pmap.c revision 225841
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 225841 2011-09-28 15:01:20Z kib $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/msgbuf.h>
65#include <sys/lock.h>
66#include <sys/mutex.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/vmparam.h>
89#include <machine/md_var.h>
90#include <machine/mmuvar.h>
91#include <machine/pmap.h>
92#include <machine/pte.h>
93
94#include "mmu_if.h"
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103
104#include "opt_sched.h"
105#ifndef SCHED_4BSD
106#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
107#endif
108extern struct mtx sched_lock;
109
110extern int dumpsys_minidump;
111
112extern unsigned char _etext[];
113extern unsigned char _end[];
114
115extern uint32_t *bootinfo;
116
117#ifdef SMP
118extern uint32_t kernload_ap;
119#endif
120
121vm_paddr_t kernload;
122vm_offset_t kernstart;
123vm_size_t kernsize;
124
125/* Message buffer and tables. */
126static vm_offset_t data_start;
127static vm_size_t data_end;
128
129/* Phys/avail memory regions. */
130static struct mem_region *availmem_regions;
131static int availmem_regions_sz;
132static struct mem_region *physmem_regions;
133static int physmem_regions_sz;
134
135/* Reserved KVA space and mutex for mmu_booke_zero_page. */
136static vm_offset_t zero_page_va;
137static struct mtx zero_page_mutex;
138
139static struct mtx tlbivax_mutex;
140
141/*
142 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
143 * by idle thred only, no lock required.
144 */
145static vm_offset_t zero_page_idle_va;
146
147/* Reserved KVA space and mutex for mmu_booke_copy_page. */
148static vm_offset_t copy_page_src_va;
149static vm_offset_t copy_page_dst_va;
150static struct mtx copy_page_mutex;
151
152/**************************************************************************/
153/* PMAP */
154/**************************************************************************/
155
156static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
157    vm_prot_t, boolean_t);
158
159unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
160unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
161
162/*
163 * If user pmap is processed with mmu_booke_remove and the resident count
164 * drops to 0, there are no more pages to remove, so we need not continue.
165 */
166#define PMAP_REMOVE_DONE(pmap) \
167	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
168
169extern void tid_flush(tlbtid_t);
170
171/**************************************************************************/
172/* TLB and TID handling */
173/**************************************************************************/
174
175/* Translation ID busy table */
176static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
177
178/*
179 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
180 * core revisions and should be read from h/w registers during early config.
181 */
182uint32_t tlb0_entries;
183uint32_t tlb0_ways;
184uint32_t tlb0_entries_per_way;
185
186#define TLB0_ENTRIES		(tlb0_entries)
187#define TLB0_WAYS		(tlb0_ways)
188#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
189
190#define TLB1_ENTRIES 16
191
192/* In-ram copy of the TLB1 */
193static tlb_entry_t tlb1[TLB1_ENTRIES];
194
195/* Next free entry in the TLB1 */
196static unsigned int tlb1_idx;
197
198static tlbtid_t tid_alloc(struct pmap *);
199
200static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
201
202static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
203static void tlb1_write_entry(unsigned int);
204static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
205static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
206
207static vm_size_t tsize2size(unsigned int);
208static unsigned int size2tsize(vm_size_t);
209static unsigned int ilog2(unsigned int);
210
211static void set_mas4_defaults(void);
212
213static inline void tlb0_flush_entry(vm_offset_t);
214static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
215
216/**************************************************************************/
217/* Page table management */
218/**************************************************************************/
219
220/* Data for the pv entry allocation mechanism */
221static uma_zone_t pvzone;
222static struct vm_object pvzone_obj;
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224
225#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226
227#ifndef PMAP_SHPGPERPROC
228#define PMAP_SHPGPERPROC	200
229#endif
230
231static void ptbl_init(void);
232static struct ptbl_buf *ptbl_buf_alloc(void);
233static void ptbl_buf_free(struct ptbl_buf *);
234static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235
236static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
237static void ptbl_free(mmu_t, pmap_t, unsigned int);
238static void ptbl_hold(mmu_t, pmap_t, unsigned int);
239static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240
241static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
244static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
245
246static pv_entry_t pv_alloc(void);
247static void pv_free(pv_entry_t);
248static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
249static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
250
251/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252#define PTBL_BUFS		(128 * 16)
253
254struct ptbl_buf {
255	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256	vm_offset_t kva;		/* va of mapping */
257};
258
259/* ptbl free list and a lock used for access synchronization. */
260static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261static struct mtx ptbl_buf_freelist_lock;
262
263/* Base address of kva space allocated fot ptbl bufs. */
264static vm_offset_t ptbl_buf_pool_vabase;
265
266/* Pointer to ptbl_buf structures. */
267static struct ptbl_buf *ptbl_bufs;
268
269void pmap_bootstrap_ap(volatile uint32_t *);
270
271/*
272 * Kernel MMU interface
273 */
274static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
275static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
276static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
277static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
278    vm_size_t, vm_offset_t);
279static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
280static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t, boolean_t);
282static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
283    vm_page_t, vm_prot_t);
284static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
285    vm_prot_t);
286static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
287static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
288    vm_prot_t);
289static void		mmu_booke_init(mmu_t);
290static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
291static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
292static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
293static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
294static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
295    int);
296static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
297    vm_paddr_t *);
298static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
299    vm_object_t, vm_pindex_t, vm_size_t);
300static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
301static void		mmu_booke_page_init(mmu_t, vm_page_t);
302static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
303static void		mmu_booke_pinit(mmu_t, pmap_t);
304static void		mmu_booke_pinit0(mmu_t, pmap_t);
305static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
306    vm_prot_t);
307static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
308static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
309static void		mmu_booke_release(mmu_t, pmap_t);
310static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
311static void		mmu_booke_remove_all(mmu_t, vm_page_t);
312static void		mmu_booke_remove_write(mmu_t, vm_page_t);
313static void		mmu_booke_zero_page(mmu_t, vm_page_t);
314static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
315static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
316static void		mmu_booke_activate(mmu_t, struct thread *);
317static void		mmu_booke_deactivate(mmu_t, struct thread *);
318static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
319static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
320static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
321static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
322static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
323static void		mmu_booke_kremove(mmu_t, vm_offset_t);
324static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
325static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
326    vm_size_t);
327static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
328    vm_size_t, vm_size_t *);
329static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
330    vm_size_t, vm_offset_t);
331static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
332
333static mmu_method_t mmu_booke_methods[] = {
334	/* pmap dispatcher interface */
335	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
337	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
338	MMUMETHOD(mmu_copy,		mmu_booke_copy),
339	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
340	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345	MMUMETHOD(mmu_init,		mmu_booke_init),
346	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350	MMUMETHOD(mmu_map,		mmu_booke_map),
351	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361	MMUMETHOD(mmu_release,		mmu_booke_release),
362	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
367	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
368	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
369	MMUMETHOD(mmu_activate,		mmu_booke_activate),
370	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
371
372	/* Internal interfaces */
373	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
377	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380
381	/* dumpsys() support */
382	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385
386	{ 0, 0 }
387};
388
389MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390
391static inline void
392tlb_miss_lock(void)
393{
394#ifdef SMP
395	struct pcpu *pc;
396
397	if (!smp_started)
398		return;
399
400	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
401		if (pc != pcpup) {
402
403			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405
406			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407			    ("tlb_miss_lock: tried to lock self"));
408
409			tlb_lock(pc->pc_booke_tlb_lock);
410
411			CTR1(KTR_PMAP, "%s: locked", __func__);
412		}
413	}
414#endif
415}
416
417static inline void
418tlb_miss_unlock(void)
419{
420#ifdef SMP
421	struct pcpu *pc;
422
423	if (!smp_started)
424		return;
425
426	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
427		if (pc != pcpup) {
428			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429			    __func__, pc->pc_cpuid);
430
431			tlb_unlock(pc->pc_booke_tlb_lock);
432
433			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434		}
435	}
436#endif
437}
438
439/* Return number of entries in TLB0. */
440static __inline void
441tlb0_get_tlbconf(void)
442{
443	uint32_t tlb0_cfg;
444
445	tlb0_cfg = mfspr(SPR_TLB0CFG);
446	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449}
450
451/* Initialize pool of kva ptbl buffers. */
452static void
453ptbl_init(void)
454{
455	int i;
456
457	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461
462	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463	TAILQ_INIT(&ptbl_buf_freelist);
464
465	for (i = 0; i < PTBL_BUFS; i++) {
466		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468	}
469}
470
471/* Get a ptbl_buf from the freelist. */
472static struct ptbl_buf *
473ptbl_buf_alloc(void)
474{
475	struct ptbl_buf *buf;
476
477	mtx_lock(&ptbl_buf_freelist_lock);
478	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479	if (buf != NULL)
480		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481	mtx_unlock(&ptbl_buf_freelist_lock);
482
483	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484
485	return (buf);
486}
487
488/* Return ptbl buff to free pool. */
489static void
490ptbl_buf_free(struct ptbl_buf *buf)
491{
492
493	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494
495	mtx_lock(&ptbl_buf_freelist_lock);
496	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497	mtx_unlock(&ptbl_buf_freelist_lock);
498}
499
500/*
501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502 */
503static void
504ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505{
506	struct ptbl_buf *pbuf;
507
508	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509
510	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511
512	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513		if (pbuf->kva == (vm_offset_t)ptbl) {
514			/* Remove from pmap ptbl buf list. */
515			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516
517			/* Free corresponding ptbl buf. */
518			ptbl_buf_free(pbuf);
519			break;
520		}
521}
522
523/* Allocate page table. */
524static pte_t *
525ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526{
527	vm_page_t mtbl[PTBL_PAGES];
528	vm_page_t m;
529	struct ptbl_buf *pbuf;
530	unsigned int pidx;
531	pte_t *ptbl;
532	int i;
533
534	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535	    (pmap == kernel_pmap), pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_alloc: invalid pdir_idx"));
539	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540	    ("pte_alloc: valid ptbl entry exists!"));
541
542	pbuf = ptbl_buf_alloc();
543	if (pbuf == NULL)
544		panic("pte_alloc: couldn't alloc kernel virtual memory");
545
546	ptbl = (pte_t *)pbuf->kva;
547
548	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549
550	/* Allocate ptbl pages, this will sleep! */
551	for (i = 0; i < PTBL_PAGES; i++) {
552		pidx = (PTBL_PAGES * pdir_idx) + i;
553		while ((m = vm_page_alloc(NULL, pidx,
554		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555
556			PMAP_UNLOCK(pmap);
557			vm_page_unlock_queues();
558			VM_WAIT;
559			vm_page_lock_queues();
560			PMAP_LOCK(pmap);
561		}
562		mtbl[i] = m;
563	}
564
565	/* Map allocated pages into kernel_pmap. */
566	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567
568	/* Zero whole ptbl. */
569	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570
571	/* Add pbuf to the pmap ptbl bufs list. */
572	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573
574	return (ptbl);
575}
576
577/* Free ptbl pages and invalidate pdir entry. */
578static void
579ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_offset_t va;
584	vm_page_t m;
585	int i;
586
587	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588	    (pmap == kernel_pmap), pdir_idx);
589
590	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591	    ("ptbl_free: invalid pdir_idx"));
592
593	ptbl = pmap->pm_pdir[pdir_idx];
594
595	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596
597	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598
599	/*
600	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601	 * don't attempt to look up the page tables we are releasing.
