
1197	/* Calculate the last available physical address. */
1198	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1199		;
1200	Maxmem = powerpc_btop(phys_avail[i + 1]);
1201
1202	debugf("Maxmem = 0x%08lx\n", Maxmem);
1203	debugf("phys_avail_count = %d\n", phys_avail_count);
1204	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1205	    physmem);
1206
1207	/*******************************************************/
1208	/* Initialize (statically allocated) kernel pmap. */
1209	/*******************************************************/
1210	PMAP_LOCK_INIT(kernel_pmap);
1211	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1212
1213	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1214	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1215	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1216	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1217
1218	/* Initialize kernel pdir */
1219	for (i = 0; i < kernel_ptbls; i++)
1220		kernel_pmap->pm_pdir[kptbl_min + i] =
1221		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1222
1223	for (i = 0; i < MAXCPU; i++) {
1224		kernel_pmap->pm_tid[i] = TID_KERNEL;
1225
1226		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1227		tidbusy[i][0] = kernel_pmap;
1228	}
1229
1230	/*
1231	 * Fill in PTEs covering kernel code and data. They are not required
1232	 * for address translation, as this area is covered by static TLB1
1233	 * entries, but for pte_vatopa() to work correctly with kernel area
1234	 * addresses.
1235	 */
1236	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1237		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1238		pte->rpn = kernload + (va - kernstart);
1239		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1240		    PTE_VALID;
1241	}
1242	/* Mark kernel_pmap active on all CPUs */
1243	CPU_FILL(&kernel_pmap->pm_active);
1244
1245	/*******************************************************/
1246	/* Final setup */
1247	/*******************************************************/
1248
1249	/* Enter kstack0 into kernel map, provide guard page */
1250	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1251	thread0.td_kstack = kstack0;
1252	thread0.td_kstack_pages = KSTACK_PAGES;
1253
1254	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1255	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1256	    kstack0_phys, kstack0_phys + kstack0_sz);
1257	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1258
1259	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1260	for (i = 0; i < KSTACK_PAGES; i++) {
1261		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1262		kstack0 += PAGE_SIZE;
1263		kstack0_phys += PAGE_SIZE;
1264	}
1265
1266	debugf("virtual_avail = %08x\n", virtual_avail);
1267	debugf("virtual_end   = %08x\n", virtual_end);
1268
1269	debugf("mmu_booke_bootstrap: exit\n");
1270}
1271
1272void
1273pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1274{
1275	int i;
1276
1277	/*
1278	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1279	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1280	 * these values directly to (re)program AP's TLB1 hardware.
1281	 */
1282	for (i = 0; i < tlb1_idx; i ++) {
1283		/* Skip invalid entries */
1284		if (!(tlb1[i].mas1 & MAS1_VALID))
1285			continue;
1286
1287		tlb1_write_entry(i);
1288	}
1289
1290	set_mas4_defaults();
1291}
1292
1293/*
1294 * Get the physical page address for the given pmap/virtual address.
1295 */
1296static vm_paddr_t
1297mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1298{
1299	vm_paddr_t pa;
1300
1301	PMAP_LOCK(pmap);
1302	pa = pte_vatopa(mmu, pmap, va);
1303	PMAP_UNLOCK(pmap);
1304
1305	return (pa);
1306}
1307
1308/*
1309 * Extract the physical page address associated with the given
1310 * kernel virtual address.
1311 */
1312static vm_paddr_t
1313mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1314{
1315
1316	return (pte_vatopa(mmu, kernel_pmap, va));
1317}
1318
1319/*
1320 * Initialize the pmap module.
1321 * Called by vm_init, to initialize any structures that the pmap
1322 * system needs to map virtual memory.
1323 */
1324static void
1325mmu_booke_init(mmu_t mmu)
1326{
1327	int shpgperproc = PMAP_SHPGPERPROC;
1328
1329	/*
1330	 * Initialize the address space (zone) for the pv entries.  Set a
1331	 * high water mark so that the system can recover from excessive
1332	 * numbers of pv entries.
1333	 */
1334	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1335	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1336
1337	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1338	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1339
1340	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1341	pv_entry_high_water = 9 * (pv_entry_max / 10);
1342
1343	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1344
1345	/* Pre-fill pvzone with initial number of pv entries. */
1346	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1347
1348	/* Initialize ptbl allocation. */
1349	ptbl_init();
1350}
1351
1352/*
1353 * Map a list of wired pages into kernel virtual address space.  This is
1354 * intended for temporary mappings which do not need page modification or
1355 * references recorded.  Existing mappings in the region are overwritten.
1356 */
1357static void
1358mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1359{
1360	vm_offset_t va;
1361
1362	va = sva;
1363	while (count-- > 0) {
1364		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1365		va += PAGE_SIZE;
1366		m++;
1367	}
1368}
1369
1370/*
1371 * Remove page mappings from kernel virtual address space.  Intended for
1372 * temporary mappings entered by mmu_booke_qenter.
1373 */
1374static void
1375mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1376{
1377	vm_offset_t va;
1378
1379	va = sva;
1380	while (count-- > 0) {
1381		mmu_booke_kremove(mmu, va);
1382		va += PAGE_SIZE;
1383	}
1384}
1385
1386/*
1387 * Map a wired page into kernel virtual address space.
1388 */
1389static void
1390mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1391{
1392	unsigned int pdir_idx = PDIR_IDX(va);
1393	unsigned int ptbl_idx = PTBL_IDX(va);
1394	uint32_t flags;
1395	pte_t *pte;
1396
1397	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1398	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1399
1400	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1401
1402	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1403
1404	mtx_lock_spin(&tlbivax_mutex);
1405	tlb_miss_lock();
1406
1407	if (PTE_ISVALID(pte)) {
1408
1409		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1410
1411		/* Flush entry from TLB0 */
1412		tlb0_flush_entry(va);
1413	}
1414
1415	pte->rpn = pa & ~PTE_PA_MASK;
1416	pte->flags = flags;
1417
1418	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1419	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1420	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1421
1422	/* Flush the real memory from the instruction cache. */
1423	if ((flags & (PTE_I | PTE_G)) == 0) {
1424		__syncicache((void *)va, PAGE_SIZE);
1425	}
1426
1427	tlb_miss_unlock();
1428	mtx_unlock_spin(&tlbivax_mutex);
1429}
1430
1431/*
1432 * Remove a page from kernel page table.
1433 */
1434static void
1435mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1436{
1437	unsigned int pdir_idx = PDIR_IDX(va);
1438	unsigned int ptbl_idx = PTBL_IDX(va);
1439	pte_t *pte;
1440
1441//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1442
1443	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1444	    (va <= VM_MAX_KERNEL_ADDRESS)),
1445	    ("mmu_booke_kremove: invalid va"));
1446
1447	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1448
1449	if (!PTE_ISVALID(pte)) {
1450
1451		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1452
1453		return;
1454	}
1455
1456	mtx_lock_spin(&tlbivax_mutex);
1457	tlb_miss_lock();
1458
1459	/* Invalidate entry in TLB0, update PTE. */
1460	tlb0_flush_entry(va);
1461	pte->flags = 0;
1462	pte->rpn = 0;
1463
1464	tlb_miss_unlock();
1465	mtx_unlock_spin(&tlbivax_mutex);
1466}
1467
1468/*
1469 * Initialize pmap associated with process 0.