602	 */
603	mtx_lock_spin(&tlbivax_mutex);
604	tlb_miss_lock();
605
606	pmap->pm_pdir[pdir_idx] = NULL;
607
608	tlb_miss_unlock();
609	mtx_unlock_spin(&tlbivax_mutex);
610
611	for (i = 0; i < PTBL_PAGES; i++) {
612		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613		pa = pte_vatopa(mmu, kernel_pmap, va);
614		m = PHYS_TO_VM_PAGE(pa);
615		vm_page_free_zero(m);
616		atomic_subtract_int(&cnt.v_wire_count, 1);
617		mmu_booke_kremove(mmu, va);
618	}
619
620	ptbl_free_pmap_ptbl(pmap, ptbl);
621}
622
623/*
624 * Decrement ptbl pages hold count and attempt to free ptbl pages.
625 * Called when removing pte entry from ptbl.
626 *
627 * Return 1 if ptbl pages were freed.
628 */
629static int
630ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631{
632	pte_t *ptbl;
633	vm_paddr_t pa;
634	vm_page_t m;
635	int i;
636
637	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638	    (pmap == kernel_pmap), pdir_idx);
639
640	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641	    ("ptbl_unhold: invalid pdir_idx"));
642	KASSERT((pmap != kernel_pmap),
643	    ("ptbl_unhold: unholding kernel ptbl!"));
644
645	ptbl = pmap->pm_pdir[pdir_idx];
646
647	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649	    ("ptbl_unhold: non kva ptbl"));
650
651	/* decrement hold count */
652	for (i = 0; i < PTBL_PAGES; i++) {
653		pa = pte_vatopa(mmu, kernel_pmap,
654		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655		m = PHYS_TO_VM_PAGE(pa);
656		m->wire_count--;
657	}
658
659	/*
660	 * Free ptbl pages if there are no pte etries in this ptbl.
661	 * wire_count has the same value for all ptbl pages, so check the last
662	 * page.
663	 */
664	if (m->wire_count == 0) {
665		ptbl_free(mmu, pmap, pdir_idx);
666
667		//debugf("ptbl_unhold: e (freed ptbl)\n");
668		return (1);
669	}
670
671	return (0);
672}
673
674/*
675 * Increment hold count for ptbl pages. This routine is used when a new pte
676 * entry is being inserted into the ptbl.
677 */
678static void
679ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680{
681	vm_paddr_t pa;
682	pte_t *ptbl;
683	vm_page_t m;
684	int i;
685
686	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687	    pdir_idx);
688
689	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690	    ("ptbl_hold: invalid pdir_idx"));
691	KASSERT((pmap != kernel_pmap),
692	    ("ptbl_hold: holding kernel ptbl!"));
693
694	ptbl = pmap->pm_pdir[pdir_idx];
695
696	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697
698	for (i = 0; i < PTBL_PAGES; i++) {
699		pa = pte_vatopa(mmu, kernel_pmap,
700		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701		m = PHYS_TO_VM_PAGE(pa);
702		m->wire_count++;
703	}
704}
705
706/* Allocate pv_entry structure. */
707pv_entry_t
708pv_alloc(void)
709{
710	pv_entry_t pv;
711
712	pv_entry_count++;
713	if (pv_entry_count > pv_entry_high_water)
714		pagedaemon_wakeup();
715	pv = uma_zalloc(pvzone, M_NOWAIT);
716
717	return (pv);
718}
719
720/* Free pv_entry structure. */
721static __inline void
722pv_free(pv_entry_t pve)
723{
724
725	pv_entry_count--;
726	uma_zfree(pvzone, pve);
727}
728
729
730/* Allocate and initialize pv_entry structure. */
731static void
732pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733{
734	pv_entry_t pve;
735
736	//int su = (pmap == kernel_pmap);
737	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738	//	(u_int32_t)pmap, va, (u_int32_t)m);
739
740	pve = pv_alloc();
741	if (pve == NULL)
742		panic("pv_insert: no pv entries!");
743
744	pve->pv_pmap = pmap;
745	pve->pv_va = va;
746
747	/* add to pv_list */
748	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
750
751	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752
753	//debugf("pv_insert: e\n");
754}
755
756/* Destroy pv entry. */
757static void
758pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759{
760	pv_entry_t pve;
761
762	//int su = (pmap == kernel_pmap);
763	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764
765	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
767
768	/* find pv entry */
769	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771			/* remove from pv_list */
772			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773			if (TAILQ_EMPTY(&m->md.pv_list))
774				vm_page_aflag_clear(m, PGA_WRITEABLE);
775
776			/* free pv entry struct */
777			pv_free(pve);
778			break;
779		}
780	}
781
782	//debugf("pv_remove: e\n");
783}
784
785/*
786 * Clean pte entry, try to free page table page if requested.
787 *
788 * Return 1 if ptbl pages were freed, otherwise return 0.
789 */
790static int
791pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792{
793	unsigned int pdir_idx = PDIR_IDX(va);
794	unsigned int ptbl_idx = PTBL_IDX(va);
795	vm_page_t m;
796	pte_t *ptbl;
797	pte_t *pte;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801	//		su, (u_int32_t)pmap, va, flags);
802
803	ptbl = pmap->pm_pdir[pdir_idx];
804	KASSERT(ptbl, ("pte_remove: null ptbl"));
805
806	pte = &ptbl[ptbl_idx];
807
808	if (pte == NULL || !PTE_ISVALID(pte))
809		return (0);
810
811	if (PTE_ISWIRED(pte))
812		pmap->pm_stats.wired_count--;
813
814	/* Handle managed entry. */
815	if (PTE_ISMANAGED(pte)) {
816		/* Get vm_page_t for mapped pte. */
817		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818
819		if (PTE_ISMODIFIED(pte))
820			vm_page_dirty(m);
821
822		if (PTE_ISREFERENCED(pte))
823			vm_page_aflag_set(m, PGA_REFERENCED);
824
825		pv_remove(pmap, va, m);
826	}
827
828	mtx_lock_spin(&tlbivax_mutex);
829	tlb_miss_lock();
830
831	tlb0_flush_entry(va);
832	pte->flags = 0;
833	pte->rpn = 0;
834
835	tlb_miss_unlock();
836	mtx_unlock_spin(&tlbivax_mutex);
837
838	pmap->pm_stats.resident_count--;
839
840	if (flags & PTBL_UNHOLD) {
841		//debugf("pte_remove: e (unhold)\n");
842		return (ptbl_unhold(mmu, pmap, pdir_idx));
843	}
844
845	//debugf("pte_remove: e\n");
846	return (0);
847}
848
849/*
850 * Insert PTE for a given page and virtual address.
851 */
852static void
853pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854{
855	unsigned int pdir_idx = PDIR_IDX(va);
856	unsigned int ptbl_idx = PTBL_IDX(va);
857	pte_t *ptbl, *pte;
858
859	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860	    pmap == kernel_pmap, pmap, va);
861
862	/* Get the page table pointer. */
863	ptbl = pmap->pm_pdir[pdir_idx];
864
865	if (ptbl == NULL) {
866		/* Allocate page table pages. */
867		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868	} else {
869		/*
870		 * Check if there is valid mapping for requested
871		 * va, if there is, remove it.
872		 */
873		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874		if (PTE_ISVALID(pte)) {
875			pte_remove(mmu, pmap, va, PTBL_HOLD);
876		} else {
877			/*
878			 * pte is not used, increment hold count
879			 * for ptbl pages.
880			 */
881			if (pmap != kernel_pmap)
882				ptbl_hold(mmu, pmap, pdir_idx);
883		}
884	}
885
886	/*
887	 * Insert pv_entry into pv_list for mapped page if part of managed
888	 * memory.
889	 */
890	if ((m->oflags & VPO_UNMANAGED) == 0) {
891		flags |= PTE_MANAGED;
892
893		/* Create and insert pv entry. */
894		pv_insert(pmap, va, m);
895	}
896
897	pmap->pm_stats.resident_count++;
898
899	mtx_lock_spin(&tlbivax_mutex);
900	tlb_miss_lock();
901
902	tlb0_flush_entry(va);
903	if (pmap->pm_pdir[pdir_idx] == NULL) {
904		/*
905		 * If we just allocated a new page table, hook it in
906		 * the pdir.
907		 */
908		pmap->pm_pdir[pdir_idx] = ptbl;
909	}
910	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
911	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
912	pte->flags |= (PTE_VALID | flags);
913
914	tlb_miss_unlock();
915	mtx_unlock_spin(&tlbivax_mutex);
916}
917
918/* Return the pa for the given pmap/va. */
919static vm_paddr_t
920pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
921{
922	vm_paddr_t pa = 0;
923	pte_t *pte;
924
925	pte = pte_find(mmu, pmap, va);
926	if ((pte != NULL) && PTE_ISVALID(pte))
927		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
928	return (pa);
929}
930
931/* Get a pointer to a PTE in a page table. */
932static pte_t *
933pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
934{
935	unsigned int pdir_idx = PDIR_IDX(va);
936	unsigned int ptbl_idx = PTBL_IDX(va);
937
938	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
939
940	if (pmap->pm_pdir[pdir_idx])
941		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
942
943	return (NULL);
944}
945
946/**************************************************************************/
947/* PMAP related */
948/**************************************************************************/
949
950/*
951 * This is called during booke_init, before the system is really initialized.