1470 */
1471static void
1472mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1473{
1474
1475	mmu_booke_pinit(mmu, pmap);
1476	PCPU_SET(curpmap, pmap);
1477}
1478
1479/*
1480 * Initialize a preallocated and zeroed pmap structure,
1481 * such as one in a vmspace structure.
1482 */
1483static void
1484mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1485{
1486	int i;
1487
1488	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1489	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1490
1491	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1492
1493	PMAP_LOCK_INIT(pmap);
1494	for (i = 0; i < MAXCPU; i++)
1495		pmap->pm_tid[i] = TID_NONE;
1496	CPU_ZERO(&kernel_pmap->pm_active);
1497	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1498	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1499	TAILQ_INIT(&pmap->pm_ptbl_list);
1500}
1501
1502/*
1503 * Release any resources held by the given physical map.
1504 * Called when a pmap initialized by mmu_booke_pinit is being released.
1505 * Should only be called if the map contains no valid mappings.
1506 */
1507static void
1508mmu_booke_release(mmu_t mmu, pmap_t pmap)
1509{
1510
1511	KASSERT(pmap->pm_stats.resident_count == 0,
1512	    ("pmap_release: pmap resident count %ld != 0",
1513	    pmap->pm_stats.resident_count));
1514
1515	PMAP_LOCK_DESTROY(pmap);
1516}
1517
1518/*
1519 * Insert the given physical page at the specified virtual address in the
1520 * target physical map with the protection requested. If specified the page
1521 * will be wired down.
1522 */
1523static void
1524mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1525    vm_prot_t prot, boolean_t wired)
1526{
1527
1528	vm_page_lock_queues();
1529	PMAP_LOCK(pmap);
1530	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1531	vm_page_unlock_queues();
1532	PMAP_UNLOCK(pmap);
1533}
1534
1535static void
1536mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1537    vm_prot_t prot, boolean_t wired)
1538{
1539	pte_t *pte;
1540	vm_paddr_t pa;
1541	uint32_t flags;
1542	int su, sync;
1543
1544	pa = VM_PAGE_TO_PHYS(m);
1545	su = (pmap == kernel_pmap);
1546	sync = 0;
1547
1548	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1549	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1550	//		(u_int32_t)pmap, su, pmap->pm_tid,
1551	//		(u_int32_t)m, va, pa, prot, wired);
1552
1553	if (su) {
1554		KASSERT(((va >= virtual_avail) &&
1555		    (va <= VM_MAX_KERNEL_ADDRESS)),
1556		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1557	} else {
1558		KASSERT((va <= VM_MAXUSER_ADDRESS),
1559		    ("mmu_booke_enter_locked: user pmap, non user va"));
1560	}
1561	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1562	    VM_OBJECT_LOCKED(m->object),
1563	    ("mmu_booke_enter_locked: page %p is not busy", m));
1564
1565	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1566
1567	/*
1568	 * If there is an existing mapping, and the physical address has not
1569	 * changed, must be protection or wiring change.
1570	 */
1571	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1572	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1573
1574		/*
1575		 * Before actually updating pte->flags we calculate and
1576		 * prepare its new value in a helper var.
1577		 */
1578		flags = pte->flags;
1579		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1580
1581		/* Wiring change, just update stats. */
1582		if (wired) {
1583			if (!PTE_ISWIRED(pte)) {
1584				flags |= PTE_WIRED;
1585				pmap->pm_stats.wired_count++;
1586			}
1587		} else {
1588			if (PTE_ISWIRED(pte)) {
1589				flags &= ~PTE_WIRED;
1590				pmap->pm_stats.wired_count--;
1591			}
1592		}
1593
1594		if (prot & VM_PROT_WRITE) {
1595			/* Add write permissions. */
1596			flags |= PTE_SW;
1597			if (!su)
1598				flags |= PTE_UW;
1599
1600			if ((flags & PTE_MANAGED) != 0)
1601				vm_page_aflag_set(m, PGA_WRITEABLE);
1602		} else {
1603			/* Handle modified pages, sense modify status. */
1604
1605			/*
1606			 * The PTE_MODIFIED flag could be set by underlying
1607			 * TLB misses since we last read it (above), possibly
1608			 * other CPUs could update it so we check in the PTE
1609			 * directly rather than rely on that saved local flags
1610			 * copy.
1611			 */
1612			if (PTE_ISMODIFIED(pte))
1613				vm_page_dirty(m);
1614		}
1615
1616		if (prot & VM_PROT_EXECUTE) {
1617			flags |= PTE_SX;
1618			if (!su)
1619				flags |= PTE_UX;
1620
1621			/*
1622			 * Check existing flags for execute permissions: if we
1623			 * are turning execute permissions on, icache should
1624			 * be flushed.
1625			 */
1626			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1627				sync++;
1628		}
1629
1630		flags &= ~PTE_REFERENCED;
1631
1632		/*
1633		 * The new flags value is all calculated -- only now actually
1634		 * update the PTE.
1635		 */
1636		mtx_lock_spin(&tlbivax_mutex);
1637		tlb_miss_lock();
1638
1639		tlb0_flush_entry(va);
1640		pte->flags = flags;
1641
1642		tlb_miss_unlock();
1643		mtx_unlock_spin(&tlbivax_mutex);
1644
1645	} else {
1646		/*
1647		 * If there is an existing mapping, but it's for a different
1648		 * physical address, pte_enter() will delete the old mapping.
1649		 */
1650		//if ((pte != NULL) && PTE_ISVALID(pte))
1651		//	debugf("mmu_booke_enter_locked: replace\n");
1652		//else
1653		//	debugf("mmu_booke_enter_locked: new\n");
1654
1655		/* Now set up the flags and install the new mapping. */
1656		flags = (PTE_SR | PTE_VALID);
1657		flags |= PTE_M;
1658
1659		if (!su)
1660			flags |= PTE_UR;
1661
1662		if (prot & VM_PROT_WRITE) {
1663			flags |= PTE_SW;
1664			if (!su)
1665				flags |= PTE_UW;
1666
1667			if ((m->oflags & VPO_UNMANAGED) == 0)
1668				vm_page_aflag_set(m, PGA_WRITEABLE);
1669		}
1670
1671		if (prot & VM_PROT_EXECUTE) {
1672			flags |= PTE_SX;
1673			if (!su)
1674				flags |= PTE_UX;
1675		}
1676
1677		/* If its wired update stats. */
1678		if (wired) {
1679			pmap->pm_stats.wired_count++;
1680			flags |= PTE_WIRED;
1681		}
1682
1683		pte_enter(mmu, pmap, m, va, flags);
1684
1685		/* Flush the real memory from the instruction cache. */
1686		if (prot & VM_PROT_EXECUTE)
1687			sync++;
1688	}
1689
1690	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1691		__syncicache((void *)va, PAGE_SIZE);
1692		sync = 0;
1693	}
1694}
1695
1696/*
1697 * Maps a sequence of resident pages belonging to the same object.