952 */
953static void
954mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
955{
956	vm_offset_t phys_kernelend;
957	struct mem_region *mp, *mp1;
958	int cnt, i, j;
959	u_int s, e, sz;
960	u_int phys_avail_count;
961	vm_size_t physsz, hwphyssz, kstack0_sz;
962	vm_offset_t kernel_pdir, kstack0, va;
963	vm_paddr_t kstack0_phys;
964	void *dpcpu;
965	pte_t *pte;
966
967	debugf("mmu_booke_bootstrap: entered\n");
968
969#ifdef SMP
970	kernload_ap = kernload;
971#endif
972
973
974	/* Initialize invalidation mutex */
975	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
976
977	/* Read TLB0 size and associativity. */
978	tlb0_get_tlbconf();
979
980	/*
981	 * Align kernel start and end address (kernel image).
982	 * Note that kernel end does not necessarily relate to kernsize.
983	 * kernsize is the size of the kernel that is actually mapped.
984	 */
985	kernstart = trunc_page(start);
986	data_start = round_page(kernelend);
987	data_end = data_start;
988
989	/*
990	 * Addresses of preloaded modules (like file systems) use
991	 * physical addresses. Make sure we relocate those into
992	 * virtual addresses.
993	 */
994	preload_addr_relocate = kernstart - kernload;
995
996	/* Allocate the dynamic per-cpu area. */
997	dpcpu = (void *)data_end;
998	data_end += DPCPU_SIZE;
999
1000	/* Allocate space for the message buffer. */
1001	msgbufp = (struct msgbuf *)data_end;
1002	data_end += msgbufsize;
1003	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1004	    data_end);
1005
1006	data_end = round_page(data_end);
1007
1008	/* Allocate space for ptbl_bufs. */
1009	ptbl_bufs = (struct ptbl_buf *)data_end;
1010	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1011	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1012	    data_end);
1013
1014	data_end = round_page(data_end);
1015
1016	/* Allocate PTE tables for kernel KVA. */
1017	kernel_pdir = data_end;
1018	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1019	    PDIR_SIZE - 1) / PDIR_SIZE;
1020	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1021	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1022	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1023
1024	debugf(" data_end: 0x%08x\n", data_end);
1025	if (data_end - kernstart > kernsize) {
1026		kernsize += tlb1_mapin_region(kernstart + kernsize,
1027		    kernload + kernsize, (data_end - kernstart) - kernsize);
1028	}
1029	data_end = kernstart + kernsize;
1030	debugf(" updated data_end: 0x%08x\n", data_end);
1031
1032	/*
1033	 * Clear the structures - note we can only do it safely after the
1034	 * possible additional TLB1 translations are in place (above) so that
1035	 * all range up to the currently calculated 'data_end' is covered.
1036	 */
1037	dpcpu_init(dpcpu, 0);
1038	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1039	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1040
1041	/*******************************************************/
1042	/* Set the start and end of kva. */
1043	/*******************************************************/
1044	virtual_avail = round_page(data_end);
1045	virtual_end = VM_MAX_KERNEL_ADDRESS;
1046
1047	/* Allocate KVA space for page zero/copy operations. */
1048	zero_page_va = virtual_avail;
1049	virtual_avail += PAGE_SIZE;
1050	zero_page_idle_va = virtual_avail;
1051	virtual_avail += PAGE_SIZE;
1052	copy_page_src_va = virtual_avail;
1053	virtual_avail += PAGE_SIZE;
1054	copy_page_dst_va = virtual_avail;
1055	virtual_avail += PAGE_SIZE;
1056	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1057	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1058	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1059	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1060
1061	/* Initialize page zero/copy mutexes. */
1062	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1063	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1064
1065	/* Allocate KVA space for ptbl bufs. */
1066	ptbl_buf_pool_vabase = virtual_avail;
1067	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1068	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1069	    ptbl_buf_pool_vabase, virtual_avail);
1070
1071	/* Calculate corresponding physical addresses for the kernel region. */
1072	phys_kernelend = kernload + kernsize;
1073	debugf("kernel image and allocated data:\n");
1074	debugf(" kernload    = 0x%08x\n", kernload);
1075	debugf(" kernstart   = 0x%08x\n", kernstart);
1076	debugf(" kernsize    = 0x%08x\n", kernsize);
1077
1078	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1079		panic("mmu_booke_bootstrap: phys_avail too small");
1080
1081	/*
1082	 * Remove kernel physical address range from avail regions list. Page
1083	 * align all regions.  Non-page aligned memory isn't very interesting
1084	 * to us.  Also, sort the entries for ascending addresses.
1085	 */
1086
1087	/* Retrieve phys/avail mem regions */
1088	mem_regions(&physmem_regions, &physmem_regions_sz,
1089	    &availmem_regions, &availmem_regions_sz);
1090	sz = 0;
1091	cnt = availmem_regions_sz;
1092	debugf("processing avail regions:\n");
1093	for (mp = availmem_regions; mp->mr_size; mp++) {
1094		s = mp->mr_start;
1095		e = mp->mr_start + mp->mr_size;
1096		debugf(" %08x-%08x -> ", s, e);
1097		/* Check whether this region holds all of the kernel. */
1098		if (s < kernload && e > phys_kernelend) {
1099			availmem_regions[cnt].mr_start = phys_kernelend;
1100			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1101			e = kernload;
1102		}
1103		/* Look whether this regions starts within the kernel. */
1104		if (s >= kernload && s < phys_kernelend) {
1105			if (e <= phys_kernelend)
1106				goto empty;
1107			s = phys_kernelend;
1108		}
1109		/* Now look whether this region ends within the kernel. */
1110		if (e > kernload && e <= phys_kernelend) {
1111			if (s >= kernload)
1112				goto empty;
1113			e = kernload;
1114		}
1115		/* Now page align the start and size of the region. */
1116		s = round_page(s);
1117		e = trunc_page(e);
1118		if (e < s)
1119			e = s;
1120		sz = e - s;
1121		debugf("%08x-%08x = %x\n", s, e, sz);
1122
1123		/* Check whether some memory is left here. */
1124		if (sz == 0) {
1125		empty:
1126			memmove(mp, mp + 1,
1127			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1128			cnt--;
1129			mp--;
1130			continue;
1131		}
1132
1133		/* Do an insertion sort. */
1134		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1135			if (s < mp1->mr_start)
1136				break;
1137		if (mp1 < mp) {
1138			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1139			mp1->mr_start = s;
1140			mp1->mr_size = sz;
1141		} else {
1142			mp->mr_start = s;
1143			mp->mr_size = sz;
1144		}
1145	}
1146	availmem_regions_sz = cnt;
1147
1148	/*******************************************************/
1149	/* Steal physical memory for kernel stack from the end */
1150	/* of the first avail region                           */
1151	/*******************************************************/
1152	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1153	kstack0_phys = availmem_regions[0].mr_start +
1154	    availmem_regions[0].mr_size;
1155	kstack0_phys -= kstack0_sz;
1156	availmem_regions[0].mr_size -= kstack0_sz;
1157
1158	/*******************************************************/
1159	/* Fill in phys_avail table, based on availmem_regions */
1160	/*******************************************************/
1161	phys_avail_count = 0;
1162	physsz = 0;
1163	hwphyssz = 0;
1164	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1165
1166	debugf("fill in phys_avail:\n");
1167	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1168
1169		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1170		    availmem_regions[i].mr_start,
1171		    availmem_regions[i].mr_start +
1172		        availmem_regions[i].mr_size,
1173		    availmem_regions[i].mr_size);
1174
1175		if (hwphyssz != 0 &&
1176		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1177			debugf(" hw.physmem adjust\n");
1178			if (physsz < hwphyssz) {
1179				phys_avail[j] = availmem_regions[i].mr_start;
1180				phys_avail[j + 1] =
1181				    availmem_regions[i].mr_start +
1182				    hwphyssz - physsz;
1183				physsz = hwphyssz;
1184				phys_avail_count++;
1185			}
1186			break;
1187		}
1188
1189		phys_avail[j] = availmem_regions[i].mr_start;
1190		phys_avail[j + 1] = availmem_regions[i].mr_start +
1191		    availmem_regions[i].mr_size;
1192		phys_avail_count++;
1193		physsz += availmem_regions[i].mr_size;
1194	}
1195	physmem = btoc(physsz);
1196
1197	/* Calculate the last available physical address. */
1198	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1199		;
1200	Maxmem = powerpc_btop(phys_avail[i + 1]);
1201
1202	debugf("Maxmem = 0x%08lx\n", Maxmem);
1203	debugf("phys_avail_count = %d\n", phys_avail_count);
1204	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1205	    physmem);
1206
1207	/*******************************************************/
1208	/* Initialize (statically allocated) kernel pmap. */
1209	/*******************************************************/
1210	PMAP_LOCK_INIT(kernel_pmap);
1211	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1212
1213	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1214	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1215	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1216	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1217
1218	/* Initialize kernel pdir */
1219	for (i = 0; i < kernel_ptbls; i++)
1220		kernel_pmap->pm_pdir[kptbl_min + i] =
1221		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1222
1223	for (i = 0; i < MAXCPU; i++) {
1224		kernel_pmap->pm_tid[i] = TID_KERNEL;
1225
1226		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1227		tidbusy[i][0] = kernel_pmap;
1228	}
1229
1230	/*
1231	 * Fill in PTEs covering kernel code and data. They are not required
1232	 * for address translation, as this area is covered by static TLB1
1233	 * entries, but for pte_vatopa() to work correctly with kernel area
1234	 * addresses.
1235	 */
1236	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1237		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1238		pte->rpn = kernload + (va - KERNBASE);
1239		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1240		    PTE_VALID;
1241	}
1242	/* Mark kernel_pmap active on all CPUs */
1243	CPU_FILL(&kernel_pmap->pm_active);
1244
1245	/*******************************************************/
1246	/* Final setup */
1247	/*******************************************************/
1248
1249	/* Enter kstack0 into kernel map, provide guard page */
1250	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1251	thread0.td_kstack = kstack0;
1252	thread0.td_kstack_pages = KSTACK_PAGES;
1253
1254	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1255	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1256	    kstack0_phys, kstack0_phys + kstack0_sz);
1257	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1258
1259	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1260	for (i = 0; i < KSTACK_PAGES; i++) {
1261		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1262		kstack0 += PAGE_SIZE;
1263		kstack0_phys += PAGE_SIZE;
1264	}
1265
1266	debugf("virtual_avail = %08x\n", virtual_avail);
1267	debugf("virtual_end   = %08x\n", virtual_end);
1268
1269	debugf("mmu_booke_bootstrap: exit\n");
1270}
1271
1272void
1273pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1274{
1275	int i;
1276
1277	/*
1278	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1279	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1280	 * these values directly to (re)program AP's TLB1 hardware.