1698 * The sequence begins with the given page m_start.  This page is
1699 * mapped at the given virtual address start.  Each subsequent page is
1700 * mapped at a virtual address that is offset from start by the same
1701 * amount as the page is offset from m_start within the object.  The
1702 * last page in the sequence is the page with the largest offset from
1703 * m_start that can be mapped at a virtual address less than the given
1704 * virtual address end.  Not every virtual page between start and end
1705 * is mapped; only those for which a resident page exists with the
1706 * corresponding offset from m_start are mapped.
1707 */
1708static void
1709mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1710    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1711{
1712	vm_page_t m;
1713	vm_pindex_t diff, psize;
1714
1715	psize = atop(end - start);
1716	m = m_start;
1717	vm_page_lock_queues();
1718	PMAP_LOCK(pmap);
1719	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1720		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1721		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1722		m = TAILQ_NEXT(m, listq);
1723	}
1724	vm_page_unlock_queues();
1725	PMAP_UNLOCK(pmap);
1726}
1727
1728static void
1729mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1730    vm_prot_t prot)
1731{
1732
1733	vm_page_lock_queues();
1734	PMAP_LOCK(pmap);
1735	mmu_booke_enter_locked(mmu, pmap, va, m,
1736	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1737	vm_page_unlock_queues();
1738	PMAP_UNLOCK(pmap);
1739}
1740
1741/*
1742 * Remove the given range of addresses from the specified map.
1743 *
1744 * It is assumed that the start and end are properly rounded to the page size.
1745 */
1746static void
1747mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1748{
1749	pte_t *pte;
1750	uint8_t hold_flag;
1751
1752	int su = (pmap == kernel_pmap);
1753
1754	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1755	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1756
1757	if (su) {
1758		KASSERT(((va >= virtual_avail) &&
1759		    (va <= VM_MAX_KERNEL_ADDRESS)),
1760		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1761	} else {
1762		KASSERT((va <= VM_MAXUSER_ADDRESS),
1763		    ("mmu_booke_remove: user pmap, non user va"));
1764	}
1765
1766	if (PMAP_REMOVE_DONE(pmap)) {
1767		//debugf("mmu_booke_remove: e (empty)\n");
1768		return;
1769	}
1770
1771	hold_flag = PTBL_HOLD_FLAG(pmap);
1772	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1773
1774	vm_page_lock_queues();
1775	PMAP_LOCK(pmap);
1776	for (; va < endva; va += PAGE_SIZE) {
1777		pte = pte_find(mmu, pmap, va);
1778		if ((pte != NULL) && PTE_ISVALID(pte))
1779			pte_remove(mmu, pmap, va, hold_flag);
1780	}
1781	PMAP_UNLOCK(pmap);
1782	vm_page_unlock_queues();
1783
1784	//debugf("mmu_booke_remove: e\n");
1785}
1786
1787/*
1788 * Remove physical page from all pmaps in which it resides.
1789 */
1790static void
1791mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1792{
1793	pv_entry_t pv, pvn;
1794	uint8_t hold_flag;
1795
1796	vm_page_lock_queues();
1797	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1798		pvn = TAILQ_NEXT(pv, pv_link);
1799
1800		PMAP_LOCK(pv->pv_pmap);
1801		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1802		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1803		PMAP_UNLOCK(pv->pv_pmap);
1804	}
1805	vm_page_aflag_clear(m, PGA_WRITEABLE);
1806	vm_page_unlock_queues();
1807}
1808
1809/*
1810 * Map a range of physical addresses into kernel virtual address space.
1811 */
1812static vm_offset_t
1813mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1814    vm_paddr_t pa_end, int prot)
1815{
1816	vm_offset_t sva = *virt;
1817	vm_offset_t va = sva;
1818
1819	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1820	//		sva, pa_start, pa_end);
1821
1822	while (pa_start < pa_end) {
1823		mmu_booke_kenter(mmu, va, pa_start);
1824		va += PAGE_SIZE;
1825		pa_start += PAGE_SIZE;
1826	}
1827	*virt = va;
1828
1829	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1830	return (sva);
1831}
1832
1833/*
1834 * The pmap must be activated before it's address space can be accessed in any
1835 * way.
1836 */
1837static void
1838mmu_booke_activate(mmu_t mmu, struct thread *td)
1839{
1840	pmap_t pmap;
1841	u_int cpuid;
1842
1843	pmap = &td->td_proc->p_vmspace->vm_pmap;
1844
1845	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1846	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1847
1848	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1849
1850	mtx_lock_spin(&sched_lock);
1851
1852	cpuid = PCPU_GET(cpuid);
1853	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1854	PCPU_SET(curpmap, pmap);
1855
1856	if (pmap->pm_tid[cpuid] == TID_NONE)
1857		tid_alloc(pmap);
1858
1859	/* Load PID0 register with pmap tid value. */
1860	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1861	__asm __volatile("isync");
1862
1863	mtx_unlock_spin(&sched_lock);
1864
1865	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1866	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1867}
1868
1869/*
1870 * Deactivate the specified process's address space.
1871 */
1872static void
1873mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1874{
1875	pmap_t pmap;
1876
1877	pmap = &td->td_proc->p_vmspace->vm_pmap;
1878
1879	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1880	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1881
1882	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1883	PCPU_SET(curpmap, NULL);
1884}
1885
1886/*
1887 * Copy the range specified by src_addr/len
1888 * from the source map to the range dst_addr/len
1889 * in the destination map.
1890 *
1891 * This routine is only advisory and need not do anything.
1892 */
1893static void
1894mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1895    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1896{
1897
1898}
1899
1900/*
1901 * Set the physical protection on the specified range of this map as requested.
1902 */
1903static void
1904mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1905    vm_prot_t prot)
1906{
1907	vm_offset_t va;
1908	vm_page_t m;
1909	pte_t *pte;
1910
1911	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1912		mmu_booke_remove(mmu, pmap, sva, eva);
1913		return;
1914	}
1915
1916	if (prot & VM_PROT_WRITE)
1917		return;
1918
1919	PMAP_LOCK(pmap);
1920	for (va = sva; va < eva; va += PAGE_SIZE) {
1921		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1922			if (PTE_ISVALID(pte)) {
1923				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1924
1925				mtx_lock_spin(&tlbivax_mutex);
1926				tlb_miss_lock();
1927
1928				/* Handle modified pages. */
1929				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1930					vm_page_dirty(m);
1931
1932				tlb0_flush_entry(va);
1933				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1934
1935				tlb_miss_unlock();
1936				mtx_unlock_spin(&tlbivax_mutex);
1937			}
1938		}
1939	}
1940	PMAP_UNLOCK(pmap);
1941}
1942
1943/*
1944 * Clear the write and modified bits in each of the given page's mappings.
1945 */
1946static void
1947mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1948{
1949	pv_entry_t pv;
1950	pte_t *pte;
1951
1952	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1953	    ("mmu_booke_remove_write: page %p is not managed", m));
1954
1955	/*
1956	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1957	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1958	 * is clear, no page table entries need updating.
1959	 */
1960	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1961	if ((m->oflags & VPO_BUSY) == 0 &&
1962	    (m->aflags & PGA_WRITEABLE) == 0)
1963		return;
1964	vm_page_lock_queues();
1965	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1966		PMAP_LOCK(pv->pv_pmap);
1967		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1968			if (PTE_ISVALID(pte)) {
1969				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1970
1971				mtx_lock_spin(&tlbivax_mutex);
1972				tlb_miss_lock();
1973
1974				/* Handle modified pages. */
1975				if (PTE_ISMODIFIED(pte))
1976					vm_page_dirty(m);
1977
1978				/* Flush mapping from TLB0. */
1979				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1980
1981				tlb_miss_unlock();
1982				mtx_unlock_spin(&tlbivax_mutex);
1983			}
1984		}
1985		PMAP_UNLOCK(pv->pv_pmap);
1986	}
1987	vm_page_aflag_clear(m, PGA_WRITEABLE);
1988	vm_page_unlock_queues();
1989}
1990
1991static void
1992mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1993{
1994	pte_t *pte;
1995	pmap_t pmap;
1996	vm_page_t m;
1997	vm_offset_t addr;
1998	vm_paddr_t pa;
1999	int active, valid;
2000
2001	va = trunc_page(va);
2002	sz = round_page(sz);
2003
2004	vm_page_lock_queues();
2005	pmap = PCPU_GET(curpmap);
2006	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2007	while (sz > 0) {
2008		PMAP_LOCK(pm);
2009		pte = pte_find(mmu, pm, va);
2010		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2011		if (valid)
2012			pa = PTE_PA(pte);
2013		PMAP_UNLOCK(pm);
2014		if (valid) {
2015			if (!active) {
2016				/* Create a mapping in the active pmap. */
2017				addr = 0;
2018				m = PHYS_TO_VM_PAGE(pa);
2019				PMAP_LOCK(pmap);
2020				pte_enter(mmu, pmap, m, addr,
2021				    PTE_SR | PTE_VALID | PTE_UR);
2022				__syncicache((void *)addr, PAGE_SIZE);
2023				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2024				PMAP_UNLOCK(pmap);
2025			} else
2026				__syncicache((void *)va, PAGE_SIZE);
2027		}
2028		va += PAGE_SIZE;
2029		sz -= PAGE_SIZE;
2030	}
2031	vm_page_unlock_queues();
2032}
2033
2034/*
2035 * Atomically extract and hold the physical page with the given
2036 * pmap and virtual address pair if that mapping permits the given
2037 * protection.
2038 */
2039static vm_page_t
2040mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2041    vm_prot_t prot)
2042{
2043	pte_t *pte;
2044	vm_page_t m;
2045	uint32_t pte_wbit;
2046	vm_paddr_t pa;
2047
2048	m = NULL;
2049	pa = 0;
2050	PMAP_LOCK(pmap);
2051retry:
2052	pte = pte_find(mmu, pmap, va);
2053	if ((pte != NULL) && PTE_ISVALID(pte)) {
2054		if (pmap == kernel_pmap)
2055			pte_wbit = PTE_SW;
2056		else
2057			pte_wbit = PTE_UW;
2058
2059		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2060			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2061				goto retry;
2062			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2063			vm_page_hold(m);
2064		}
2065	}
2066
2067	PA_UNLOCK_COND(pa);
2068	PMAP_UNLOCK(pmap);
2069	return (m);
2070}
2071
2072/*
2073 * Initialize a vm_page's machine-dependent fields.
2074 */
2075static void
2076mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2077{
2078
2079	TAILQ_INIT(&m->md.pv_list);
2080}
2081
2082/*
2083 * mmu_booke_zero_page_area zeros the specified hardware page by
2084 * mapping it into virtual memory and using bzero to clear
2085 * its contents.
2086 *
2087 * off and size must reside within a single page.
2088 */
2089static void
2090mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2091{
2092	vm_offset_t va;
2093
2094	/* XXX KASSERT off and size are within a single page? */
2095
2096	mtx_lock(&zero_page_mutex);
2097	va = zero_page_va;
2098
2099	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2100	bzero((caddr_t)va + off, size);
2101	mmu_booke_kremove(mmu, va);
2102
2103	mtx_unlock(&zero_page_mutex);
2104}
2105
2106/*
2107 * mmu_booke_zero_page zeros the specified hardware page.
2108 */
2109static void
2110mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2111{
2112
2113	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2114}
2115
2116/*
2117 * mmu_booke_copy_page copies the specified (machine independent) page by
2118 * mapping the page into virtual memory and using memcopy to copy the page,
2119 * one machine dependent page at a time.
2120 */
2121static void
2122mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2123{
2124	vm_offset_t sva, dva;
2125
2126	sva = copy_page_src_va;
2127	dva = copy_page_dst_va;
2128
2129	mtx_lock(&copy_page_mutex);
2130	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2131	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2132	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2133	mmu_booke_kremove(mmu, dva);
2134	mmu_booke_kremove(mmu, sva);
2135	mtx_unlock(&copy_page_mutex);
2136}
2137
2138/*
2139 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2140 * into virtual memory and using bzero to clear its contents. This is intended
2141 * to be called from the vm_pagezero process only and outside of Giant. No
2142 * lock is required.
2143 */
2144static void
2145mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2146{
2147	vm_offset_t va;
2148
2149	va = zero_page_idle_va;
2150	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2151	bzero((caddr_t)va, PAGE_SIZE);
2152	mmu_booke_kremove(mmu, va);
2153}
2154
2155/*
2156 * Return whether or not the specified physical page was modified
2157 * in any of physical maps.
2158 */
2159static boolean_t
2160mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2161{
2162	pte_t *pte;
2163	pv_entry_t pv;
2164	boolean_t rv;
2165
2166	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2167	    ("mmu_booke_is_modified: page %p is not managed", m));
2168	rv = FALSE;
2169
2170	/*
2171	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2172	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2173	 * is clear, no PTEs can be modified.