1281	 */
1282	for (i = 0; i < tlb1_idx; i ++) {
1283		/* Skip invalid entries */
1284		if (!(tlb1[i].mas1 & MAS1_VALID))
1285			continue;
1286
1287		tlb1_write_entry(i);
1288	}
1289
1290	set_mas4_defaults();
1291}
1292
1293/*
1294 * Get the physical page address for the given pmap/virtual address.
1295 */
1296static vm_paddr_t
1297mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1298{
1299	vm_paddr_t pa;
1300
1301	PMAP_LOCK(pmap);
1302	pa = pte_vatopa(mmu, pmap, va);
1303	PMAP_UNLOCK(pmap);
1304
1305	return (pa);
1306}
1307
1308/*
1309 * Extract the physical page address associated with the given
1310 * kernel virtual address.
1311 */
1312static vm_paddr_t
1313mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1314{
1315
1316	return (pte_vatopa(mmu, kernel_pmap, va));
1317}
1318
1319/*
1320 * Initialize the pmap module.
1321 * Called by vm_init, to initialize any structures that the pmap
1322 * system needs to map virtual memory.
1323 */
1324static void
1325mmu_booke_init(mmu_t mmu)
1326{
1327	int shpgperproc = PMAP_SHPGPERPROC;
1328
1329	/*
1330	 * Initialize the address space (zone) for the pv entries.  Set a
1331	 * high water mark so that the system can recover from excessive
1332	 * numbers of pv entries.
1333	 */
1334	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1335	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1336
1337	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1338	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1339
1340	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1341	pv_entry_high_water = 9 * (pv_entry_max / 10);
1342
1343	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1344
1345	/* Pre-fill pvzone with initial number of pv entries. */
1346	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1347
1348	/* Initialize ptbl allocation. */
1349	ptbl_init();
1350}
1351
1352/*
1353 * Map a list of wired pages into kernel virtual address space.  This is
1354 * intended for temporary mappings which do not need page modification or
1355 * references recorded.  Existing mappings in the region are overwritten.
1356 */
1357static void
1358mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1359{
1360	vm_offset_t va;
1361
1362	va = sva;
1363	while (count-- > 0) {
1364		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1365		va += PAGE_SIZE;
1366		m++;
1367	}
1368}
1369
1370/*
1371 * Remove page mappings from kernel virtual address space.  Intended for
1372 * temporary mappings entered by mmu_booke_qenter.
1373 */
1374static void
1375mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1376{
1377	vm_offset_t va;
1378
1379	va = sva;
1380	while (count-- > 0) {
1381		mmu_booke_kremove(mmu, va);
1382		va += PAGE_SIZE;
1383	}
1384}
1385
1386/*
1387 * Map a wired page into kernel virtual address space.
1388 */
1389static void
1390mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1391{
1392	unsigned int pdir_idx = PDIR_IDX(va);
1393	unsigned int ptbl_idx = PTBL_IDX(va);
1394	uint32_t flags;
1395	pte_t *pte;
1396
1397	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1398	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1399
1400	flags = 0;
1401	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1402	flags |= PTE_M;
1403
1404	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1405
1406	mtx_lock_spin(&tlbivax_mutex);
1407	tlb_miss_lock();
1408
1409	if (PTE_ISVALID(pte)) {
1410
1411		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1412
1413		/* Flush entry from TLB0 */
1414		tlb0_flush_entry(va);
1415	}
1416
1417	pte->rpn = pa & ~PTE_PA_MASK;
1418	pte->flags = flags;
1419
1420	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1421	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1422	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1423
1424	/* Flush the real memory from the instruction cache. */
1425	if ((flags & (PTE_I | PTE_G)) == 0) {
1426		__syncicache((void *)va, PAGE_SIZE);
1427	}
1428
1429	tlb_miss_unlock();
1430	mtx_unlock_spin(&tlbivax_mutex);
1431}
1432
1433/*
1434 * Remove a page from kernel page table.
1435 */
1436static void
1437mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1438{
1439	unsigned int pdir_idx = PDIR_IDX(va);
1440	unsigned int ptbl_idx = PTBL_IDX(va);
1441	pte_t *pte;
1442
1443//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1444
1445	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1446	    (va <= VM_MAX_KERNEL_ADDRESS)),
1447	    ("mmu_booke_kremove: invalid va"));
1448
1449	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1450
1451	if (!PTE_ISVALID(pte)) {
1452
1453		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1454
1455		return;
1456	}
1457
1458	mtx_lock_spin(&tlbivax_mutex);
1459	tlb_miss_lock();
1460
1461	/* Invalidate entry in TLB0, update PTE. */
1462	tlb0_flush_entry(va);
1463	pte->flags = 0;
1464	pte->rpn = 0;
1465
1466	tlb_miss_unlock();
1467	mtx_unlock_spin(&tlbivax_mutex);
1468}
1469
1470/*
1471 * Initialize pmap associated with process 0.
1472 */
1473static void
1474mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1475{
1476
1477	mmu_booke_pinit(mmu, pmap);
1478	PCPU_SET(curpmap, pmap);
1479}
1480
1481/*
1482 * Initialize a preallocated and zeroed pmap structure,
1483 * such as one in a vmspace structure.
1484 */
1485static void
1486mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1487{
1488	int i;
1489
1490	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1491	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1492
1493	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1494
1495	PMAP_LOCK_INIT(pmap);
1496	for (i = 0; i < MAXCPU; i++)
1497		pmap->pm_tid[i] = TID_NONE;
1498	CPU_ZERO(&kernel_pmap->pm_active);
1499	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1500	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1501	TAILQ_INIT(&pmap->pm_ptbl_list);
1502}
1503
1504/*
1505 * Release any resources held by the given physical map.
1506 * Called when a pmap initialized by mmu_booke_pinit is being released.
1507 * Should only be called if the map contains no valid mappings.
1508 */
1509static void
1510mmu_booke_release(mmu_t mmu, pmap_t pmap)
1511{
1512
1513	KASSERT(pmap->pm_stats.resident_count == 0,
1514	    ("pmap_release: pmap resident count %ld != 0",
1515	    pmap->pm_stats.resident_count));
1516
1517	PMAP_LOCK_DESTROY(pmap);
1518}
1519
1520/*
1521 * Insert the given physical page at the specified virtual address in the
1522 * target physical map with the protection requested. If specified the page
1523 * will be wired down.
1524 */
1525static void
1526mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527    vm_prot_t prot, boolean_t wired)
1528{
1529
1530	vm_page_lock_queues();
1531	PMAP_LOCK(pmap);
1532	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1533	vm_page_unlock_queues();
1534	PMAP_UNLOCK(pmap);
1535}
1536
1537static void
1538mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1539    vm_prot_t prot, boolean_t wired)
1540{
1541	pte_t *pte;
1542	vm_paddr_t pa;
1543	uint32_t flags;
1544	int su, sync;
1545
1546	pa = VM_PAGE_TO_PHYS(m);
1547	su = (pmap == kernel_pmap);
1548	sync = 0;
1549
1550	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1551	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1552	//		(u_int32_t)pmap, su, pmap->pm_tid,
1553	//		(u_int32_t)m, va, pa, prot, wired);
1554
1555	if (su) {
1556		KASSERT(((va >= virtual_avail) &&
1557		    (va <= VM_MAX_KERNEL_ADDRESS)),
1558		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1559	} else {
1560		KASSERT((va <= VM_MAXUSER_ADDRESS),
1561		    ("mmu_booke_enter_locked: user pmap, non user va"));
1562	}
1563	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1564	    VM_OBJECT_LOCKED(m->object),
1565	    ("mmu_booke_enter_locked: page %p is not busy", m));
1566
1567	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1568
1569	/*
1570	 * If there is an existing mapping, and the physical address has not
1571	 * changed, must be protection or wiring change.
1572	 */
1573	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1574	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1575
1576		/*
1577		 * Before actually updating pte->flags we calculate and
1578		 * prepare its new value in a helper var.
1579		 */
1580		flags = pte->flags;
1581		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1582
1583		/* Wiring change, just update stats. */
1584		if (wired) {
1585			if (!PTE_ISWIRED(pte)) {
1586				flags |= PTE_WIRED;
1587				pmap->pm_stats.wired_count++;
1588			}
1589		} else {
1590			if (PTE_ISWIRED(pte)) {
1591				flags &= ~PTE_WIRED;
1592				pmap->pm_stats.wired_count--;
1593			}
1594		}
1595
1596		if (prot & VM_PROT_WRITE) {
1597			/* Add write permissions. */
1598			flags |= PTE_SW;
1599			if (!su)
1600				flags |= PTE_UW;
1601
1602			if ((flags & PTE_MANAGED) != 0)
1603				vm_page_aflag_set(m, PGA_WRITEABLE);
1604		} else {
1605			/* Handle modified pages, sense modify status. */
1606
1607			/*
1608			 * The PTE_MODIFIED flag could be set by underlying
1609			 * TLB misses since we last read it (above), possibly
1610			 * other CPUs could update it so we check in the PTE
1611			 * directly rather than rely on that saved local flags
1612			 * copy.
1613			 */
1614			if (PTE_ISMODIFIED(pte))
1615				vm_page_dirty(m);
1616		}
1617
1618		if (prot & VM_PROT_EXECUTE) {
1619			flags |= PTE_SX;
1620			if (!su)
1621				flags |= PTE_UX;
1622
1623			/*
1624			 * Check existing flags for execute permissions: if we
1625			 * are turning execute permissions on, icache should
1626			 * be flushed.
1627			 */
1628			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1629				sync++;
1630		}
1631
1632		flags &= ~PTE_REFERENCED;
1633
1634		/*
1635		 * The new flags value is all calculated -- only now actually
1636		 * update the PTE.
1637		 */
1638		mtx_lock_spin(&tlbivax_mutex);
1639		tlb_miss_lock();
1640
1641		tlb0_flush_entry(va);
1642		pte->flags = flags;
1643
1644		tlb_miss_unlock();
1645		mtx_unlock_spin(&tlbivax_mutex);
1646
1647	} else {
1648		/*
1649		 * If there is an existing mapping, but it's for a different
1650		 * physical address, pte_enter() will delete the old mapping.
1651		 */
1652		//if ((pte != NULL) && PTE_ISVALID(pte))
1653		//	debugf("mmu_booke_enter_locked: replace\n");
1654		//else
1655		//	debugf("mmu_booke_enter_locked: new\n");
1656
1657		/* Now set up the flags and install the new mapping. */
1658		flags = (PTE_SR | PTE_VALID);
1659		flags |= PTE_M;
1660
1661		if (!su)
1662			flags |= PTE_UR;
1663
1664		if (prot & VM_PROT_WRITE) {
1665			flags |= PTE_SW;
1666			if (!su)
1667				flags |= PTE_UW;
1668
1669			if ((m->oflags & VPO_UNMANAGED) == 0)
1670				vm_page_aflag_set(m, PGA_WRITEABLE);
1671		}
1672
1673		if (prot & VM_PROT_EXECUTE) {
1674			flags |= PTE_SX;
1675			if (!su)
1676				flags |= PTE_UX;
1677		}
1678
1679		/* If its wired update stats. */
1680		if (wired) {
1681			pmap->pm_stats.wired_count++;
1682			flags |= PTE_WIRED;
1683		}
1684
1685		pte_enter(mmu, pmap, m, va, flags);
1686
1687		/* Flush the real memory from the instruction cache. */
1688		if (prot & VM_PROT_EXECUTE)
1689			sync++;
1690	}
1691
1692	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1693		__syncicache((void *)va, PAGE_SIZE);
1694		sync = 0;
1695	}
1696}
1697
1698/*
1699 * Maps a sequence of resident pages belonging to the same object.
1700 * The sequence begins with the given page m_start.  This page is
1701 * mapped at the given virtual address start.  Each subsequent page is
1702 * mapped at a virtual address that is offset from start by the same
1703 * amount as the page is offset from m_start within the object.  The
1704 * last page in the sequence is the page with the largest offset from
1705 * m_start that can be mapped at a virtual address less than the given
1706 * virtual address end.  Not every virtual page between start and end
1707 * is mapped; only those for which a resident page exists with the
1708 * corresponding offset from m_start are mapped.
1709 */
1710static void
1711mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1712    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1713{
1714	vm_page_t m;
1715	vm_pindex_t diff, psize;
1716
1717	psize = atop(end - start);
1718	m = m_start;
1719	vm_page_lock_queues();
1720	PMAP_LOCK(pmap);
1721	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1722		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1723		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1724		m = TAILQ_NEXT(m, listq);
1725	}
1726	vm_page_unlock_queues();
1727	PMAP_UNLOCK(pmap);
1728}
1729
1730static void
1731mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1732    vm_prot_t prot)
1733{
1734
1735	vm_page_lock_queues();
1736	PMAP_LOCK(pmap);
1737	mmu_booke_enter_locked(mmu, pmap, va, m,
1738	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1739	vm_page_unlock_queues();
1740	PMAP_UNLOCK(pmap);
1741}
1742
1743/*
1744 * Remove the given range of addresses from the specified map.
1745 *
1746 * It is assumed that the start and end are properly rounded to the page size.
1747 */
1748static void
1749mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1750{
1751	pte_t *pte;
1752	uint8_t hold_flag;
1753
1754	int su = (pmap == kernel_pmap);
1755
1756	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1757	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1758
1759	if (su) {
1760		KASSERT(((va >= virtual_avail) &&
1761		    (va <= VM_MAX_KERNEL_ADDRESS)),
1762		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1763	} else {
1764		KASSERT((va <= VM_MAXUSER_ADDRESS),
1765		    ("mmu_booke_remove: user pmap, non user va"));
1766	}
1767
1768	if (PMAP_REMOVE_DONE(pmap)) {
1769		//debugf("mmu_booke_remove: e (empty)\n");
1770		return;
1771	}
1772
1773	hold_flag = PTBL_HOLD_FLAG(pmap);
1774	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1775
1776	vm_page_lock_queues();
1777	PMAP_LOCK(pmap);
1778	for (; va < endva; va += PAGE_SIZE) {
1779		pte = pte_find(mmu, pmap, va);
1780		if ((pte != NULL) && PTE_ISVALID(pte))
1781			pte_remove(mmu, pmap, va, hold_flag);
1782	}
1783	PMAP_UNLOCK(pmap);
1784	vm_page_unlock_queues();
1785
1786	//debugf("mmu_booke_remove: e\n");
1787}
1788
1789/*
1790 * Remove physical page from all pmaps in which it resides.
1791 */
1792static void
1793mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1794{
1795	pv_entry_t pv, pvn;
1796	uint8_t hold_flag;
1797
1798	vm_page_lock_queues();
1799	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1800		pvn = TAILQ_NEXT(pv, pv_link);
1801
1802		PMAP_LOCK(pv->pv_pmap);
1803		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1804		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1805		PMAP_UNLOCK(pv->pv_pmap);
1806	}
1807	vm_page_aflag_clear(m, PGA_WRITEABLE);
1808	vm_page_unlock_queues();
1809}
1810
1811/*
1812 * Map a range of physical addresses into kernel virtual address space.
1813 */
1814static vm_offset_t
1815mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1816    vm_offset_t pa_end, int prot)
1817{
1818	vm_offset_t sva = *virt;
1819	vm_offset_t va = sva;
1820
1821	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1822	//		sva, pa_start, pa_end);
1823
1824	while (pa_start < pa_end) {
1825		mmu_booke_kenter(mmu, va, pa_start);
1826		va += PAGE_SIZE;
1827		pa_start += PAGE_SIZE;
1828	}
1829	*virt = va;
1830
1831	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1832	return (sva);
1833}
1834
1835/*
1836 * The pmap must be activated before it's address space can be accessed in any
1837 * way.
1838 */
1839static void
1840mmu_booke_activate(mmu_t mmu, struct thread *td)
1841{
1842	pmap_t pmap;
1843	u_int cpuid;
1844
1845	pmap = &td->td_proc->p_vmspace->vm_pmap;
1846
1847	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1848	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1849
1850	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1851
1852	mtx_lock_spin(&sched_lock);
1853
1854	cpuid = PCPU_GET(cpuid);
1855	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1856	PCPU_SET(curpmap, pmap);
1857
1858	if (pmap->pm_tid[cpuid] == TID_NONE)
1859		tid_alloc(pmap);
1860
1861	/* Load PID0 register with pmap tid value. */
1862	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1863	__asm __volatile("isync");
1864
1865	mtx_unlock_spin(&sched_lock);
1866
1867	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1868	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1869}
1870
1871/*
1872 * Deactivate the specified process's address space.
1873 */
1874static void
1875mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1876{
1877	pmap_t pmap;
1878
1879	pmap = &td->td_proc->p_vmspace->vm_pmap;
1880
1881	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1882	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1883
1884	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1885	PCPU_SET(curpmap, NULL);
1886}
1887
1888/*
1889 * Copy the range specified by src_addr/len
1890 * from the source map to the range dst_addr/len
1891 * in the destination map.
1892 *
1893 * This routine is only advisory and need not do anything.
1894 */
1895static void
1896mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1897    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1898{
1899
1900}
1901
1902/*
1903 * Set the physical protection on the specified range of this map as requested.
1904 */
1905static void
1906mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1907    vm_prot_t prot)
1908{
1909	vm_offset_t va;
1910	vm_page_t m;
1911	pte_t *pte;
1912
1913	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1914		mmu_booke_remove(mmu, pmap, sva, eva);
1915		return;
1916	}
1917
1918	if (prot & VM_PROT_WRITE)
1919		return;
1920
1921	PMAP_LOCK(pmap);
1922	for (va = sva; va < eva; va += PAGE_SIZE) {
1923		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1924			if (PTE_ISVALID(pte)) {
1925				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1926
1927				mtx_lock_spin(&tlbivax_mutex);
1928				tlb_miss_lock();
1929
1930				/* Handle modified pages. */
1931				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1932					vm_page_dirty(m);
1933
1934				tlb0_flush_entry(va);
1935				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1936
1937				tlb_miss_unlock();
1938				mtx_unlock_spin(&tlbivax_mutex);
1939			}
1940		}
1941	}
1942	PMAP_UNLOCK(pmap);
1943}
1944
1945/*
1946 * Clear the write and modified bits in each of the given page's mappings.
1947 */
1948static void
1949mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1950{
1951	pv_entry_t pv;
1952	pte_t *pte;
1953
1954	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1955	    ("mmu_booke_remove_write: page %p is not managed", m));
1956
1957	/*
1958	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1959	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1960	 * is clear, no page table entries need updating.
1961	 */
1962	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1963	if ((m->oflags & VPO_BUSY) == 0 &&
1964	    (m->aflags & PGA_WRITEABLE) == 0)
1965		return;
1966	vm_page_lock_queues();
1967	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1968		PMAP_LOCK(pv->pv_pmap);
1969		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1970			if (PTE_ISVALID(pte)) {
1971				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1972
1973				mtx_lock_spin(&tlbivax_mutex);
1974				tlb_miss_lock();
1975
1976				/* Handle modified pages. */
1977				if (PTE_ISMODIFIED(pte))
1978					vm_page_dirty(m);
1979
1980				/* Flush mapping from TLB0. */
1981				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1982
1983				tlb_miss_unlock();
1984				mtx_unlock_spin(&tlbivax_mutex);
1985			}
1986		}
1987		PMAP_UNLOCK(pv->pv_pmap);
1988	}
1989	vm_page_aflag_clear(m, PGA_WRITEABLE);
1990	vm_page_unlock_queues();
1991}
1992
1993static void
1994mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1995{
1996	pte_t *pte;
1997	pmap_t pmap;
1998	vm_page_t m;
1999	vm_offset_t addr;
2000	vm_paddr_t pa;
2001	int active, valid;
2002
2003	va = trunc_page(va);
2004	sz = round_page(sz);
2005
2006	vm_page_lock_queues();
2007	pmap = PCPU_GET(curpmap);
2008	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2009	while (sz > 0) {
2010		PMAP_LOCK(pm);
2011		pte = pte_find(mmu, pm, va);
2012		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2013		if (valid)
2014			pa = PTE_PA(pte);
2015		PMAP_UNLOCK(pm);
2016		if (valid) {
2017			if (!active) {
2018				/* Create a mapping in the active pmap. */
2019				addr = 0;
2020				m = PHYS_TO_VM_PAGE(pa);
2021				PMAP_LOCK(pmap);
2022				pte_enter(mmu, pmap, m, addr,
2023				    PTE_SR | PTE_VALID | PTE_UR);
2024				__syncicache((void *)addr, PAGE_SIZE);
2025				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2026				PMAP_UNLOCK(pmap);
2027			} else
2028				__syncicache((void *)va, PAGE_SIZE);
2029		}
2030		va += PAGE_SIZE;
2031		sz -= PAGE_SIZE;
2032	}
2033	vm_page_unlock_queues();
2034}
2035
2036/*
2037 * Atomically extract and hold the physical page with the given
2038 * pmap and virtual address pair if that mapping permits the given
2039 * protection.