2174	 */
2175	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2176	if ((m->oflags & VPO_BUSY) == 0 &&
2177	    (m->aflags & PGA_WRITEABLE) == 0)
2178		return (rv);
2179	vm_page_lock_queues();
2180	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2181		PMAP_LOCK(pv->pv_pmap);
2182		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2183		    PTE_ISVALID(pte)) {
2184			if (PTE_ISMODIFIED(pte))
2185				rv = TRUE;
2186		}
2187		PMAP_UNLOCK(pv->pv_pmap);
2188		if (rv)
2189			break;
2190	}
2191	vm_page_unlock_queues();
2192	return (rv);
2193}
2194
2195/*
2196 * Return whether or not the specified virtual address is eligible
2197 * for prefault.
2198 */
2199static boolean_t
2200mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2201{
2202
2203	return (FALSE);
2204}
2205
2206/*
2207 * Return whether or not the specified physical page was referenced
2208 * in any physical maps.
2209 */
2210static boolean_t
2211mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2212{
2213	pte_t *pte;
2214	pv_entry_t pv;
2215	boolean_t rv;
2216
2217	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2218	    ("mmu_booke_is_referenced: page %p is not managed", m));
2219	rv = FALSE;
2220	vm_page_lock_queues();
2221	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2222		PMAP_LOCK(pv->pv_pmap);
2223		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2224		    PTE_ISVALID(pte)) {
2225			if (PTE_ISREFERENCED(pte))
2226				rv = TRUE;
2227		}
2228		PMAP_UNLOCK(pv->pv_pmap);
2229		if (rv)
2230			break;
2231	}
2232	vm_page_unlock_queues();
2233	return (rv);
2234}
2235
2236/*
2237 * Clear the modify bits on the specified physical page.
2238 */
2239static void
2240mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2241{
2242	pte_t *pte;
2243	pv_entry_t pv;
2244
2245	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2246	    ("mmu_booke_clear_modify: page %p is not managed", m));
2247	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2248	KASSERT((m->oflags & VPO_BUSY) == 0,
2249	    ("mmu_booke_clear_modify: page %p is busy", m));
2250
2251	/*
2252	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2253	 * If the object containing the page is locked and the page is not
2254	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2255	 */
2256	if ((m->aflags & PGA_WRITEABLE) == 0)
2257		return;
2258	vm_page_lock_queues();
2259	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2260		PMAP_LOCK(pv->pv_pmap);
2261		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2262		    PTE_ISVALID(pte)) {
2263			mtx_lock_spin(&tlbivax_mutex);
2264			tlb_miss_lock();
2265
2266			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2267				tlb0_flush_entry(pv->pv_va);
2268				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2269				    PTE_REFERENCED);
2270			}
2271
2272			tlb_miss_unlock();
2273			mtx_unlock_spin(&tlbivax_mutex);
2274		}
2275		PMAP_UNLOCK(pv->pv_pmap);
2276	}
2277	vm_page_unlock_queues();
2278}
2279
2280/*
2281 * Return a count of reference bits for a page, clearing those bits.
2282 * It is not necessary for every reference bit to be cleared, but it
2283 * is necessary that 0 only be returned when there are truly no
2284 * reference bits set.
2285 *
2286 * XXX: The exact number of bits to check and clear is a matter that
2287 * should be tested and standardized at some point in the future for
2288 * optimal aging of shared pages.
2289 */
2290static int
2291mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2292{
2293	pte_t *pte;
2294	pv_entry_t pv;
2295	int count;
2296
2297	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2298	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2299	count = 0;
2300	vm_page_lock_queues();
2301	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2302		PMAP_LOCK(pv->pv_pmap);
2303		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2304		    PTE_ISVALID(pte)) {
2305			if (PTE_ISREFERENCED(pte)) {
2306				mtx_lock_spin(&tlbivax_mutex);
2307				tlb_miss_lock();
2308
2309				tlb0_flush_entry(pv->pv_va);
2310				pte->flags &= ~PTE_REFERENCED;
2311
2312				tlb_miss_unlock();
2313				mtx_unlock_spin(&tlbivax_mutex);
2314
2315				if (++count > 4) {
2316					PMAP_UNLOCK(pv->pv_pmap);
2317					break;
2318				}
2319			}
2320		}
2321		PMAP_UNLOCK(pv->pv_pmap);
2322	}
2323	vm_page_unlock_queues();
2324	return (count);
2325}
2326
2327/*
2328 * Clear the reference bit on the specified physical page.
2329 */
2330static void
2331mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2332{
2333	pte_t *pte;
2334	pv_entry_t pv;
2335
2336	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2337	    ("mmu_booke_clear_reference: page %p is not managed", m));
2338	vm_page_lock_queues();
2339	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2340		PMAP_LOCK(pv->pv_pmap);
2341		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2342		    PTE_ISVALID(pte)) {
2343			if (PTE_ISREFERENCED(pte)) {
2344				mtx_lock_spin(&tlbivax_mutex);
2345				tlb_miss_lock();
2346
2347				tlb0_flush_entry(pv->pv_va);
2348				pte->flags &= ~PTE_REFERENCED;
2349
2350				tlb_miss_unlock();
2351				mtx_unlock_spin(&tlbivax_mutex);
2352			}
2353		}
2354		PMAP_UNLOCK(pv->pv_pmap);
2355	}
2356	vm_page_unlock_queues();
2357}
2358
2359/*
2360 * Change wiring attribute for a map/virtual-address pair.
2361 */
2362static void
2363mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2364{
2365	pte_t *pte;
2366
2367	PMAP_LOCK(pmap);
2368	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2369		if (wired) {
2370			if (!PTE_ISWIRED(pte)) {
2371				pte->flags |= PTE_WIRED;
2372				pmap->pm_stats.wired_count++;
2373			}
2374		} else {
2375			if (PTE_ISWIRED(pte)) {
2376				pte->flags &= ~PTE_WIRED;
2377				pmap->pm_stats.wired_count--;
2378			}
2379		}
2380	}
2381	PMAP_UNLOCK(pmap);
2382}
2383
2384/*
2385 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2386 * page.  This count may be changed upwards or downwards in the future; it is
2387 * only necessary that true be returned for a small subset of pmaps for proper
2388 * page aging.
2389 */
2390static boolean_t
2391mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2392{
2393	pv_entry_t pv;
2394	int loops;
2395	boolean_t rv;
2396
2397	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2398	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2399	loops = 0;
2400	rv = FALSE;
2401	vm_page_lock_queues();
2402	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2403		if (pv->pv_pmap == pmap) {
2404			rv = TRUE;
2405			break;
2406		}
2407		if (++loops >= 16)
2408			break;
2409	}
2410	vm_page_unlock_queues();
2411	return (rv);
2412}
2413
2414/*
2415 * Return the number of managed mappings to the given physical page that are
2416 * wired.
2417 */
2418static int
2419mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2420{
2421	pv_entry_t pv;
2422	pte_t *pte;
2423	int count = 0;
2424
2425	if ((m->oflags & VPO_UNMANAGED) != 0)
2426		return (count);
2427	vm_page_lock_queues();
2428	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2429		PMAP_LOCK(pv->pv_pmap);
2430		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2431			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2432				count++;
2433		PMAP_UNLOCK(pv->pv_pmap);
2434	}
2435	vm_page_unlock_queues();
2436	return (count);
2437}
2438
2439static int
2440mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2441{
2442	int i;
2443	vm_offset_t va;
2444
2445	/*
2446	 * This currently does not work for entries that
2447	 * overlap TLB1 entries.
2448	 */
2449	for (i = 0; i < tlb1_idx; i ++) {
2450		if (tlb1_iomapped(i, pa, size, &va) == 0)
2451			return (0);
2452	}
2453
2454	return (EFAULT);
2455}
2456
2457vm_offset_t
2458mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2459    vm_size_t *sz)
2460{
2461	vm_paddr_t pa, ppa;
2462	vm_offset_t va;
2463	vm_size_t gran;
2464
2465	/* Raw physical memory dumps don't have a virtual address. */
2466	if (md->md_vaddr == ~0UL) {
2467		/* We always map a 256MB page at 256M. */
2468		gran = 256 * 1024 * 1024;
2469		pa = md->md_paddr + ofs;
2470		ppa = pa & ~(gran - 1);
2471		ofs = pa - ppa;
2472		va = gran;
2473		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2474		if (*sz > (gran - ofs))
2475			*sz = gran - ofs;
2476		return (va + ofs);
2477	}
2478
2479	/* Minidumps are based on virtual memory addresses. */
2480	va = md->md_vaddr + ofs;
2481	if (va >= kernstart + kernsize) {
2482		gran = PAGE_SIZE - (va & PAGE_MASK);
2483		if (*sz > gran)
2484			*sz = gran;
2485	}
2486	return (va);
2487}
2488
2489void
2490mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2491    vm_offset_t va)
2492{
2493
2494	/* Raw physical memory dumps don't have a virtual address. */
2495	if (md->md_vaddr == ~0UL) {
2496		tlb1_idx--;
2497		tlb1[tlb1_idx].mas1 = 0;
2498		tlb1[tlb1_idx].mas2 = 0;
2499		tlb1[tlb1_idx].mas3 = 0;
2500		tlb1_write_entry(tlb1_idx);
2501		return;
2502	}
2503
2504	/* Minidumps are based on virtual memory addresses. */
2505	/* Nothing to do... */
2506}
2507
2508struct pmap_md *
2509mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2510{
2511	static struct pmap_md md;
2512	pte_t *pte;
2513	vm_offset_t va;
2514
2515	if (dumpsys_minidump) {
2516		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2517		if (prev == NULL) {
2518			/* 1st: kernel .data and .bss. */
2519			md.md_index = 1;
2520			md.md_vaddr = trunc_page((uintptr_t)_etext);
2521			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2522			return (&md);
2523		}
2524		switch (prev->md_index) {
2525		case 1:
2526			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2527			md.md_index = 2;
2528			md.md_vaddr = data_start;
2529			md.md_size = data_end - data_start;
2530			break;
2531		case 2:
2532			/* 3rd: kernel VM. */
2533			va = prev->md_vaddr + prev->md_size;
2534			/* Find start of next chunk (from va). */
2535			while (va < virtual_end) {
2536				/* Don't dump the buffer cache. */
2537				if (va >= kmi.buffer_sva &&
2538				    va < kmi.buffer_eva) {
2539					va = kmi.buffer_eva;
2540					continue;
2541				}
2542				pte = pte_find(mmu, kernel_pmap, va);
2543				if (pte != NULL && PTE_ISVALID(pte))
2544					break;
2545				va += PAGE_SIZE;
2546			}
2547			if (va < virtual_end) {
2548				md.md_vaddr = va;
2549				va += PAGE_SIZE;
2550				/* Find last page in chunk. */
2551				while (va < virtual_end) {
2552					/* Don't run into the buffer cache. */
2553					if (va == kmi.buffer_sva)
2554						break;
2555					pte = pte_find(mmu, kernel_pmap, va);
2556					if (pte == NULL || !PTE_ISVALID(pte))
2557						break;
2558					va += PAGE_SIZE;
2559				}
2560				md.md_size = va - md.md_vaddr;
2561				break;
2562			}
2563			md.md_index = 3;
2564			/* FALLTHROUGH */
2565		default:
2566			return (NULL);
2567		}
2568	} else { /* minidumps */
2569		mem_regions(&physmem_regions, &physmem_regions_sz,
2570		    &availmem_regions, &availmem_regions_sz);
2571
2572		if (prev == NULL) {
2573			/* first physical chunk. */
2574			md.md_paddr = physmem_regions[0].mr_start;
2575			md.md_size = physmem_regions[0].mr_size;
2576			md.md_vaddr = ~0UL;
2577			md.md_index = 1;
2578		} else if (md.md_index < physmem_regions_sz) {
2579			md.md_paddr = physmem_regions[md.md_index].mr_start;
2580			md.md_size = physmem_regions[md.md_index].mr_size;
2581			md.md_vaddr = ~0UL;
2582			md.md_index++;
2583		} else {
2584			/* There's no next physical chunk. */
2585			return (NULL);
2586		}
2587	}
2588
2589	return (&md);
2590}
2591
2592/*
2593 * Map a set of physical memory pages into the kernel virtual address space.
2594 * Return a pointer to where it is mapped. This routine is intended to be used
2595 * for mapping device memory, NOT real memory.
2596 */
2597static void *
2598mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2599{
2600	void *res;
2601	uintptr_t va;
2602	vm_size_t sz;
2603
2604	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2605	res = (void *)va;
2606
2607	do {
2608		sz = 1 << (ilog2(size) & ~1);
2609		if (bootverbose)
2610			printf("Wiring VA=%x to PA=%x (size=%x), "
2611			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2612		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2613		size -= sz;
2614		pa += sz;
2615		va += sz;
2616	} while (size > 0);
2617
2618	return (res);
2619}
2620
2621/*
2622 * 'Unmap' a range mapped by mmu_booke_mapdev().
2623 */
2624static void
2625mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2626{
2627	vm_offset_t base, offset;
2628
2629	/*
2630	 * Unmap only if this is inside kernel virtual space.
2631	 */
2632	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2633		base = trunc_page(va);
2634		offset = va & PAGE_MASK;
2635		size = roundup(offset + size, PAGE_SIZE);
2636		kmem_free(kernel_map, base, size);
2637	}
2638}
2639
2640/*
2641 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2642 * specified pmap. This eliminates the blast of soft faults on process startup
2643 * and immediately after an mmap.
2644 */
2645static void
2646mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2647    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2648{
2649
2650	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2651	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2652	    ("mmu_booke_object_init_pt: non-device object"));
2653}
2654
2655/*
2656 * Perform the pmap work for mincore.