2040 */
2041static vm_page_t
2042mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2043    vm_prot_t prot)
2044{
2045	pte_t *pte;
2046	vm_page_t m;
2047	uint32_t pte_wbit;
2048	vm_paddr_t pa;
2049
2050	m = NULL;
2051	pa = 0;
2052	PMAP_LOCK(pmap);
2053retry:
2054	pte = pte_find(mmu, pmap, va);
2055	if ((pte != NULL) && PTE_ISVALID(pte)) {
2056		if (pmap == kernel_pmap)
2057			pte_wbit = PTE_SW;
2058		else
2059			pte_wbit = PTE_UW;
2060
2061		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2062			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2063				goto retry;
2064			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2065			vm_page_hold(m);
2066		}
2067	}
2068
2069	PA_UNLOCK_COND(pa);
2070	PMAP_UNLOCK(pmap);
2071	return (m);
2072}
2073
2074/*
2075 * Initialize a vm_page's machine-dependent fields.
2076 */
2077static void
2078mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2079{
2080
2081	TAILQ_INIT(&m->md.pv_list);
2082}
2083
2084/*
2085 * mmu_booke_zero_page_area zeros the specified hardware page by
2086 * mapping it into virtual memory and using bzero to clear
2087 * its contents.
2088 *
2089 * off and size must reside within a single page.
2090 */
2091static void
2092mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2093{
2094	vm_offset_t va;
2095
2096	/* XXX KASSERT off and size are within a single page? */
2097
2098	mtx_lock(&zero_page_mutex);
2099	va = zero_page_va;
2100
2101	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2102	bzero((caddr_t)va + off, size);
2103	mmu_booke_kremove(mmu, va);
2104
2105	mtx_unlock(&zero_page_mutex);
2106}
2107
2108/*
2109 * mmu_booke_zero_page zeros the specified hardware page.
2110 */
2111static void
2112mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2113{
2114
2115	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2116}
2117
2118/*
2119 * mmu_booke_copy_page copies the specified (machine independent) page by
2120 * mapping the page into virtual memory and using memcopy to copy the page,
2121 * one machine dependent page at a time.
2122 */
2123static void
2124mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2125{
2126	vm_offset_t sva, dva;
2127
2128	sva = copy_page_src_va;
2129	dva = copy_page_dst_va;
2130
2131	mtx_lock(&copy_page_mutex);
2132	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2133	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2134	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2135	mmu_booke_kremove(mmu, dva);
2136	mmu_booke_kremove(mmu, sva);
2137	mtx_unlock(&copy_page_mutex);
2138}
2139
2140/*
2141 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2142 * into virtual memory and using bzero to clear its contents. This is intended
2143 * to be called from the vm_pagezero process only and outside of Giant. No
2144 * lock is required.
2145 */
2146static void
2147mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2148{
2149	vm_offset_t va;
2150
2151	va = zero_page_idle_va;
2152	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2153	bzero((caddr_t)va, PAGE_SIZE);
2154	mmu_booke_kremove(mmu, va);
2155}
2156
2157/*
2158 * Return whether or not the specified physical page was modified
2159 * in any of physical maps.
2160 */
2161static boolean_t
2162mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2163{
2164	pte_t *pte;
2165	pv_entry_t pv;
2166	boolean_t rv;
2167
2168	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2169	    ("mmu_booke_is_modified: page %p is not managed", m));
2170	rv = FALSE;
2171
2172	/*
2173	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2174	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2175	 * is clear, no PTEs can be modified.
2176	 */
2177	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2178	if ((m->oflags & VPO_BUSY) == 0 &&
2179	    (m->aflags & PGA_WRITEABLE) == 0)
2180		return (rv);
2181	vm_page_lock_queues();
2182	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2183		PMAP_LOCK(pv->pv_pmap);
2184		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2185		    PTE_ISVALID(pte)) {
2186			if (PTE_ISMODIFIED(pte))
2187				rv = TRUE;
2188		}
2189		PMAP_UNLOCK(pv->pv_pmap);
2190		if (rv)
2191			break;
2192	}
2193	vm_page_unlock_queues();
2194	return (rv);
2195}
2196
2197/*
2198 * Return whether or not the specified virtual address is eligible
2199 * for prefault.
2200 */
2201static boolean_t
2202mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2203{
2204
2205	return (FALSE);
2206}
2207
2208/*
2209 * Return whether or not the specified physical page was referenced
2210 * in any physical maps.
2211 */
2212static boolean_t
2213mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2214{
2215	pte_t *pte;
2216	pv_entry_t pv;
2217	boolean_t rv;
2218
2219	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2220	    ("mmu_booke_is_referenced: page %p is not managed", m));
2221	rv = FALSE;
2222	vm_page_lock_queues();
2223	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2224		PMAP_LOCK(pv->pv_pmap);
2225		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2226		    PTE_ISVALID(pte)) {
2227			if (PTE_ISREFERENCED(pte))
2228				rv = TRUE;
2229		}
2230		PMAP_UNLOCK(pv->pv_pmap);
2231		if (rv)
2232			break;
2233	}
2234	vm_page_unlock_queues();
2235	return (rv);
2236}
2237
2238/*
2239 * Clear the modify bits on the specified physical page.
2240 */
2241static void
2242mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2243{
2244	pte_t *pte;
2245	pv_entry_t pv;
2246
2247	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2248	    ("mmu_booke_clear_modify: page %p is not managed", m));
2249	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2250	KASSERT((m->oflags & VPO_BUSY) == 0,
2251	    ("mmu_booke_clear_modify: page %p is busy", m));
2252
2253	/*
2254	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2255	 * If the object containing the page is locked and the page is not
2256	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2257	 */
2258	if ((m->aflags & PGA_WRITEABLE) == 0)
2259		return;
2260	vm_page_lock_queues();
2261	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2262		PMAP_LOCK(pv->pv_pmap);
2263		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2264		    PTE_ISVALID(pte)) {
2265			mtx_lock_spin(&tlbivax_mutex);
2266			tlb_miss_lock();
2267
2268			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2269				tlb0_flush_entry(pv->pv_va);
2270				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2271				    PTE_REFERENCED);
2272			}
2273
2274			tlb_miss_unlock();
2275			mtx_unlock_spin(&tlbivax_mutex);
2276		}
2277		PMAP_UNLOCK(pv->pv_pmap);
2278	}
2279	vm_page_unlock_queues();
2280}
2281
2282/*
2283 * Return a count of reference bits for a page, clearing those bits.
2284 * It is not necessary for every reference bit to be cleared, but it
2285 * is necessary that 0 only be returned when there are truly no
2286 * reference bits set.
2287 *
2288 * XXX: The exact number of bits to check and clear is a matter that
2289 * should be tested and standardized at some point in the future for
2290 * optimal aging of shared pages.
2291 */
2292static int
2293mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2294{
2295	pte_t *pte;
2296	pv_entry_t pv;
2297	int count;
2298
2299	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2300	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2301	count = 0;
2302	vm_page_lock_queues();
2303	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2304		PMAP_LOCK(pv->pv_pmap);
2305		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2306		    PTE_ISVALID(pte)) {
2307			if (PTE_ISREFERENCED(pte)) {
2308				mtx_lock_spin(&tlbivax_mutex);
2309				tlb_miss_lock();
2310
2311				tlb0_flush_entry(pv->pv_va);
2312				pte->flags &= ~PTE_REFERENCED;
2313
2314				tlb_miss_unlock();
2315				mtx_unlock_spin(&tlbivax_mutex);
2316
2317				if (++count > 4) {
2318					PMAP_UNLOCK(pv->pv_pmap);
2319					break;
2320				}
2321			}
2322		}
2323		PMAP_UNLOCK(pv->pv_pmap);
2324	}
2325	vm_page_unlock_queues();
2326	return (count);
2327}
2328
2329/*
2330 * Clear the reference bit on the specified physical page.
2331 */
2332static void
2333mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2334{
2335	pte_t *pte;
2336	pv_entry_t pv;
2337
2338	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2339	    ("mmu_booke_clear_reference: page %p is not managed", m));
2340	vm_page_lock_queues();
2341	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2342		PMAP_LOCK(pv->pv_pmap);
2343		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2344		    PTE_ISVALID(pte)) {
2345			if (PTE_ISREFERENCED(pte)) {
2346				mtx_lock_spin(&tlbivax_mutex);
2347				tlb_miss_lock();
2348
2349				tlb0_flush_entry(pv->pv_va);
2350				pte->flags &= ~PTE_REFERENCED;
2351
2352				tlb_miss_unlock();
2353				mtx_unlock_spin(&tlbivax_mutex);
2354			}
2355		}
2356		PMAP_UNLOCK(pv->pv_pmap);
2357	}
2358	vm_page_unlock_queues();
2359}
2360
2361/*
2362 * Change wiring attribute for a map/virtual-address pair.
2363 */
2364static void
2365mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2366{
2367	pte_t *pte;
2368
2369	PMAP_LOCK(pmap);
2370	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2371		if (wired) {
2372			if (!PTE_ISWIRED(pte)) {
2373				pte->flags |= PTE_WIRED;
2374				pmap->pm_stats.wired_count++;
2375			}
2376		} else {
2377			if (PTE_ISWIRED(pte)) {
2378				pte->flags &= ~PTE_WIRED;
2379				pmap->pm_stats.wired_count--;
2380			}
2381		}
2382	}
2383	PMAP_UNLOCK(pmap);
2384}
2385
2386/*
2387 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2388 * page.  This count may be changed upwards or downwards in the future; it is
2389 * only necessary that true be returned for a small subset of pmaps for proper
2390 * page aging.
2391 */
2392static boolean_t
2393mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2394{
2395	pv_entry_t pv;
2396	int loops;
2397	boolean_t rv;
2398
2399	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2400	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2401	loops = 0;
2402	rv = FALSE;
2403	vm_page_lock_queues();
2404	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2405		if (pv->pv_pmap == pmap) {
2406			rv = TRUE;
2407			break;
2408		}
2409		if (++loops >= 16)
2410			break;
2411	}
2412	vm_page_unlock_queues();
2413	return (rv);
2414}
2415
2416/*
2417 * Return the number of managed mappings to the given physical page that are
2418 * wired.
2419 */
2420static int
2421mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2422{
2423	pv_entry_t pv;
2424	pte_t *pte;
2425	int count = 0;
2426
2427	if ((m->oflags & VPO_UNMANAGED) != 0)
2428		return (count);
2429	vm_page_lock_queues();
2430	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2431		PMAP_LOCK(pv->pv_pmap);
2432		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2433			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2434				count++;
2435		PMAP_UNLOCK(pv->pv_pmap);
2436	}
2437	vm_page_unlock_queues();
2438	return (count);
2439}
2440
2441static int
2442mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2443{
2444	int i;
2445	vm_offset_t va;
2446
2447	/*
2448	 * This currently does not work for entries that
2449	 * overlap TLB1 entries.
2450	 */
2451	for (i = 0; i < tlb1_idx; i ++) {
2452		if (tlb1_iomapped(i, pa, size, &va) == 0)
2453			return (0);
2454	}
2455
2456	return (EFAULT);
2457}
2458
2459vm_offset_t
2460mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2461    vm_size_t *sz)
2462{
2463	vm_paddr_t pa, ppa;
2464	vm_offset_t va;
2465	vm_size_t gran;
2466
2467	/* Raw physical memory dumps don't have a virtual address. */
2468	if (md->md_vaddr == ~0UL) {
2469		/* We always map a 256MB page at 256M. */
2470		gran = 256 * 1024 * 1024;
2471		pa = md->md_paddr + ofs;
2472		ppa = pa & ~(gran - 1);
2473		ofs = pa - ppa;
2474		va = gran;
2475		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2476		if (*sz > (gran - ofs))
2477			*sz = gran - ofs;
2478		return (va + ofs);
2479	}
2480
2481	/* Minidumps are based on virtual memory addresses. */
2482	va = md->md_vaddr + ofs;
2483	if (va >= kernstart + kernsize) {
2484		gran = PAGE_SIZE - (va & PAGE_MASK);
2485		if (*sz > gran)
2486			*sz = gran;
2487	}
2488	return (va);
2489}
2490
2491void
2492mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2493    vm_offset_t va)
2494{
2495
2496	/* Raw physical memory dumps don't have a virtual address. */
2497	if (md->md_vaddr == ~0UL) {
2498		tlb1_idx--;
2499		tlb1[tlb1_idx].mas1 = 0;
2500		tlb1[tlb1_idx].mas2 = 0;
2501		tlb1[tlb1_idx].mas3 = 0;
2502		tlb1_write_entry(tlb1_idx);
2503		return;
2504	}
2505
2506	/* Minidumps are based on virtual memory addresses. */
2507	/* Nothing to do... */
2508}
2509
2510struct pmap_md *
2511mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2512{
2513	static struct pmap_md md;
2514	pte_t *pte;
2515	vm_offset_t va;
2516
2517	if (dumpsys_minidump) {
2518		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2519		if (prev == NULL) {
2520			/* 1st: kernel .data and .bss. */
2521			md.md_index = 1;
2522			md.md_vaddr = trunc_page((uintptr_t)_etext);
2523			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2524			return (&md);
2525		}
2526		switch (prev->md_index) {
2527		case 1:
2528			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2529			md.md_index = 2;
2530			md.md_vaddr = data_start;
2531			md.md_size = data_end - data_start;
2532			break;
2533		case 2:
2534			/* 3rd: kernel VM. */
2535			va = prev->md_vaddr + prev->md_size;
2536			/* Find start of next chunk (from va). */
2537			while (va < virtual_end) {
2538				/* Don't dump the buffer cache. */
2539				if (va >= kmi.buffer_sva &&
2540				    va < kmi.buffer_eva) {
2541					va = kmi.buffer_eva;
2542					continue;
2543				}
2544				pte = pte_find(mmu, kernel_pmap, va);
2545				if (pte != NULL && PTE_ISVALID(pte))
2546					break;
2547				va += PAGE_SIZE;
2548			}
2549			if (va < virtual_end) {
2550				md.md_vaddr = va;
2551				va += PAGE_SIZE;
2552				/* Find last page in chunk. */
2553				while (va < virtual_end) {
2554					/* Don't run into the buffer cache. */
2555					if (va == kmi.buffer_sva)
2556						break;
2557					pte = pte_find(mmu, kernel_pmap, va);
2558					if (pte == NULL || !PTE_ISVALID(pte))
2559						break;
2560					va += PAGE_SIZE;
2561				}
2562				md.md_size = va - md.md_vaddr;
2563				break;
2564			}
2565			md.md_index = 3;
2566			/* FALLTHROUGH */
2567		default:
2568			return (NULL);
2569		}
2570	} else { /* minidumps */
2571		mem_regions(&physmem_regions, &physmem_regions_sz,
2572		    &availmem_regions, &availmem_regions_sz);
2573
2574		if (prev == NULL) {
2575			/* first physical chunk. */
2576			md.md_paddr = physmem_regions[0].mr_start;
2577			md.md_size = physmem_regions[0].mr_size;
2578			md.md_vaddr = ~0UL;
2579			md.md_index = 1;
2580		} else if (md.md_index < physmem_regions_sz) {
2581			md.md_paddr = physmem_regions[md.md_index].mr_start;
2582			md.md_size = physmem_regions[md.md_index].mr_size;
2583			md.md_vaddr = ~0UL;
2584			md.md_index++;
2585		} else {
2586			/* There's no next physical chunk. */
2587			return (NULL);
2588		}
2589	}
2590
2591	return (&md);
2592}
2593
2594/*
2595 * Map a set of physical memory pages into the kernel virtual address space.
2596 * Return a pointer to where it is mapped. This routine is intended to be used
2597 * for mapping device memory, NOT real memory.
2598 */
2599static void *
2600mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2601{
2602	void *res;
2603	uintptr_t va;
2604	vm_size_t sz;
2605
2606	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2607	res = (void *)va;
2608
2609	do {
2610		sz = 1 << (ilog2(size) & ~1);
2611		if (bootverbose)
2612			printf("Wiring VA=%x to PA=%x (size=%x), "
2613			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2614		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2615		size -= sz;
2616		pa += sz;
2617		va += sz;
2618	} while (size > 0);
2619
2620	return (res);
2621}
2622
2623/*
2624 * 'Unmap' a range mapped by mmu_booke_mapdev().
2625 */
2626static void
2627mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2628{
2629	vm_offset_t base, offset;
2630
2631	/*
2632	 * Unmap only if this is inside kernel virtual space.
2633	 */
2634	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2635		base = trunc_page(va);
2636		offset = va & PAGE_MASK;
2637		size = roundup(offset + size, PAGE_SIZE);
2638		kmem_free(kernel_map, base, size);
2639	}
2640}
2641
2642/*
2643 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2644 * specified pmap. This eliminates the blast of soft faults on process startup
2645 * and immediately after an mmap.
2646 */
2647static void
2648mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2649    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2650{
2651
2652	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2653	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2654	    ("mmu_booke_object_init_pt: non-device object"));
2655}
2656
2657/*
2658 * Perform the pmap work for mincore.
2659 */
2660static int
2661mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2662    vm_paddr_t *locked_pa)
2663{
2664
2665	TODO;
2666	return (0);
2667}
2668
2669/**************************************************************************/
2670/* TID handling */
2671/**************************************************************************/
2672
2673/*
2674 * Allocate a TID. If necessary, steal one from someone else.
2675 * The new TID is flushed from the TLB before returning.
2676 */
2677static tlbtid_t
2678tid_alloc(pmap_t pmap)
2679{
2680	tlbtid_t tid;
2681	int thiscpu;
2682
2683	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2684
2685	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2686
2687	thiscpu = PCPU_GET(cpuid);
2688
2689	tid = PCPU_GET(tid_next);
2690	if (tid > TID_MAX)
2691		tid = TID_MIN;
2692	PCPU_SET(tid_next, tid + 1);
2693
2694	/* If we are stealing TID then clear the relevant pmap's field */
2695	if (tidbusy[thiscpu][tid] != NULL) {
2696
2697		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2698
2699		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2700
2701		/* Flush all entries from TLB0 matching this TID. */
2702		tid_flush(tid);
2703	}
2704
2705	tidbusy[thiscpu][tid] = pmap;
2706	pmap->pm_tid[thiscpu] = tid;
2707	__asm __volatile("msync; isync");
2708
2709	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2710	    PCPU_GET(tid_next));
2711
2712	return (tid);
2713}
2714
2715/**************************************************************************/
2716/* TLB0 handling */
2717/**************************************************************************/
2718
2719static void
2720tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2721    uint32_t mas7)
2722{
2723	int as;
2724	char desc[3];
2725	tlbtid_t tid;
2726	vm_size_t size;
2727	unsigned int tsize;
2728
2729	desc[2] = '\0';
2730	if (mas1 & MAS1_VALID)
2731		desc[0] = 'V';
2732	else
2733		desc[0] = ' ';
2734
2735	if (mas1 & MAS1_IPROT)
2736		desc[1] = 'P';
2737	else
2738		desc[1] = ' ';
2739
2740	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2741	tid = MAS1_GETTID(mas1);
2742
2743	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2744	size = 0;
2745	if (tsize)
2746		size = tsize2size(tsize);
2747
2748	debugf("%3d: (%s) [AS=%d] "
2749	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2750	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2751	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2752}
2753
2754/* Convert TLB0 va and way number to tlb0[] table index. */
2755static inline unsigned int
2756tlb0_tableidx(vm_offset_t va, unsigned int way)
2757{
2758	unsigned int idx;
2759
2760	idx = (way * TLB0_ENTRIES_PER_WAY);
2761	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2762	return (idx);
2763}
2764
2765/*
2766 * Invalidate TLB0 entry.