2657 */
2658static int
2659mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2660    vm_paddr_t *locked_pa)
2661{
2662
2663	TODO;
2664	return (0);
2665}
2666
2667/**************************************************************************/
2668/* TID handling */
2669/**************************************************************************/
2670
2671/*
2672 * Allocate a TID. If necessary, steal one from someone else.
2673 * The new TID is flushed from the TLB before returning.
2674 */
2675static tlbtid_t
2676tid_alloc(pmap_t pmap)
2677{
2678	tlbtid_t tid;
2679	int thiscpu;
2680
2681	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2682
2683	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2684
2685	thiscpu = PCPU_GET(cpuid);
2686
2687	tid = PCPU_GET(tid_next);
2688	if (tid > TID_MAX)
2689		tid = TID_MIN;
2690	PCPU_SET(tid_next, tid + 1);
2691
2692	/* If we are stealing TID then clear the relevant pmap's field */
2693	if (tidbusy[thiscpu][tid] != NULL) {
2694
2695		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2696
2697		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2698
2699		/* Flush all entries from TLB0 matching this TID. */
2700		tid_flush(tid);
2701	}
2702
2703	tidbusy[thiscpu][tid] = pmap;
2704	pmap->pm_tid[thiscpu] = tid;
2705	__asm __volatile("msync; isync");
2706
2707	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2708	    PCPU_GET(tid_next));
2709
2710	return (tid);
2711}
2712
2713/**************************************************************************/
2714/* TLB0 handling */
2715/**************************************************************************/
2716
2717static void
2718tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2719    uint32_t mas7)
2720{
2721	int as;
2722	char desc[3];
2723	tlbtid_t tid;
2724	vm_size_t size;
2725	unsigned int tsize;
2726
2727	desc[2] = '\0';
2728	if (mas1 & MAS1_VALID)
2729		desc[0] = 'V';
2730	else
2731		desc[0] = ' ';
2732
2733	if (mas1 & MAS1_IPROT)
2734		desc[1] = 'P';
2735	else
2736		desc[1] = ' ';
2737
2738	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2739	tid = MAS1_GETTID(mas1);
2740
2741	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2742	size = 0;
2743	if (tsize)
2744		size = tsize2size(tsize);
2745
2746	debugf("%3d: (%s) [AS=%d] "
2747	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2748	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2749	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2750}
2751
2752/* Convert TLB0 va and way number to tlb0[] table index. */
2753static inline unsigned int
2754tlb0_tableidx(vm_offset_t va, unsigned int way)
2755{
2756	unsigned int idx;
2757
2758	idx = (way * TLB0_ENTRIES_PER_WAY);
2759	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2760	return (idx);
2761}
2762
2763/*
2764 * Invalidate TLB0 entry.
2765 */
2766static inline void
2767tlb0_flush_entry(vm_offset_t va)
2768{
2769
2770	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2771
2772	mtx_assert(&tlbivax_mutex, MA_OWNED);
2773
2774	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2775	__asm __volatile("isync; msync");
2776	__asm __volatile("tlbsync; msync");
2777
2778	CTR1(KTR_PMAP, "%s: e", __func__);
2779}
2780
2781/* Print out contents of the MAS registers for each TLB0 entry */
2782void
2783tlb0_print_tlbentries(void)
2784{
2785	uint32_t mas0, mas1, mas2, mas3, mas7;
2786	int entryidx, way, idx;
2787
2788	debugf("TLB0 entries:\n");
2789	for (way = 0; way < TLB0_WAYS; way ++)
2790		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2791
2792			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2793			mtspr(SPR_MAS0, mas0);
2794			__asm __volatile("isync");
2795
2796			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2797			mtspr(SPR_MAS2, mas2);
2798
2799			__asm __volatile("isync; tlbre");
2800
2801			mas1 = mfspr(SPR_MAS1);
2802			mas2 = mfspr(SPR_MAS2);
2803			mas3 = mfspr(SPR_MAS3);
2804			mas7 = mfspr(SPR_MAS7);
2805
2806			idx = tlb0_tableidx(mas2, way);
2807			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2808		}
2809}
2810
2811/**************************************************************************/
2812/* TLB1 handling */
2813/**************************************************************************/
2814
2815/*
2816 * TLB1 mapping notes:
2817 *
2818 * TLB1[0]	CCSRBAR
2819 * TLB1[1]	Kernel text and data.
2820 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2821 *		windows, other devices mappings.
2822 */
2823
2824/*
2825 * Write given entry to TLB1 hardware.
2826 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2827 */
2828static void
2829tlb1_write_entry(unsigned int idx)
2830{
2831	uint32_t mas0, mas7;
2832
2833	//debugf("tlb1_write_entry: s\n");
2834
2835	/* Clear high order RPN bits */
2836	mas7 = 0;
2837
2838	/* Select entry */
2839	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2840	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2841
2842	mtspr(SPR_MAS0, mas0);
2843	__asm __volatile("isync");
2844	mtspr(SPR_MAS1, tlb1[idx].mas1);
2845	__asm __volatile("isync");
2846	mtspr(SPR_MAS2, tlb1[idx].mas2);
2847	__asm __volatile("isync");
2848	mtspr(SPR_MAS3, tlb1[idx].mas3);
2849	__asm __volatile("isync");
2850	mtspr(SPR_MAS7, mas7);
2851	__asm __volatile("isync; tlbwe; isync; msync");
2852
2853	//debugf("tlb1_write_entry: e\n");
2854}
2855
2856/*
2857 * Return the largest uint value log such that 2^log <= num.
2858 */
2859static unsigned int
2860ilog2(unsigned int num)
2861{
2862	int lz;
2863
2864	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2865	return (31 - lz);
2866}
2867
2868/*
2869 * Convert TLB TSIZE value to mapped region size.
2870 */
2871static vm_size_t
2872tsize2size(unsigned int tsize)
2873{
2874
2875	/*
2876	 * size = 4^tsize KB
2877	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2878	 */
2879
2880	return ((1 << (2 * tsize)) * 1024);
2881}
2882
2883/*
2884 * Convert region size (must be power of 4) to TLB TSIZE value.
2885 */
2886static unsigned int
2887size2tsize(vm_size_t size)
2888{
2889
2890	return (ilog2(size) / 2 - 5);
2891}
2892
2893/*
2894 * Register permanent kernel mapping in TLB1.
2895 *
2896 * Entries are created starting from index 0 (current free entry is
2897 * kept in tlb1_idx) and are not supposed to be invalidated.
2898 */
2899static int
2900tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2901    uint32_t flags)
2902{
2903	uint32_t ts, tid;
2904	int tsize;
2905
2906	if (tlb1_idx >= TLB1_ENTRIES) {
2907		printf("tlb1_set_entry: TLB1 full!\n");
2908		return (-1);
2909	}
2910
2911	/* Convert size to TSIZE */
2912	tsize = size2tsize(size);
2913
2914	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2915	/* XXX TS is hard coded to 0 for now as we only use single address space */
2916	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2917
2918	/* XXX LOCK tlb1[] */
2919
2920	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2921	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2922	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2923
2924	/* Set supervisor RWX permission bits */
2925	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2926
2927	tlb1_write_entry(tlb1_idx++);
2928
2929	/* XXX UNLOCK tlb1[] */
2930
2931	/*
2932	 * XXX in general TLB1 updates should be propagated between CPUs,
2933	 * since current design assumes to have the same TLB1 set-up on all
2934	 * cores.
2935	 */
2936	return (0);
2937}
2938
2939/*
2940 * Map in contiguous RAM region into the TLB1 using maximum of
2941 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2942 *
2943 * If necessary round up last entry size and return total size
2944 * used by all allocated entries.
2945 */
2946vm_size_t
2947tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2948{
2949	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2950	vm_size_t mapped, pgsz, base, mask;
2951	int idx, nents;
2952
2953	/* Round up to the next 1M */
2954	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2955
2956	mapped = 0;
2957	idx = 0;
2958	base = va;
2959	pgsz = 64*1024*1024;
2960	while (mapped < size) {
2961		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2962			while (pgsz > (size - mapped))
2963				pgsz >>= 2;
2964			pgs[idx++] = pgsz;
2965			mapped += pgsz;
2966		}
2967
2968		/* We under-map. Correct for this. */
2969		if (mapped < size) {
2970			while (pgs[idx - 1] == pgsz) {
2971				idx--;
2972				mapped -= pgsz;
2973			}
2974			/* XXX We may increase beyond out starting point. */
2975			pgsz <<= 2;
2976			pgs[idx++] = pgsz;
2977			mapped += pgsz;
2978		}
2979	}
2980
2981	nents = idx;
2982	mask = pgs[0] - 1;
2983	/* Align address to the boundary */
2984	if (va & mask) {
2985		va = (va + mask) & ~mask;
2986		pa = (pa + mask) & ~mask;
2987	}
2988
2989	for (idx = 0; idx < nents; idx++) {
2990		pgsz = pgs[idx];
2991		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
2992		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
2993		pa += pgsz;
2994		va += pgsz;
2995	}
2996
2997	mapped = (va - base);
2998	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
2999	    mapped, mapped - size);
3000	return (mapped);
3001}
3002
3003/*
3004 * TLB1 initialization routine, to be called after the very first
3005 * assembler level setup done in locore.S.
3006 */
3007void
3008tlb1_init(vm_offset_t ccsrbar)
3009{
3010	uint32_t mas0, mas1, mas3;
3011	uint32_t tsz;
3012	u_int i;
3013
3014	if (bootinfo != NULL && bootinfo[0] != 1) {
3015		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3016	} else
3017		tlb1_idx = 1;
3018
3019	/* The first entry/entries are used to map the kernel. */
3020	for (i = 0; i < tlb1_idx; i++) {
3021		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3022		mtspr(SPR_MAS0, mas0);
3023		__asm __volatile("isync; tlbre");
3024
3025		mas1 = mfspr(SPR_MAS1);
3026		if ((mas1 & MAS1_VALID) == 0)
3027			continue;
3028
3029		mas3 = mfspr(SPR_MAS3);
3030
3031		tlb1[i].mas1 = mas1;
3032		tlb1[i].mas2 = mfspr(SPR_MAS2);
3033		tlb1[i].mas3 = mas3;
3034
3035		if (i == 0)
3036			kernload = mas3 & MAS3_RPN;
3037
3038		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3039		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3040	}
3041
3042	/* Map in CCSRBAR. */
3043	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3044
3045	/* Setup TLB miss defaults */
3046	set_mas4_defaults();
3047}
3048
3049/*
3050 * Setup MAS4 defaults.
3051 * These values are loaded to MAS0-2 on a TLB miss.
3052 */
3053static void
3054set_mas4_defaults(void)
3055{
3056	uint32_t mas4;
3057
3058	/* Defaults: TLB0, PID0, TSIZED=4K */
3059	mas4 = MAS4_TLBSELD0;
3060	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3061#ifdef SMP
3062	mas4 |= MAS4_MD;
3063#endif
3064	mtspr(SPR_MAS4, mas4);
3065	__asm __volatile("isync");
3066}
3067
3068/*
3069 * Print out contents of the MAS registers for each TLB1 entry
3070 */
3071void
3072tlb1_print_tlbentries(void)
3073{
3074	uint32_t mas0, mas1, mas2, mas3, mas7;
3075	int i;
3076
3077	debugf("TLB1 entries:\n");
3078	for (i = 0; i < TLB1_ENTRIES; i++) {
3079
3080		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3081		mtspr(SPR_MAS0, mas0);
3082
3083		__asm __volatile("isync; tlbre");
3084
3085		mas1 = mfspr(SPR_MAS1);
3086		mas2 = mfspr(SPR_MAS2);
3087		mas3 = mfspr(SPR_MAS3);
3088		mas7 = mfspr(SPR_MAS7);
3089
3090		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3091	}
3092}
3093
3094/*
3095 * Print out contents of the in-ram tlb1 table.
3096 */
3097void
3098tlb1_print_entries(void)
3099{
3100	int i;
3101
3102	debugf("tlb1[] table entries:\n");
3103	for (i = 0; i < TLB1_ENTRIES; i++)
3104		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3105}
3106
3107/*
3108 * Return 0 if the physical IO range is encompassed by one of the
3109 * the TLB1 entries, otherwise return related error code.
3110 */
3111static int
3112tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3113{
3114	uint32_t prot;
3115	vm_paddr_t pa_start;
3116	vm_paddr_t pa_end;
3117	unsigned int entry_tsize;
3118	vm_size_t entry_size;
3119
3120	*va = (vm_offset_t)NULL;
3121
3122	/* Skip invalid entries */
3123	if (!(tlb1[i].mas1 & MAS1_VALID))
3124		return (EINVAL);
3125
3126	/*
3127	 * The entry must be cache-inhibited, guarded, and r/w
3128	 * so it can function as an i/o page
3129	 */
3130	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3131	if (prot != (MAS2_I | MAS2_G))
3132		return (EPERM);
3133
3134	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3135	if (prot != (MAS3_SR | MAS3_SW))
3136		return (EPERM);
3137
3138	/* The address should be within the entry range. */
3139	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3140	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3141
3142	entry_size = tsize2size(entry_tsize);
3143	pa_start = tlb1[i].mas3 & MAS3_RPN;
3144	pa_end = pa_start + entry_size - 1;
3145
3146	if ((pa < pa_start) || ((pa + size) > pa_end))
3147		return (ERANGE);
3148
3149	/* Return virtual address of this mapping. */
3150	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3151	return (0);
3152}
3153