2767 */
2768static inline void
2769tlb0_flush_entry(vm_offset_t va)
2770{
2771
2772	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2773
2774	mtx_assert(&tlbivax_mutex, MA_OWNED);
2775
2776	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2777	__asm __volatile("isync; msync");
2778	__asm __volatile("tlbsync; msync");
2779
2780	CTR1(KTR_PMAP, "%s: e", __func__);
2781}
2782
2783/* Print out contents of the MAS registers for each TLB0 entry */
2784void
2785tlb0_print_tlbentries(void)
2786{
2787	uint32_t mas0, mas1, mas2, mas3, mas7;
2788	int entryidx, way, idx;
2789
2790	debugf("TLB0 entries:\n");
2791	for (way = 0; way < TLB0_WAYS; way ++)
2792		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2793
2794			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2795			mtspr(SPR_MAS0, mas0);
2796			__asm __volatile("isync");
2797
2798			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2799			mtspr(SPR_MAS2, mas2);
2800
2801			__asm __volatile("isync; tlbre");
2802
2803			mas1 = mfspr(SPR_MAS1);
2804			mas2 = mfspr(SPR_MAS2);
2805			mas3 = mfspr(SPR_MAS3);
2806			mas7 = mfspr(SPR_MAS7);
2807
2808			idx = tlb0_tableidx(mas2, way);
2809			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2810		}
2811}
2812
2813/**************************************************************************/
2814/* TLB1 handling */
2815/**************************************************************************/
2816
2817/*
2818 * TLB1 mapping notes:
2819 *
2820 * TLB1[0]	CCSRBAR
2821 * TLB1[1]	Kernel text and data.
2822 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2823 *		windows, other devices mappings.
2824 */
2825
2826/*
2827 * Write given entry to TLB1 hardware.
2828 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2829 */
2830static void
2831tlb1_write_entry(unsigned int idx)
2832{
2833	uint32_t mas0, mas7;
2834
2835	//debugf("tlb1_write_entry: s\n");
2836
2837	/* Clear high order RPN bits */
2838	mas7 = 0;
2839
2840	/* Select entry */
2841	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2842	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2843
2844	mtspr(SPR_MAS0, mas0);
2845	__asm __volatile("isync");
2846	mtspr(SPR_MAS1, tlb1[idx].mas1);
2847	__asm __volatile("isync");
2848	mtspr(SPR_MAS2, tlb1[idx].mas2);
2849	__asm __volatile("isync");
2850	mtspr(SPR_MAS3, tlb1[idx].mas3);
2851	__asm __volatile("isync");
2852	mtspr(SPR_MAS7, mas7);
2853	__asm __volatile("isync; tlbwe; isync; msync");
2854
2855	//debugf("tlb1_write_entry: e\n");
2856}
2857
2858/*
2859 * Return the largest uint value log such that 2^log <= num.
2860 */
2861static unsigned int
2862ilog2(unsigned int num)
2863{
2864	int lz;
2865
2866	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2867	return (31 - lz);
2868}
2869
2870/*
2871 * Convert TLB TSIZE value to mapped region size.
2872 */
2873static vm_size_t
2874tsize2size(unsigned int tsize)
2875{
2876
2877	/*
2878	 * size = 4^tsize KB
2879	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2880	 */
2881
2882	return ((1 << (2 * tsize)) * 1024);
2883}
2884
2885/*
2886 * Convert region size (must be power of 4) to TLB TSIZE value.
2887 */
2888static unsigned int
2889size2tsize(vm_size_t size)
2890{
2891
2892	return (ilog2(size) / 2 - 5);
2893}
2894
2895/*
2896 * Register permanent kernel mapping in TLB1.
2897 *
2898 * Entries are created starting from index 0 (current free entry is
2899 * kept in tlb1_idx) and are not supposed to be invalidated.
2900 */
2901static int
2902tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2903    uint32_t flags)
2904{
2905	uint32_t ts, tid;
2906	int tsize;
2907
2908	if (tlb1_idx >= TLB1_ENTRIES) {
2909		printf("tlb1_set_entry: TLB1 full!\n");
2910		return (-1);
2911	}
2912
2913	/* Convert size to TSIZE */
2914	tsize = size2tsize(size);
2915
2916	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2917	/* XXX TS is hard coded to 0 for now as we only use single address space */
2918	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2919
2920	/* XXX LOCK tlb1[] */
2921
2922	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2923	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2924	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2925
2926	/* Set supervisor RWX permission bits */
2927	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2928
2929	tlb1_write_entry(tlb1_idx++);
2930
2931	/* XXX UNLOCK tlb1[] */
2932
2933	/*
2934	 * XXX in general TLB1 updates should be propagated between CPUs,
2935	 * since current design assumes to have the same TLB1 set-up on all
2936	 * cores.
2937	 */
2938	return (0);
2939}
2940
2941/*
2942 * Map in contiguous RAM region into the TLB1 using maximum of
2943 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2944 *
2945 * If necessary round up last entry size and return total size
2946 * used by all allocated entries.
2947 */
2948vm_size_t
2949tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2950{
2951	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2952	vm_size_t mapped, pgsz, base, mask;
2953	int idx, nents;
2954
2955	/* Round up to the next 1M */
2956	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2957
2958	mapped = 0;
2959	idx = 0;
2960	base = va;
2961	pgsz = 64*1024*1024;
2962	while (mapped < size) {
2963		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2964			while (pgsz > (size - mapped))
2965				pgsz >>= 2;
2966			pgs[idx++] = pgsz;
2967			mapped += pgsz;
2968		}
2969
2970		/* We under-map. Correct for this. */
2971		if (mapped < size) {
2972			while (pgs[idx - 1] == pgsz) {
2973				idx--;
2974				mapped -= pgsz;
2975			}
2976			/* XXX We may increase beyond out starting point. */
2977			pgsz <<= 2;
2978			pgs[idx++] = pgsz;
2979			mapped += pgsz;
2980		}
2981	}
2982
2983	nents = idx;
2984	mask = pgs[0] - 1;
2985	/* Align address to the boundary */
2986	if (va & mask) {
2987		va = (va + mask) & ~mask;
2988		pa = (pa + mask) & ~mask;
2989	}
2990
2991	for (idx = 0; idx < nents; idx++) {
2992		pgsz = pgs[idx];
2993		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
2994		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
2995		pa += pgsz;
2996		va += pgsz;
2997	}
2998
2999	mapped = (va - base);
3000	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3001	    mapped, mapped - size);
3002	return (mapped);
3003}
3004
3005/*
3006 * TLB1 initialization routine, to be called after the very first
3007 * assembler level setup done in locore.S.
3008 */
3009void
3010tlb1_init(vm_offset_t ccsrbar)
3011{
3012	uint32_t mas0, mas1, mas3;
3013	uint32_t tsz;
3014	u_int i;
3015
3016	if (bootinfo != NULL && bootinfo[0] != 1) {
3017		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3018	} else
3019		tlb1_idx = 1;
3020
3021	/* The first entry/entries are used to map the kernel. */
3022	for (i = 0; i < tlb1_idx; i++) {
3023		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3024		mtspr(SPR_MAS0, mas0);
3025		__asm __volatile("isync; tlbre");
3026
3027		mas1 = mfspr(SPR_MAS1);
3028		if ((mas1 & MAS1_VALID) == 0)
3029			continue;
3030
3031		mas3 = mfspr(SPR_MAS3);
3032
3033		tlb1[i].mas1 = mas1;
3034		tlb1[i].mas2 = mfspr(SPR_MAS2);
3035		tlb1[i].mas3 = mas3;
3036
3037		if (i == 0)
3038			kernload = mas3 & MAS3_RPN;
3039
3040		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3041		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3042	}
3043
3044	/* Map in CCSRBAR. */
3045	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3046
3047	/* Setup TLB miss defaults */
3048	set_mas4_defaults();
3049}
3050
3051/*
3052 * Setup MAS4 defaults.
3053 * These values are loaded to MAS0-2 on a TLB miss.
3054 */
3055static void
3056set_mas4_defaults(void)
3057{
3058	uint32_t mas4;
3059
3060	/* Defaults: TLB0, PID0, TSIZED=4K */
3061	mas4 = MAS4_TLBSELD0;
3062	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3063#ifdef SMP
3064	mas4 |= MAS4_MD;
3065#endif
3066	mtspr(SPR_MAS4, mas4);
3067	__asm __volatile("isync");
3068}
3069
3070/*
3071 * Print out contents of the MAS registers for each TLB1 entry
3072 */
3073void
3074tlb1_print_tlbentries(void)
3075{
3076	uint32_t mas0, mas1, mas2, mas3, mas7;
3077	int i;
3078
3079	debugf("TLB1 entries:\n");
3080	for (i = 0; i < TLB1_ENTRIES; i++) {
3081
3082		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3083		mtspr(SPR_MAS0, mas0);
3084
3085		__asm __volatile("isync; tlbre");
3086
3087		mas1 = mfspr(SPR_MAS1);
3088		mas2 = mfspr(SPR_MAS2);
3089		mas3 = mfspr(SPR_MAS3);
3090		mas7 = mfspr(SPR_MAS7);
3091
3092		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3093	}
3094}
3095
3096/*
3097 * Print out contents of the in-ram tlb1 table.
3098 */
3099void
3100tlb1_print_entries(void)
3101{
3102	int i;
3103
3104	debugf("tlb1[] table entries:\n");
3105	for (i = 0; i < TLB1_ENTRIES; i++)
3106		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3107}
3108
3109/*
3110 * Return 0 if the physical IO range is encompassed by one of the
3111 * the TLB1 entries, otherwise return related error code.
3112 */
3113static int
3114tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3115{
3116	uint32_t prot;
3117	vm_paddr_t pa_start;
3118	vm_paddr_t pa_end;
3119	unsigned int entry_tsize;
3120	vm_size_t entry_size;
3121
3122	*va = (vm_offset_t)NULL;
3123
3124	/* Skip invalid entries */
3125	if (!(tlb1[i].mas1 & MAS1_VALID))
3126		return (EINVAL);
3127
3128	/*
3129	 * The entry must be cache-inhibited, guarded, and r/w
3130	 * so it can function as an i/o page
3131	 */
3132	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3133	if (prot != (MAS2_I | MAS2_G))
3134		return (EPERM);
3135
3136	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3137	if (prot != (MAS3_SR | MAS3_SW))
3138		return (EPERM);
3139
3140	/* The address should be within the entry range. */
3141	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3142	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3143
3144	entry_size = tsize2size(entry_tsize);
3145	pa_start = tlb1[i].mas3 & MAS3_RPN;
3146	pa_end = pa_start + entry_size - 1;
3147
3148	if ((pa < pa_start) || ((pa + size) > pa_end))
3149		return (ERANGE);
3150
3151	/* Return virtual address of this mapping. */
3152	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3153	return (0);
3154}
3155